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Abstract
There is an urgent need for ready access to published data for advances in materials design, and natural language processing 
(NLP) techniques offer a promising solution for extracting relevant information from scientific publications. In this paper, 
we present a domain-specific approach utilizing a Transformer-based model, T5, to automate the generation of sample lists 
in the field of polymer nanocomposites (PNCs). Leveraging large-scale corpora, we employ advanced NLP techniques 
including named entity recognition and relation extraction to accurately extract sample codes, compositions, group refer-
ences, and properties from PNC papers. The T5 model demonstrates competitive performance in relation extraction using 
a TANL framework and an EM-style input sequence. Furthermore, we explore multi-task learning and joint-entity-relation 
extraction to enhance efficiency and address deployment concerns. Our proposed methodology, from corpora generation to 
model training, showcases the potential of structured knowledge extraction from publications in PNC research and beyond.
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Introduction and Background

With the advent of the materials genome initiative (MGI) [1, 
2], there is a growing vision to integrate data science and 
machine learning to forge new capabilities in the understand-
ing and design of materials, with applications from health 
care to advanced structures to renewable energy [3]. The vast 
majority of the work to date has focused on the development 
of machine learning algorithms to leverage data from com-
putational models and make new discoveries [4–6]. The lack 
of FAIR (findable, accessible, interoperable, and reusable) 
materials data resources means that it is difficult to utilize 
data generated by peers in the field, pushing researchers to 
rely on computational models within their own laboratory 
that could generate large amounts of data, which is nec-
essary for training a decent machine learning model. To 
address this issue, we have been developing MaterialsMine,1 
an ontology-driven open-source FAIR data resource for 
polymer nanocomposites (PNC) and metamaterials [7–11]. 
In addition to the data generated in our own laboratories, 

we have been curating experimental data from the literature 
into MaterialsMine. Data curation is challenging in that it 
requires domain knowledge, is extremely time consuming 
and its highly repetitive nature makes it prone to human 
error. Even in a subdomain of materials like PNCs, there 
were 70 k + publications in 2022 as suggested by search-
ing “polymer nanocomposite” on Semantic Scholar,2 along 
with an enormous number of important existing publications 
prior to 2022, none of which enable ready access to organ-
ized, annotated data. Based on MaterialsMine statistics, one 
PNC paper contains around 12 samples and each sample 
maps to 3 reported properties, meaning around 2.5 million of 
data points are published for PNC a year. Thus, the limited 
bandwidth of the progress of manually curated data poses a 
significant drag on the data-driven design of materials. As 
an alternative, we have a vision to harness the power of AI 
to extract data from the vast, published, archival literature, 
and to make that data FAIR by incorporating it into a robust 
materials data framework. Access to this enormous array 
of published data, both experimental and computational, 
would transform our ability to use existing knowledge in 
understanding and developing design paradigms for new  *	 L. Catherine Brinson 
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materials. Natural language processing (NLP), which seeks 
to automate the extraction of knowledge from human-written 
text, offers an opportunity to make this data accessible and 
readily reusable by humans and machines.

In the curation workflow for experimental data on materi-
als as in MaterialsMine, the first step is to create a “sample 
list”, which summarizes the experimental units or samples 
reported in the paper, denoting their composition and other 
distinguishing characteristics. Human curators use sample 
lists as guidance for curation. There are five major steps 
involved in sample list generation: (1) identify experimental 
samples and assign them unique sample codes as indices in 
the sample list, (2) identify each sample composition, 3) 
identify properties characterized for each sample, (4) associ-
ate sample code with composition, and 5) associate sample 
code with properties. In some cases, authors may provide a 
specific sample code, such as “Ep-SiO2-01,” within the pub-
lication to denote a particular experimental sample. Rule-
based syntactical matching algorithms can be employed to 
extract these sample codes. However, for many papers within 
the field of PNC, this is not the case. Common represen-
tations, such as “1 wt% silica in epoxy,” require a deeper 
semantic understanding, rendering the syntactic approach 
less effective. Transformer models are well suited for sample 
list generation for their outstanding semantic understanding 
ability and wide applications on various NLP tasks [12–15]. 
The five steps can be smoothly translated into two structured 
prediction tasks within NLP. The task of named entity rec-
ognition (NER), which involves identifying and categoriz-
ing word-spans in a document, is suitable for the “identify” 
steps. The relation extraction (RE) task that seeks to predict 
the relationship between entities can be applied to the “asso-
ciate” steps.

In this work, we propose to use domain-specific sequence-
to-sequence (seq2seq) model for structured information 
extraction from polymer nanocomposite publications, focus-
ing specifically on the sample list creation objective, by 
formulating the problem as an NER/RE task, benchmarked 
against some popular public pre-trained encoder models and 
their domain-specific variations. Related works are reviewed 
in “Related work” section. Details about how the dataset for 
pre-training and finetuning was collected and processed, and 
how pre-training and downstream tasks were conducted are 
summarized in “Methods” section. Results and discussion 
can be found in “Results and discussion” section, followed 
by conclusions in “Conclusions” section. Though the paper 
focuses on PNC publications, we would like to stress that 
the methodology is applicable to other scientific research 
domains, both within and outside materials science.

Related Work

To date, a few materials researchers have begun to apply 
NLP techniques to the NER task, focusing on inorganic 
materials like metal oxides [16], zeolites [17], and nano-
materials [18]. A similar recent effort utilizes rule-based 
heuristics and an unsupervised Snowball algorithm for 
relation extraction (RE) to generate ontologies for a class 
of crystallographic materials [19]. However, NER and RE 
for inorganic, crystalline materials are relatively simple 
because the compact chemical formula of inorganic mate-
rials acts as unique identifiers. In contrast, organic materi-
als, especially polymers, cannot be uniformly represented 
[20]. PNCs are even more complex, with the introduction 
of nanofillers of complex geometry and chemistry. Accord-
ingly, authors of PNC papers refer to experimental sam-
ples with fluid language; a single sample in a paper may 
be referred to as “1 wt% silica in epoxy,” “epoxy/1 wt% 
SiO2,” “epoxy-SiO2-0.01,” or “Ep-SiO2-01” interchange-
ably, which makes annotating a corpus for training an NER 
system difficult [21].

The large pre-trained transformer-based NLP models 
have achieved state-of-the-art performance in various 
downstream tasks, including NER and RE, in recent years 
[22]. Most of the NLP + materials science works leverage 
the “pre-training then finetuning” paradigm to train their 
models. It has been concluded in multiple works that the 
transformer-based models pre-trained on domain-specific 
corpora outperform the ones pre-trained on generic natural 
language since sentences in materials science publications 
are extremely specialized [23, 24]. Due to the uniqueness 
of the PNC language and the fact that materials science 
corpora used in existing works are kept private due to 
copyright concerns, we need to create our unannotated 
pre-training corpus and annotated finetune corpus from 
PNC publications.

Encoder-only transformer models, such as BERT, are 
pre-trained using denoising objectives that do not require 
annotation [13, 14, 25]. The goal is to teach the model the 
language by masking, shuffling, and other methods which 
introduce noise to the input sentence and then asking the 
model to restore the original sentence. After pre-training, 
there is an additional finetuning step, where the model 
is taught to perform a task of interest. For this finetun-
ing step, we will need human annotations to provide the 
ground truth to the model.

Of all available models in the broad transformers model 
family, a group of BERT-based encoder models, such as 
BERT, RoBERTa, and DeBERTa, is often elected for 
structured prediction tasks [13, 26, 27]. Examples in the 
materials science domain include SciBERT, MatBERT, 
and MatSciBERT, all of which selected to pre-train 
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BERT-based transformers with domain-specific corpora 
[28–30]. The “matching the blanks” (MTB) architecture 
as an extension to the BERT model is reported to perform 
reasonably well on RE tasks [31]. Though encoder mod-
els typically are the first options for structured prediction 
tasks like token classification, several works have shown 
that a seq2seq (or encoder-decoder) model can also per-
form well on such tasks by proxying structured prediction 
tasks as text generation tasks [32–34]. Treating struc-
tured prediction as generation allows for jointly making 
interrelated predictions without changing the architecture 
of the model. By proxying as text generation tasks with 
seq2seq models, we can provide different templates or task 
prefix to use one single model artifact for multiple tasks. 
Seq2seq (or encoder-decoder) models like T5 have shown 
their versatility on an array of NLP tasks, structured or 
unstructured, with one single model [14]. For example, the 
TANL framework was developed for an array of structured 
prediction tasks to be formed as a translation task between 
the target sequence and the input augmented natural lan-
guage, building on top of seq2seq models like T5 [32].

Another big branch of transformer-based models that 
has become extremely impactful recently is decoder-
only models, including GPT-3, GPT-4, PaLM, LLaMa, 
LlaMa-2 [15, 35–38]. Despite some early attempts to apply 
decoder-only models in materials science study [39], it has 
been reported that using decoder-only large language mod-
els (LLMs) like GPT on domain-specific tasks requires 
finetuning on domain-specific corpus [40]. LLMs usually 
have tens or hundreds of billions of parameters (GPT-4 
is alleged to have trillions of parameters), which is too 
large to be fit into a 16 GB GPU like T5-base. Meanwhile, 
several studies report that by comparing performance on 
seq2seq tasks with seq2seq and decoder-only models of 
the same compute, i.e., they restrict the resource that a 

model could utilize for training to be the same, seq2seq 
models outperform LLMs [14, 25, 41]. Thus, while LLMs 
have promise which will be realized with time, research 
and additional compute capabilities, we have deployed T5, 
a seq2seq model, for the task described in this work.

As illustrated in Fig. 1, our vision is to create a semi-
automated curation pathway by generating sample lists 
from PNC journal articles, that could gradually evolve into 
an automated curation pathway that could populate the 
MaterialsMine knowledge graph directly from the articles 
in future. This work serves as a first step toward the sus-
tainable future of MaterialsMine driven by the automated 
curation pipeline.

Methods

Figure 2 provides the overall workflow of this work. In gen-
eral, we start with data collection and cleaning, resulting in 
two corpora, one for pre-training and the other for finetun-
ing, which requires annotation as well. Both T5 and BERT-
based models will be finetuned for downstream tasks like 
NER and RE. In addition, we pre-trained our own domain-
specific T5 model with the unannotated corpus. For BERT-
based models, we can only finetune them as single-task NER 
or RE models (red dashed pathway). For T5 models, we 
finetuned them for all four realizations depicted in Fig. 2 
(blue solid pathway). Entity pairs with relation for structured 
knowledge extraction from PNC papers can be obtained via 
either (1) two sequential calls to the two single-task models, 
or (2) two sequential calls to the multi-task model with dif-
ferent task prefixes, or (3) a single call to the joint-entity-
relation extraction model. We will dive deep into each of the 
steps in the following sections.

Fig. 1   Our vision of the NLP-driven curation pathway for MaterialsMine
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Dataset Collection and Preparation

During manual sample list generation, curators are instructed 
to pay special attention to figures and tables since sample 
codes, composition, and properties are most likely reported 
in those components. Information can also be extracted 
from paragraphs where a discussion of figures or tables is 
presented. Learning from this practice, we built our PNC 
corpus using figure captions, table captions plus individual 
sentences from the text including figure and table referenc-
ing. All datasets use an 80:20 split for the training set and 
validation set.

Caption‑Mention Corpus—the Pre‑training Corpus

The caption-mention corpus discussed in this work consists 
of 1 M (1,002,904) sentences sourced from figure captions, 
table captions, and sentences that mention a figure or a 
table in the body text of 23,090 PNC papers. Figure 3 dem-
onstrates the construction process of the caption-mention 
corpus.

A Scopus API query was utilized to obtain 99,985 DOI’s 
with keyword filtering of “polymer + composite”.3 The 
obtained DOI’s are further filtered by keywords (“poly” or 
“rubber”) and “composite” in the abstract. DOI’s of book 
chapters are removed from the collection. The list of DOI’s 
is then grouped by the publishers, resulting in 18,210 DOI’s 
from Elsevier, 4,880 DOI’s from other publishers. The 
Elsevier corpus is obtained via the Elsevier API,4 which 
returns XML’s. The rest are obtained via an HTML scraper 

developed in-house. The markup language files are then 
parsed with a modified HtmlReader of the ChemDataEx-
tractor package [42]. For each DOI, we store the abstract, 
the full text structured with top-level headers and content, 
figure captions, and table captions, all of which are normal-
ized with the python unicodedata package.5 We then extract 
sentences that mention a figure or a table from the full-text 
content. Finally, we use ChemDataExtractor to perform sen-
tence segmentation on all the figure captions, table captions, 
and sentences that mention a figure or a table, to build our 
caption-mention corpus. Sentences with a length between 
10 and 256 after tokenization are kept in the pre-training 
corpus.

Annotated Caption Corpus—the Finetune Corpus

The annotated caption corpus discussed in this work consists 
of 1896 captions collected from 214 PNC papers manually 
curated into the MaterialsMine data resource. Users can 
visit https://​mater​ialsm​ine.​org for curated data. The doccano 
annotation platform is used for NER tagging and RE tagging 
[43]. This manual task is accomplished by two human cura-
tors, one who leads the annotation task and the other who 
verifies the annotation.

For NER tagging, we propose four classes of named enti-
ties for sample list generation purposes: sample code (S), 
composition (C), group reference (G), and property (P). For 
a span to be labeled with S, it must either be able to point 
any materials scientist to a unique experimental unit without 
reading through the full paper or used explicitly as a sample 
code in the paper. Though polymer/filler names are usually 

Fig. 2   General workflow of this work

3  https://​dev.​elsev​ier.​com/​docum​entat​ion/​Scopu​sSear​chAPI.​wadl
4  https://​dev.​elsev​ier.​com/​docum​entat​ion/​FullT​extRe​triev​alAPI.​wadl 5  https://​docs.​python.​org/3/​libra​ry/​unico​dedata.​html

https://materialsmine.org
https://dev.elsevier.com/documentation/ScopusSearchAPI.wadl
https://dev.elsevier.com/documentation/FullTextRetrievalAPI.wadl
https://docs.python.org/3/library/unicodedata.html
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included in the sample code, this work focuses on the sample 
code extraction. Spans that indicate nanofiller loadings like 
a mass fraction or volume fraction will be labeled with C. 
Similarly, spans that describe the property of interest in the 
figure or table are labeled with P, which can be any meas-
urable that is characterized in materials science research. 
While being able to extract the actual value of a property is 
the North Star, this work focuses on extracting the property 
name. In PNC papers, it is common to compare properties 
within a group of PNCs with different nanofiller loadings in 
a figure or a table. Instead of listing all sample codes in the 
captions, authors usually use spans like “epoxy nanocom-
posites” or “silane-modified samples” as a group reference 
to multiple samples. Such spans are labeled with G. It is 
worth mentioning that C spans overlap with S spans on rare 
occasions. For example, “epoxy/1 wt% SiO2” is a S span 
while “1 wt%” is a C span. Since most of the BERT-based 
NER models do not support overlapping named entities, we 
will remove overlapped C span in this case for simplicity in 
downstream tasks.

For RE tagging, we propose three relation classes: 
isPropertyOf, isCompositionOf, and isMemberOf. isProp-
ertyOf can be applied to the (P, S) pair, (P, C) pair, and 

(P, G) pair, indicating a P span is reported for the other 
entity in the pair. isCompositionOf is straightforward as 
it can only be applied to the (C, S) pair. It is common 
that a caption contains multiple C tags and S tags, making 
the isCompositionOf class necessary. isMemberOf can be 
applied to the (S, G) pair and (C, G) pair, bridging the 
group reference to a sample or a smaller group of samples 
with identical nanofiller loadings. For detailed annota-
tion guidelines, please refer to the online supplementary 
material.

Figure 4 is an example of a figure caption annotated for 
NER and RE in the doccano platform26. The resulting corpus 
has 2028 entities with the S label, 491 entities with the C 
label, 1606 entities with the G label, 2465 entities with the 
P label, 4262 entity pairs labeled with isPropertyOf, 633 
entity pairs labeled with isCompositionOf, and 872 entity 
pairs labeled with isMemberOf.

Having introduced the named entities and relation classes, 
we can better understand the similarities between a sample 
list and the entity-relation-entity triples generated by the 
model proposed in this work as illustrated in Fig. 5.

Note that the gray dashed area is the final step to generate 
a graph which is equivalent to a row of data in the sample 

Fig. 3   Summary of the construction of the caption-mention corpus
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list. The final step involves an extra layer of entity resolution 
to find identical nodes semantically or physically for joining.

Datasets

For the NER task, an 80:20 split was adopted, resulting in 
3045 sentences for training and 762 sentences for testing.

For the RE task, similarly, an 80:20 split resulted in 
9328 sentences for training and 2332 sentences for test-
ing. An additional “Other” label was added for 5893 entity 
pairs with no relation. For example, a caption can include 
descriptions of multiple sub-figures. An entity pair with 
one entity describing sub-figure (a) and the other entity 
describing sub-figure (d) is likely to be considered as 
“Other”. Note that we did not label “Other” entity pair 
during human annotation. Instead, we automatically assign 
the “Other” label for entity pairs without a relation label 
in the same sentence. Since no entity pairs with the same 

NE labels were annotated with a relation, like P–P and 
S–S, we did not include those in generating the sentences 
for the RE task. For each entity pair with different NE 
labels, like P–S and C–S, we generate a sentence with 
either entity markers (EM) or the augmented natural lan-
guage pre-processing for TANL. For the EM-style pre-
processing, each NE of the entity pair was wrapped around 
with entity markers “<e1>”, “</e1>”, “<e2>”, and “</
e2>”. For the TANL style pre-processing, please refer to 
the description of the relation classification task in their 
original paper [32].

Due to the limited size of annotated data, no dev set was 
spared from the training dataset. Models were finetuned 
on the test set, meaning our results represent an upper 
bound. More insights of the finetune corpus are available 
in the online supplementary material, with distributions of 
polymer matrices, nanofillers, and properties.

Fig. 4   A screenshot of the caption corpus annotation with doccano

Fig. 5   Comparison between the 
manually curated sample list 
versus the entity-relation-entity 
triple
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Pre‑training of Domain‑Specific T5

The T5-base model is pre-trained on the domain-specific 
unannotated caption-mention corpus. We used the same 
denoising pre-training objective as reported in the T5 paper 
that replaces dropped-out spans with sentinel tokens with 
a 15% corruption rate and an average of 3 tokens per cor-
rupted span. A SentencePiece tokenizer is used here to break 
sentences into words and sub-words, referred to as tokens, 
and then it converts the textual input into numerical repre-
sentations via a vocabulary look-up [44]. Our models are 
implemented with HuggingFace [45].

To fit in a 16 GB GPU, a batch size of 16 and a gradient 
accumulation step of 8 were selected, resulting in 128 total 
train batch size. Based on our experience of finetuning a 
T5 model and the pre-training configs reported in the origi-
nal T5 paper [14], we evaluated 5 different combinations of 
optimizers and peak learning rates for pre-training: Case (1) 
AdamW optimizer with a peak learning rate of 5e-4, Case 
(2) AdamW optimizer with a peak learning rate of 5e-5, 
Case (3) AdaFactor optimizer with the AdaFactor scheduler 
that adjusts learning rate internally, Case (4) AdaFactor opti-
mizer with an external peak learning rate of 1e-3, and Case 
(5) AdaFactor optimizer with an external constant learning 
rate of 1e-3. AdamW cases used a weight decay of 1e-3. 
Each model was scheduled to warmup for 5000 steps. A lin-
ear scheduler was utilized unless otherwise specified. Mod-
els were evaluated every 2500 steps. The maximum length 
of the input sequence is limited to 256. The best pre-trained 
model was trained on an NVIDIA Quadro P5000 GPU with 
16 GB GPU RAM for 6 days. Pre-training codes are avail-
able at our GitHub repository.6

Downstream Tasks

NER

For the NER task, the BILOU tagging scheme (see SI) was 
adopted for pre-processing the labels. The input and label 
encodings generated by the tokenizers are truncated or pad-
ded to a fixed length of 200. For baselines, we assessed 
encoder models like DeBERTa-base, MatBERT, and 
MatSciBERT, and seq2seq models like TANL for NER with 
T5 as the starting point, and two other formulations of the 
target sequence for T5 to treat NER as a text generation task. 
In the first formulation, the T5 model predicts a sequence of 
label tokens, denoted as T5label seq. The second option is to 
predict an interleaved style of word token and label token, 
denoted as T5interleave. An example of the two formulations 
is as follows.

Input: Fig. 3. Tg of PMMA-silica-0.1.
Output (label sequence): “<O><O><O><U-
P><O><B-S><I-S><I-S><I-S><L-S><O>”
Output (interleave): Fig<O>3<O>.<O>Tg<U-
P>of<O>PMMA<B-S>-<I-S>silica<I-S>-<I-
S>0.1<L-S>.<O>

Apart from the baselines, we also assessed three seq2seq 
formulations, namely TANL, T5label seq, and T5interleave, with 
our domain-specific T5 model for the NER task.

Models were evaluated on micro-averaged precision, 
recall, and F1 score for the NER task. Each model was 
finetuned until the F1 score stops increasing with 5 random 
seeds unless otherwise specified.

RE

For the RE task, baselines include the “matching the blank” 
(MTB) architecture on top of the BERT, MatBERT, and 
MatSciBERT model with entity marker (EM) as a state-of-
the-art architecture for RE task among the encoder models, 
and the TANL model built on top of T5 with the augmented 
natural language for the relation classification task. We 
assessed our domain-specific T5 model on the RE task with 
two proposed approaches: (1) use the TANL framework but 
with our domain-specific T5 model, and (2) an EM-style 
input sequence and relation triple style output sequence. For 
the EM-style finetuning, similar to the NER task, we added 
entity markers and relation labels wrapped in “<” and “>” 
as additional special tokens to the T5 tokenizer. An exam-
ple target sequence will be “<isPropertyOf><e2><e1>”, 
meaning entity 2 is property of entity 1. Input sequences 
were truncated or padded to a fixed length of 200.

Micro-averaged F1 score was used as the metric for 
model evaluation. Each model was finetuned until the F1 
score stops increasing with 5 random seeds unless otherwise 
specified.

Since our goal is to create a pipeline for sample list 
generation in MaterialsMine, using individual single-task 
models for NER and RE separately might bring deploy-
ment concerns. The charm of the seq2seq model lies in its 
multi-tasking ability. There are two options for us to use one 
seq2seq model for both tasks, namely a multi-task seq2seq 
model, and a joint-entity-relation extraction model.

Multi‑task NER + RE

A multi-task TANL on top of our pre-trained T5 model was 
trained in a multi-task setting with a separated NER dataset 
and RE dataset. A task prefix, like “NM_NER:” and “NM_
REL:” was added to each sentence as a prefix. The micro-
averaged F1 score of this model on the NER task and the 
RE task will be compared with single-task models as well.6  https://​github.​com/​bingy​inh/​NLP_​PNC_​sample_​list

https://github.com/bingyinh/NLP_PNC_sample_list


	 Integrating Materials and Manufacturing Innovation

Joint‑Entity‑Relation Extraction

A TANL model starting with our pre-trained T5 model was 
trained for a joint-entity-relation extraction task as well. 
After being translated into the augmented natural language, 
an example input sentence will become:

Input: Fig. 3. Tg of PMMA-silica-0.1.
Output: Fig. 3. [ Tg | P | isPropertyOf = PMMA-sil-
ica-0.1 ] of [ PMMA-silica-0.1 | S ].

Note that the evaluation of the RE task in the joint-entity-
relation extraction task is contingent on the performance of 
the NER task. For example, if none of the named entities 
can be detected in the sequence, no relation will be detected 
as well in a joint-entity-relation extraction setting, while 
in the standalone or multi-task settings, RE inference has 
labeled named entities in the input sequence. Therefore, it 
will be unfair to compare the performance on the RE task 
of the joint-entity-relation extraction directly to the other 
two settings. We include the performance metrics here just 
for reference. It is worth noting that the joint-entity-relation 
extraction is the more realistic setting since NE labels are 
not ordinarily available during inference.

Hyperparameters

For T5 models, we tested a wide range of learning rates from 
[5e-5, 1e-4, 2e-4, 3e-4, 4e-4, 5e-4, 1e-3], weight decay from 
[1e-4, 1e-3, 1e-2, 1e-1], batch size from [8, 16], number of 
beams from [5, 10]. We did not set a cap on the training 
epochs for any of the models being assessed. The stopping 
criteria are purely based on the F1 score.

Results and Discussion

Pre‑training of Domain‑specific T5

The pre-training history is provided in Fig. 6.
The five cases were experimented on one after another. 

Cases (2) and (3) perform significantly worse than case (1) 
at around 10,000 steps. Thus, they were terminated early. 
Case (4) showed a decreasing trend at 30,000 steps, so it was 
trained for another 30,000 steps with the scheduler started 
afresh until the validation loss converged. Case (5), which 
performs the best on the validation set, was also kept train-
ing until 60,000+ steps. Case (5), AdaFactor with constant 
external learning rate at 1e-3, as reported in the T5 paper 
for finetuning, obtained the lowest validation loss at 0.457.

Downstream Tasks

NER

Table 1 summarizes the micro-averaged precision, recall, 
and F1 scores of the assessed models on the NER task. Note 
that the multi-task TANL model and the joint-entity-relation 
extraction TANL model are included in the table along with 
other single-task NER models.

As expected, encoder models perform well on the NER 
task. MatBERT, which was pre-trained on a corpus con-
sisting of 2 M full-text materials science journal articles, 
performs the best in the NER task if we ignore the joint-
entity-relation TANL model. The DeBERTa model, as an 
advanced BERT model with disentangled attention, outper-
forms the domain-specific MatSciBERT model despite not 
being pre-trained on a domain-specific corpus. Interestingly, 

Fig. 6   Pre-training history of domain-specific T5 models with caption-mention corpus with early stopping enabled
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all three TANL with domain-specific T5 models, includ-
ing TANLmulti-task and TANLjoint-entity-relation, obtain better 
F1 scores than the single-task TANL. This finding suggests 
that learning for the RE task can be beneficial to the NER 
task. Our domain-specific T5-base model helps the label 
sequence formulation increase its F1 score from 79.5 to 81.6, 
which is still impressive given that our caption-mention cor-
pus is more than 100 times smaller than the MatBERT pre-
training corpus since we only used caption-related sentences 
excerpted from a total of 23 k papers, and that it outperforms 
the MatSciBERT model, which was pre-trained on ~ 150 k 
full-text materials science journal articles. Surprisingly, the 
T5interleave model suffers a significant performance drop with 
the domain-specific T5.

RE

The micro-averaged F1 scores after evaluating multiple RE 
models on our annotated caption corpus can be found in 
Table 2. Again, the multi-task TANL model and the joint-
entity-relation extraction TANL model are included in the 
table as well.

Since only 3 relation classes were annotated in our fine-
tune corpus, the performance of all models listed in Table 2, 
except for TANLjoint-entity-relation, is strong, while a clear gap 
exists between the 3 BERT-based encoder models and the 
T5-based seq2seq models. The best micro-averaged F1 score 
of 96.9 was reached by the TANLmulti-task model. As we 
mentioned before, it is unfair to compare the performance 
of the TANLjoint-entity-relation model on the RE task directly 
with the other models because the other models predict on 
true NE labeled input sequence while the joint model does 
not. On the other hand, around 30% of the sequences gener-
ated by TANLjoint-entity-relation model cannot match the input 

tokens exactly, which is called a “wrong construction” in 
the TANL framework. According to the input and output 
sequence examples we provided in the Methods section, the 
augmented natural language allocates a longer span to RE 
expressions than NER expressions. A failed reconstruction 
thus impacts the RE task more than the NER task. The afore-
mentioned two reasons lead to a high NER score but a low 
RE score for the TANLjoint-entity-relation model.

Discussion

Figure  7 summarizes the three potential approaches to 
implement the encoder or seq2seq models for NER and RE 
tasks.

Approach 1 uses one single-task model for NER and 
another for RE. In that case, based on performance shown 
in Table 1 and Table 2, one would choose the MatBERT 

Table 1   Performance on the 
NER task collected from 5 
random runs

Bold value indicates best performing model, while underline value indicates the second best performing 
model
*Models were trained without 5 random runs

Precision Recall F1

DeBERTa-base 79.8 ± 0.7 82.6 ± 0.4 81.2 ± 0.4
MatBERT 83.3 ± 0.8 83.2 ± 1.9 83.0 ± 1.3
MatSciBERT 78.0 ± 0.5 83.8 ± 0.5 80.8 ± 0.5
TANL 79.9 ± 0.8 80.2 ± 0.8 80.1 ± 0.6
T5label seq* 79.6 79.4 79.5
T5interleave* 73.0 77.2 75.0
With domain-specific T5-base
domain-specific T5label seq* 80.9 82.3 81.6
domain-specific T5interleave* 57.0 80.2 66.6
TANL + domain-specific T5 80.6 ± 0.8 80.2 ± 0.3 80.4 ± 0.4
TANLmulti-task + domain-specific T5 81.5 ± 0.6 81.4 ± 0.5 81.4 ± 0.6
TANLjoint-entity-relation + domain-specific T5 85.4 ± 0.6 82.3 ± 0.6 83.8 ± 0.5

Table 2   Performance on the RE task collected from 5 random runs

Bold value indicates best performing model, while underline value 
indicates the second best performing model
*Models were trained without 5 random runs

F1

MTB + BERTEM 91.9 ± 0.2
MTB + MatBERTEM 93.6 ± 0.6
MTB + MatSciBERTEM 94.8 ± 0.2
TANL 95.6 ± 0.6
With domain-specific T5-base
domain-specific T5EM* 95.8
TANL + domain-specific T5 95.5 ± 0.4
TANLmulti-task + domain-specific T5 96.9 ± 0.2
TANLjoint-entity-relation + domain-specific T5 72.0 ± 0.9
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for NER and the domain-specific T5EM for RE. Approach 
2 and Approach 3 only require one model. The difference 
lies in that Approach 2 uses a multi-tasking model, which 
will be called twice for each pass, and Approach 3 uses 
a model finetuned for joint-entity-relation extraction task 
that predicts NEs and relationships simultaneously in a 
single pass. Again, the RE F1 score here for Approach 3 
has a different setting from other RE F1 scores. As dis-
cussed in the previous section, there is a 30% “wrong 
construction” issue in TANL. Another reason for the sig-
nificantly low RE score is that the relation extraction part 
of a joint-entity-relation extraction task in TANL does not 
use input sentences with correctly labeled NE as other 
single-task RE or multi-task RE models do. To roughly 
equilibrate the impact of the incorrectly labeled NEs in 
the input, a score of 85.9 can be obtained by dividing 72.0 
with 83.8, which is still low but in line with other models. 
Application-wise, the RE score in a joint-entity-relation 
extraction task is closer to the real use case where the 
performance on the RE task is impacted by the NER task.

When considering Approach 1 and Approach 2, if the 
primary concern is performance, Approach 1 would be 
preferable due to its higher NER score, as it is inferred 
from Approach 3 that the NER score has a significant 
impact on the RE score in a practical applications. How-
ever, from a production standpoint, a pipeline incorporat-
ing a single multi-task model offers several advantages 
over one with two single-task models, including efficient 

resource utilization, reduced operational costs, and simpli-
fied code base.

In addition, we propose that the multi-task model has 
the potential to do better on the NER task. The fact that 
the joint-entity-relation extraction model performs the 
best on the NER task suggests that the performance dif-
ference between MatBERT and TANLmulti-task + domain-
specific T5 is not about the model structure, but about the 
size of pre-training corpus. As mentioned, the MatBERT 
model was pre-trained from the BERT-uncased-base 
model with 2 M full-text materials science publications. 
In contrast, our pre-training corpus consists of captions 
and caption-related sentences extracted from 23 k poly-
mer nanocomposite papers, a corpus more than 100 k 
times smaller. Limiting the pre-training corpus to only 
caption-related sentences might also limit the semantic 
understanding of T5. Thus, future work includes extend-
ing our pre-training corpus to include full-text PNC 

Fig. 7   Proposed pipelines for the application of NER and RE models in MaterialsMine data curation. F1 scores shown in parentheses in green

Table 3   NE-class-level performance of the TANLmulti-task + Pre-
trained T5-base model

Named entity class Precision Recall F1

(S)ample code 84.6 ± 1.6 84.9 ± 1.1 84.8 ± 1.2
(C)omposition 70.6 ± 1.9 72.4 ± 1.1 71.4 ± 0.5
(P)roperty 85.0 ± 0.7 84.4 ± 0.7 84.7 ± 0.7
(G)roup reference 73.6 ± 1.1 73.2 ± 1.5 73.4 ± 0.5
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papers and pre-training the T5 model on the extended 
corpus.

Overall, the multi-task approach is the optimal solution 
for sample list generation in our use case of the Materi-
alsMine platform. Taking a closer look at the NER per-
formance on individual NE classes, Table 3 summarizes 
the precision, recall, and F1 score of each named entity 
(NE) class over 5 random runs.

Impressively, the sample code and property named 
entities can be detected with an F1 score of 84.8 and 84.7. 
As shown in Fig. 5, the final graph that is equivalent to a 
row in the sample list will be triples joining on the sample 
code. Thus, performing well on the sample code class is 
critical. The composition class, in a few cases, can be 
detected via regular expressions (regex) as well, which 
might be a potential augmenting solution to improve the 
performance. The group reference is the most compli-
cated and natural-language-like class in this work which 
confuses human curators from time to time. It is not sur-
prising that the performance of our multi-task model is 
less competitive in predicting the G class.

One limitation of our work is the inability to directly 
extract polymer and filler names as separate named enti-
ties, primarily due to constraints in human annotation 
resources. However, we propose leveraging rule-based 
algorithms to segment the sample code into distinct enti-
ties, and then facilitating polymer/filler name detection 
through two potential approaches. The first approach is 
to call the ChemProps API that our group developed for 
polymer and keyword name standardization [11]. The ser-
vice can detect variations of 129 popular polymer names 
and 54 common filler names. The second approach is 
to generate embeddings for segmented entities with an 
encoder or Word2Vec model like the work by Shetty and 
Ramprasad [46]. Subsequently, utilizing K Nearest Neigh-
bor with cosine distance within a pool of embeddings for 
popular polymer names with a cutoff threshold to filter 
out non polymer name entities.

The ultimate goal of our framework is to curate PNC 
data in a fully automated way. However, two significant 
challenges persist. The first challenge relates to the neces-
sity of an entity resolution layer to merge entity pairs into 
a graph, despite the fluid language used by authors, as 
presented in Fig. 5. The second challenge is about numer-
ical value detection and allocation, a task that is indeed 
achievable but demands additional NER/RE labels, more 
data, and extra human annotation efforts. Like many 
other NLP challenges within scientific domains, the pri-
mary obstacle remains the scarcity of human annotation 
resources, given its requisite domain expertise, rendering 
crowd-sourcing ineffective.

Conclusions

In this work, we presented the methods we used to collect 
a domain-specific unannotated corpus for pre-training and 
a domain-specific annotated corpus for finetuning an array 
of BERT-based models and seq2seq models for NER and 
RE tasks on captions excerpted from PNC publications. A 
domain-specific T5-base model was pre-trained using 1 M 
caption-related sentences collected from 23 k PNC arti-
cles. A finetune corpus containing 1,896 figure captions 
from PNC papers was annotated with named entities from 4 
classes and relations from 3 classes.

The NER task results showed that a large pre-training 
corpus is critical to boost the performance as MatBERT 
outperforms other single-task models. The caption-mention 
corpus also helps improve the performance of our T5 model 
with a label sequence formulation, which performs better 
than the domain-specific MatSciBERT model despite a sig-
nificantly smaller pre-training corpus.

For the RE task, our T5 models, one utilizing the TANL 
framework and another using an EM-style input sequence 
with relation triple output sequence, demonstrated competi-
tive performance in terms of micro-averaged F1 score.

To enhance efficiency and address deployment concerns, 
multi-task learning and joint-entity-relation extraction were 
explored. The multi-task TANL model, trained on separate 
NER and RE datasets, achieved promising results in both 
tasks. The joint-entity-relation extraction task model has a 
satisfactory NER F1 score and a low RE F1 score, due to 
the inherent complexity and interdependence of jointly pre-
dicting both NER and RE in a single model. It also suggests 
that the NER task, as the upstream, plays a crucial role in 
enabling accurate RE in practical use.

Overall, our study showcases the potential of using a 
domain-specific T5 model for automating the process of 
sample list generation for accelerating data curation of 
experimental data from published materials papers. The pro-
posed methodology was demonstrated for a specific use case 
of PNCs and enables efficient data extraction on targeted 
information for experimental samples from this specific 
materials domain. This method will facilitate manual cura-
tion, leading to faster ingestion of data into materials specific 
data repositories. As this method is expanded, additional 
entities can be added to the automated extraction tasks. The 
methodology can also be applied to other scientific domains, 
within and outside materials science, for efficient structured 
data extraction from publications. Automated curation to 
provide fully annotated data into materials repositories from 
the historical materials literature will enable new materials 
discoveries and advances.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s40192-​024-​00363-5.

https://doi.org/10.1007/s40192-024-00363-5


	 Integrating Materials and Manufacturing Innovation

Acknowledgments  We would like to thank Dr. Sam Wiseman for the 
constructive advice on the conceptualization of this work and the com-
ments on the manuscript. We would like to thank Defne Circi for pro-
viding comments on the manuscript. The authors gratefully acknowl-
edge support of the NSF CSSI program (OAC-1835677).

Code Availability  Pre-trained and finetuned models are available on 
HuggingFace for public access. Pre-trained domain-specific T5 model: 
bingyinh/pretrained_t5_polymer_composite_caption. TANL + domain-
specific T5 model for single-task NER: bingyinh/TANL-based_Materi-
alsMine_NER. TANL + domain-specific T5 model for single-task RE: 
bingyinh/TANL-based_MaterialsMine_RE. TANLmulti-task + domain-
specific T5 model: bingyinh/TANL-based_MaterialsMine_NER_RE_
Multitask. TANLjoint-entity-relation + domain-specific T5 model: bingyinh/
TANL-based_MaterialsMine_joint_entity_relation.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

References

	 1.	 National Science and Technology Council (2011) Materials 
genome initiative for global competitiveness. https://​www.​mgi.​
gov/​sites/​defau​lt/​files/​docum​ents/​mater​ials_​genome_​initi​ative-​
final.​pdf

	 2.	 National Science and Technology Council (2021) Materials 
genome initiative strategic plan. https://​www.​mgi.​gov/​sites/​defau​
lt/​files/​docum​ents/​MGI-​2021-​Strat​egic-​Plan.​pdf

	 3.	 Morgan D, Jacobs R (2020) Opportunities and chal-
lenges for machine learning in materials science. Annu 
Rev Mater Res 50:71–103. https://​doi.​org/​10.​1146/​annur​
ev-​matsci-​070218-​010015

	 4.	 Himanen L, Geurts A, Foster AS, Rinke P (2019) Data-driven 
materials science: status, challenges, and perspectives. Adv Sci. 
https://​doi.​org/​10.​1002/​advs.​20190​0808

	 5.	 Schleder GR, Padilha ACM, Acosta CM et al (2019) From DFT 
to machine learning: recent approaches to materials science—a 
review. J Phys Mater 2:032001. https://​doi.​org/​10.​1088/​2515-​
7639/​ab084b

	 6.	 Choudhury A (2021) The Role of machine learning algorithms 
in materials science: a state of art review on industry 4.0. Arch 
Comput Methods Eng 28:3361–3381. https://​doi.​org/​10.​1007/​
s11831-​020-​09503-4

	 7.	 Zhao H, Li X, Zhang Y et al (2016) Perspective: NanoMine: a 
material genome approach for polymer nanocomposites analysis 
and design. APL Mater 4:053204. https://​doi.​org/​10.​1063/1.​49436​
79

	 8.	 Zhao H, Wang Y, Lin A et al (2018) NanoMine schema: an exten-
sible data representation for polymer nanocomposites. APL Mater 
6:111108. https://​doi.​org/​10.​1063/1.​50468​39

	 9.	 Brinson LC, Deagen M, Chen W et al (2020) Polymer nanocom-
posite data: curation, frameworks, access, and potential for discov-
ery and design. ACS Macro Lett 9:1086–1094. https://​doi.​org/​10.​
1021/​ACSMA​CROLE​TT.​0C002​64/​ASSET/​IMAGES/​LARGE/​
MZ0C0​0264_​0006.​JPEG

	10.	 Deagen ME, McCusker JP, Fateye T et al (2022) FAIR and inter-
active data graphics from a scientific knowledge graph. Sci Data 
91(9):1–11. https://​doi.​org/​10.​1038/​s41597-​022-​01352-z

	11.	 Hu B, Lin A, Brinson LC (2021) ChemProps: a RESTful API 
enabled database for composite polymer name standardization. J 
Cheminform. https://​doi.​org/​10.​1186/​s13321-​021-​00502-6

	12.	 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you 
need. https://​doi.​org/​10.​48550/​arXiv.​1706.​03762

	13.	 Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: Pre-
training of deep bidirectional transformers for language under-
standing. https://​doi.​org/​10.​18653/​v1/​N19-​1423

	14.	 Raffel C, Shazeer N, Roberts A, et al (2020) Exploring the limits 
of transfer learning with a unified text-to-text transformer. https://​
dl.​acm.​org/​doi/​abs/​10.​5555/​34557​16.​34558​56

	15.	 OpenAI (2023) GPT-4 technical report. https://​doi.​org/​10.​48550/​
arXiv.​2303.​08774

	16.	 Weston L, Tshitoyan V, Dagdelen J et al (2019) Named entity 
recognition and normalization applied to large-scale information 
extraction from the materials science literature. J Chem Inf Model 
59:3692–3702. https://​doi.​org/​10.​1021/​acs.​jcim.​9b004​70

	17.	 Jensen Z, Kim E, Kwon S et  al (2019) A machine learning 
approach to zeolite synthesis enabled by automatic literature data 
extraction. ACS Cent Sci. https://​doi.​org/​10.​1021/​acsce​ntsci.​
9b001​93

	18.	 Hiszpanski AM, Gallagher B, Chellappan K et al (2020) Nano-
material synthesis insights from machine learning of scientific 
articles by extracting, structuring, and visualizing knowledge. J 
Chem Inf Model. https://​doi.​org/​10.​1021/​acs.​jcim.​0c001​99

	19.	 Agichtein E, Gravano L, Snowball: extracting relations from large 
plain-text collections. https://​dl.​acm.​org/​doi/​10.​1145/​336597.​
336644

	20.	 Shetty P, Rajan AC, Kuenneth C et al (2023) A general-purpose 
material property data extraction pipeline from large polymer 
corpora using natural language processing. npj Comput Mater 
9:1–12. https://​doi.​org/​10.​1038/​s41524-​023-​01003-w

	21.	 Tchoua RB, Ajith A, Hong Z, et al (2019) Creating training data 
for scientific named entity recognition with minimal human effort. 
In: Lecture notes in computer science (including subseries lecture 
notes in artificial intelligence and lecture notes in bioinformatics).

	22.	 Min B, Ross H, Sulem E et al (2021) Recent advances in natural 
language processing via large pre-trained language models: a sur-
vey. ACM Comput Surv 56(2):30. https://​doi.​org/​10.​1145/​36059​
43

	23.	 Olivetti EA, Cole JM, Kim E et al (2020) Data-driven materials 
research enabled by natural language processing and information 
extraction. Appl Phys Rev 7:041317. https://​doi.​org/​10.​1063/5.​
00211​06

	24.	 Kononova O, He T, Huo H et al (2021) Opportunities and chal-
lenges of text mining in materials research. iScience 24:102155. 
https://​doi.​org/​10.​1016/j.​isci.​2021.​102155

	25.	 Tay Y, Dehghani M, Tran VQ, et al (2022) UL2: unifying lan-
guage learning paradigms. https://​doi.​org/​10.​48550/​arXiv.​2205.​
05131

	26.	 Liu Y, Ott M, Goyal N, et al (2019) RoBERTa: a robustly opti-
mized BERT pretraining approach. https://​doi.​org/​10.​48550/​arxiv.​
1907.​11692

	27.	 He P, Liu X, Gao J, Chen W (2020) DeBERTa: decoding-
enhanced BERT with disentangled attention. https://​doi.​org/​10.​
48550/​arXiv.​2006.​03654

	28.	 Beltagy I, Lo K, Cohan A (2019) SCIBERT: a pretrained language 
model for scientific text. In: EMNLP-IJCNLP 2019 - 2019 con-
ference on empirical methods in natural language processing and 
9th international joint conference on natural language processing, 
proceedings of the conference.

	29.	 Trewartha A, Walker N, Huo H et al (2022) Quantifying the 
advantage of domain-specific pre-training on named entity rec-
ognition tasks in materials science. Patterns. https://​doi.​org/​10.​
1016/j.​patter.​2022.​100488

	30.	 Gupta T, Zaki M, Krishnan NMA, Mausam (2022) MatSciBERT: 
a materials domain language model for text mining and infor-
mation extraction. npj Comput Mater. https://​doi.​org/​10.​1038/​
s41524-​022-​00784-w

https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf
https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf
https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf
https://www.mgi.gov/sites/default/files/documents/MGI-2021-Strategic-Plan.pdf
https://www.mgi.gov/sites/default/files/documents/MGI-2021-Strategic-Plan.pdf
https://doi.org/10.1146/annurev-matsci-070218-010015
https://doi.org/10.1146/annurev-matsci-070218-010015
https://doi.org/10.1002/advs.201900808
https://doi.org/10.1088/2515-7639/ab084b
https://doi.org/10.1088/2515-7639/ab084b
https://doi.org/10.1007/s11831-020-09503-4
https://doi.org/10.1007/s11831-020-09503-4
https://doi.org/10.1063/1.4943679
https://doi.org/10.1063/1.4943679
https://doi.org/10.1063/1.5046839
https://doi.org/10.1021/ACSMACROLETT.0C00264/ASSET/IMAGES/LARGE/MZ0C00264_0006.JPEG
https://doi.org/10.1021/ACSMACROLETT.0C00264/ASSET/IMAGES/LARGE/MZ0C00264_0006.JPEG
https://doi.org/10.1021/ACSMACROLETT.0C00264/ASSET/IMAGES/LARGE/MZ0C00264_0006.JPEG
https://doi.org/10.1038/s41597-022-01352-z
https://doi.org/10.1186/s13321-021-00502-6
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.18653/v1/N19-1423
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1021/acs.jcim.9b00470
https://doi.org/10.1021/acscentsci.9b00193
https://doi.org/10.1021/acscentsci.9b00193
https://doi.org/10.1021/acs.jcim.0c00199
https://dl.acm.org/doi/10.1145/336597.336644
https://dl.acm.org/doi/10.1145/336597.336644
https://doi.org/10.1038/s41524-023-01003-w
https://doi.org/10.1145/3605943
https://doi.org/10.1145/3605943
https://doi.org/10.1063/5.0021106
https://doi.org/10.1063/5.0021106
https://doi.org/10.1016/j.isci.2021.102155
https://doi.org/10.48550/arXiv.2205.05131
https://doi.org/10.48550/arXiv.2205.05131
https://doi.org/10.48550/arxiv.1907.11692
https://doi.org/10.48550/arxiv.1907.11692
https://doi.org/10.48550/arXiv.2006.03654
https://doi.org/10.48550/arXiv.2006.03654
https://doi.org/10.1016/j.patter.2022.100488
https://doi.org/10.1016/j.patter.2022.100488
https://doi.org/10.1038/s41524-022-00784-w
https://doi.org/10.1038/s41524-022-00784-w


Integrating Materials and Manufacturing Innovation	

	31.	 Soares LB, FitzGerald N, Ling J, Kwiatkowski T (2020) Matching 
the blanks: distributional similarity for relation learning. In: ACL 
2019 - 57th annual meeting of the association for computational 
linguistics, proceedings of the conference.

	32.	 Paolini G, Athiwaratkun B, Krone J, et al (2021) Structured 
prediction as translation between augmented natural languages. 
https://​doi.​org/​10.​48550/​arxiv.​2101.​05779

	33.	 Min B, Ross H, Sulem E et al (2023) Recent advances in natural 
language processing via large pre-trained language models: a sur-
vey. ACM Comput Surv. https://​doi.​org/​10.​1145/​36059​43

	34.	 Lu Y, Liu Q, Dai D, et al (2022) Unified structure generation 
for universal information extraction. https://​doi.​org/​10.​18653/​v1/​
2022.​acl-​long.​395

	35.	 Brown TB, Mann B, Ryder N, et al (2020) Language models are 
few-shot learners. https://​doi.​org/​10.​48550/​arXiv.​2005.​14165

	36.	 Chowdhery A, Narang S, Devlin J, et al (2022) PaLM: scaling 
language modeling with pathways. https://​dl.​acm.​org/​doi/​10.​5555/​
36486​99.​36489​39

	37.	 Touvron H, Lavril T, Izacard G, et al (2023) LLaMA: open and 
efficient foundation language models. https://​doi.​org/​10.​48550/​
arXiv.​2302.​13971

	38.	 Touvron H, Martin L, Stone K, Llama 2: open foundation and fine-
tuned chat models. https://​doi.​org/​10.​48550/​arXiv.​2307.​09288

	39.	 Jablonka KM, Ai Q, Al-Feghali A, et al (2023) 14 Examples of 
how LLMs can transform materials science and chemistry: a 
reflection on a large language model hackathon. https://​doi.​org/​
10.​1039/​D3DD0​0113J

	40.	 Pal S, Bhattacharya M, Lee S-S, Chakraborty C (2023) A domain-
specific next-generation large language model (LLM) or ChatGPT 
is required for biomedical engineering and research. Ann Biomed 
Eng. https://​doi.​org/​10.​1007/​s10439-​023-​03306-x

	41.	 Fu Z, Lam W, Yu Q, et  al (2023) Decoder-only or encoder-
decoder? Interpreting language model as a regularized encoder-
decoder. https://​doi.​org/​10.​48550/​ARXIV.​2304.​04052

	42.	 Swain MC, Cole JM (2016) ChemDataExtractor: a toolkit for 
automated extraction of chemical information from the scientific 
literature. J Chem Inf Model 56:1894–1904. https://​doi.​org/​10.​
1021/​acs.​jcim.​6b002​07

	43.	 Nakayama H, Kubo T, Kamura J, et al (2018) Doccano: text anno-
tation tool for human. https://​github.​com/​docca​no/​docca​no

	44.	 Kudo T, Richardson J (2018) SentencePiece: a simple and lan-
guage independent subword tokenizer and detokenizer for neural 
text processing. https://​doi.​org/​10.​18653/​v1/​D18-​2012

	45.	 Wolf T, Debut L, Sanh V, et al (2020) Transformers: state-of-
the-art natural language processing. In: Proceedings of the 2020 
conference on empirical methods in natural language processing: 
system demonstrations. Association for Computational Linguis-
tics, Online, pp 38–45

	46.	 Shetty P, Ramprasad R (2021) Automated knowledge extraction 
from polymer literature using natural language processing. iSci-
ence. https://​doi.​org/​10.​1016/j.​isci.​2020.​101922

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.48550/arxiv.2101.05779
https://doi.org/10.1145/3605943
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.48550/arXiv.2005.14165
https://dl.acm.org/doi/10.5555/3648699.3648939
https://dl.acm.org/doi/10.5555/3648699.3648939
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1039/D3DD00113J
https://doi.org/10.1039/D3DD00113J
https://doi.org/10.1007/s10439-023-03306-x
https://doi.org/10.48550/ARXIV.2304.04052
https://doi.org/10.1021/acs.jcim.6b00207
https://doi.org/10.1021/acs.jcim.6b00207
https://github.com/doccano/doccano
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.1016/j.isci.2020.101922

	Tackling Structured Knowledge Extraction from Polymer Nanocomposite Literature as an NERRE Task with seq2seq
	Abstract
	Introduction and Background
	Related Work
	Methods
	Dataset Collection and Preparation
	Caption-Mention Corpus—the Pre-training Corpus
	Annotated Caption Corpus—the Finetune Corpus
	Datasets

	Pre-training of Domain-Specific T5
	Downstream Tasks
	NER
	RE
	Multi-task NER + RE
	Joint-Entity-Relation Extraction
	Hyperparameters


	Results and Discussion
	Pre-training of Domain-specific T5
	Downstream Tasks
	NER
	RE

	Discussion

	Conclusions
	Acknowledgments 
	References


