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Abstract: Approximation frameworks for phase-field models of brittle fracture are presented and compared in this work. Such methods aim
to address the computational cost associated with conducting full-scale simulations of brittle fracture in heterogeneous materials where
material parameters, such as fracture toughness, can vary spatially. They proceed by combining a dimension reduction with learning between
function spaces. Two classes of approximations are considered. In the first class, deep learning models are used to perform regression in ad
hoc latent spaces. PCA-Net and Fourier neural operators are specifically presented for the sake of comparison. In the second class of tech-
niques, statistical sampling is used to approximate the forward map in latent space, using conditioning. To ensure proper measure concen-
tration, a reduced-order Hamiltonian Monte Carlo technique (namely, probabilistic learning on manifold) is employed. The accuracy of these
methods is then investigated on a proxy application where the fracture toughness is modeled as a non-Gaussian random field. It is shown that
the probabilistic framework achieves comparable performance in the L2 sense while enabling the end-user to bypass the art of defining and
training deep learning models. DOI: 10.1061/JENMDT.EMENG-7617. © 2024 American Society of Civil Engineers.

Introduction

Predicting failure mechanisms caused by crack initiation and propa-
gation is critical in most engineering applications. In realistic struc-
tures, damage development is a complicated phenomenon, the
modeling of which requires high-fidelity simulations. The phase-
field approach has grown prevalent in the field due to its well-proven
modeling capabilities in various settings Kuhn and Müller (2010),
Borden et al. (2012), Nguyen et al. (2015), Borden et al. (2014),
Bourdin (2007), Eastgate et al. (2001), Clément (2000), and
Hofacker and Miehe (2013). This approach employs a regularized
formulation of a sharp crack description via a modified variational
principle Francfort and Marigo (1998) and Bourdin et al. (2000).
While effective in delivering accurate predictions in controlled
environments, the phase-field method remains computationally
expensive when the complexity of the model increases. This limi-
tation prevents extensive state space exploration, which is critical
in the case of heterogeneous materials where a large number of
instantiations is required to perform probabilistic analyses.

In this context, the capacity of surrogate models to approximate
flow/solution maps by learning core structural characteristics, while
boosting online computational efficiency, has attracted a great
deal of interest in the recent years. Following the notation in
Bhattacharya et al. (2021), consider a nonlinear input–output map
Ψ∶X → Y between Hilbert spaces X and Y. A first set of methods
involves image-to-image regression where discretizations of the
input and output fields are first considered to formulate the learn-
ing task between Euclidean spaces. The finite-dimensional input

and output data thus obtained are then potentially reduced and sub-
sequently fed into a neural network that performs regression on the
input-to-output map; see, e.g., Adler and Öktem (2017), Bhatnagar
et al. (2019), Geist et al. (2020), Holland et al. (2019), Zhu and
Zabaras (2018), and Sepasdar et al. (2022) for methodological
developments, as well as Mohammadzadeh and Lejeune (2021)
for an application to fracture problems. As discussed elsewhere
Bhattacharya et al. (2021), these approaches are sensitive to mesh
refinement: by construction, the discretization (or pixelization) af-
fects both the accuracy and convergence rate, and a new neural
network architecture must be determined as the resolution varies.

In a slightly different setup, x ∈ X can be seen as a parameter-
ization of the solution y ∈ Y. In this case, a deep neural network
can then be used to approximate the mapping between, e.g., space
or space–time variables and the output—for a fixed value of x in X ;
see Dockhorn (2019), Weinan and Yu (2017), Hsieh et al. (2019),
Lagaris et al. (1998), Raissi et al. (2019), and Shin (2020) among
others. Such methods share similarities with standard collocation
methods for the numerical solution to PDEs. The major drawback
of this setting is that the approximated map is intrinsically indexed
by x. This leads to a computational burden when parametric depend-
ence must be explored, and knowledge of the underlying PDEs is
needed.

More recently, new families of neural network-based models,
termed neural operators, were developed. Such functional regressors
aim to directly map between function spaces. Once constructed,
they can be used in conjunction with a number of discretization
techniques and resolution levels to generate families of approxima-
tions over predefined grids. These models possess the desirable
attribute of being discretization invariant: it is possible to utilize the
same architecture and hyperparameters, regardless of the discretiza-
tion of the underpinning functional data Kovachki et al. (2023).

PCA-Net is one form of model reduction operator regression
Bhattacharya et al. (2021). The approach takes advantage of a clas-
sical finite-dimensionalizing reduction technique (namely, PCA) and
develops a neural-network-based approximation between the two
resulting finite-dimensional latent spaces. Similar ideas were pur-
sued in, e.g., Hesthaven and Ubbiali (2018) and Wang et al. (2019).
Other papers, such as Benner et al. (2020), McQuarrie et al. (2021),
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Peherstorfer (2019), Peherstorfera andWillcox (2016), andQian et al.
(2020), have combined ideas from model reduction with data-driven
learning to find a low-dimensional latent space and learn a system of
ordinary differential equations (ODEs).

Another prevailing class of neural operators in the literature,
DeepONet Lu et al. (2019, 2021) (and variations thereof) constitute
another approach where two subnetworks (namely, the branch and
trunk nets) are used to encode the input function and index (e.g., lo-
cation) variables for the output function. While the branch net re-
quires knowledge of the input over a fixed grid in its original
version, the DeepONet framework was later extended and, in par-
ticular, made discretization-invariant by utilizing the PCA-based
approach introduced in de Hoop et al. (2022); see Kovachki et al.
(2023). There exists a vast literature reporting on the efficiency of
this framework in a wide range of applications, and a variational
energy-based architecture of DeepONet specifically devised to pre-
dict crack paths in brittle homogeneous materials can be found in
Goswami et al. (2021).

Inspired by preliminary work on the graph kernel network
(GKN) Li et al. (2020b), the Fourier neural operator (FNO) frame-
work was proposed in Li et al. (2021a). These methods similarly
rely on neural networks to lift to, and project from, the latent space,
and involve a parameterization in Fourier space. The approach
essentially proceeds by defining a sequence of functions in the la-
tent space, through layers of integral operators. To circumvent the
aliasing-generated bias reported in Fanaskov and Oseledets (2022)
and expand applicability to arbitrary geometries and various input
formats (point clouds, nonuniform meshes, etc.), the authors pro-
posed the geometry-aware FNO in Li et al. (2022).

The paper Kovachki et al. (2023) provides a comparative study
of commonly employed neural operators, including PCA-Net,
DeepONet, GKN, and FNO. An extensive comparison between
DeepONet and FNO can be found in Lu et al. (2022). In addition,
hybrid paradigms have recently emerged that combine neural op-
erators with physics-based constraints and differentiable physics
Ramsundar et al. (2021), Shankar et al. (2023), and Li et al.
(2021b). Alternative approaches include kernel-based frameworks
for operator learning operator Batlle et al. (2023) and variational
autoencoding neural operators Seidman et al. (2023).

The above techniques all involve neural networks as regressors
and mostly differ in the way, and at which level, functional depend-
encies are encoded and decoded. This contribution aims to explore
an alternative path relying on a generative model, with the aim of
bypassing the complexity of neural network training—which re-
mains a limiting factor in most applications of practical interest,

especially when methods are deployed on small data sets. Our con-
tributions are as follows:
• We formulate a statistical operator learning approach, using a

regularization and a generative model (here, probabilistic learn-
ing on manifolds), in lieu of a deterministic regressor.

• We provide a comparative study between the proposed approach
and some state-of-the-art techniques, including PCA-Net and
geometry-aware FNO (geo-FNO).

• We show that the statistical approach can achieve similar ac-
curacy to geo-FNO and PCA-Net, while exhibiting a minimal
parameterization.
This paper is organized as follows. We first present the phase-

field approach to brittle fracture and formulate the resulting learning
problem. We then introduce the probabilistic framework, PCA-
GEM (where the abbreviation GEM stands for GEnerative Model),
and provide an overview of PCA-Net and geo-FNO, considered for
the sake of comparison. Finally, we assess the performance of the
operator learning techniques on two-dimensional fracture simula-
tions involving a spatially varying stochastic toughness.

Forward Problem Description

Phase-Field Model

We consider an arbitrary heterogeneous body Ω ⊂ Rn (with
n ∈ f1; 2; 3g) with external boundary ∂Ω, containing an internal
crack surface Γ; see Fig. 1(b). The boundary ∂Ω is decomposed
as ∂Ω ¼ ∂Ωu ∪ ∂Ωt, where ∂Ωu and ∂Ωt are subjected to Dirichlet
and Neumann boundary conditions, respectively, with ∂Ωu ∩ ∂Ωt ¼∅. Two variables, namely the displacement field u and the phase-field
variable d, are used to describe the state of the system.

In the phase-field approach, a regularized counterpart for Γ is
introduced as

ΓlðdÞ ¼
Z
Ω
γðd;∇dÞdV

where γ denotes the crack surface density function and l is a regu-
larization length. In this work, we use the so-called AT2 model,
defined as

γðd;∇dÞ ¼ 1

2l
d2 þ l

2
j∇dj2

which coincides with the form derived in the gamma-convergent reg-
ularization of free discontinuity problems Ambrosio and Tortorelli
(1990). The phase-field damage variable takes values in the interval

Fig. 1. Three subimages demonstrating the procedure of depicting a smoothed crack surface: (a) intact solid object with Dirichlet boundary condition
∂Ωu and ∂Ωt indicated; (b) solid object with a crack identified as the crack set Γ; and (c) solid object with a crack represented using the crack-density
function γ. [Reprinted from Computer Methods in Applied Mechanics and Engineering, Vol. 368, T. Hu, J. Guilleminot, and J. E. Dolbow, “A phase-
field model of fracture with frictionless contact and random fracture properties: Application to thin-film fracture and soil desiccation,” 113106,
© 2020, with permission from Elsevier.]
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[0, 1], with d ¼ 0 corresponding to intact material and d ¼ 1 for
fully damagedmaterial. Small deformations are assumed throughout,
with the infinitesimal strain tensor defined as

εð∇uÞ ¼ 1

2
ð∇uþ ∇uTÞ ð1Þ

While many variations of the phase-field approach were pro-
posed in the past two decades, we rely on the formulation proposed
in the seminal work Miehe et al. (2010) for the sake of illustration;
see Francfort and Marigo (1998) and Bourdin et al. (2000, 2008)
for reviews. In order to restrict stress degradation to tension, the
strain tensor ε is split into positive and negative components, de-
noted by εþ and ε−, respectively:

ε ¼ εþ þ ε−

This is realized by applying the spectral decomposition of the
strain tensor via

ε� ¼
Xn
i¼1

hεii�ni ⊗ ni

where fεigni¼1 are the principal strains, fnigni¼1 are the associated
principal strain directions, and bracket operators are defined as

haiþ ¼
�
a if a ≥ 0

0 otherwise
and hai− ¼

�
a if a ≤ 0

0 otherwise
ð2Þ

The internal energy is given by

Einternalðu; dÞ ¼
Z
Ω
ψðεðuÞ; dÞdV ð3Þ

with ψ the elastic energy density. In the case of a linear isotropic
material, this density can be written as

ψðε; dÞ ¼ gðdÞψþ
0 ðεÞ þ ψ−

0 ðεÞ ð4Þ
where g is the degradation function. A quadratic degradation func-
tion is used in this work: gðdÞ ¼ ð1 − dÞ2 [see Miehe et al. (2010)
for discussion]. In Eq. (4), the terms ψþ

0 and ψ−
0 correspond to the

split of a reference (isotropic) elastic energy density ψ0 (associated
with undamaged material), induced by the aforementioned strain
split:

ψþ
0 ðεÞ ¼

1

2
λhTrðεÞi2þ þ μεþ∶εþ;

ψ−
0 ðεÞ ¼

1

2
λhTrðεÞi2− þ με−∶ε− ð5Þ

where λ > 0 and μ > 0 are the Lamé coefficients of the healthy
material. The fracture energy associated with the crack set Γ reads

EfracturejΓ ¼
Z
Γ
GcdA ð6Þ

with Gc the fracture toughness, and is approximated as

EfracturejΓ ≈ ~EfracturejΩ ¼
Z
Ω
Gcγðd;∇d; lÞdV ð7Þ

The solution to the coupled problem is then obtained as the
minimizer of the total energy

~Etotal ¼ − ~EexternaljΩ;∂Ω þ ~EinternaljΩ þ ~EfracturejΩ ð8Þ

subject to the irreversibility constraint ḋ ≥ 0, where ~Eexternal is the
external energy generated by surface traction and body force. In the
above, tilde notation is used to emphasize approximations due to
the regularization of the crack set. Following (Miehe et al. 2010),
the governing equations are given by

∇ · ~σ þ b ¼ 0; in Ω ð9Þ
and

Gc

�
d
l
− lΔd

�
− 2ð1 − dÞHðεÞ ¼ 0; in Ω ð10Þ

where H is the monotonic driving force

HðεÞ ¼ max
τ∈½0;t�ψ

þ
0 ðεðx; τÞÞ ð11Þ

introduced to enforce the monotonicity constraint ḋ > 0 (Miehe
et al. 2010). Boundary conditions are given by

~σ · n ¼ τ; on ∂Ω ð12Þ
and

∇d · n ¼ 0; on ∂Ω ð13Þ

The stress deteriorates with damage [following the hybrid for-
mulation by Ambati et al. (2014)] according to

~σ ¼ gðdÞ ∂ψ0

∂ε
Trial and weight spaces for the displacement field are respec-

tively defined as

Uu ¼ fu ∈ H1ðΩÞ;u ¼ ū on ∂Ωug;
Vu ¼ fv ∈ H1ðΩÞ; v ¼ 0 on ∂Ωug ð14Þ

in whichH1ðΩÞ = Sobolev space of functions on Ω with derivatives
in L2ðΩÞ; and ū = displacement prescribed on ∂Ωu. The trial and
weight spaces are given by

Ud ¼ fd ∈ H1ðΩÞg; Vd ¼ fw ∈ H1ðΩÞg ð15Þ

for the phase-field variable, respectively.
The system of coupled equations is solved using an alternating

minimization approach in the FEniCS computing platform [adopted
from Hirshikesh et al. (2019)].

Learning Framework for Phase-Field Predictions

In the context of phase-field simulations, we specifically consider
the mapping between a material parameter, chosen as the fracture
toughness Gc, and the damage field d. The goal is to enable stat-
istical analysis for random instantiations of the toughness, without
necessitating the recourse to expensive high-fidelity simulations.
For the purpose of building a data set, the (positive) fracture tough-
ness is modeled as a second-order, translation random field indexed
by Ω and defined on a probability space ðΘ;F ;PÞ. This toughness
random field is denoted by fGcðsÞ; s ∈ Ωg. The information-
theoretic probabilistic model used to generate realizations of this
material parameter is described in the section titled “Stochastic
Model for the Fracture Toughness.” The damage random field
fdðsÞ; s ∈ Ωg is then defined through the pushforward action of
Ψ, symbolically written as d ¼ ΨðGcÞ (in the almost sure sense),
and is of second-order (since the support of the associated measure

© ASCE 04024051-3 J. Eng. Mech.
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is bounded). Hencewe takeX ¼ L∞ðΩ;R�þÞ andY ¼H1ðΩ; ½0;1�Þ,
and consider a data set composed of realizations fs ↦ Gcðs; θiÞgi≥1
of the fracture toughness, and the associated realizations fs ↦
dðs; θiÞgi≥1 of the damage field, with θi ∈ Θ.

Operator Learning Methods

In this section, we first introduce the operator learning method
based on the generative model. PCA-Net and geo-FNO are then
briefly reviewed as baseline techniques.

PCA-GEM

Overview

To position the proposed approach and clarify the encoding–
decoding strategy, consider the formulation introduced in
Bhattacharya et al. (2021). Denote by FX ∶X → RdX and
GX ∶RdX → X the encoder and decoder associated with the input
space, where dX denotes the reduced input dimension. Similarly,
FY ∶Y → RdY and GY ∶RdY → Y are the encoder and decoder for
the output space Y, with dY the reduced output dimension. Follow-
ing Bhattacharya et al. (2021), the map Ψ can be approximated as
Ψ≈ GY°φ°FX , where errors arise from the use of reduced orders in
the encoder FX and decoder GY. This construction requires (1) the
definition of the encoder and decoder; as well as (2) the construc-
tion of the mapping φ∶RdX → RdY .

A convenient way to encode and decode the input and output
fields in the considered probabilistic setting is to use Karhunen–
Loève expansions. The latter are widely employed, in the field of
uncertainty quantification, as a means to perform statistical dimen-
sion reduction and devise stochastic solvers (e.g., stochastic collo-
cation methods) in the infinite-dimensional setting Ghanem et al.
(2017). We then consider

xðsÞ≈ xðdX ÞðsÞ ¼ xðsÞ þ
XdX
i¼1

ffiffiffiffiffiffiffi
λx;i

p
ηx;iϕx;iðsÞ ð16Þ

and

yðsÞ≈ yðdYÞðsÞ ¼ yðsÞ þ
XdY
i¼1

ffiffiffiffiffiffiffi
λy;i

q
ηy;iϕy;iðsÞ ð17Þ

where xðsÞ ¼ EfxðsÞg and fλx;i;ϕx;igdXi¼1 = pairs of associated ei-
genvalues and eigenfunctions satisfying the Fredholm equation:Z

Ω
Cxðs; tÞϕx;iðtÞdt ¼ λx;iϕx;iðsÞ; ∀ s ∈ Ω ð18Þ

where Cx = covariance function of x; and fηx;igdXi¼1, where

ηx;i ¼
1ffiffiffiffiffiffiffi
λx;i

p
Z
Ω
ðxðsÞ − xðsÞÞϕx;iðsÞds ð19Þ

is a family of centered, pairwise-uncorrelated random variables
(similar equations hold for y, with obvious notation). Note that
xðdX Þ → x and yðdYÞ → y as dX → þ∞ and dY → þ∞, respec-
tively, in the mean-square sense. The encoder and decoder are then
defined as Bhattacharya et al. (2021)

FX ∶xðdX Þ ↦ ηx ¼ ðηx;1; : : : ; ηx;dX ÞT ð20Þ
and

GY ∶ηy ¼ ðηy;1; : : : ; ηy;dY ÞT ↦ yðdYÞ ð21Þ

It remains to define the mapping φ between FX ðxðdX ÞÞ and
FYðyðdYÞÞ. One natural way to construct this mapping is to use
a neural network regressor, denoted by φNN. This corresponds
to the choice made in the seminal contribution Bhattacharya et al.
(2021), where the composite map ~Ψ ¼ GY°φNN°FX ≈Ψ thus ob-
tained is referred to as PCA-Net (see section titled “PCA-Net”). In
this work, we explore an alternative approximation, obtained
through statistical sampling rather than regression. Specifically,
we consider the random vector η ¼ ðηTx ; ηTy ÞT in RdXþdY and as-
sume that a generative model enables sampling from the joint prob-
ability distribution Pη of η. In the context of surrogate modeling,
the conditional distribution Pηyjηx reads as

Pηyjηx¼exðdeyÞ ¼ δ0ðey −ΨðexÞÞ ð22Þ

where δ0 = Dirac measure centered at the origin. An approximation
can be introduced as

~Ψ ¼ GY°φGEM°FX ð23Þ
where

φGEMðexÞ ¼ EP̂ηy jηx
fηyjηx ¼ exg ð24Þ

and the notation P̂ηyjηx in the right-hand side = regularization
obtained through a kernel density estimation, applied to the aug-
mented (generated) data set. Any appropriate generative model can
be used to draw samples from the above conditional distribution. In
what follows, we consider the formulation proposed in Soize and
Ghanem (2016), using a reduced-order underdamped Langevin
equation (i.e., a reduced-order Itô stochastic differential equation);
see Soize and Ghanem (2020a), Soize and Ghanem (2022), and
Soize (2022) for additional methodological developments, as well
as Ghanem and Soize (2018), Soize and Ghanem (2020b) and
Ghanem et al. (2021) for various applications. This framework is
chosen due to its simplicity of implementation, minimal parameter-
ization, and proven efficiency to sample concentrated measures. It is
briefly recalled in the next section for the sake of completeness.

Generative Model

To construct the data set, the high-fidelity problem described in
the section titled “Forward Problem Description” is solved with
N independent realizations of the input field (i.e., the fracture
toughness). The realizations of the input and output fields are then
encoded to yield samples of the latent variables ηx and ηy (and the
variable η obtained by concatenation), following the strategy ex-
posed in the section titled “Overview.” These samples are collected
in the matrix ½ηðθÞ� ¼ ½ηðθ1Þ; : : : ; ηðθNÞ� with values in Rn×N , with
n ¼ dX þ dY .

The method builds upon three ingredients. First, the data set is
normalized using principal component analysis. To this aim, con-
sider the empirical mean

η ¼ 1

N

XN
i¼1

ηðθiÞ

and covariance matrix

½C� ¼ 1

N − 1

XN
i¼1

ðηðθiÞ − ηÞðηðθiÞ − ηÞT

© ASCE 04024051-4 J. Eng. Mech.
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and let

½η� ¼ ½η; : : : ; η�

The data set is then normalized according to

½H� ¼ ½Λ�−1=2½Φ�Tð½ηðθÞ� − ½η�Þ ð25Þ

where ½Λ� and ½Φ� = diagonal matrix of eigenvalues, sorted in non-
increasing order, and matrix of eigenvectors of the covariance ma-
trix ½C�, respectively. Here ν dominant eigenmodes are retained
using a standard mean-square error criterion, leading in effect to
a dimension reduction: ½H� ¼ ½hðθ1Þ; : : : ; hðθNÞ� ∈ Rν×N . The ma-
trix ½H� is interpreted as the realization of a random matrix ½H� that
takes values in Rν×N .

Second, a diffusion map basis is constructed as follows Coifman
and Lafon (2006). Let kε be the symmetric, positivity-preserving
and positive semidefinite kernel given by

kϵðh; h 0Þ ¼ expð−kh − h 0k2=ð4ϵÞÞ; h; h 0 ∈ Rν ð26Þ
where k · k = Euclidean norm; and ϵ = positive scaling parameter.
Using the normalized data set defined in Eq. (25) and the above
kernel, a matrix ½K� ∈ RN×N is constructed component-wise as

Kij ¼ kϵðhðθiÞ; hðθjÞÞ; 1 ≤ i; j ≤ N ð27Þ

Let ½B� be defined through Bij ¼ δij
P

N
k¼1 Kik, with δ the Kro-

necker delta, and consider the matrix

½P� ¼ ½B�−1½K� ð28Þ

The above normalization makes ½P� a stochastic matrix that can
accordingly be interpreted as the transition matrix of a random walk
on the graph that corresponds to the data Coifman et al. (2005).
Next, introduce the symmetric positive-definite matrix ½PS� ¼
½B�1=2½P�½B�−1=2, and denote by fλD;igNi¼1 and fϕðiÞ

D gNi¼1 its eigen-
values (ordered in a non-increasing sequence) and eigenvectors.
The matrix of diffusion map basis vectors ½G� is then defined as
½G� ¼ ½gð1Þ; : : : ; gðmÞ� with

gðiÞ ¼ λs
D;i½B�−1=2ϕðiÞ

D ; 1 ≤ i ≤ m ð29Þ

where m ≤ N = parameter enabling dimension reduction; and
s ∈ N>0 = scale parameter [Coifman et al. (2005)].

Third, a Langevin equation is introduced as a means to draw
new samples of ½H� (Hamiltonian Monte Carlo). When considered
in conjunction with data, this equation typically involves minus the
logarithm of the empirical probability density function (built on the
data set) as potential (in the drift term). However this classical setup
does not ensure proper concentration when samples exhibit some
structure Soize and Ghanem (2016). To circumvent this limitation,
the diffusion map basis ½G� is used to project ½H� as

½H� ¼ ½Z�½G�T ð30Þ
where ½Z� = auxiliary random matrix with values in Rν×m, defined
on the probability space ðΘ; T ;PÞ, and

½Z� ¼ ½H�½A�; ½A� ¼ ½G�ð½G�T ½G�Þ−1 ð31Þ

This projection enables the definition of the reduced-order Lan-
gevin equation

d½Zt� ¼ ½Yt�dt
d½Yt� ¼ ½Lð½Zt�Þ�dt − γ½Yt�dtþ

ffiffiffiffiffi
2γ

p
½dWt�; t > 0 ð32Þ

with the initial condition ½Z0� ¼ ½H�½A� and ½Y0� ¼ ½N�½A� almost
surely, where ½N� is a ðν × NÞ matrix, the columns of which are
independent copies of the standard Gaussian random vectors in Rν ;
and γ > 0 = tunable damping parameter. The matrix ½L� is defined
as ½Lð½Zt�Þ� ¼ ½Lð½Zt�½G�TÞ�½A�, where

Lð½U�Þij ¼
1

p̂ðujÞ f∇uj p̂ðujÞgi; ½U� ¼ ½u1; : : : ; uN � ð33Þ

and p̂ = kernel density estimator constructed with the normalized
data set [following Soize (2015)]. The Rν×N-valued stochastic
process f½dWt�; t ≥ 0g is defined by ½dWt� ¼ ½dWt�½A�, where
½dWt� ¼ ½dW1

t ; : : : ; dWN
t � and fWigNi¼1 are independent copies

of the normalized Wiener process in Rν . It can be proven that
limt→þ∞½Zt� ¼ ½Z� in the probability distribution, which enables
the generation of new samples of ½Z�, and ultimately of ½η� through
back substitution in Eq. (30) and using [Eq. (25)]:

½η� ¼ ½η� þ ½Φ�½Λ�1=2½H� ð34Þ

Various time integrators can be used to solve the Langevin dy-
namics, including the standard Euler–Maruyama andVerlet schemes.
In this work, the latter is deployed for the sake of illustration.

Deep Learning Strategies

PCA-Net

As previously indicated, PCA-Net is an operator approximation
method that utilizes PCA to finite-dimensionalize function spaces
in the span of PCA bases; see Bhattacharya et al. (2021). Finite-
dimensionalization is performed in both the input and output
spaces, and a standard fully connected neural network (NN) is used
to interpolate between the finite-dimensional latent spaces; see
Kovachki et al. (2023) for a review and comparison with other
existing PCA-based techniques, including a variant of DeepONet
(POD-DeepONet) Lu et al. (2022). Here, we employ PCA-Net for
the sake of comparison, in which case the approximation reads as

~Ψ ¼ GY°φNN°FX ð35Þ

Following Bhattacharya et al. (2021), a zero-extended stacked
neural network model φNN is used to approximate φ to a desired
level of accuracy. In this construction, the neural network mapping
from RdX to RdY is set to zero when the input latent variable lies
outside the hypercube ½−M;M�dX (where M > 0 is a parameter),
which allows one to theoretically handle the noncompactness of
the latent spaces (see the above reference for results in approxima-
tion theory).

To optimize the neural network architecture for the presented
application, a comprehensive parametric analysis was performed
(see section titled “PCA-Net Results” for details). During the train-
ing process, the loss function

Ltrain ¼ E
k ~Ψ −Ψk22
kΨk22

ð36Þ

was used, where the mathematical expectation is evaluated through
a standard statistical estimator and norms are squared for algorith-
mic efficiency in the retained computing setup.

(Geo-)FNO

The graph neural operator technique [also known as graph kernel
network (GKN)] proposed in Li et al. (2020b) seeks to represent the
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mapping Ψ through the composition of nonlinear activation func-
tions and a class of integral operators, with kernel integration real-
ized through message passing on graph networks. While GKN is
able to achieve crucial properties of a neural operator such as input
resolution independence and consideration of long-range interac-
tions in the feature space, specifically node-to-node interactions,
this architecture may exhibit instability when the number of hidden
layers increases You et al. (2022). Nevertheless, GKNs have dem-
onstrated successful applications in the context of Darcy’s flow and
Navier–Stokes equations for learning tasks related to partial dif-
ferential equations (PDEs) Li et al. (2020b, a). The FNO model
Li et al. (2021a) was subsequently proposed and relies on the pa-
rameterization of the kernel functions in Fourier space, resulting in
a more compact, expressive, and resolution-independent represen-
tation, as well as in improved computational efficiency through the
use of fast Fourier transform (FFT).

In its original form, FNO was limited to rectangular domains
with uniform meshes, due to reliance on FFT. This limitation was
circumvented in Li et al. (2022) with the development of geo-
FNO, an extension of FNO where a homeomorphism between
an arbitrary irregular input mesh and a uniform latent mesh is in-
troduced, hence enabling the use of FFT. The deformation of the
input domain can be learned in an end-to-end manner using the
FNO architecture or predetermined analytically. Consequently,
geo-FNO performs end-to-end learning of a deformed uniform
latent mesh alongside the solution operator. In the present study,
a deformation neural network is employed to learn the coordinate
map (i.e., the deformation of the input domain). The deformation
network takes the input coordinates, representing the coordinates
of the input mesh, and produces the deformed input coordinates.
The same sinusoidal features and network configuration as de-
scribed by the authors in Li et al. (2022) are adopted. The training
loss is chosen to be the same as in Eq. (36) for consistency. Read-
ers are referred to Li et al. (2021a, 2022) and Kovachki et al.
(2023) for more detailed information.

Numerical Results

In this section, we assess the accuracy of the learning methods pre-
sented in the section titled “Operator Learning Methods.” The prob-
abilistic model used to generate samples of the input field is first
introduced in the section titled “Stochastic Model for the Fracture
Toughness.” Illustrative results related to material uncertainty propa-
gation (i.e., to the generation of the output field) are next shown in
the section titled “Forward Simulations and Reduction.” The perfor-
mance of each learning technique is then discussed in the section
titled “Learning Results.”

Stochastic Model for the Fracture Toughness

The fracture toughness is modeled as random field denoted
by fGcðsÞ; s ∈ Ωg and is defined on the probability space, with
Ω¼ ð�0; 1½2Þ (unit of length is millimeter). Since this physical
parameter is positive almost surely, a non-Gaussian model must
be constructed. A convenient way to proceed is to have recourse
to a translation model Grigoriu (1984), where the field of interest
is expressed as

GcðsÞ ¼ T ðΞðsÞÞ; ∀ s ∈ Ω ð37Þ

where fΞðsÞ; s ∈ Ωg = latent centered Gaussian random field,
specified by its covariance function CΞ; and T = measurable non-
linear mapping that pushes forward the Gaussian measure to a non-
Gaussian target measure. There exist various strategies to define the
latter, ranging from the use of an empirical distribution (estimated
on a data set) to data-free model construction. Here we invoke in-
formation theory Jaynes (1957a, b) and the principle of maximum
entropy Shannon (1948) as a rationale to build T with minimal
modeling bias. In this case, and accounting for the aforementioned
positivity constraint, the first-order marginal probability distribu-
tion induced by entropy maximization corresponds to the Gamma
law Hu et al. (2020b). Hence the toughness random field can be
defined as

GcðsÞ ¼
�
F−1
Gð1=δ2;Gcδ

2

�
°FN ð0;1ÞÞðΞðsÞÞ; ∀ s ∈ Ω ð38Þ

where F−1
G = inverse cumulative distribution of the Gamma law

with shape and scale parameters given by 1=δ2 and Gcδ
2, respec-

tively; Gc = mean value of the toughness; and δ = its coefficient of
variation. Similarly, FN is the cumulative distribution of the (stan-
dard) Gaussian law. The values Gc ¼ 2.7 ½MPa.ðmmÞ−2� and δ ¼
0.3 are used in the simulations presented below.

The latent Gaussian random field fΞðsÞ; s ∈ Ωg is defined by a
separable squared-exponential covariance function, with a spatial
correlation length Lc set to 0.2 mm. Since the phase-field simula-
tions require a mesh that is much finer than the resolution necessary
to resolve the statistical fluctuations, the random field of fracture
toughness is generated on a coarse and structured mesh, via its
Karhunen–Loève expansion, and then interpolated on the fine un-
structured mesh used in the phase-field simulations. Realizations of
the input random field are displayed in Fig. 2. Such realizations are
subsequently fed into the phase-field framework presented in the
section titled “Forward Problem Description” to produce the data
set for the operator learning frameworks.

Fig. 2. Independent realizations of the input fracture toughness random field {GcðsÞ, s ∈ Ω}.
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Forward Simulations and Reduction

To analyze the performance of the operator learning frameworks,
we consider an edge-notched unilateral tension test. A 1 mm ×
1 mm plate with a preexisting crack of 0.25 mm on the left side
is considered and is loaded in uniaxial tension as illustrated in
Fig. 3. The plate is assumed to be composed of a heterogeneous
material with known deterministic elastic properties and critical
strength, while the fracture toughness is allowed to vary spatially
following the model presented in the section titled “Stochastic
Model for the Fracture Toughness.” Following Miehe et al. (2010),
the values for the Young’s modulus and Poisson ratio were fixed to
210 [GPa] and 0.3, respectively, and the regularization length is
chosen as l ¼ 0.015 mm (note that a convergence analysis with
respect to l was performed). While considering a more complete
model accounting for variations in other material parameters is a
natural extension [see, e.g., Hu et al. (2020a) and Hun et al.
(2019)] for models capturing fluctuations in the critical fracture en-
ergy and elastic properties, respectively, such a construction was
not pursued given the scope of this work. The plate is fixed at
the bottom, and the top surface is allowed to move along the ver-
tical direction (the horizontal displacement is fixed to zero). A ver-
tical displacement uy is applied at the top of the plate, as illustrated
in Fig. 3(a).

The finite element characteristic size h and displacement incre-
ments were determined following established practice and conver-
gence analyses Hu et al. (2020a) and Nguyen et al. (2016). Mesh
convergence analysis was performed under the constraints

min
e
he ≤ l

2
ð39Þ

and

min
e
he ≤ Lc

4
ð40Þ

where he = characteristic size of the eth finite element and the sec-
ond inequality ensures that the discretization of the random field is
fine enough (recall that Lc is the spatial correlation length of the
latent Gaussian random field). Note that the condition in Eq. (39)
is generally much stronger than the one expressed in Eq. (40).
The final mesh comprises 6,736 linear triangular elements, with

an element size (in the unstructured mesh) ranging from 0.0075 (near
the crack) to 0.0375 (away from the zone of crack propagation).

The convergence of the force-displacement curve in terms
of displacement increments is illustrated in Fig. 4. The vertical
displacement, denoted by uy, is monotonically increased with incre-
ments Δuy ¼ δu × ū, with δu ¼ 0.1 for uy < 0.7 × ū, and δu ¼
0.0005 for uy ≥ 0.7 × ū, where ū is a fixed remote displacement
set to 0.007 mm. The vertical displacement increases progressively
up to a maximum magnitude of 0.00714 mm.

Fig. 5 shows four pairs of stochastic and spatially varying frac-
ture toughness and the corresponding damage fields. High variabil-
ity is observed in the fracture pattern, due to the choice of the
correlation length (which is five times smaller than the size of
the domain) and marginal coefficient of variation for the toughness
random field.

To determine the dimensions dX and dY of the input and output
latent spaces, convergence analyses were performed on the spectrum

Fig. 3. (a) 2D tension test: a square plate with a preexisting crack and boundary conditions; (b) finite element discretization of the domain Ω; and
(c) example of a damage field.

Fig. 4. Convergence of the force-displacement curve obtained for
l ¼ 0.0015 mm, with respect to δu mm for uy > 0.7 × ū mm.
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of the covariance operators for the toughness and damage random
fields; see Fig. 6. Based on these results, and selecting the threshold
for the errors to 0.01, reduced dimensions were found to be dX ¼
312 and dY ¼ 232. Fig. 7 provides a qualitative illustration of the
impact of the reductions on the input and output fields.

The variability of the crack paths constituting the output in the
data set can be seen in Fig. 8 where a set of 2,000 realizations is
shown. Note that filtering was applied to enable visualization, with
a threshold set to 0.9. These 2,000 samples constitute the data set
that will be used in the next section to train (and validate, for the
deep learning strategies) the operator learning methods.

Learning Results

In this section, we assess the performance of the learning methods
on a new testing data set consisting of 200 realizations of ηX . These
samples are independent of the ones used for training the generative
model and training and validating (with a standard held-out strategy)
the deep learning models. Note that since the latent dimension dX
is fairly large, the above realizations of ηX are randomly selected
within the 200,000 realizations generated by the PCA-GEM gener-
ative model (see below), to avoid extrapolation. Qualitative results
are first presented for each approach, in the form of best and worst
predicted paths as identified by the error defined as

Fig. 5. (a) Realizations of the fracture toughness random field {in ½MPa.ðmmÞ−2�}; and (b) associated realizations of the damage random fields.

Fig. 6. Graph of the mean-squared error as a function of truncation order for (a) toughness random field; and (b) damage random field.
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Err ¼ k ~Ψ −Ψk2
kΨk2

ð41Þ

Statistical results computed with the error metric are then pre-
sented in the section titled “Quantitative Comparison.” Additional

examples of qualitative results are provided in the Appendix. In our
experiments, we adopted the neural network architecture proposed
in Bhattacharya et al. (2021) and Li et al. (2022). Hyperparameter
optimization was conducted state-of-the-art Bayesian optimization,
using the weights and biases (WANDB) platform (Biewald 2020).
Regarding the operator learning methods, Matlab and Python im-
plementations for the generative model can be found in Soize
(2021) and Zhong et al. (2021), respectively. PCA-Net was imple-
mented using the PyTorch framework [see Paszke et al. (2019)],
and code for geo-FNO can be found in Zongyi et al. (2022).

PCA-GEM Results

To deploy the PCA-GEM strategy with the learning method as a
generative model, the scale parameter ε in the kernel function given
by Eq. (26) was determined using Lafon’s criterion [see Sec. 2.4 in
Lafon (2004)]: ϵ ¼ 206.1960. Regarding the determination of the
dimension m, the graph of the eigenvalues for the transition matrix
(Fig. 9) suggests that m ≥ 545 yields a reasonable approximation.
The valuem ¼ 676 is selected in the following, with a mean-square
error in the covariance matrix equal to 0.006. The generator was
deployed with γ ¼ 4 and a time stepΔt ¼ 0.2. Here, 100 additional
samples of the random matrix were generated, leading to a total of
200,000 additional samples for the latent variables ηX and ηY .

Fig. 10 shows some output fields sampled with the PCA-GEM
approach, together with the reference results obtained by direct
numerical simulations (test data set). Good qualitative agreement

Fig. 7. Illustrative comparison of full-order and reduced-order representations for (a) input random field; and (b) output random field (for a threshold
set to 0.01 for the truncation error).

Fig. 8. Realizations of the output damage random field, used in the
data set. Here, 2,000 realizations are considered, and a threshold
d > 0.9 was used for visualization purposes.
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is observed in general. For the worst case prediction, the approxi-
mation predicts two fracture paths, one corresponding to the path
simulated by the reference phase-field approach and another plau-
sible path going through a region of lower fracture toughness.

Geo-FNO Results

Regarding the geo-FNO architecture, we employed 10 Fourier
modes with three input channels where the first and second chan-
nels correspond to the coordinates of the input fracture toughness
field, and the last channel is the fracture toughness. The first input
fully connected layer has an output channel size (hidden layer size)
of 36 to lift the three input channels to a higher channel dimension
of 36. Subsequently, a width of 36 channels is utilized for all the

Fourier integral operators. The final output fully connected neural
network does the projection back to the target dimension of 1, and
has an input channel size of 36, and hidden layer size of 256. We
used the same architecture of deformation neural network as the
authors in Li et al. (2022), where the hidden layer sizes are multi-
ples of a width parameter. For our application, the width parameter
of the deformation network is 36, the same as that of the FNO
operator.

The data set presented at the end of the previous section and
containing 2,000 samples was used, with 80% of samples devoted
to training and 20% used for validating. As previously mentioned, a
new test data set consisting of 200 realizations of ηX is used for
comparing the learning methods. A batch size of 64, 100 epochs,
and a maximum learning rate of 7.7 × 10−5 were utilized. The train-
ing process employed a OneCycleLR scheduler with the AdamW
optimizer and a weight decay of 8.49 × 10−4. Unlike the PCA-Net
model, no single parameter holds a dominant influence over the val-
idation loss during the training process. The top-performing and
poorest predictions generated by the model are presented in Fig. 11
(test data set). Overall, the predictions are found to be accurate from
a qualitative standpoint. While cracks appear to be more pixelated
compared to those obtained with PCA-GEM and PCA-Net, geo-
FNO exhibits slightly better accuracy in terms of fracture path pre-
dictions [in the sense of Eq. (41)].

PCA-Net Results

In the case of PCA-Net, a five-layer dense neural architecture
was employed, with hidden layer sizes of 300, 600, 1,200, 600,
and 300, respectively. The SELU activation function was utilized.
The network was trained using the AdamWoptimizer and a weight
decay of 2.03 × 10−4. The same data set as for the geo-FNO model
was used (with 80% and 20% of samples used for training and
validating, respectively, and 200 realizations of ηX used for testing),
and a batch size of 256 was utilized for a total of 100 epochs.

0 500 1000 1500 2000
10

-4

10
-3

10
-2

10
-1

10
0

Fig. 9. Plot of the eigenvalues of the transition matrix (in log scale).

Fig. 10. Best [row (a) with L2 error of 0.187] and worst [row (b) with L2 error of 0.942] predictions obtained with PCA-GEM (test data set)
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A OneCycleLR scheduler was implemented, setting the maximum
learning rate to 8.89 × 10−3. It was observed that the width and
depth of the neural network had minimal impact on the training loss,
whereas the learning rate played a more crucial role—a higher

learning rate resulting in better model performance. Fig. 12 pro-
vides a visual representation of the best and worst predictions gen-
erated by the model. We found that the majority of the predicted
paths exhibit more pronounced diffusivity.

Fig. 11. Best [row (a) with L2 error of 0.216] and worst [row (b) with L2 error of 0.829] predictions obtained with geo-FNO (test data set).

Fig. 12. Best [row (a) with L2 error of 0.203] and worst [row (b) with L2 error of 0.862] predictions obtained with PCA-Net.
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Quantitative Comparison

Due to the smeared representation introduced by the phase-field
approach, output fields may be binarized to represent any nonheal-
thy state in the material. Here, we consider a threshold of 0.2, im-
plying that damage values smaller than or equal to 0.2 are set to 0,
and greater values are set to 1. Examples of binarized representa-
tions are shown in Fig. 13.

Fig. 14 illustrates the distribution of the L2 error [defined in
Eq. (41)] of nonbinarized and binarized results across the three
models, estimated with a kernel density estimation with 200 inde-
pendent samples. The mean and coefficient of variation of the L2

errors for the three learning strategies are reported in Table 1, con-
sidering both the binarized and nonbinarized output fields.

It is seen that the geo-FNO model achieves the lowest mean and
CoV for the loss in all cases, indicating better performance on the
testing data set overall. For binarized representations, PCA-GEM
and PCA-Net perform with similar accuracy in terms of both mean
and CoV, with a relative error in mean of about 17% with respect to
geo-FNO. PCA-Net exhibits slightly better accuracy than PCA-
GEM for nonbinarized models. The offline training time for 100
epochs is 51.53 min for the geo-FNO model, whereas the PCA-Net
model it takes 22.37 min (on an NVIDIA RTX A6000 GPU). Note
that the errors shown in Fig. 14 (and in Table 1) are much larger
than the ones typically reported in operator learning studies. This is
because the output field, while diffused, remains highly localized
(in stark contrast with results involving maps between smooth
fields), so that any deviation from the reference crack path contrib-
utes quite significantly to the error—whether it be computed point-
wise in the sample space, as in Eq. (41), or in mean [Eq. (36)].
Indeed, the chosen L2 metric evaluates not only accuracy in the pre-
diction of the crack path, but also the capability of the method(s) to
enforce that d≈ 1 along the central line of the diffused crack path.
While all techniques perform reasonably well for the former, they
struggle to maintain constant values for the damage field—a feature
that is extremely challenging for the encoding–decoding strategy (in
a function space setting). This is exemplified in the figures below.
Specifically, Fig. 15 demonstrates that the crack path contour is
predicted with fairly good accuracy (for the considered randomly
selected sample), and Fig. 16 illustrates that the operator learning

Fig. 13. Binarized damage predictions: (a) reference; (b) PCA-GEM; (c) geo-FNO; and (d) PCA-Net predictions.

Fig. 14.Model performance evaluation for damage prediction: kernel density plot of L2 error for PCA-GEM, geo-FNO, and PCAmodels with testing
set of 200 samples.

Table 1. Mean and coefficient of variation (CoV) of the L2 error [see
Eq. (41)] obtained with nonbinarized and binarized output fields

Model

Mean of
L2 error

(nonbinarized)

CoV of
L2 error

(nonbinarized)

Mean of
L2 error

(binarized)

CoV of
L2 error

(binarized)

PCA-GEM 0.525 0.314 0.626 0.287
geo-FNO 0.421 0.264 0.521 0.231
PCA-Net 0.458 0.279 0.592 0.277
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method does not capture the peak of the damage profile very well,
hence contributing to the increase of the L2 error (similar results are
obtained with geo-FNO and PCA-Net). The development of ad hoc
representations ensuring that damage peaks are predicted more ac-
curately is left for future work.

The training and validation losses for the neural networks
are shown in Fig. 17 (for geo-FNO and PCA-Net). It is seen that

PCA-Net tends to convergence faster during training, but exhibits
slightly slower convergence and higher loss on the validation
data set.

The above results demonstrate the ability of PCA-GEM to
deliver predictions with an accuracy that is comparable to that of
some state-of-the-art deep learning techniques. [Note that an ex-
haustive comparison with other operator learning frameworks is
outside the scope of this work, since (1) there exists a myriad of
variations on such frameworks, some of which are still being de-
veloped or refined; and (2) the definition of methodologies to fairly
compare different classes of methods remains an open problem.]
While this can be achieved without the burden of architecture op-
timization, a limitation of this method lies in potentially poor gen-
eralization capabilities, due to the use of conditional expectations in
a very high dimensional space. Extensions to overcome this issue
constitute an interesting topic for future research.

Conclusion

In this work, we considered the construction of approximation
frameworks for phase-field models of brittle fracture. Two classes
of methods were presented. In the first class, deep learning models

Fig. 16. 3D plots of the reference solution (left) and PCA-GEM prediction (right). Results obtained with geo-FNO and PCA-Net are qualitatively
similar.

Fig. 17. Comparison of (a) train; and (b) valid losses between geo-FNO and PCA-Net. Losses as a function of epoch are computed according
to Eq. (36).

Fig. 15. Contour plot for the reference solution and the operator learn-
ing approximations (for a level set to 0.5).
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are used to perform regression in ad hoc latent spaces, defined
through linear and nonlinear reduction techniques. State-of-the-art
approaches, namely PCA-Net and Fourier neural operators, are
briefly reviewed. We then proposed a second class of approaches
where conditional expectation is used to approximate the forward
map in latent space. To enable proper estimation, the data set is
augmented using probabilistic learning on manifold—a Hamiltonian
Monte Carlo technique that ensures measure concentration through
model reduction. The accuracy of these methods was subsequently
investigated on fracture simulations involving a spatially varying sto-
chastic toughness, modeled as a non-Gaussian random field. It was
shown that the probabilistic approach achieves comparable perfor-
mance in the L2 sense and therefore offers a valuable alternative
to deep learning models. Directions for future research include the

analysis of generalization capabilities and the development of rep-
resentations capturing damage peaks with greater accuracy.

Appendix. Additional Numerical Results

Here, we present additional qualitative examples to illustrate the
predictive accuracy of the learning frameworks. Specifically, we
showcase three additional instances of improved predictions and
three examples of poorer predictions for each model, aiming to of-
fer a more holistic presentation of models’ performance. Results
obtained using PCA-GEM, geo-FNO, and PCA-Net are provided
in Figs. 18–20, respectively. Note that the trends observed in these
samples must not be generalized, and that these results should not

Fig. 19. Additional examples of predictions by geo-FNO: (a) predictions with higher accuracy, with errors L2 ¼ ½0.228; 0.235; 0.241� from top to
bottom; and (b) predictions with lower accuracy, with errors L2 ¼ ½0.765; 0.742; 0.735� from top to bottom.

Fig. 18. Additional examples of predictions by PCA-GEM: (a) predictions with higher accuracy, with errors L2 ¼ ½0.226; 0.231; 0.256� from top to
bottom; and (b) predictions with lower accuracy, with errors L2 ¼ ½0.929; 0.917; 0.901� from top to bottom.
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be used to compare the performance of the models against one
another.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request.
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