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A B S T R A C T

In this work, we address operator learning for stochastic homogenization in nonlinear elasticity. A Fourier
neural operator is employed to learn the map between the input field describing the material at fine scale
and the deformation map. We propose a variationally-consistent loss function that does not involve solution
field data. The methodology is tested on materials described either by piecewise constant fields at microscale,
or by random fields at mesoscale. High prediction accuracy is obtained for both the solution field and the
homogenized response. We show, in particular, that the accuracy achieved with the proposed strategy is
comparable to that obtained with the conventional data-driven training method.
1. Introduction

Multiscale analysis aims to exchange information across scales,
generally by predicting some properties of interest at a coarse scale
based on fine-scale material description. While homogenization can be
performed analytically for a few particular cases involving ‘‘simple’’
microstructures, computational homogenization is generally required
to tackle complex systems. The cost associated with this task is exacer-
bated when the so-called separation of scales cannot be stated: in this
case, the homogenization operator does not completely filter subscale
fluctuations, and the apparent physical quantities thus estimated ex-
hibit statistical fluctuations. This setting requires concurrent multiscale
computations where mechanistic information is exchanged back-and-
forth between the material and structural scales (see, e.g., [1] for an
example).

Regardless of the setting (periodic or non-periodic, with or without
scale separation), homogenization comes with substantial computa-
tional burden, and many strategies have been proposed in the literature
to circumvent this issue. Most frameworks involve reduced-order mod-
eling for the microscopic problem (see, e.g., [2]), or the construction of
urrogate models based on either approximation theory (see, e.g., [3,
]) or, more recently, on the use of machine learning techniques
see, e.g., [5] and the references therein). We note that similar de-
elopments have occurred in many disciplines, and that providing
n exhaustive review is beyond the scope of this paper. Examples
nclude [6], where reduced-order modeling is combined with deep
earning techniques to homogenize nonlinear hyperelastic materials,
nd [7], in which convolutional neural networks (CNNs) are employed
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to study the homogenization of two-phase heterogeneous materials.
The case of history-dependent behaviors was considered in [8], using
long short-term memory (LSTM) networks. In [9], the analysis of unit
cell problems was realized using physics-informed neural networks
(PINNs). Other relevant data-driven approaches can be found in [10,
11]; see [12] for a review.

More recently, a few operator learning techniques have emerged
as a means to approximate mappings between function spaces (and
to realize, in particular, zero-shot predictions at different resolutions).
Such methods can, at least in principle, enable the approximation of
the solution map relating the material input field to the deformation
map (taken as the output field) — the homogenized response being
then obtained by post-processing. Popular neural operator frameworks
include (1) DeepONet [13] and variations thereof; (2) PCA-Net [14];
and (3) Fourier neural operators (FNO) [15] and its physics-informed
variation (PINO) [16] (see [17] for an alternative kernel-based frame-
work). A few attempts have been reported regarding the use of neural
operators in multiscale analysis; see [18] for an application example, as
well as [19] for approximation results in the case of elliptic operators.
While these approaches are data-driven by construction, their practical
use in such a context has yet to be fully demonstrated — especially in
the context of anisotropic, nonlinear (and potentially time-dependent)
responses. Their deployment as surrogates when the underlying gov-
erning equations (specified as partial differential equations (PDEs)) are
known appears as a logical step to gain insights in the learning process,
and to develop ad hoc theories for approximation capabilities (see [19]
for thorough discussion). In this context, one common criticism about
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such surrogates is the necessity to proceed with offline computations,
used to build training and validation datasets. This task can be com-
putationally intensive, especially in the case of nonlinear materials.
In this work, we seek to accelerate computational homogenization for
hyperelastic random materials by combining operator learning and
a training loss based on total energy minimization (as proposed in,
e.g., [20,21] in the context of incremental homogenization). Leveraging
the results presented in [16], FNO is employed as the approximator.
The main contribution lies in the definition of a loss function that only
involves the strain energy functional, which effectively enables training
without PDE data. We further illustrate the relevance of this strategy
for two material models presenting different types of continuity, and
compare the performance of the proposed training method with the
standard data-driven approach. The derivation of approximation results
in nonlinear elasticity is left for future work.

2. Operator learning for homogenization

2.1. Modeling at microscale

Consider a heterogeneous hyperelastic solid occupying an open
bounded domain 𝛺 ⊂ R2, with smooth boundary 𝜕𝛺, at rest (extension
o the three-dimensional case is straightforward). Following standard
onvention, 𝛺 is referred to as a statistical volume element (SVE) for
andom media. Let 𝝋 ∶ 𝛺 → 𝛺𝝋 denote the deformation map relating
he position of a material point in the reference configuration (i.e., in
) to its position in the current (deformed) configuration, denoted by
𝝋: 𝒙𝝋 = 𝝋(𝒙) = 𝒙 + 𝒖(𝒙), where 𝒙𝝋 ∈ 𝛺𝝋 and 𝒙 ∈ 𝛺 are the position
ectors of the material point in the current and reference configura-
ions, respectively, and 𝒖 ∶ 𝛺 → R2 denotes the displacement vector.
Let M+

2 denote the set of matrices of order two, with strictly positive
determinants. The deformation gradient [𝐹 ] ∈ M+

2 is then defined as
[𝐹 ] = [∇𝒙𝝋] and is assumed to be invertible almost everywhere in 𝛺𝝋.
The right Cauchy–Green tensor is defined as [𝐶] = [𝐹 ]𝑇 [𝐹 ].

In the case of hyperelastic materials, constitutive modeling is
achieved by relating the first Piola–Kirchhoff stress tensor [𝑃 ] to the
deformation gradient [𝐹 ] through

𝑃 (𝒙, [𝐹 ])] = 𝜕𝑊
𝜕[𝐹 ]

(𝒙, [𝐹 ]),

here 𝑊 ∶ M+
2 → R is the stored energy density function (at

icroscale). Sufficient conditions on 𝑊 to ensure well-posedness on
the associated nonlinear boundary value problem are well established;
see, e.g., [22,23]. The strain energy associated with any admissible de-
formation map 𝝋∗ ∈  = {𝝋∗ ∶ 𝛺 → R2, 𝝋∗ = 𝝋0 on 𝜕𝛺} (smoothness
requirements are left undefined here for ease of exposition) is defined
as 𝑤(𝝋∗) = ∫𝛺 𝑊 (𝒙, [∇𝝋∗]) 𝑑𝒙. It is well known (see, e.g., Theorem 4.1-
2 in [22]) that in the absence of body force and Neumann boundary
conditions, the deformation map 𝝋 satisfying

𝝋 = argmin
𝝋∗∈

𝑤(𝝋∗) (1)

is the solution to the pure-displacement boundary value problem (BVP)
(and reciprocally):
{

∇𝒙 ⋅ [𝑃 ] = 0 , ∀𝒙 ∈ 𝛺 ,

𝝋 = 𝝋0 , ∀𝒙 ∈ 𝜕𝛺 .
(2)

We will leverage this result to formulate the loss function in the
operator learning framework presented in Section 2.3.

2.2. Homogenization method in nonlinear elasticity

Following [24,25], the macroscopic deformation gradient [𝐹 ] asso-
ciated with 𝝋 is defined as

[𝐹 ] = 1 𝝋(𝒙)⊗ 𝒏(𝒙) 𝑑𝑠 = 1 [𝐹 (𝒙)] 𝑑𝒙,
2

|𝛺|
∫𝜕𝛺 |𝛺|

∫𝛺 i
where 𝒏(𝒙) denotes the outward-pointing unit normal vector at point
𝒙 ∈ 𝛺. In a multiscale setting, the macroscopic deformation gradient
[𝐹 ] is employed to define kinematically uniform boundary conditions
(KUBC) on the SVE: 𝝋(𝒙) = [𝐹 ]𝒙 , 𝒙 ∈ 𝜕𝛺. The apparent stored energy
density function 𝑤 ∶ M+

2 → R defining the constitutive model at the
coarser scale is then defined as

𝑤([𝐹 ]) = min
[𝐹 ] ∈([𝐹 ])

1
|𝛺|

∫𝛺
𝑊 (𝒙, [𝐹 (𝒙)]) 𝑑𝒙 , (3)

here ([𝐹 ]) denotes the set of kinematically admissible deformation
gradients given by

([𝐹 ]) = {[𝐹 ] | ∃𝝋∗ ∈  ∶ [𝐹 ] = [∇𝒙𝝋∗] ∀𝒙 ∈ 𝛺 , 𝝋∗(𝒙) = [𝐹 ]𝒙 on 𝜕𝛺} .

(4)

he conventional approach to compute the apparent stored energy den-
ity function involves solving the nonlinear boundary value problem

{

∇𝒙 ⋅ [𝑃 (𝒙, [∇𝝋])] = 0 , ∀𝒙 ∈ 𝛺 ,

𝝋(𝒙) = [𝐹 ]𝒙 , ∀𝒙 ∈ 𝜕𝛺 ,
(5)

and then calculating the apparent stored energy function using ergodic
averaging:

𝑤([𝐹 ]) = 1
|𝛺|

∫𝛺
𝑊 (𝒙, [𝐹 (𝒙)]) 𝑑𝒙 . (6)

he apparent stored energy 𝑤 is thus defined as the volume average of
the (fine scale) strain energy density function taken at the minimizer
of the total energy functional. When the domain 𝛺 is sufficiently large,
the so-called separation of scales holds, meaning that the response of
the material becomes independent of the realization of the random
media. This convergence is well discussed in the literature of multiscale
analysis and will not be studied in this work.

2.3. Using a neural operator for homogenization

As previously indicated, homogenization is a procedure that aims
to determine the apparent stored energy function, given (i) a macro-
scopic deformation gradient [𝐹 ] and (ii) a sample of the material at
fine scale. This task can be greatly accelerated by using a operator
learning technique that approximates the mapping between the input
field defining the material at fine scale and the deformation map.
Specifically, operator learning seeks to build a surrogate for the map
† ∶  → ◦, where  denotes the input function space and ◦ is the
utput function space containing all admissible deformation maps from
to R2. Note that we do not consider the closure 𝛺 in the learning task,

since the deformation map is prescribed on 𝜕𝛺. Our goal is therefore
to propose, and assess the relevance of, a training strategy that does
not involve solving the nonlinear boundary value problem defined in
Eq. (5). In this context, the Fourier neural operator (FNO) framework
proposed in [15] is selected. This approach relies on the combination
of lifting and projection operators with a flow of trainable operators.
More specifically, the Fourier neural operator defines an approximation
 to † as

= ◦𝑇 ◦⋯◦1◦ , (7)

where the input and output layers, denoted by  and , respectively,
are lifting and projection operators defined using neural networks. Each
element in the sequence of operators {𝑖}𝑇𝑖=1 is defined as

𝑖{𝑣}(𝒙) = 𝜎([𝑊𝑖]𝑣(𝒙) + 𝒃𝑖 +𝑖{𝑣}(𝒙)) , (8)

here 𝜎 is an activation function, {[𝑊𝑖], 𝒃𝑖} is a set of coefficients
efining an affine transformation (in the 𝑖th hidden layer), 𝑣 ∶ 𝛺 → R𝑑𝑐
n a function defining the input for the layer under consideration, with
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Fig. 1. Examples of material samples for the two scenarios.
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𝑑𝑐 the so-called channel width (which can be layer-dependent), and 𝑖
s a convolutional integral operator given by

𝑖{𝑣}(𝒙) = ∫𝛺
𝜅𝑖(𝒙 − 𝒚)𝑣(𝒚) 𝑑𝒚 , ∀𝒙 ∈ 𝛺 , (9)

here 𝜅𝑖 is a matrix-valued integral kernel. The operator 𝑖 is con-
eniently computed using forward and inverse Fourier transforms,
arameterized by trainable Fourier coefficients. The latter, combined
ith the parameters involved in  and , constitute the tunable param-
ters for the FNO. In practice, a convergence analysis with respect to
he parameters defining the architecture (including the channel width,
he number of modes retained in Fourier space, and the depth 𝑇 )
ust be performed. Interested readers are referred to [15,16,26–28] for
urther (technical) details about FNO and variations thereof. Examples
f applications in computational mechanics can be found in [29,30].
ote that an exhaustive comparison between state-of-the-art operator
earning strategies is beyond the scope of this work; see [26,31] for
nstance.
In this work, and following the discussion in Section 2.1, we propose

o use a physics-informed loss function defined as

(𝜃∗) = 1
𝑁𝑡

𝑁𝑡
∑

𝑖=1

1
|𝛺𝑖| ∫𝛺𝑖

𝑊
(

𝒙, [∇𝒙𝝋̂(𝑖)(𝜃∗)]
)

𝑑𝒙 , (10)

where 𝜃∗ collects all trainable parameters in the neural operator, 𝑁𝑡 is
he number of samples, and 𝝋̂(𝑖)(𝜃∗) is the deformation map predicted
y the neural operator parameterized by 𝜃∗ for the 𝑖th input sample
𝑖 of the material at fine scale. Once the above loss function has
een minimized with respect to 𝜃∗, with a solution denoted by 𝜃, the
pparent stored energy associated with 𝛺𝑖 is then approximated as

𝑤 ≈ (1∕|𝛺𝑖|)∫𝛺𝑖

𝑊 (𝒙, [∇𝒙𝝋̂(𝜃)]) 𝑑𝒙 . (11)

. Applications

Two scenarios involving different types of regularity are specifi-
ally investigated below. In the first scenario, microscopic modeling is
ealized using a two-phase microstructure with piece-constant Mooney–
ivlin materials. In the second example, we consider mesoscopic mod-
ling where randomness is introduced by representing the material
arameters in the Neo-Hookean model as non-Gaussian random fields.
hese scenarios are described in Section 3.1.

.1. Material descriptions

.1.1. Constitutive modeling
In this work, we employ the Neo-Hookean model and Mooney–

ivlin model given by [22,32] for the sake of illustration. The Neo-
ookean model reads as

([𝐹 ]) =
𝜇
(‖[𝐹 ]‖2 − 2) + 𝜆 (det([𝐹 ]) − 1)2 − 𝜇 ln det([𝐹 ]),
3

2 2
where 𝜆 and 𝜇 are the Lamé parameters. The Mooney–Rivlin model is
defined as

𝑊 ([𝐹 ]) = 𝑎(‖[𝐹 ]‖2 − 2) + 𝑏(‖Cof([𝐹 ])‖2 − 3)

+
𝑠1
2
(det([𝐹 ]) − 1)2 − 𝑠2 ln det([𝐹 ])

here 𝑎 and 𝑏 are strictly positive material coefficients such that 2𝑎 +
𝑏 = 𝜇, 𝑠1 = 𝜆 − 4𝑏, and 𝑠2 = 2𝑎 + 4𝑏. Following standard notation in
onlinear elasticity, ‖[𝐹 ]‖2 = tr([𝐹 ][𝐹 ]𝑇 ), det([𝐴]) and Cof([𝐴]) are the
eterminant and cofactor matrix of any matrix [𝐴], respectively.

.1.2. Description at microscale
In the first scenario, we consider a two-phase random microstruc-

ure. Particles are randomly placed within 𝛺 using the packing algo-
ithm detailed in [33], with periodicity enforced along the boundary
𝛺. Samples are shown in the left panel in Fig. 1. As previously
ndicated, the inclusion and matrix phases are modeled as Mooney–
ivlin materials with deterministic properties. Material parameters for
he matrix phase are given by 𝑎(𝑚) = 164.0625 [MPa], 𝑏(𝑚) = 10 [MPa],
(𝑚) = 1531.14 [MPa], while parameters for the inclusion phase are
iven by 𝑎(𝑚) = 10𝑎(𝑚), 𝑏(𝑚) = 2𝑏(𝑚), 𝜆(𝑓 ) = 10𝜆(𝑚). This stochastic
icrostructure is completely defined by the indicator function of any
f the phases, say, the inclusion phase. We denote by {𝐴(𝒙),𝒙 ∈ 𝛺} this
andom field, with values in {0, 1}.

.1.3. Description at mesoscale
In the second scenario, we adopt a mesoscopic perspective where

andom fields of elastic parameters are used to introduce stochasticity.
hese random fields are analog, in essence, to those obtained from
ointwise stochastic homogenization without separation of scales (in
moving-window fashion). Let 𝑨(𝒙) = (𝜆(𝒙), 𝜇(𝒙))𝑇 denote the random
ector gathering the Lamé parameters at point 𝒙 ∈ 𝛺. Following previ-
us work by the authors [34–36], a prior model for the non-Gaussian
ield {𝑨(𝒙),𝒙 ∈ 𝛺} is considered:

(𝒙) =  (𝜩(𝒙)),

where  is a nonlinear (transport) map and {𝜩(𝒙) = (𝛯1(𝒙), 𝛯2(𝒙))𝑇 ,𝒙 ∈
𝛺} is a bivariate normalized stationary Gaussian random field (with
statistically independent components). Each component {𝛯𝑖(𝒙),𝒙 ∈ 𝛺}
s assumed to be isotropic and defined by a Matérn-type covariance
unction, where the correlation length parameter is chosen as 0.1 and
he smoothness parameter is set to 1. The transport map  is defined
sing an information-theoretic approach (see [3,37,38] for information-
heoretic models in stochastic anisotropic nonlinear elasticity). We
pecifically define 𝜆 through

(𝒙) = 𝐹−1
(𝑠𝜆1 ,𝑠

𝜆
2 )

(

𝐹 (0,1)(𝛯1(𝒙))
)

, (12)

while the second Lamé parameter is defined as

𝜇(𝒙) = 𝐹−1
(𝑠𝜇1 ,𝑠

𝜇
2 )

(

𝜌𝐹 (0,1)(𝛯1(𝒙)) +
√

1 − 𝜌2𝐹 (0,1)(𝛯2(𝒙))
)

, (13)

where 𝐹 denotes the cumulative density function of the distribution
specified as subscript,  denotes the Gamma law (with shape and scale
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parameters indicated within parentheses),  (0, 1) denotes the normal-
ized Gaussian law, and 𝜌 is the Pearson correlation coefficient between
the Lamé parameters (at any location fixed in 𝛺). The parameters
(𝑠𝜆1 , 𝑠

𝜆
2) and (𝑠𝜇1 , 𝑠

𝜇
2 ) in the Gamma laws are calibrated such that 𝜆 =

E(𝜆(𝒙)) = 1, 750 [MPa], 𝛿𝜆 = 0.3, 𝜇 = E(𝜇(𝒙)) = 328.125 [MPa], and
𝜇 = 0.3, where 𝜆 and 𝜇 denote the means of the Lamé parameters,
respectively, and 𝛿𝜆 and 𝛿𝜇 denote their coefficients of variation. The
orrelation coefficient is chosen as 𝜌 = 0.9, following the multiscale-
informed results in [39]. Fig. 1 shows a pair of samples of the pointwise
orrelated non-Gaussian random fields of Lamé parameters. With the
lastic contrast considered in this study, the coefficient of variation of
he apparent strain energy density is about 2% for scenario 1, and about
% for scenario 2.

.2. Description of training strategies

In what follows, we denote by FNOmic and FNOmes the FNOs asso-
iated with the first and second scenarios, respectively. In the results
resented below, the discretization of the input fields contains 128
lements per edge, yielding 128 × 128 = 16,384 elements in total.
he designed loss function (Eq. (10)) is employed to train the neural
perators without PDE data. All FNOs contain four Fourier layers
as in [16]), and convergence results with respect to the number of
ourier modes and width are presented in Section 3.3. The GELU [40]
ctivation function is employed for FNOmes, while the Leaky-ReLU
ctivation function is used to better capture sharp gradients in FNOmic
with a piecewise constant input field). The batch size is chosen as 40.
he Adam optimization algorithm [41] is employed to minimize the
oss function. The initial learning rate is set to 0.001, and decays by
alf after every 50 epochs. Each neural operator is trained using a total
umber of 300 epochs. In the case of FNOmic, transfer learning involv-
ng neural operators calibrated with a lower finite element resolution
i.e., a coarser mesh) is used to facilitate training [7,9].
In order to evaluate accuracy, two metrics are considered. The first
etric is a relative𝐻1 error (RHE) involving the displacement field and
he deformation gradient:

HE = 1
𝑁𝑣

𝑁𝑣
∑

𝑖=1

⎛

⎜

⎜

⎝

‖𝒖(𝑖) − 𝒖̂(𝑖)‖2
𝐿2 + ‖[𝐹 ](𝑖) − [𝐹 ](𝑖)‖2

𝐿2

‖𝒖(𝑖)‖2
𝐿2 + ‖

‖

[𝐹 ](𝑖)‖
‖

2
𝐿2

⎞

⎟

⎟

⎠

1∕2

, (14)

where the superscript 𝑖 indicates predictions obtained for the 𝑖th sample
of the input field, variables with and without a hat denote approx-
imated and reference quantities of interest, respectively. The second
metric measures the relative error in energy (REE):

REE = 1
𝑁𝑣

𝑁𝑣
∑

𝑖=1

|

|

|

|

|

|

𝑤(𝑖) − 𝑤̂
(𝑖)

𝑤(𝑖)

|

|

|

|

|

|

. (15)

3.3. Results

We first investigate the architecture of the FNO models, including
the number of retained low-frequency Fourier modes and FNO model
width. Recall that in the FNO approach, the input is lifted to a higher-
dimensional space, transformed iteratively using linear and nonlinear
operators, and then projected back. For each neural operator, 𝑁𝑡 =
1000 SVE samples are employed to train the FNO, while 𝑁𝑣 = 1000
nseen samples are used to test using the REE metric. These values
ere determined from a convergence analysis, with an error decay
ehaving as 1∕

√

𝑁𝑡 (as reported in [19]). Training is realized for each
specific choice of the macroscopic Cauchy–Green tensor, here taken
as [𝐶] = [1.4, 0; 0, 1.0]. The macroscopic deformation gradient [𝐹 ] is
then calculated using the Cholesky decomposition of [𝐶]. Results for
he accuracy test for the two neural operators are shown in Fig. 2.
he number of Fourier modes is increased from 5 to 30, and the
hannel width is increased from 24 to 80. In the case of FNOmic, the
4

performance of the neural operator improves with the increase of both
the number of Fourier modes and channel width. Best performance
for this scenario is obtained with 30 Fourier modes and a width of
64. It is noticeable that the performance of the FNO improves with
additional Fourier modes, in contrast with the results presented for
Voronoi microstructures in [19]. This behavior may be explained by
the fact that the two-phase microstructure considered in this paper
can be seen as an intermediate configuration where the consideration
of a matrix phase (with constant parameters) introduces additional
regularity. In the case of FNOmes, best performance is realized with 20
Fourier modes and a width of 80. The error increases for a number
of modes larger than 15 for 𝑑𝑐 = 48, and larger than 20 for 𝑑𝑐 ∈
{24, 64, 80}. This observation is consistent with the results reported
in [19] for a ‘‘smooth’’ input field analogous to the mesoscopic case;
see [42] for numerical studies on the choice of hyperparameters, as
well as [43] for theoretical analysis. In the results presented below, the
number of Fourier modes is set as 20 in the two FNOs, and the width
in the Fourier layers is set to 64.

The training loss history is shown in Fig. 3. It can be seen that
the loss decays rapidly and almost monotonically during the training
process. This suggests that the designed loss function provides an
efficient path towards data-free (in the sense of PDE solving) training
for the neural operator in the multiscale setting.

Next, we test the prediction accuracy of the two FNOs using the met-
rics defined in Section 3.2. The neural operators are tested on different
macroscale deformation gradients [𝐹 ] (recall that the neural operators
are trained for each case; the important question of generalization with
respect to boundary conditions is left for future work). Four different
macroscopic loading conditions are employed, including uniaxial and
biaxial tensile tests, and mixed tensile-shear loading. In addition, the
performance of the proposed formulation is also compared with the
performance achieved by using a standard data-driven loss function:

data =
1
𝑁𝑡

𝑁𝑡
∑

𝑖=1

(

‖𝒖(𝑖) − 𝒖̂(𝑖)‖2
𝐿2 + ‖[𝐹 ](𝑖) − [𝐹 ](𝑖)‖2

𝐿2

)

, (16)

where 𝒖(𝑖) and [𝐹 ](𝑖) are the reference data obtained by solving the
nonlinear PDEs (see Eq. (5)). Regarding the nonlinear finite element
analysis, an optimized in-house C++ implementation, verified by the
method of manufactured solutions, was used. The absolute and relative
tolerances were set to 1e–8 and 1e–9 in the Newton–Raphson solver,
respectively, with a maximum number of nonlinear iterations set to 8.

Prediction errors for the two scenarios and the two loss functions
(data-driven and proposed) are shown in Fig. 4(a) for RHE, and in
Fig. 4(b) for REE. For RHE, a similar evolution of the prediction error
is observed across all four types of boundary conditions, regardless of
training loss (with or without training data). Errors for the first scenario
involving piece-constant material parameters are larger than for the
second scenario, for both the proposed training loss and the data-driven
loss (a result consistent with the observations reported in [19]). This
may be explained by the smoothness in the solution field induced
by mesoscopic modeling. Comparing errors between the two training
strategies, errors for the physics-informed loss are slightly larger than
the errors obtained with the standard data-driven loss. Specifically, the
maximum error for scenario 1 is 2.7% for the proposed loss, and 1.9%
for the data-driven loss. In scenario 2, the maximum error is 1.7% for
the physics-informed loss, and 0.9% for the data-driven loss.

Consistent results are obtained for REE. The evolution across all
boundary conditions is also similar for both training losses. Errors for
scenario 1 remain larger than for second scenario 2. However, it is
noticeable that for the first scenario (with microscopic modeling), the
error estimated with the proposed loss (with a maximum error of 3.7%)
is indeed smaller than the one obtained with data (with a maximum
error equal to 4.9%). Errors associated with the second scenario are
fairly similar for both strategies, regardless of the boundary conditions.
The maximum error is obtained with mixed boundary conditions, with
error equal to 0.6% and 0.3% for the proposed loss and data-driven loss,
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Fig. 2. Errors on test datasets for FNOmic (left) and FNOmes (right), for different numbers of Fourier modes and channel width in the hidden layers.
Fig. 3. Training loss history for FNOmic (left) and FNOmes (right).
Fig. 4. Prediction errors for the two scenarios, using RHE (left) and REE (right).
respectively. The apparent stored energy density function 𝑤 associated
with a macroscopic right Cauchy–Green tensor taken as [𝐶] = [𝜆, 0; 0, 𝜆]
(and given material samples) is shown in Fig. 5 for both scenarios. Good
agreement is observed with the reference solution obtained by the finite
element method, especially for scenario 2.

While results involving RHE and REE are more relevant in the
context of multiscale predictions, it is instructive to also compare per-
formance in terms of the displacement solution field (for one sample for
each input field). To this end, denote by 𝒖𝑥 and 𝒖𝑦 the reference solution
fields, obtained by solving the nonlinear boundary value problem with
the finite element method; standard convergence analyses were carried
out and are not reported below for the sake of conciseness. Let 𝒖̂𝑥 and
𝒖̂𝑦 be the displacement fields predicted by the trained neural operator,
for a given choice of the loss function. These displacement fields,
as well as pointwise errors, are shown in Figs. 6 and 7 for the two
scenarios and mixed tension-shear loading conditions. It is seen that the
pointwise error is larger for scenario 1 than for scenario 2, regardless
of the training method — an observation that may be explained by the
difference in regularity in the two input fields. Unsurprisingly, the data-
5

driven approach delivers slightly more accurate results and exhibits
uniform convergence, especially for scenario 1. On the other hand, the
pointwise prediction accuracy of the proposed training method remains
fairly close to the one obtained with the conventional data-driven
approach for both the microscopic and mesoscopic models.

For the microscale problem, training for each epoch takes 2.2 s
with our loss function, and 2.1 s for the data-driven approach; for
the mesoscale problem, training requires 2.33 s for the proposed loss
technique, and 2.3 s for the data-based loss function.

Regarding computational speedup, solving the nonlinear BVP using
the finite element method takes 2.93 s and 1.57 s per sample for
the microscopic and mesoscopic problems, respectively. The cost of
generating the training dataset with 𝑁𝑡 = 1000 samples (for the data-
driven loss) is therefore ≈ 2.93 × 1000 = 2930 s (about 49 min) and
≈ 1.57 × 1000 = 1570 s (about 26 min) for the two multiscale problems
(with sequential execution). This highlights the substantial reduction
in the computational cost offered by the proposed training strategy.
Finally, the forward evaluation of the solution field takes 0.06 and
0.03 s per sample for the microscopic and mesoscopic problems, respec-
tively, on a single Nvidia RTX A6000 GPU. These computing times are
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Fig. 5. Apparent nonlinear response estimated under biaxial tensile testing. Reference is obtained by the finite element method.

Fig. 6. Reference and approximated displacement fields for the FNOs trained using our proposed PDE-data-free method and the data-driven method (scenario 1). The Cauchy–Green
tensor is set to [1.3, 0.2; 0.2, 1.2].

Fig. 7. Reference and approximated displacement fields for the FNOs trained using our proposed PDE-data-free method and the data-driven method (scenario 2). The Cauchy–Green
tensor is set to [1.3, 0.2; 0.2, 1.2].
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about 50 times smaller than those associated with the corresponding
nonlinear finite element analyses (with in-house C++ algorithms).

4. Conclusion

In this work, we investigated operator learning for stochastic ho-
mogenization in hyperelastic random media. The approach involves
Fourier neural operators, which are used to approximate the solution
map between the input field describing the material at a scale of inter-
est, and the deformation map. We proposed a PDE-data-free training
strategy that enables the computation of the effective stored energy
function. The approach was tested on material structures presenting
piecewise constant or mean-squared continuous fluctuations. Good ac-
curacy in terms of both the solution fields and multiscale results was
observed. Numerical results also show that the prediction accuracy of
this proposed training method is comparable with the conventional
data-driven method. Future directions include (i) generalization in
terms of macroscopic boundary conditions, (ii) the analysis of expres-
sivity for non-smooth input fields, (iii) the mathematical analysis of
approximation capabilities, and (iv) applications to other variational
formulations (e.g., for plasticity, strain and stress gradient models for
generalized continua, and viscoelasticity).
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