Integrating Materials and Manufacturing Innovation
https://doi.org/10.1007/540192-024-00363-5

THEMATIC SECTION: HARNESSING THE POWER OF MATERIALS DATA q

Check for
updates

Tackling Structured Knowledge Extraction from Polymer
Nanocomposite Literature as an NER/RE Task with seq2seq

Bingyin Hu'® . Anqi Lin'® . L. Catherine Brinson'

Received: 1 October 2023 / Accepted: 16 May 2024
© The Minerals, Metals & Materials Society 2024

Abstract

There is an urgent need for ready access to published data for advances in materials design, and natural language processing
(NLP) techniques offer a promising solution for extracting relevant information from scientific publications. In this paper,
we present a domain-specific approach utilizing a Transformer-based model, TS5, to automate the generation of sample lists
in the field of polymer nanocomposites (PNCs). Leveraging large-scale corpora, we employ advanced NLP techniques
including named entity recognition and relation extraction to accurately extract sample codes, compositions, group refer-
ences, and properties from PNC papers. The T5 model demonstrates competitive performance in relation extraction using
a TANL framework and an EM-style input sequence. Furthermore, we explore multi-task learning and joint-entity-relation
extraction to enhance efficiency and address deployment concerns. Our proposed methodology, from corpora generation to
model training, showcases the potential of structured knowledge extraction from publications in PNC research and beyond.
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Introduction and Background

With the advent of the materials genome initiative (MGI) [1,
2], there is a growing vision to integrate data science and
machine learning to forge new capabilities in the understand-
ing and design of materials, with applications from health
care to advanced structures to renewable energy [3]. The vast
majority of the work to date has focused on the development
of machine learning algorithms to leverage data from com-
putational models and make new discoveries [4—6]. The lack
of FAIR (findable, accessible, interoperable, and reusable)
materials data resources means that it is difficult to utilize
data generated by peers in the field, pushing researchers to
rely on computational models within their own laboratory
that could generate large amounts of data, which is nec-
essary for training a decent machine learning model. To
address this issue, we have been developing MaterialsMine,’
an ontology-driven open-source FAIR data resource for
polymer nanocomposites (PNC) and metamaterials [7—11].
In addition to the data generated in our own laboratories,
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we have been curating experimental data from the literature
into MaterialsMine. Data curation is challenging in that it
requires domain knowledge, is extremely time consuming
and its highly repetitive nature makes it prone to human
error. Even in a subdomain of materials like PNCs, there
were 70 k+ publications in 2022 as suggested by search-
ing “polymer nanocomposite” on Semantic Scholar,? along
with an enormous number of important existing publications
prior to 2022, none of which enable ready access to organ-
ized, annotated data. Based on MaterialsMine statistics, one
PNC paper contains around 12 samples and each sample
maps to 3 reported properties, meaning around 2.5 million of
data points are published for PNC a year. Thus, the limited
bandwidth of the progress of manually curated data poses a
significant drag on the data-driven design of materials. As
an alternative, we have a vision to harness the power of Al
to extract data from the vast, published, archival literature,
and to make that data FAIR by incorporating it into a robust
materials data framework. Access to this enormous array
of published data, both experimental and computational,
would transform our ability to use existing knowledge in
understanding and developing design paradigms for new

! https://materialsmine.org/nm#/

2 https://www.semanticscholar.org/search?year%5b0%5d=2022&
year%5b1%5d=2022&q=polymer%20nanocomposite&sort=relevance
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materials. Natural language processing (NLP), which seeks
to automate the extraction of knowledge from human-written
text, offers an opportunity to make this data accessible and
readily reusable by humans and machines.

In the curation workflow for experimental data on materi-
als as in MaterialsMine, the first step is to create a “sample
list”, which summarizes the experimental units or samples
reported in the paper, denoting their composition and other
distinguishing characteristics. Human curators use sample
lists as guidance for curation. There are five major steps
involved in sample list generation: (1) identify experimental
samples and assign them unique sample codes as indices in
the sample list, (2) identify each sample composition, 3)
identify properties characterized for each sample, (4) associ-
ate sample code with composition, and 5) associate sample
code with properties. In some cases, authors may provide a
specific sample code, such as “Ep-Si02-01,” within the pub-
lication to denote a particular experimental sample. Rule-
based syntactical matching algorithms can be employed to
extract these sample codes. However, for many papers within
the field of PNC, this is not the case. Common represen-
tations, such as “1 wt% silica in epoxy,” require a deeper
semantic understanding, rendering the syntactic approach
less effective. Transformer models are well suited for sample
list generation for their outstanding semantic understanding
ability and wide applications on various NLP tasks [12-15].
The five steps can be smoothly translated into two structured
prediction tasks within NLP. The task of named entity rec-
ognition (NER), which involves identifying and categoriz-
ing word-spans in a document, is suitable for the “identify”
steps. The relation extraction (RE) task that seeks to predict
the relationship between entities can be applied to the “asso-
ciate” steps.

In this work, we propose to use domain-specific sequence-
to-sequence (seq2seq) model for structured information
extraction from polymer nanocomposite publications, focus-
ing specifically on the sample list creation objective, by
formulating the problem as an NER/RE task, benchmarked
against some popular public pre-trained encoder models and
their domain-specific variations. Related works are reviewed
in “Related work™ section. Details about how the dataset for
pre-training and finetuning was collected and processed, and
how pre-training and downstream tasks were conducted are
summarized in “Methods” section. Results and discussion
can be found in “Results and discussion” section, followed
by conclusions in “Conclusions” section. Though the paper
focuses on PNC publications, we would like to stress that
the methodology is applicable to other scientific research
domains, both within and outside materials science.
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Related Work

To date, a few materials researchers have begun to apply
NLP techniques to the NER task, focusing on inorganic
materials like metal oxides [16], zeolites [17], and nano-
materials [18]. A similar recent effort utilizes rule-based
heuristics and an unsupervised Snowball algorithm for
relation extraction (RE) to generate ontologies for a class
of crystallographic materials [19]. However, NER and RE
for inorganic, crystalline materials are relatively simple
because the compact chemical formula of inorganic mate-
rials acts as unique identifiers. In contrast, organic materi-
als, especially polymers, cannot be uniformly represented
[20]. PNCs are even more complex, with the introduction
of nanofillers of complex geometry and chemistry. Accord-
ingly, authors of PNC papers refer to experimental sam-
ples with fluid language; a single sample in a paper may
be referred to as “1 wt% silica in epoxy,” “epoxy/1 wt%
Si0,,” “epoxy-Si0,-0.01,” or “Ep-Si0,-01" interchange-
ably, which makes annotating a corpus for training an NER
system difficult [21].

The large pre-trained transformer-based NLP models
have achieved state-of-the-art performance in various
downstream tasks, including NER and RE, in recent years
[22]. Most of the NLP + materials science works leverage
the “pre-training then finetuning” paradigm to train their
models. It has been concluded in multiple works that the
transformer-based models pre-trained on domain-specific
corpora outperform the ones pre-trained on generic natural
language since sentences in materials science publications
are extremely specialized [23, 24]. Due to the uniqueness
of the PNC language and the fact that materials science
corpora used in existing works are kept private due to
copyright concerns, we need to create our unannotated
pre-training corpus and annotated finetune corpus from
PNC publications.

Encoder-only transformer models, such as BERT, are
pre-trained using denoising objectives that do not require
annotation [13, 14, 25]. The goal is to teach the model the
language by masking, shuffling, and other methods which
introduce noise to the input sentence and then asking the
model to restore the original sentence. After pre-training,
there is an additional finetuning step, where the model
is taught to perform a task of interest. For this finetun-
ing step, we will need human annotations to provide the
ground truth to the model.

Of all available models in the broad transformers model
family, a group of BERT-based encoder models, such as
BERT, RoBERTa, and DeBERTa, is often elected for
structured prediction tasks [13, 26, 27]. Examples in the
materials science domain include SciBERT, MatBERT,
and MatSciBERT, all of which selected to pre-train
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Unstructured

BERT-based transformers with domain-specific corpora
[28-30]. The “matching the blanks” (MTB) architecture
as an extension to the BERT model is reported to perform
reasonably well on RE tasks [31]. Though encoder mod-
els typically are the first options for structured prediction
tasks like token classification, several works have shown
that a seq2seq (or encoder-decoder) model can also per-
form well on such tasks by proxying structured prediction
tasks as text generation tasks [32-34]. Treating struc-
tured prediction as generation allows for jointly making
interrelated predictions without changing the architecture
of the model. By proxying as text generation tasks with
seq2seq models, we can provide different templates or task
prefix to use one single model artifact for multiple tasks.
Seq2seq (or encoder-decoder) models like TS5 have shown
their versatility on an array of NLP tasks, structured or
unstructured, with one single model [14]. For example, the
TANL framework was developed for an array of structured
prediction tasks to be formed as a translation task between
the target sequence and the input augmented natural lan-
guage, building on top of seq2seq models like T5 [32].
Another big branch of transformer-based models that
has become extremely impactful recently is decoder-
only models, including GPT-3, GPT-4, PaLM, LLaMa,
LlaMa-2 [15, 35-38]. Despite some early attempts to apply
decoder-only models in materials science study [39], it has
been reported that using decoder-only large language mod-
els (LLMs) like GPT on domain-specific tasks requires
finetuning on domain-specific corpus [40]. LLMs usually
have tens or hundreds of billions of parameters (GPT-4
is alleged to have trillions of parameters), which is too
large to be fit into a 16 GB GPU like T5-base. Meanwhile,
several studies report that by comparing performance on
seq2seq tasks with seq2seq and decoder-only models of
the same compute, i.e., they restrict the resource that a
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Fig. 1 Our vision of the NLP-driven curation pathway for MaterialsMine

MaterialsMine:::

model could utilize for training to be the same, seq2seq
models outperform LLMs [14, 25, 41]. Thus, while LLMs
have promise which will be realized with time, research
and additional compute capabilities, we have deployed TS5,
a seq2seq model, for the task described in this work.

As illustrated in Fig. 1, our vision is to create a semi-
automated curation pathway by generating sample lists
from PNC journal articles, that could gradually evolve into
an automated curation pathway that could populate the
MaterialsMine knowledge graph directly from the articles
in future. This work serves as a first step toward the sus-
tainable future of MaterialsMine driven by the automated
curation pipeline.

Methods

Figure 2 provides the overall workflow of this work. In gen-
eral, we start with data collection and cleaning, resulting in
two corpora, one for pre-training and the other for finetun-
ing, which requires annotation as well. Both T5 and BERT-
based models will be finetuned for downstream tasks like
NER and RE. In addition, we pre-trained our own domain-
specific T5 model with the unannotated corpus. For BERT-
based models, we can only finetune them as single-task NER
or RE models (red dashed pathway). For TS models, we
finetuned them for all four realizations depicted in Fig. 2
(blue solid pathway). Entity pairs with relation for structured
knowledge extraction from PNC papers can be obtained via
either (1) two sequential calls to the two single-task models,
or (2) two sequential calls to the multi-task model with dif-
ferent task prefixes, or (3) a single call to the joint-entity-
relation extraction model. We will dive deep into each of the
steps in the following sections.

@ Springer
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Fig.2 General workflow of this work

Dataset Collection and Preparation

During manual sample list generation, curators are instructed
to pay special attention to figures and tables since sample
codes, composition, and properties are most likely reported
in those components. Information can also be extracted
from paragraphs where a discussion of figures or tables is
presented. Learning from this practice, we built our PNC
corpus using figure captions, table captions plus individual
sentences from the text including figure and table referenc-
ing. All datasets use an 80:20 split for the training set and
validation set.

Caption-Mention Corpus—the Pre-training Corpus

The caption-mention corpus discussed in this work consists
of 1 M (1,002,904) sentences sourced from figure captions,
table captions, and sentences that mention a figure or a
table in the body text of 23,090 PNC papers. Figure 3 dem-
onstrates the construction process of the caption-mention
corpus.

A Scopus API query was utilized to obtain 99,985 DOI’s
with keyword filtering of “polymer 4+ composite”.> The
obtained DOI’s are further filtered by keywords (“poly” or
“rubber”) and “composite” in the abstract. DOI’s of book
chapters are removed from the collection. The list of DOI’s
is then grouped by the publishers, resulting in 18,210 DOI’s
from Elsevier, 4,880 DOI’s from other publishers. The
Elsevier corpus is obtained via the Elsevier APL* which
returns XML’s. The rest are obtained via an HTML scraper

3 https://dev.elsevier.com/documentation/ScopusSearchAPLwadl
4 https://dev.elsevier.com/documentation/Full TextRetrieval API.wadl

@ Springer

developed in-house. The markup language files are then
parsed with a modified HtmlReader of the ChemDataEx-
tractor package [42]. For each DOI, we store the abstract,
the full text structured with top-level headers and content,
figure captions, and table captions, all of which are normal-
ized with the python unicodedata package.’ We then extract
sentences that mention a figure or a table from the full-text
content. Finally, we use ChemDataExtractor to perform sen-
tence segmentation on all the figure captions, table captions,
and sentences that mention a figure or a table, to build our
caption-mention corpus. Sentences with a length between
10 and 256 after tokenization are kept in the pre-training
corpus.

Annotated Caption Corpus—the Finetune Corpus

The annotated caption corpus discussed in this work consists
of 1896 captions collected from 214 PNC papers manually
curated into the MaterialsMine data resource. Users can
visit https://materialsmine.org for curated data. The doccano
annotation platform is used for NER tagging and RE tagging
[43]. This manual task is accomplished by two human cura-
tors, one who leads the annotation task and the other who
verifies the annotation.

For NER tagging, we propose four classes of named enti-
ties for sample list generation purposes: sample code (S),
composition (C), group reference (G), and property (P). For
a span to be labeled with S, it must either be able to point
any materials scientist to a unique experimental unit without
reading through the full paper or used explicitly as a sample
code in the paper. Though polymer/filler names are usually

3 https://docs.python.org/3/library/unicodedata.html
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Fig.3 Summary of the construction of the caption-mention corpus

included in the sample code, this work focuses on the sample
code extraction. Spans that indicate nanofiller loadings like
a mass fraction or volume fraction will be labeled with C.
Similarly, spans that describe the property of interest in the
figure or table are labeled with P, which can be any meas-
urable that is characterized in materials science research.
While being able to extract the actual value of a property is
the North Star, this work focuses on extracting the property
name. In PNC papers, it is common to compare properties
within a group of PNCs with different nanofiller loadings in
a figure or a table. Instead of listing all sample codes in the
captions, authors usually use spans like “epoxy nanocom-
posites” or “silane-modified samples” as a group reference
to multiple samples. Such spans are labeled with G. It is
worth mentioning that C spans overlap with S spans on rare
occasions. For example, “epoxy/l wt% SiO,” is a S span
while “1 wt%” is a C span. Since most of the BERT-based
NER models do not support overlapping named entities, we
will remove overlapped C span in this case for simplicity in
downstream tasks.

For RE tagging, we propose three relation classes:
isPropertyOf, isCompositionOf, and isMemberOYf. isProp-
ertyOf can be applied to the (P, S) pair, (P, C) pair, and

(P, G) pair, indicating a P span is reported for the other
entity in the pair. isCompositionOf is straightforward as
it can only be applied to the (C, S) pair. It is common
that a caption contains multiple C tags and S tags, making
the isCompositionOf class necessary. isMemberOf can be
applied to the (S, G) pair and (C, G) pair, bridging the
group reference to a sample or a smaller group of samples
with identical nanofiller loadings. For detailed annota-
tion guidelines, please refer to the online supplementary
material.

Figure 4 is an example of a figure caption annotated for
NER and RE in the doccano platform®®. The resulting corpus
has 2028 entities with the S label, 491 entities with the C
label, 1606 entities with the G label, 2465 entities with the
P label, 4262 entity pairs labeled with isPropertyOf, 633
entity pairs labeled with isCompositionOf, and 872 entity
pairs labeled with isMemberOf.

Having introduced the named entities and relation classes,
we can better understand the similarities between a sample
list and the entity-relation-entity triples generated by the
model proposed in this work as illustrated in Fig. 5.

Note that the gray dashed area is the final step to generate
a graph which is equivalent to a row of data in the sample

@ Springer
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Fig.5 Comparison between the
manually curated sample list
versus the entity-relation-entity
triple
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list. The final step involves an extra layer of entity resolution
to find identical nodes semantically or physically for joining.

Datasets

For the NER task, an 80:20 split was adopted, resulting in
3045 sentences for training and 762 sentences for testing.
For the RE task, similarly, an 80:20 split resulted in
9328 sentences for training and 2332 sentences for test-
ing. An additional “Other” label was added for 5893 entity
pairs with no relation. For example, a caption can include
descriptions of multiple sub-figures. An entity pair with
one entity describing sub-figure (a) and the other entity
describing sub-figure (d) is likely to be considered as
“Other”. Note that we did not label “Other” entity pair
during human annotation. Instead, we automatically assign
the “Other” label for entity pairs without a relation label
in the same sentence. Since no entity pairs with the same
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NE labels were annotated with a relation, like P-P and
S-S, we did not include those in generating the sentences
for the RE task. For each entity pair with different NE
labels, like P-S and C-S, we generate a sentence with
either entity markers (EM) or the augmented natural lan-
guage pre-processing for TANL. For the EM-style pre-
processing, each NE of the entity pair was wrapped around
with entity markers “<el>”, “</el1>", “<e2>”, and “</
e2>". For the TANL style pre-processing, please refer to
the description of the relation classification task in their
original paper [32].

Due to the limited size of annotated data, no dev set was
spared from the training dataset. Models were finetuned
on the test set, meaning our results represent an upper
bound. More insights of the finetune corpus are available
in the online supplementary material, with distributions of
polymer matrices, nanofillers, and properties.
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Pre-training of Domain-Specific T5

The T5-base model is pre-trained on the domain-specific
unannotated caption-mention corpus. We used the same
denoising pre-training objective as reported in the T5 paper
that replaces dropped-out spans with sentinel tokens with
a 15% corruption rate and an average of 3 tokens per cor-
rupted span. A SentencePiece tokenizer is used here to break
sentences into words and sub-words, referred to as tokens,
and then it converts the textual input into numerical repre-
sentations via a vocabulary look-up [44]. Our models are
implemented with HuggingFace [45].

To fitin a 16 GB GPU, a batch size of 16 and a gradient
accumulation step of 8 were selected, resulting in 128 total
train batch size. Based on our experience of finetuning a
T5 model and the pre-training configs reported in the origi-
nal T5 paper [14], we evaluated 5 different combinations of
optimizers and peak learning rates for pre-training: Case (1)
AdamW optimizer with a peak learning rate of Se-4, Case
(2) AdamW optimizer with a peak learning rate of Se-5,
Case (3) AdaFactor optimizer with the AdaFactor scheduler
that adjusts learning rate internally, Case (4) AdaFactor opti-
mizer with an external peak learning rate of 1e-3, and Case
(5) AdaFactor optimizer with an external constant learning
rate of le-3. AdamW cases used a weight decay of le-3.
Each model was scheduled to warmup for 5000 steps. A lin-
ear scheduler was utilized unless otherwise specified. Mod-
els were evaluated every 2500 steps. The maximum length
of the input sequence is limited to 256. The best pre-trained
model was trained on an NVIDIA Quadro P5000 GPU with
16 GB GPU RAM for 6 days. Pre-training codes are avail-
able at our GitHub repository.®

Downstream Tasks
NER

For the NER task, the BILOU tagging scheme (see SI) was
adopted for pre-processing the labels. The input and label
encodings generated by the tokenizers are truncated or pad-
ded to a fixed length of 200. For baselines, we assessed
encoder models like DeBERTa-base, MatBERT, and
MatSciBERT, and seq2seq models like TANL for NER with
TS as the starting point, and two other formulations of the
target sequence for TS to treat NER as a text generation task.
In the first formulation, the T5 model predicts a sequence of
label tokens, denoted as TS5,y 4q- The second option is to
predict an interleaved style of word token and label token,
denoted as T5;, . eave- AN example of the two formulations
is as follows.

5 https://github.com/bingyinh/NLP_PNC_sample_list

Input: Fig. 3. Tg of PMMA-silica-0.1.

Output (label sequence): “<O0><0><0><U-
P><0><B-S><I-S><I-S><I-S><L-S><0>"
QOutput (interleave): Fig<O>3<0>.<0>Tg<U-
P>0f<O>PMMA<B-S>-<I-S>silica<I-S>-<I-
S>0.1<L-S>.<O0>

Apart from the baselines, we also assessed three seq2seq
formulations, namely TANL, TS5, seq» and T5;cieaves With
our domain-specific TS model for the NER task.

Models were evaluated on micro-averaged precision,
recall, and F1 score for the NER task. Each model was
finetuned until the F1 score stops increasing with 5 random
seeds unless otherwise specified.

RE

For the RE task, baselines include the “matching the blank”
(MTB) architecture on top of the BERT, MatBERT, and
MatSciBERT model with entity marker (EM) as a state-of-
the-art architecture for RE task among the encoder models,
and the TANL model built on top of T5 with the augmented
natural language for the relation classification task. We
assessed our domain-specific TS model on the RE task with
two proposed approaches: (1) use the TANL framework but
with our domain-specific TS model, and (2) an EM-style
input sequence and relation triple style output sequence. For
the EM-style finetuning, similar to the NER task, we added
entity markers and relation labels wrapped in “<” and “>”
as additional special tokens to the TS tokenizer. An exam-
ple target sequence will be “<isPropertyOf><e2><el>",
meaning entity 2 is property of entity 1. Input sequences
were truncated or padded to a fixed length of 200.

Micro-averaged F1 score was used as the metric for
model evaluation. Each model was finetuned until the F1
score stops increasing with 5 random seeds unless otherwise
specified.

Since our goal is to create a pipeline for sample list
generation in MaterialsMine, using individual single-task
models for NER and RE separately might bring deploy-
ment concerns. The charm of the seq2seq model lies in its
multi-tasking ability. There are two options for us to use one
seq2seq model for both tasks, namely a multi-task seq2seq
model, and a joint-entity-relation extraction model.

Multi-task NER + RE

A multi-task TANL on top of our pre-trained TS model was
trained in a multi-task setting with a separated NER dataset
and RE dataset. A task prefix, like “NM_NER:” and “NM_
REL:” was added to each sentence as a prefix. The micro-
averaged F1 score of this model on the NER task and the
RE task will be compared with single-task models as well.

@ Springer
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Joint-Entity-Relation Extraction

A TANL model starting with our pre-trained T5 model was
trained for a joint-entity-relation extraction task as well.
After being translated into the augmented natural language,
an example input sentence will become:

Input: Fig. 3. Tg of PMMA-silica-0.1.
Output: Fig. 3. [ Tg | P | isPropertyOf = PMMA-sil-
ica-0.1 ] of [ PMMA-silica-0.1 1S ].

Note that the evaluation of the RE task in the joint-entity-
relation extraction task is contingent on the performance of
the NER task. For example, if none of the named entities
can be detected in the sequence, no relation will be detected
as well in a joint-entity-relation extraction setting, while
in the standalone or multi-task settings, RE inference has
labeled named entities in the input sequence. Therefore, it
will be unfair to compare the performance on the RE task
of the joint-entity-relation extraction directly to the other
two settings. We include the performance metrics here just
for reference. It is worth noting that the joint-entity-relation
extraction is the more realistic setting since NE labels are
not ordinarily available during inference.

Hyperparameters

For T5 models, we tested a wide range of learning rates from
[Se-5, le-4, 2e-4, 3e-4, 4e-4, Se-4, 1e-3], weight decay from
[1le-4, 1e-3, 1e-2, le-1], batch size from [8, 16], number of
beams from [5, 10]. We did not set a cap on the training
epochs for any of the models being assessed. The stopping
criteria are purely based on the F1 score.
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Results and Discussion
Pre-training of Domain-specific T5

The pre-training history is provided in Fig. 6.

The five cases were experimented on one after another.
Cases (2) and (3) perform significantly worse than case (1)
at around 10,000 steps. Thus, they were terminated early.
Case (4) showed a decreasing trend at 30,000 steps, so it was
trained for another 30,000 steps with the scheduler started
afresh until the validation loss converged. Case (5), which
performs the best on the validation set, was also kept train-
ing until 60,000+ steps. Case (5), AdaFactor with constant
external learning rate at le-3, as reported in the T5 paper
for finetuning, obtained the lowest validation loss at 0.457.

Downstream Tasks
NER

Table 1 summarizes the micro-averaged precision, recall,
and F1 scores of the assessed models on the NER task. Note
that the multi-task TANL model and the joint-entity-relation
extraction TANL model are included in the table along with
other single-task NER models.

As expected, encoder models perform well on the NER
task. MatBERT, which was pre-trained on a corpus con-
sisting of 2 M full-text materials science journal articles,
performs the best in the NER task if we ignore the joint-
entity-relation TANL model. The DeBERTa model, as an
advanced BERT model with disentangled attention, outper-
forms the domain-specific MatSciBERT model despite not
being pre-trained on a domain-specific corpus. Interestingly,
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Table 1 Performance on the

NER task collected from 5 Precision Recall H

random runs DeBERTa-base 79.8+0.7 82.6+0.4 81.2+0.4
MatBERT 83.3+0.8 83.2+19 83.0+1.3
MatSciBERT 78.0+0.5 83.8+0.5 80.8+0.5
TANL 79.9+0.8 80.2+0.8 80.1+0.6
TS pel seq™ 79.6 79.4 79.5
TSintertcave™ 73.0 77.2 75.0
With domain-specific T5-base
domain-specific T5e seq™ 80.9 82.3 81.6
domain-specific T5;cricave™ 57.0 80.2 66.6
TANL + domain-specific T5 80.6+0.8 80.2+0.3 80.4+0.4
TANL, 1ii-1ask +domain-specific TS 81.5+0.6 81.4+0.5 81.4+0.6
TANL, + domain-specific T5 85.4+0.6 82.3+0.6 83.8+0.5

‘joint-entity-relation

Bold value indicates best performing model, while underline value indicates the second best performing

model

*Models were trained without 5 random runs

all three TANL with domain-specific TS5 models, includ-
il‘lg TANLmulti—task and TANLjoinl—enti[y—relation’ obtain better
F1 scores than the single-task TANL. This finding suggests
that learning for the RE task can be beneficial to the NER
task. Our domain-specific T5-base model helps the label
sequence formulation increase its F1 score from 79.5 to 81.6,
which is still impressive given that our caption-mention cor-
pus is more than 100 times smaller than the MatBERT pre-
training corpus since we only used caption-related sentences
excerpted from a total of 23 k papers, and that it outperforms
the MatSciBERT model, which was pre-trained on ~ 150 k
full-text materials science journal articles. Surprisingly, the
TS5, erteave model suffers a significant performance drop with
the domain-specific T5.

RE

The micro-averaged F1 scores after evaluating multiple RE
models on our annotated caption corpus can be found in
Table 2. Again, the multi-task TANL model and the joint-
entity-relation extraction TANL model are included in the
table as well.

Since only 3 relation classes were annotated in our fine-
tune corpus, the performance of all models listed in Table 2,
except for TANL; i entity-relations 1S Strong, while a clear gap
exists between the 3 BERT-based encoder models and the
T5-based seq2seq models. The best micro-averaged F1 score
of 96.9 was reached by the TANL, 1i.asx MOdel. As we
mentioned before, it is unfair to compare the performance
of the TANLq; cntity-relation M0del on the RE task directly
with the other models because the other models predict on
true NE labeled input sequence while the joint model does
not. On the other hand, around 30% of the sequences gener-
ated by TANL,; model cannot match the input

oint-entity-relation

tokens exactly, which is called a “wrong construction” in
the TANL framework. According to the input and output
sequence examples we provided in the Methods section, the
augmented natural language allocates a longer span to RE
expressions than NER expressions. A failed reconstruction
thus impacts the RE task more than the NER task. The afore-
mentioned two reasons lead to a high NER score but a low
RE score for the TANL; model.

oint-entity-relation

Discussion

Figure 7 summarizes the three potential approaches to
implement the encoder or seq2seq models for NER and RE
tasks.

Approach 1 uses one single-task model for NER and
another for RE. In that case, based on performance shown
in Table 1 and Table 2, one would choose the MatBERT

Table 2 Performance on the RE task collected from 5 random runs

F1

MTB +BERTy,, 91.9+0.2
MTB +MatBERTyy, 93.6+0.6
MTB +MatSciBERTy, 94.8+0.2
TANL 95.6+0.6
With domain-specific T5-base

domain-specific TS5y, * 95.8
TANL + domain-specific T5 95.5+04
TANL, ji-1ask +domain-specific T5 96.9+0.2
TANL;jincentity-relation + domain-specific T5 72.0+0.9

Bold value indicates best performing model, while underline value
indicates the second best performing model

*Models were trained without 5 random runs

@ Springer
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APPROACH 1:

1 model for NER, 1 model for RE

MatBERT

[ Fig 3. Tg of PMMA-silica-0.1. (83.0)

domain-specific
T5gm (95.8)

"Fig 3.

of PMMA-silica-0.1."

APPROACH 2:
1 multi-tasking seq2seq model

[ "NER: Fig 3. Tg of PMMA-silica-0.1."

(96.9)

APPROACH 3:
1 seq2seq model for joint-

TANL muiti-task
+domain- v
specific TS

"Fig 3. Tg of PMMA-silica-0.1." ]

"RE: Fig 3. Tg of PMMA-silica-0.1." ]

NER (83.8)

entity-relation extraction

[ "Fig 3. Tg of PMMA-silica-0.1."

ANLjoint—entity—reIation
+ domain-specific TS

PMMA-silica-0.1 ]

RE (72.0)

Fig. 7 Proposed pipelines for the application of NER and RE models in MaterialsMine data curation. F1 scores shown in parentheses in green

for NER and the domain-specific T5,, for RE. Approach
2 and Approach 3 only require one model. The difference
lies in that Approach 2 uses a multi-tasking model, which
will be called twice for each pass, and Approach 3 uses
a model finetuned for joint-entity-relation extraction task
that predicts NEs and relationships simultaneously in a
single pass. Again, the RE F1 score here for Approach 3
has a different setting from other RE F1 scores. As dis-
cussed in the previous section, there is a 30% “wrong
construction” issue in TANL. Another reason for the sig-
nificantly low RE score is that the relation extraction part
of a joint-entity-relation extraction task in TANL does not
use input sentences with correctly labeled NE as other
single-task RE or multi-task RE models do. To roughly
equilibrate the impact of the incorrectly labeled NEs in
the input, a score of 85.9 can be obtained by dividing 72.0
with 83.8, which is still low but in line with other models.
Application-wise, the RE score in a joint-entity-relation
extraction task is closer to the real use case where the
performance on the RE task is impacted by the NER task.

When considering Approach 1 and Approach 2, if the
primary concern is performance, Approach 1 would be
preferable due to its higher NER score, as it is inferred
from Approach 3 that the NER score has a significant
impact on the RE score in a practical applications. How-
ever, from a production standpoint, a pipeline incorporat-
ing a single multi-task model offers several advantages
over one with two single-task models, including efficient
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resource utilization, reduced operational costs, and simpli-
fied code base.

In addition, we propose that the multi-task model has
the potential to do better on the NER task. The fact that
the joint-entity-relation extraction model performs the
best on the NER task suggests that the performance dif-
ference between MatBERT and TANL,, y;i_tasx + domain-
specific T5 is not about the model structure, but about the
size of pre-training corpus. As mentioned, the MatBERT
model was pre-trained from the BERT-uncased-base
model with 2 M full-text materials science publications.
In contrast, our pre-training corpus consists of captions
and caption-related sentences extracted from 23 k poly-
mer nanocomposite papers, a corpus more than 100 k
times smaller. Limiting the pre-training corpus to only
caption-related sentences might also limit the semantic
understanding of T5. Thus, future work includes extend-
ing our pre-training corpus to include full-text PNC

Table 3 NE-class-level performance of the TANL_ .5+ Pre-
trained T5-base model

Named entity class Precision Recall F1

(S)ample code 84.6+1.6 849+1.1 84.8+1.2
(C)omposition 70.6+1.9 724+1.1 71.4+0.5
(P)roperty 85.0+0.7 84.4+0.7 84.7+0.7
(G)roup reference 73.6+1.1 73.2+1.5 73.4+0.5




Integrating Materials and Manufacturing Innovation

papers and pre-training the TS model on the extended
corpus.

Overall, the multi-task approach is the optimal solution
for sample list generation in our use case of the Materi-
alsMine platform. Taking a closer look at the NER per-
formance on individual NE classes, Table 3 summarizes
the precision, recall, and F1 score of each named entity
(NE) class over 5 random runs.

Impressively, the sample code and property named
entities can be detected with an F1 score of 84.8 and 84.7.
As shown in Fig. 5, the final graph that is equivalent to a
row in the sample list will be triples joining on the sample
code. Thus, performing well on the sample code class is
critical. The composition class, in a few cases, can be
detected via regular expressions (regex) as well, which
might be a potential augmenting solution to improve the
performance. The group reference is the most compli-
cated and natural-language-like class in this work which
confuses human curators from time to time. It is not sur-
prising that the performance of our multi-task model is
less competitive in predicting the G class.

One limitation of our work is the inability to directly
extract polymer and filler names as separate named enti-
ties, primarily due to constraints in human annotation
resources. However, we propose leveraging rule-based
algorithms to segment the sample code into distinct enti-
ties, and then facilitating polymer/filler name detection
through two potential approaches. The first approach is
to call the ChemProps API that our group developed for
polymer and keyword name standardization [11]. The ser-
vice can detect variations of 129 popular polymer names
and 54 common filler names. The second approach is
to generate embeddings for segmented entities with an
encoder or Word2Vec model like the work by Shetty and
Ramprasad [46]. Subsequently, utilizing K Nearest Neigh-
bor with cosine distance within a pool of embeddings for
popular polymer names with a cutoff threshold to filter
out non polymer name entities.

The ultimate goal of our framework is to curate PNC
data in a fully automated way. However, two significant
challenges persist. The first challenge relates to the neces-
sity of an entity resolution layer to merge entity pairs into
a graph, despite the fluid language used by authors, as
presented in Fig. 5. The second challenge is about numer-
ical value detection and allocation, a task that is indeed
achievable but demands additional NER/RE labels, more
data, and extra human annotation efforts. Like many
other NLP challenges within scientific domains, the pri-
mary obstacle remains the scarcity of human annotation
resources, given its requisite domain expertise, rendering
crowd-sourcing ineffective.

Conclusions

In this work, we presented the methods we used to collect
a domain-specific unannotated corpus for pre-training and
a domain-specific annotated corpus for finetuning an array
of BERT-based models and seq2seq models for NER and
RE tasks on captions excerpted from PNC publications. A
domain-specific T5-base model was pre-trained using 1 M
caption-related sentences collected from 23 k PNC arti-
cles. A finetune corpus containing 1,896 figure captions
from PNC papers was annotated with named entities from 4
classes and relations from 3 classes.

The NER task results showed that a large pre-training
corpus is critical to boost the performance as MatBERT
outperforms other single-task models. The caption-mention
corpus also helps improve the performance of our TS model
with a label sequence formulation, which performs better
than the domain-specific MatSciBERT model despite a sig-
nificantly smaller pre-training corpus.

For the RE task, our T5 models, one utilizing the TANL
framework and another using an EM-style input sequence
with relation triple output sequence, demonstrated competi-
tive performance in terms of micro-averaged F1 score.

To enhance efficiency and address deployment concerns,
multi-task learning and joint-entity-relation extraction were
explored. The multi-task TANL model, trained on separate
NER and RE datasets, achieved promising results in both
tasks. The joint-entity-relation extraction task model has a
satisfactory NER F1 score and a low RE F1 score, due to
the inherent complexity and interdependence of jointly pre-
dicting both NER and RE in a single model. It also suggests
that the NER task, as the upstream, plays a crucial role in
enabling accurate RE in practical use.

Overall, our study showcases the potential of using a
domain-specific TS model for automating the process of
sample list generation for accelerating data curation of
experimental data from published materials papers. The pro-
posed methodology was demonstrated for a specific use case
of PNCs and enables efficient data extraction on targeted
information for experimental samples from this specific
materials domain. This method will facilitate manual cura-
tion, leading to faster ingestion of data into materials specific
data repositories. As this method is expanded, additional
entities can be added to the automated extraction tasks. The
methodology can also be applied to other scientific domains,
within and outside materials science, for efficient structured
data extraction from publications. Automated curation to
provide fully annotated data into materials repositories from
the historical materials literature will enable new materials
discoveries and advances.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s40192-024-00363-5.
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