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A B S T R A C T

This work is concerned with the construction of statistical surrogates for concurrent mul-
tiscale modeling in structures comprising nonlinear random materials. The development of
surrogates approximating a homogenization operator is a fairly classical topic that has been
addressed through various methods, including polynomial- and deep-learning-based models.
Such approaches, and their extensions to probabilistic settings, remain expensive and hard to
deploy when the nonlinear upscaled quantities of interest exhibit large statistical variations
(in the case of non-separated scales, for instance) and potential non-locality. The aim of this
paper is to present a methodology that addresses this particular setting from the point of
view of probabilistic learning. More specifically, we formulate the approximation problem
using conditional statistics, and use probabilistic learning on manifolds to draw samples of
the nonlinear constitutive model at mesoscale. Two applications, relevant to inverse problem
solving and forward propagation, are presented in the context of nonlinear elasticity. We show
that the framework enables accurate predictions (in probability law), despite the small amount
of training data and the very high levels of nonlinearity and stochasticity in the considered
system.

1. Introduction

1.1. Background

Concurrent nonlinear simulations involve the strong coupling between a macroscopic (or structural) formulation and a micro-
copic description capturing subscale details [1–8]. One popular approach is the so-called FE2 method [3,4], where information
in the form of a deformation gradient and any adapted stress variable) is transferred back-and-forth between quadrature points
t the macroscale and statistical or representative volume elements (depending on whether the separation of scales exists or not).
hile versatile and powerful, such frameworks require significant computational resources that often surpass the capabilities of
ntermediate-power computers, especially when the underlying behavior is highly nonlinear. In this context, the development of
urrogate models for large-scale systems has become a very active research domain and has generated a substantial body of literature.
arious methodologies have been proposed to address this challenge, including (in a non-exhaustive manner) the development of
eterministic representations [9–20] and probabilistic/statistical-based approaches [21–26], and more recently, the integration of
achine learning (ML) tools, both with and without probabilistic/statistical formulations; see, e.g., [27–36].
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In most of the above contributions, the multiscale surrogate is built either through polynomial approximations or deep learning
odels, and applied locally at each point of the coarse scale discretization. In these settings, the intrinsic randomness — and potential
on-locality — induced by random media with non-separated scales is very challenging to capture due to representation limitations.
n this work, we explore an alternative path to address this problem and seek to construct a statistical surrogate model where
he forward map of interest (specifically, the non-local constitutive model) is approximated using statistical conditioning. Instead
f calibrating a regression model between the input (e.g., the deformation gradient) and the output (say, a stress measure), we
im to directly generate samples from the input–output joint probability measure, and to estimate quantities of interest through
onditional means. This viewpoint requires the use of a generative model capable of accurately capturing measure concentration
nd the (unknown) geometry of the support of the measure in the small data limit — a task that remains particularly challenging for
trongly non-Gaussian distributions in high dimensions. We note that the construction of generative models is a vibrant topic across
any scientific communities, and providing an extensive review on existing techniques is beyond the scope of this paper. In the
resent study, we employ probabilistic learning on manifolds (PLoM) [37–39] to perform this task. The choice of this technique is
otivated by (i) its capability to sample the probability measure defined by the training dataset and in particular, to respect measure
oncentration and support information (as demonstrated in [40–51]), (ii) relative ease of implementation, and (iii) its reliance on
ow-dimensional, interpretable parameterization. Our main contributions are as follows. First, we formulate the approximation of
he non-local homogenized response in nonlinear elasticity as a learning problem. Second, we perform extensive numerical studies
nd address the validation of the framework under two scenarios relevant to inverse problem solving and forward propagation.
n the former case, the approach can be used, for instance, to calibrate hyperparameters in the material model at fine scale,
ntegrating data at the coarse scale. The latter case represents the classical surrogate setting with aleatoric uncertainties induced
y subscale randomness (without separation of scales). Notice that while the proposed developments are derived in the context of
onlinear elasticity, they remain applicable to other classes of constitutive models — at the expense of adapting the mechanistic
arameterization.
This paper is organized as follows. The multiscale mechanistic framework is first introduced in Section 2. The deterministic scale-

coupling problems (and their stochastic counterparts) are presented, together with the stochastic model enabling the representation
of material randomness at mesoscale. Section 3 provides a comprehensive overview on the probabilistic learning framework,
ncluding both theoretical and algorithmic aspects. In Section 4, the proposed framework is applied in the context of finite elasticity.
he two aforementioned scenarios are specifically introduced to assess the robustness of the method (in probability law). Concluding
omments are finally provided in Section 5.

.2. Main notation

i) Conventions for variables.
lower-case Latin or Greek letter, such as 𝑥 or 𝜂, is a deterministic real variable.
boldface lower-case Latin or Greek letter, such as 𝐱 or 𝜼, is a deterministic vector.
n upper-case Latin or Greek letter, such as 𝑋 or 𝛯, is a real-valued random variable.
boldface upper-case Latin letter, such as 𝐗, is a vector-valued random variable.
lower- or upper-case Latin letter between brackets, such as [𝑥] or [𝑋], is a deterministic matrix.
boldface upper-case letter between brackets, such as [𝐗], is a matrix-valued random variable.
ii) Probability space, random variable, probability measure, and probability density function.
or any finite integer 𝑚 ≥ 1, the Euclidean space R𝑚 is equipped with the 𝜎-algebra R𝑚 . If 𝐘 is a R𝑚-valued random variable
efined on the probability space (𝛩,  ,), 𝐘 is a mapping 𝜃 ↦ 𝐘(𝜃) from 𝛩 into R𝑚, measurable from (𝛩,  ) into (R𝑚,R𝑚 ), and
(𝜃) is a realization (sample) of 𝐘 for 𝜃 ∈ 𝛩. The probability distribution of 𝐘 is the probability measure 𝑃𝐘(𝑑𝐲) on the measurable
et (R𝑚,R𝑚 ) (we will simply say on R𝑚). The Lebesgue measure on R𝑚 is denoted by 𝑑𝐲 and 𝑃𝐘(𝑑𝐲) = 𝑝𝐘(𝐲) 𝑑𝐲, with 𝑝𝐘 the
robability density function (pdf) on R𝑚 of 𝑃𝐘(𝑑𝐲) with respect to 𝑑𝐲. Finally, 𝐸 denotes the mathematical expectation operator.
iii) Algebraic notations.
: set of all the real numbers.
𝑛: Euclidean vector space on R of dimension 𝑛.
𝑛,𝑚: set of all the (𝑛 × 𝑚) real matrices.
𝑛: set of all the square (𝑛 × 𝑛) real matrices.
+
𝑛 : set of all the positive-definite symmetric (𝑛 × 𝑛) real matrices.

𝐼𝑛]: identity matrix in M𝑛.
= (𝑥1,… , 𝑥𝑛): point in R𝑛.
𝐱, 𝐲⟩ = 𝑥1𝑦1 +⋯ + 𝑥𝑛𝑦𝑛: inner product in R𝑛.
𝐱 ‖: norm in R𝑛 such that ‖ 𝐱 ‖ = ⟨𝐱, 𝐱⟩.
𝑥]𝑇 : transpose of matrix [𝑥].
[𝑥] ‖: Frobenius norm of matrix [𝑥].
: Kronecker’s symbol.
2
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2. Description of the mechanistic framework

2.1. Definition of the structural problem

Let 𝛺str be an open bounded domain in R𝑑 (here, 𝑑 = 2 without loss of methodological generality) representing the reference
onfiguration for the structure of interest, and denote by 𝜕𝛺str the boundary of 𝛺str. For any material point 𝐱 ∈ 𝛺str, the spatial point
𝐱𝜑 in the deformed configuration 𝛺𝜑

str is given by 𝐱𝜑 = 𝜑(𝐱), where 𝜑 is the deformation map. To make the presentation concrete,
we assume that the material (at fine scale) is hyperelastic, compressible and isotropic. For any 𝐱 ∈ 𝛺str, the deformation gradient
[𝐹 ] is a second-order tensor defined as [𝐹 ] = [𝛁𝐱𝐱𝜑]. The right Cauchy–Green deformation tensor is defined as [𝐶] = [𝐹 ]𝑇 [𝐹 ], and
the Green–Lagrange strain tensor defined as [𝐸𝐺𝐿] =

1
2 ([𝐶] − [𝐼]). For the sake of simplicity, we consider a Saint Venant–Kirchhoff

model, with a strain energy density function given by

𝜓([𝐸𝐺𝐿]) =
𝜆
2
[tr([𝐸𝐺𝐿])]2 + 𝜇 tr([𝐸𝐺𝐿]2) , (1)

where 𝜆 and 𝜇 are the Lamé parameters (see Section 2.3.1 for details). It is well-known that the above Saint Venant–Kirchhoff
material is not polyconvex (see, e.g., Section 4.3 in [52]). The use of this model may thus lead to poor numerical stability and
pathological behaviors in general. Such issues were not observed in the applications presented in this paper, given the multiscale
surrogate modeling context. In particular, the boundary conditions inherited from the structural boundary value problem did not
generate asymptotic behavior. The results supporting the relevance of the proposed methodology (and more specifically, the ability
to approximate the homogenized constitutive model) are therefore not expected to be fundamentally affected by this choice. Note
also that the proposed approach can accommodate other types of constitutive behaviors, and that the above choice pertaining to
the strain energy density function is not expected to impact the methodological results presented in this research.

In a general setting, the strong form (resulting from the balance of linear momentum) of the boundary value problem (BVP) in
the reference configuration is stated as [52]

Div [𝑃 (𝐱)] + 𝐛(𝐱) = 𝟎 , ∀ 𝐱 ∈ 𝛺str , (2)

𝐮(𝐱) = 𝐮(𝐱) , ∀ 𝐱 ∈ 𝜕𝛺𝐷
str , (3)

[𝑃 (𝐱)] ⋅ 𝐧(𝐱) = 𝐭(𝐱) , ∀ 𝐱 ∈ 𝜕𝛺𝑁
str , (4)

where Div denotes the divergence operator in the reference configuration, [𝑃 ] is the first Piola–Kirchhoff stress tensor defined as

[𝑃 ] =
𝜕𝜓([𝐹 ])
𝜕[𝐹 ]

, (5)

the vector 𝐛 is the body force, 𝐧 is unit vector normal to the boundary in the reference configuration, 𝐮 and 𝐭 are given smooth
vector fields on the Dirichlet and Neumann boundaries, denoted by 𝜕𝛺𝐷

str and 𝜕𝛺
𝑁
str respectively. The solution to the above problem

is classically sought (in an appropriate function space) as a stationary point of the following energy functional [52–54]:

𝛱(𝜑) = ∫𝐵
𝜓([𝐹 ]) 𝑑𝑉 − ∫𝐵

𝐛 ⋅ 𝜑𝑑𝑉 − ∫𝜕𝐵𝑁
𝐭 ⋅ 𝜑𝑑𝐴 . (6)

In this work, we apply a Dirichlet boundary condition 𝐮 on 𝜕𝛺str (i.e., no traction is applied, and the body force is neglected).

2.2. Definition of the macroscopic problem in the context of concurrent multiscale approaches

Let 𝛺mac ⊂ 𝛺str denote the reference configuration for the subdomain where the surrogate must be constructed, and denote by
𝜕𝛺mac its boundary (see Fig. 1). Let 𝐮mac be the restriction of the solution to the structural problem (defined in the previous section)
to the boundary 𝜕𝛺mac. The strong form of the boundary value problem in the reference configuration of 𝛺mac is stated as

Div [𝑃mac(𝐱)] = 𝟎 , ∀ 𝐱 ∈ 𝛺mac , (7)

𝐮(𝐱) = 𝐮mac(𝐱) , ∀ 𝐱 ∈ 𝜕𝛺mac , (8)

where [𝑃mac] is the first Piola–Kirchhoff stress tensor at macroscale.
In order to define the multiscale setting, we consider a statistical volume element 𝛺mes(𝐱) located at point 𝐱 ∈ 𝛺mac, and denote

by 𝜕𝛺mes the boundary of 𝛺mes (as shown in Fig. 1). Given a finite element discretization of 𝛺str and at a given iteration in the
nonlinear (Newton–Raphson) solver, the concurrent method proceeds by estimating the deformation gradient [𝐹mac(𝐱𝑞)] at any
quadrature point 𝐱𝑞 in 𝛺mac, and by evaluating the apparent first Piola–Kirchhoff stress tensor defined as

[𝑃mac(𝐱𝑞)] =
𝜕𝜓mac([𝐹mac(𝐱𝑞)];𝛺mes(𝐱𝑞))

𝜕[𝐹mac(𝐱𝑞)]
, (9)

where 𝜓mac(⋅;𝛺mes(𝐱𝑞)) is the apparent strain energy density function associated with the mesoscopic domain 𝛺mes(𝐱𝑞), using
localization (through [𝐹mac(𝐱𝑞)]) and homogenization (via 𝜓mac(⋅;𝛺mes(𝐱𝑞))). Note that as previously pointed out, scale separation is
3

not enforced and thus, all quantities obtained by upscaling are termed apparent, following the convention introduced by Huet [55]
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Fig. 1. Definition of scales in the concurrent multiscale simulations. Fluctuations in the first Lamé parameter 𝜆 are introduced at fine scale.

see also [56]). In order to compute [𝑃mac] at each quadrature point 𝐱𝑞 ∈ 𝛺mac, we use the FE2 method [4,57] and solve the boundary
alue problem defined as

Div [𝑃mes(𝐱)] = 𝟎 , ∀ 𝐱 ∈ 𝛺mes(𝐱𝑞) , (10)

𝐮(𝐱) = ([𝐹mac(𝐱𝑞)] − [𝐼])𝐱 , ∀ 𝐱 ∈ 𝜕𝛺mes(𝐱𝑞) , (11)

in the reference configuration of 𝛺mes(𝐱𝑞), where [𝐹mac(𝐱𝑞)] is the deformation gradient inherited from the macroscale boundary
value problem at 𝐱𝑞 . The apparent first Piola–Kirchhoff stress tensor at 𝐱𝑞 is then evaluated as [58]

[𝑃mac(𝐱𝑞)] =
1

|𝛺mes(𝐱𝑞)| ∫𝛺mes(𝐱𝑞 )
[𝑃mes(𝐱)] 𝑑𝐱 . (12)

As we will explain in the next section, the pairs of associated deformation gradients and first Piola–Kirchhoff stress tensors at all
quadrature points in the macroscopic domain 𝛺mac are then used to compute the pairs of associated right Cauchy–Green deformation
tensors and second Piola–Kirchhoff stress tensors, which are the (objective) mechanistic variables considered in the probabilistic
learning process introduced in Section 3. Note that while the deformation gradient and the first Piola–Kirchhoff stress tensor could
also be used in the learning approach, the choice of the right Cauchy–Green deformation tensor and second Piola–Kirchhoff stress
tensor as quantities of interest leads to smaller dimensions since both tensors are symmetric. It should also be pointed out that
preserving mechanical variables over the entire domain (namely, 𝛺mac) enables the consideration of a nonlocal apparent constitutive
model, as opposed to the calibration of a surrogate at one particular point in the domain (which is more relevant to local constitutive
models).

2.3. Description of material uncertainties

2.3.1. Definition of the stochastic model
In this section, we detail the construction of the stochastic model for the strain energy density function defined by Eq. (1).

iven the scope of this work, which is focused on the learning perspective rather than stochastic modeling, the hyperelastic model
s randomized by defining the first Lamé parameter, 𝜆, as a random field. Models enabling the randomization of all parameters
n various classes of strain energy density functions can be found in the references provided after Eq. (15), and in [59,60] for
inear elasticity (for all symmetry classes). We also note that results published elsewhere reporting on the (first-order) marginal
ross-correlation of elastic moduli suggest that one latent random field may be sufficient to induce multiscale-informed stochasticity
n the isotropic case (depending on the material under consideration; see, e.g., [61] for a reinforced composite material).
The first Lamé parameter random field is denoted by {𝜆(𝐱), 𝐱 ∈ 𝛺str}, is defined on probability space (𝛩,  ,), and takes values

n R+
⧵{0}. In this paper, we define {𝜆(𝐱), 𝐱 ∈ 𝛺str} as

𝜆(𝐱) =  (𝛯(𝐱)) , ∀𝐱 ∈ 𝛺str , (13)

where  denotes a so-called transport map, constructed to enforce admissibility (in the almost sure sense), and {𝛯(𝐱), 𝐱 ∈ R𝑑}
is a centered homogeneous Gaussian random field. This Gaussian field is completely defined by its correlation function (𝐱, 𝐱′) ↦
𝜌(𝐱, 𝐱′) = 𝐸{𝛯(𝐱)𝛯(𝐱′)}, which is taken as

𝜌(𝐱, 𝐱′) =
𝑑
∏

𝑖=1
exp

⎛

⎜

⎜

⎝

−

(

𝑥𝑖 − 𝑥′𝑖
𝓁𝑐

)2
⎞

⎟

⎟

⎠

, ∀(𝐱, 𝐱′) ∈ R𝑑 ×R𝑑 , (14)

or the sake of illustration, with 𝓁𝑐 a model parameter such that ∫
+∞
0 exp

(

−(𝜏∕𝓁𝑐 )2
)

𝑑𝜏 = 𝐿𝑐 , where 𝐿𝑐 is the spatial correlation
length of the Gaussian random field (which is assumed to be independent of the direction, for simplicity), with 𝐿𝑐 = 𝓁𝑐

√

𝜋∕2.
Following the methodology introduced in [62] in the context of anisotropic linear elasticity, the transport map is constructed using
information theory and the principle of maximum entropy [63–65]; see [66] for an introduction to concepts and methodologies, as
ell as [67] for specific results in (linear and nonlinear) mechanics of materials. Specifically,  is defined by imposing that

𝜆(𝐱) =  𝛯(𝐱) ∼ 𝑃 , ∀𝐱 ∈ 𝛺 , (15)
4

( ) ME str
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Fig. 2. Realizations of the underlying Gaussian field (left) and material parameter random field (right).

here 𝑃ME is the probability measure induced by entropy maximization under constraints. General methodologies and information-
theoretic results for a large class of models in nonlinear elasticity can be found in [68,69], for the cases of isotropic incompressible
and compressible materials, respectively. Extensions to spatially-dependent anisotropic hyperelastic models can be found in [70,71],
and applications including calibration and validation using experimental data are available in [71–73] (see also [74] and the
references therein for a review of applications to canonical mechanics problems). Since 𝜆 corresponds to an elasticity parameter,
results obtained in the context of stochastic linearized elasticity can also be invoked. Accounting for the positiveness constraint, as
well as for the existence of second-order moments for the linearized elasticity tensor and its inverse [62,75], it can be shown that
ME corresponds to a Gamma distribution. Denoting by 𝜆 and 𝛿𝜆 the mean and coefficient of variation of 𝜆, it follows that

 = 𝐹−1
(𝛿−2𝜆 ,𝜆𝛿−2𝜆 )

◦𝐹 (0,1) , (16)

where 𝐹−1
 is the inverse cumulative distribution function of the Gamma distribution with shape and scale parameters given by 𝛿−2𝜆

and 𝜆𝛿−2𝜆 , respectively, and 𝐹 (0,1) is the cumulative distribution function of the standard Gaussian distribution. Notice that these
yperparameters can be made spatially-dependent to improve expressiveness in the model: this sophistication is, however, irrelevant
or the objectives pursued in this paper.
In the applications presented below, the underlying Gaussian random field {𝛯(𝐱), 𝐱 ∈ R𝑑} is sampled using a truncated Karhunen–

oève expansion, with an order of truncation determined such that the 𝐿2 error falls below a given threshold (chosen as 1e−2).
amples for both the Gaussian and non-Gaussian random fields are shown in Fig. 2, for 𝜆 = 40 000, 𝛿𝜆 = 0.2, and 𝐿𝑐 = 0.3.

.3.2. Definition of the stochastic boundary value problems
Considering the Lamé parameter random field defined in Section 2.3.1 in the BVPs introduced in Sections 2.1 and 2.2 leads to

he definition of stochastic boundary value problems (SBVPs), which are briefly described below for the sake of readability. All
qualities below hold in the almost sure sense.
Following the retained modeling setup, the structural stochastic boundary value problem is given by

Div [𝐏(𝐱)] = 𝟎 , ∀ 𝐱 ∈ 𝛺str , (17)

𝐔(𝐱) = 𝐮(𝐱) , ∀ 𝐱 ∈ 𝜕𝛺𝐷
str , (18)

here [𝐏] is the stochastic Piola–Kirchhoff stress tensor (arising from the randomization of the strain energy density function via 𝜆),
𝐔(𝐱), 𝐱 ∈ 𝛺str} is the displacement solution random field and 𝐱 ↦ 𝐮(𝐱) is the known deterministic field introduced in Section 2.1.
imilarly, the macroscopic SBVP on the domain of interest 𝛺mac (where the statistical surrogate is built) writes

Div [𝐏mac(𝐱)] = 𝟎 , ∀ 𝐱 ∈ 𝛺mac , (19)

𝐔(𝐱) = 𝐔mac(𝐱) , ∀ 𝐱 ∈ 𝜕𝛺mac , (20)

where {𝐔mac(𝐱), 𝐱 ∈ 𝜕𝛺mac} is now a random field with values in R𝑑 , due to the fact that the background medium is stochastic.
inally, the SBVP considered in the concurrent approach (for any subdomain 𝛺mes(𝐱𝑞) centered at quadrature point 𝐱𝑞 in 𝛺mac) is

Div [𝐏mes(𝐱)] = 𝟎 , ∀ 𝐱 ∈ 𝛺mes(𝐱𝑞) , (21)

𝐔(𝐱) = ([𝐅mac(𝐱𝑞)] − [𝐼])𝐱 , ∀ 𝐱 ∈ 𝜕𝛺mes(𝐱𝑞) , (22)

𝑞 𝑞
5

where [𝐅mac(𝐱 )] is the stochastic deformation gradient at 𝐱 , defined through localization.
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Fig. 3. Convergence of the 𝐿2 error (ℎ-refinement) for the reference solution.

Fig. 4. Sample of the material parameter 𝜆 (left) and associated displacement magnitudes for the solutions on 𝛺str (middle) and 𝛺mac (right).

In this work, we consider the strong stochastic solutions to the weak formulations (using the Galerkin method and a finite
element discretization) of the above SBVPs. The Monte Carlo approach is chosen as the stochastic solver. The pairs of right Cauchy–
Green deformation tensors and second Piola–Kirchhoff stress tensors (denoted by {[𝐶mac(𝐱𝑞)], [𝑆mac(𝐱𝑞)]}

𝑄mac
𝑞=1 ) are collected at all

quadrature points, for all samples of the Lamé parameter random field, to constitute the dataset for the probabilistic learning
procedure introduced in Section 3.

2.4. Implementation verification for the FE 2 method (with deterministic background media)

For the sake of illustration, we consider the structural domain 𝛺str = [0, 3]2, and define the macroscopic domain of interest as
𝛺mac = [1, 2]2. The mesoscopic domain 𝛺mes(𝐱𝑞) at quadrature point 𝐱𝑞 is defined by a characteristic length 𝐿𝛺mes = 0.025. Spatial
discretization is realized using Q4 elements at all mesh resolutions. The number of elements per direction is 15 in 𝛺str, 5 in 𝛺mac,
and 5 in 𝛺mes. The Dirichlet boundary conditions applied on the boundary of 𝛺str are given by

𝐮(𝐱) = 𝟎 , 𝑥1 = 0 , ∀𝑥2 ∈ [0, 3] , (23)

𝐮(𝐱) =
[

0.1
0

]

, 𝑥1 = 3 , ∀𝑥2 ∈ [0, 3] . (24)

As described in the previous section, the solution vector 𝐮 in 𝛺str along the boundary 𝜕𝛺mac of 𝛺mac is applied as the Dirichlet
boundary condition for the multi-scale problem.

Implementation was performed within the MOOSE finite element framework [76]. A convergence study on the solution on 𝛺str
was first conducted. A manufactured displacement field taken as 𝐮MMS(𝐱) = (0.01 sin(𝑦), 0.01 sin(𝑥))𝑇 is considered, with material
parameters given by 𝜆 = 40 000 [kg/cm2] and 𝜇 = 10 000 [kg/cm2] (these values, taken from [77], correspond to a soft biological
tissue, modeled as a Saint Venant–Kirchhoff material). Dirichlet boundary conditions in accordance with the above solution are
prescribed on all boundaries. A body force is defined such that the manufactured solution corresponds to the nonlinear boundary
value problem defined in Section 2.1. Regarding numerical solving, a standard Newton–Raphson solver was used with a maximum
number of nonlinear iterations set to 25, with a relative tolerance taken as 1e−10, and an absolute tolerance given by 1e−12. The
convergence order is measured by the 𝐿2-norm of the difference between the approximation 𝑢ℎ and the reference solution 𝑢ref within
the domain [0, 3]2. Standard ℎ-convergence is observed, as illustrated in Fig. 3.

Next, the implementation of the FE2 method was verified by comparing the normalized 𝐿2-norm error between the solution
vector (at all nodes) on 𝛺str without multiscale coupling, and the solution vector (at all nodes) obtained by using the FE2 method in
the subdomain 𝛺mac = [1, 2]2. Fig. 4 shows the first sample of the material random field 𝜆 (for 𝜆 = 40 000, 𝛿𝜆 = 0.2, and 𝐿𝑐 = 0.3), as
well as solutions to the structural and macroscale problems. In order to perform a statistical analysis on the error, 500 independent
samples of 𝜆 were generated. The mean of the normalized 𝐿2 error is 4.69e−4, and the coefficient of variation is 0.22. The probability
density function of the normalized 𝐿2 norm error is shown in Fig. 5. These results indicate proper implementation of the concurrent
6

multiscale method, which is used to build the dataset for the probabilistic learning technique (introduced in the next section).
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Fig. 5. Probability density function of the normalized 𝐿2-norm error (estimated with 500 samples).

3. Overview of the probabilistic learning on manifolds (PLoM) algorithm and its parameterization

In this section, we provide a concise overview of the PLoM algorithm. The reason for providing this review is twofold. First,
we aim to assist readers in analyzing and comprehending the underlying parameterization, the values chosen for the parameters,
and the results pertaining to algorithmic control and convergence. Second, there is no published paper that summarizes all the
ingredients of the PLoM approach that are used in this work. Early developments addressing, for instance, the quantification of
probability measure concentration and the estimation of the smoothing parameter in the calculation of the diffusion maps basis
and its truncation order, are disseminated in a series of papers (see below). On the other hand, some presented results are new,
including the expression of the relaxation parameters as a function of the iteration number (in the implementation of the learning
algorithm), and the expression of the drift matrix associated with the normalization condition.

The PLoM approach [37–39] starts with the consideration of a training dataset 𝑑 , comprising a relatively small number 𝑛𝑑 of
points generated from an underlying stochastic manifold associated with a R𝑛-valued random variable 𝐗 = (𝐐,𝐖), defined on a
probability space (𝛩,  ,). Here, 𝐐 represents the quantity of interest and is a R𝑛𝑞 -valued random variable, while 𝐖 denotes the
control parameter and is a R𝑛𝑤 -valued random variable. The total dimension is 𝑛 = 𝑛𝑞 + 𝑛𝑤. Another R𝑛𝑢 -valued random variable
U, defined on (𝛩,  ,), is also considered as an uncontrolled parameter. The random variable 𝐐 is assumed to be expressed as
𝐐 = 𝐟 (U,𝐖), where the measurable mapping 𝐟 is not explicitly known. The joint probability distribution 𝑃𝐖,U(𝑑𝐰, 𝑑u) of 𝐖 and
U is assumed to be given. The non-Gaussian probability measure 𝑃𝐗(𝐱) = 𝑃𝐐,𝐖(𝑑𝐪, 𝑑𝐰) of 𝐗 = (𝐐,𝐖) is concentrated in a region
of R𝑛, for which the only available information is the cloud of points in the training dataset 𝑑 . The PLoM method enables the
generation of the learned dataset ar for 𝐗, consisting of 𝑛MC ≫ 𝑛𝑑 points (learned realizations) generated by the non-Gaussian
probability measure estimated using the training dataset. The preservation of the probability measure concentration is guaranteed
by the utilization of a diffusion-maps basis, which enriches the available information from the training dataset. Utilizing the learned
dataset ar, PLoM enables the computation of conditional statistics, such as 𝐰 ↦ 𝑃𝐎|𝐖(𝑑𝐨|𝐖 = 𝐰), on 𝑤. Here, 𝐎 = 𝝃(𝐐), where
is a measurable mapping from R𝑛𝑞 into R𝑛𝑜 , allowing for the construction of statistical surrogate models (metamodels) within a
robabilistic framework. The formulas for the computation of conditional mathematical expectations, conditional probability density
unctions, and conditional cumulative distribution functions, given any 𝐰0 in 𝑤, are given in Appendix.
The training dataset 𝑑 comprises 𝑛𝑑 independent realizations 𝐱

𝑗
𝑑 = (𝐪𝑗𝑑 ,𝐰

𝑗
𝑑 ) in R𝑛 = R𝑛𝑞 ×R𝑛𝑤 for 𝑗 ∈ {1,… , 𝑛𝑑} of random

variable 𝐗 = (𝐐,𝐖), in which 𝐪𝑗𝑑 = 𝐟 (u𝑗𝑑 ,𝐰
𝑗
𝑑 ). The PLoM method allows for generating the learned dataset ar, consisting of 𝑛ar ≫ 𝑛𝑑

learned realizations {𝐱𝓁ar,𝓁 = 1,… , 𝑛ar} of random vector 𝐗. Once the learned dataset is constructed, the learned realizations for 𝐐
and 𝐖 can be extracted as (𝐪𝓁ar,𝐰

𝓁
ar) = 𝐱𝓁ar for 𝓁 = 1,… , 𝑛ar.

3.1. Construction of a reduced representation

The 𝑛𝑑 independent realizations {𝐱
𝑗
𝑑 , 𝑗 = 1,… , 𝑛𝑑} are represented by the matrix [𝑥𝑑 ] = [𝐱1𝑑 … 𝐱𝑛𝑑𝑑 ] inM𝑛,𝑛𝑑 . Let [𝐗] = [𝐗1,… ,𝐗𝑛𝑑 ]

be the random matrix with values in M𝑛,𝑛𝑑 , where its columns are 𝑛𝑑 independent copies of random vector 𝐗. Utilizing Principal
Component Analysis (PCA) of 𝐗, random matrix [𝐗] is written as,

[𝐗] = [𝑥] + [𝜑] [𝜇]1∕2 [𝐇] , (25)

where [𝐇] = [𝐇1,…, 𝐇𝑛𝑑 ] is a M𝜈,𝑛𝑑 -valued random matrix (𝜈 ≤ 𝑛), and [𝜇] is the (𝜈 × 𝜈) diagonal matrix of the 𝜈 positive
eigenvalues of the empirical estimate of the covariance matrix of 𝐗. The (𝑛 × 𝜈) matrix [𝜑] consists of the associated eigenvectors
7
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such [𝜑]𝑇 [𝜑] = [𝐼𝜈 ]. The matrix [𝑥] in M𝑛,𝑛𝑑 has identical columns, each being equal to the empirical estimate 𝐱 ∈ R𝑛 of the
mean value of random vector 𝐗. The columns of [𝐇] are 𝑛𝑑 independent copies of a random vector 𝐇 with values in R𝜈 , satisfying
the normalization conditions, 𝐸{𝐇} = 𝟎𝜈 and 𝐸{𝐇 ⊗ 𝐇} = [𝐼𝜈 ]. The realization [𝜂𝑑 ] = [𝜼1𝑑 … 𝜼𝑛𝑑𝑑 ] ∈ M𝜈,𝑛𝑑 of [𝐇] is computed by
[𝜂𝑑 ] = [𝜇]−1∕2[𝜑]𝑇 ([𝑥𝑑 ] − [𝑥]). The value 𝜈 is classically calculated in order that the 𝐿2- error function 𝜈 ↦ err𝐗(𝜈), defined by

err𝐗(𝜈) = 1 −
∑𝜈
𝛼=1 𝜇𝛼

𝐸{‖𝐗‖2}
, (26)

be smaller than 𝜀PCA. If 𝜈 < 𝑛 − 1, statistical reduction occurs.

3.2. Probability measure of 𝐇

The probability measure 𝑃𝐇 of 𝐇 has to be estimated in order to construct the probability measure of random matrix [𝐇] used in
the PLoM methodology. Let 𝑃𝐇(𝑑𝜼) = 𝑝𝐇(𝜼) 𝑑𝜼 be the probability measure on R𝜈 of 𝐇, whose probability density function 𝜼↦ 𝑝𝐇(𝜼)
on R𝜈 is estimated by using the Gaussian kernel-density estimation (KDE) with the training dataset train(𝜼) = {𝜼𝑗 , 𝑗 = 1,… , 𝑛𝑑},

𝑝𝐇(𝜼) =
1
𝑛𝑑

𝑛𝑑
∑

𝑗=1

1

(
√

2𝜋 𝑠̂ )𝜈
exp

(

− 1
2𝑠̂2

‖

𝑠̂
𝑠𝜈
𝜼𝑗 − 𝜼 ‖2

)

, ∀𝜼 ∈ R𝜈 . (27)

In these equations, 𝑠̂𝜈 is a modification of the standard Silverman bandwidth 𝑠𝜈 , defined by

𝑠̂𝜈 =
𝑠𝜈

√

𝑠2𝜈 +
𝑛𝑑−1
𝑛𝑑

, 𝑠𝜈 =
{

4
𝑛𝑑 (2 + 𝜈)

}1∕(𝜈+4)
.

With such a modification, the normalization of 𝐇 is preserved for any value of 𝑛𝑑 , that is to say,

𝐸{𝐇} = ∫R𝜈
𝜼 𝑝𝐇(𝜼) 𝑑𝜼 =

1
2𝑠̂2

𝜼̂ = 𝟎𝜈 ,

𝐸{𝐇⊗𝐇} = ∫R𝜈
(𝜼⊗ 𝜼) 𝑝𝐇(𝜼) 𝑑𝜼 = 𝑠̂2 [𝐼𝜈 ] +

𝑠̂2

𝑠2𝜈

(𝑛𝑑 − 1)
𝑛𝑑

[𝐶𝐇] = [𝐼𝜈 ] ,

here 𝜼̂ ∈ R𝜈 and [𝐶𝐇] ∈ M+
𝜈 are the estimates of the mean value and the covariance matrix of 𝐇, performed with train(𝜼).

heorem 3.1 in [38] proves that, for all 𝜼 fixed in R𝜈 , Eq. (27) is a consistent estimation of the sequence {𝑝𝐇}𝑛𝑑 for 𝑛𝑑 → +∞.

3.3. Development of a reduced-order basis using diffusion maps

To preserve the concentration of the learned realizations in the region where the points of the training dataset are concentrated,
PLoM relies on an algebraic basis in vector space R𝑛𝑑 , constructed using the diffusion-maps basis [78]. Let [𝐾] and [𝑏] be matrices
such that, for all 𝑖 and 𝑗 in {1,… , 𝑛𝑑}, [𝐾]𝑖𝑗 = exp{−(4 𝜀DM)−1‖𝜼𝑖𝑑 − 𝜼𝑗𝑑‖

2} and [𝑏]𝑖𝑗 = 𝛿𝑖𝑗 𝑏𝑖 with 𝑏𝑖 =
∑𝑛𝑑
𝑗=1[𝐾]𝑖𝑗 , where 𝜀DM > 0 is a

smoothing parameter. Let [P] = [𝑏]−1[𝐾] be the matrix in M𝑛𝑑 , with positive entries, satisfying
∑𝑛𝑑
𝑗=1[P]𝑖𝑗 = 1 for all 𝑖 = 1,… , 𝑛𝑑 .

Matrix [P] can be regarded as the transition matrix of a Markov chain that represents the probability of transition in one step.
The eigenvalues 𝜆1,… , 𝜆𝑛𝑑 and the associated eigenvectors 𝝍1,… ,𝝍𝑛𝑑 of the right-eigenvalue problem [P]𝝍𝛼 = 𝜆𝛼 𝝍𝛼 satisfy
1 = 𝜆1 > 𝜆2 ≥ ⋯ ≥ 𝜆𝑛𝑑 and are computed by solving the generalized eigenvalue problem [𝐾]𝝍𝛼 = 𝜆𝛼 [𝑏]𝝍𝛼 with the normalization
condition ⟨[𝑏]𝝍𝛼 ,𝝍𝛽

⟩ = 𝛿𝛼𝛽 . The eigenvector 𝝍1 associated with 𝜆1 = 1 is a constant vector. For a given integer 𝜅 ≥ 0, the diffusion-
maps basis {𝐠1,… , 𝐠𝛼 ,… , 𝐠𝑛𝑑 } forms a vector basis of R𝑛𝑑 defined by 𝐠𝛼 = 𝜆𝜅𝛼 𝝍

𝛼 . The reduced-order diffusion-maps basis of order
𝑚 is defined, for a given integer 𝑚, as the set {𝐠1,… , 𝐠𝑚}, represented by the matrix [𝑔𝑚] = [𝐠1 … 𝐠𝑚] ∈ M𝑛𝑑 ,𝑚 with 𝐠𝛼 = (𝑔𝛼1 ,… , 𝑔𝛼𝑛𝑑 )
and [𝑔𝑚]𝑗𝛼 = 𝑔𝛼𝑗 . This basis depends on two parameters, 𝜀DM and 𝑚, which need to be identified. It is proven in [38], that the PLoM
method does not depend on 𝜅, which can therefore be chosen to 0. We aim to determine the optimal value 𝑚opt ≤ 𝑛𝑑 for 𝑚 and the
smallest value 𝜀opt > 0 for 𝜀DM such that (see [39])

1 = 𝜆1 > 𝜆2(𝜀opt) ≃ … ≃ 𝜆𝑚opt (𝜀opt)≫ 𝜆𝑚opt+1(𝜀opt) ≥ ⋯ ≥ 𝜆𝑛𝑑 (𝜀opt) > 0 , (28)

with an amplitude jump equal to an order of magnitude (a factor 10, as demonstrated in [38]) between 𝜆𝑚opt (𝜀opt) and 𝜆𝑚opt+1(𝜀opt).
A more detailed analysis leads to the following algorithm for estimating 𝜀opt and 𝑚opt. Let 𝜀DM ↦ Jump(𝜀DM) be the function on
]0,+∞[ defined by

Jump(𝜀DM) = 𝜆𝑚opt+1(𝜀DM)∕𝜆2(𝜀DM) . (29)

The algorithm is as follows: set the value of 𝑚 to 𝑚opt = 𝜈 + 1 and identify the smallest possible value 𝜀opt of 𝜀DM such that
Jump(𝜀 ) ≤ 0.1 and Eq. (28) is satisfied.
8
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3.4. Reduced-order representation of random matrices [𝐇 ] and [𝐗 ] to preserve probability measure concentration

The diffusion-maps vectors 𝐠1,… , 𝐠𝑚 ∈ R𝑛𝑑 span a subspace of R𝑛𝑑 that characterizes, for the optimal values 𝑚opt and 𝜀opt of 𝑚
nd 𝜀DM, the local geometry structure of dataset {𝜼

𝑗
𝑑 , 𝑗 = 1,… , 𝑛𝑑}. The PLoM method introduces the M𝜈,𝑛𝑑 -valued random matrix

𝐇𝑚] = [𝐙𝑚] [𝑔𝑚]𝑇 with 𝑚 ≤ 𝑛𝑑 , corresponding to a data-reduction representation of random matrix [𝐇], in which [𝐙𝑚] is a M𝜈,𝑚-
alued random matrix. The MCMC generator of random matrix [𝐙𝑚] is chosen from the class of Hamiltonian Monte Carlo methods,
xplicitly described in [37], and mathematically detailed in Theorem 6.3 of [38]. For generating the learned dataset, the best
robability measure of [𝐇𝑚] is obtained for 𝑚 = 𝑚opt and by using the previously defined basis [𝑔𝑚opt ]. For these optimal quantities
opt and [𝑔𝑚opt ], the generator allows for computing 𝑛MC realizations {[𝐳𝓁ar],𝓁 = 1,… , 𝑛MC} of [𝐙𝑚opt ] and therefore, for deducing the

MC realizations {[𝜼𝓁ar],𝓁 = 1,… , 𝑛MC} of [𝐇𝑚opt ]. The reshaping of matrix [𝜼𝓁ar] ∈ M𝜈,𝑛𝑑 allows for obtaining 𝑛ar = 𝑛MC × 𝑛𝑑 learned
ealizations {𝜼𝓁′ar ,𝓁

′ = 1,… , 𝑛ar} of 𝐇. These learned realizations enable the estimation of converged conditional statistics, which
re then utilized to construct statistical surrogate models related to 𝐗, and subsequently, to (𝐐,𝐖).

.5. Quantifying the probability measure concentration of random matrix [𝐇𝑚opt ]

For 𝑚 ≤ 𝑛𝑑 , the probability measure concentration of random matrix [𝐇𝑚] is defined (see [39]) by:

𝑑2𝑛𝑑 (𝑚) = 𝐸{‖[𝐇𝑚] − [𝜂𝑑 ]‖2}∕‖[𝜂𝑑 ]‖2 . (30)

et opt = {𝑚opt, 𝑚opt + 1,… , 𝑛𝑑}, where 𝑚opt represents the optimal value of 𝑚 as defined earlier. Theorem 7.8 of [38] shows that
in𝑚∈opt 𝑑

2
𝑛𝑑
(𝑚) ≤ 1 + 𝑚opt∕(𝑛𝑑 − 1) < 𝑑2𝑛𝑑 (𝑛𝑑 ), indicating that the PLoM method, for 𝑚 = 𝑚opt and [𝑔𝑚opt ], is a better method than

he standard one corresponding to 𝑑2𝑛𝑑 (𝑛𝑑 ) = 1+ 𝑛𝑑∕(𝑛𝑑 −1) ≃ 2. Using the 𝑛MC realizations {[𝜼𝓁ar],𝓁 = 1,… , 𝑛MC} of [𝐇𝑚opt ], we have
he estimate 𝑑2𝑛𝑑 (𝑚opt) ≃ (1∕𝑛MC)

∑𝑛MC

𝓁=1{‖[𝜼
𝓁
ar] − [𝜂𝑑 ]‖2}∕‖[𝜂𝑑 ]‖2.

.6. Generation of learned realizations {𝜼𝓁′ar ,𝓁
′ = 1,…, 𝑛ar} for the random vector 𝐇

The MCMC generator is detailed in [37]. Let {([(𝑡)], [(𝑡)]), 𝑡 ∈ R+} be the unique asymptotic (as 𝑡 → +∞) stationary diffusion
tochastic process with values inM𝜈,𝑚opt ×M𝜈,𝑚opt , representing the following reduced-order ISDE (stochastic nonlinear second-order
issipative Hamiltonian dynamic system), for 𝑡 > 0,

𝑑[(𝑡)] = [(𝑡)] 𝑑𝑡 ,

𝑑[(𝑡)] = [([(𝑡)])] 𝑑𝑡 − 1
2
𝑓0 [(𝑡)] 𝑑𝑡 +

√

𝑓0 [𝑑
wien(𝑡)] ,

with [(0)] = [𝜂𝑑 ] [𝑎] and [(0)] = [𝐍] [𝑎], in which

[𝑎] = [𝑔𝑚opt ] ([𝑔𝑚opt ]
𝑇 [𝑔𝑚opt ])

−1 ∈ M𝑛𝑑 ,𝑚opt .

(i) [([(𝑡)])] = [𝐿([(𝑡)] [𝑔𝑚opt ]
𝑇 )] [𝑎] is a random matrix with values inM𝜈,𝑚opt . For all [𝑢] = [𝐮1 …𝐮𝑛𝑑 ] inM𝜈,𝑛𝑑 with 𝐮𝑗 = (𝑢𝑗1,… , 𝑢𝑗𝜈 )

in R𝜈 , the matrix [𝐿([𝑢])] in M𝜈,𝑛𝑑 is defined, for all 𝑘 = 1,… , 𝜈 and for all 𝑗 = 1,… , 𝑛𝑑 , by

[𝐿([𝑢])]𝑘𝑗 =
1

𝑝(𝐮𝑗 )
{𝛁𝐮𝑗 𝑝(𝐮𝑗 )}𝑘 , (31)

𝑝(𝐮𝑗 ) = 1
𝑛𝑑

𝑛𝑑
∑

𝑗′=1
exp{− 1

2𝑠̂ 2𝜈
‖

𝑠̂𝜈
𝑠𝜈
𝜼𝑗′ − 𝐮𝑗‖2} ,

𝛁𝐮𝑗 𝑝(𝐮𝑗 )=
1

𝑠̂ 2𝜈 𝑛𝑑

𝑛𝑑
∑

𝑗′=1
(
𝑠̂𝜈
𝑠𝜈
𝜼𝑗′− 𝐮𝑗 ) exp{− 1

2𝑠̂ 2𝜈
‖

𝑠̂𝜈
𝑠𝜈
𝜼𝑗′− 𝐮𝑗‖2} .

(ii) [wien(𝑡)] = [𝐖wien(𝑡)] [𝑎] where {[𝐖wien(𝑡)], 𝑡 ∈ R+} is the M𝜈,𝑛𝑑 -valued normalized Wiener process.
(iii) [𝐍] is the M𝜈,𝑛𝑑 -valued normalized Gaussian random matrix that is independent of process [𝐖wien].
(iv) We then have [𝐙𝑚opt ] = lim𝑡→+∞ [(𝑡)] in probability distribution. The Störmer–Verlet scheme is used for solving the reduced-
order ISDE (see [37]), which allows for generating the learned realizations, [𝑧1ar],…, [𝑧𝑛MC

ar ], and then, generating the learned
realizations [𝜂1ar],…, [𝜂𝑛MC

ar ] such that [𝜂𝓁ar] = [𝑧𝓁ar] [𝑔𝑚opt ]
𝑇 . It should be noted that the calculation of the realizations of [𝐙𝑚opt ] is

done in parallel computation, each realization [𝑧𝓁ar] of [𝐙𝑚opt ] being calculated on a ‘‘worker’’ associated with a realization [wien,𝓁]
of the Wiener process [wien].
(v) The free parameter 𝑓0, satisfying 0 < 𝑓0 < 4∕𝑠̂𝜈 , allows for the control of the dissipation term in the nonlinear second-order
ynamic system (a dissipative Hamiltonian system) to quickly damp the transient effects induced by the initial conditions. A
ommonly used value is 𝑓0 = 4 (noting that 𝑠̂𝜈 < 1). Consequently, the ISDE is solved over the interval ]0, 𝑇 ], where 𝑇 depends on
0 and represents the smallest integration final time allowing [𝐙𝑚opt ] to be chosen as [(𝑇 )] while being in the stationary regime.
vi) The learned realizations {𝐱𝓁′ar ,𝓁

′ = 1,… , 𝑛ar} of random vector 𝐗 are then obtained by reshaping the realizations {[𝑥𝓁ar] =
] + [𝜑] [𝜇]1∕2 [𝜂𝓁 ] ,𝓁 = 1,… , 𝑛 } (see Eq. (25)) with 𝑛 = 𝑛 × 𝑛 .
9
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3.7. Preserving normalization conditions through constraints on second-order moments of 𝐇

In general, the mean value of 𝐇 estimated using the 𝑛ar learned realizations {𝜼𝓁
′

ar ,𝓁
′ = 1,… , 𝑛ar}, is sufficiently close to zero.

Similarly, the estimate of the covariance matrix of 𝐇 is also sufficiently close to the identity matrix. However, there are instances
where the mean value may not be sufficiently small, and the diagonal entries of the estimated covariance matrix can fall below
1. The normalization conditions can be reestablished during the learning algorithm described in Section 3.6 by imposing, for all
𝑘 = 1,… , 𝜈, the constraints 𝐸{𝐻𝑘} = 0 and 𝐸{(𝐻𝑘)2} = 1. These constraints can be globally rewritten as

𝐸{𝐡(𝐇)} = 𝐛 on R𝑛𝑐 , (32)

in which 𝑛𝑐 = 2𝜈. Here, the function 𝐡 = (ℎ1,… , ℎ𝑛𝑐 ) and the vector 𝐛 = (𝑏1,… , 𝑏𝑛𝑐 ) are defined such that, for all 𝑘 in {1,… , 𝜈}, we
have ℎ𝑘(𝐇) = 𝐻𝑘, ℎ𝑘+𝜈 (𝐇) = (𝐻𝑘)2, 𝑏𝑘 = 0, and 𝑏𝑘+𝜈 = 1.
(i) Methodology for imposing the constraint in the learning algorithm. We apply the Kullback–Leibler minimum cross-entropy principle
as proposed in [79,80]. Let 𝐇𝑐 be the R𝜈 -valued random variable that satisfies the constraint defined by Eq. (31), expressed as
𝐸{𝐡(𝐇𝑐)} = 𝐛. The learned probability measure 𝑃𝐇𝑐 (𝑑𝜼) = 𝑝𝐇𝑐 (𝜼) 𝑑𝜼, represented by a density 𝑝𝐇𝑐 onR

𝜈 , which satisfies the constraint
and which is closest to 𝑝𝐇 defined by Eq. (27), is the solution of the following optimization problem,

𝑝𝐇𝑐 = arg min
𝑝∈ad,𝑝 ∫R𝜈

𝑝(𝜼) log
(

𝑝(𝜼)
𝑝𝐇(𝜼)

)

𝑑𝜼 , (33)

in which the admissible set ad,𝑝 is defined by

ad,𝑝 =
{

𝜼 ↦ 𝑝(𝜼) ∶ R𝜈 → R+ ,∫R𝜈
𝑝(𝜼) 𝑑𝜼 = 1 ,∫R𝜈

𝐡(𝜼) 𝑝(𝜼) 𝑑𝜼 = 𝐛
}

. (34)

It is proven that there exists a unique solution to the optimization problem defined by Eqs. (33) and (34), which is reformulated
using Lagrange multipliers to account for the constraints in the admissible set (refer to Proposition 1 in [80] for the construction of
the probability measure of 𝐇𝑐 and the proof of its existence and uniqueness).
(ii) Learning algorithm implementation. To take into account the constraints in the learning algorithm defined in Section 3.6, Eq. (31)
is replaced by the following one,

[𝐿𝝀([𝑢])]𝑘𝑗 =
1

𝑝(𝐮𝑗 )
{𝛁𝐮𝑗 𝑝(𝐮𝑗 )}𝑘 − 𝜆𝑘 − 2 𝜆𝑘+𝜈𝑢

𝑗
𝑘 .

in which the Lagrange multiplier 𝝀 ∈ R𝑛𝑐 , associated with the constraint defined by Eq. (32), is calculated using an iteration
lgorithm (see [80]). At each iteration 𝑖, the value of 𝝀 is denoted by 𝝀𝑖 and the corresponding random vector 𝐇𝑐 is denoted by 𝐇𝝀𝑖 .
The value 𝝀𝑖+1 is computed as a function of 𝝀𝑖 by

𝝀𝑖+1 = 𝝀𝑖 − 𝛼𝑖[𝛤 ′′(𝝀𝑖)]−1 Γ′(𝝀𝑖) , 𝑖 ≥ 0 ,

𝝀0 = 𝟎𝑛𝑐 ,

in which Γ′(𝝀𝑖) = 𝐛 − 𝐸{𝐡(𝐇𝝀𝑖 )} and [𝛤 ′′(𝝀𝑖)] = [cov{𝐡(𝐇𝝀𝑖 )}] (the covariance matrix). The positive coefficient 𝛼𝑖 is a relaxation
parameter (less than 1) that is introduced for controlling the convergence of the iteration algorithm. For given 𝑖2 ≥ 2, for given
𝛽1 and 𝛽2 such that 0 < 𝛽1 < 𝛽2 ≤ 1, 𝛼𝑖 is defined, for 𝑖 ≤ 𝑖2, by 𝛼𝑖 = 𝛽1 + (𝛽2 − 𝛽1)(𝑖 − 1)∕(𝑖2 − 1), and for 𝑖 > 𝑖2, by 𝛼𝑖 = 𝛽2. The
convergence of the iteration algorithm is controlled by the error function 𝑖 ↦ err(𝑖) defined by

err(𝑖) = ‖𝐛 − 𝐸{𝐡(𝐇𝝀𝑖 )}‖∕‖𝐛‖ . (35)

t each iteration 𝑖, 𝐸{𝐡(𝐇𝝀𝑖 )} and [cov{𝐡(𝐇𝝀𝑖 )}] are estimated using 𝑛ar = 𝑛MC × 𝑛𝑑 learned realizations of the random vector
𝑚opt (𝝀

𝑖), which is obtained by reshaping the 𝑛MC learned realizations of the random matrix [𝐇𝑚opt (𝝀
𝑖)].

. Application

.1. Notation and definition of case studies

In order to deploy and assess the performance of the PLoM approach, two scenarios are introduced as follows.

• In the first scenario, relevant to inverse problem solving, the stochastic boundary conditions on 𝛺mac and the hyperparameters
in the random field model (see Section 2.3) are used as control parameters. Let 𝐖disp be the random vector corresponding to
the discretization of the random field {𝐔mac(𝐱), 𝐱 ∈ 𝜕𝛺mac} (see Section 2.3.2), and let 𝐖hyp be the random vector associated
with the randomization of the mean value, the coefficient of variation, and the correlation length of 𝜆. The control variables
are 𝐖hyp and 𝐖disp.

• In the second scenario, related to propagation, the hyperparameters for the random field model are set to their mean values
and are not considered as control variables. The latter only comprise the boundary displacements on 𝛺 , gathered in 𝐖 .
10
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In the context of statistical surrogate modeling, our goal is then to estimate conditional distributions for the mechanistic variables
n the homogenized constitutive model (namely, the right Cauchy–Green deformation tensor and the second Piola–Kirchhoff stress
ensor), at any quadrature point of interest in the region where concurrent multiscale coupling is considered, given specific values
f the control parameters. For the first scenario, this would enable, through the formulation of an ad hoc statistical inverse problem,
he identification of the hyperparameters in the material random field model, assuming that (e.g., experimental) data on the above
ensors are available. In the second scenario, this would allow for the estimation of the stress and strain variables (defined as
onditional means) for given values of the (Dirichlet) boundary conditions on the macroscopic domain — a statistical extension
o standard surrogate modeling where the mapping [𝐶mac(𝐱𝑞 , 𝜃)] ↦ [𝑆mac(𝐱𝑞 , 𝜃)], 1 ≤ 𝑞 ≤ 𝑄mac would be approximated using,
e.g., regression.

For the sake of illustration, non-informative prior models are chosen in the first scenario. More specifically, the mean, coefficient
of variation, and the correlation lengths are assumed to be statistically independent and uniformly distributed on [32000, 48000],
[0.1, 0.3], and [0.2, 0.4], respectively. The truncation order in the Karhunen–Loève expansion is computed for each sample of the
orrelation length, using the same threshold (1e−2).
The relationships between the notations used for the PLoM algorithm summarized in Section 3 and the notations of mechanical

quantities are as follows. We recall that, for the 𝑛𝑝 = 100 Gauss points referred to by the set of indices  = {𝑖 = 1,… , 𝑛𝑝},
{𝐶𝑖𝑗 , 𝑗 = 1, 2, 3} represents the 3 components of the random Cauchy–Green tensor at index point 𝑖 ∈ , and {𝑆𝑖𝑗 , 𝑗 = 1, 2, 3} represents
the 3 components of the random second Piola–Kirchhoff stress tensor. We will also use the notations 𝐂 and 𝐒 for the reshaping of
these two random tensors, which are then random vectors with values in R3𝑛𝑝 . Finally, plots of probability density functions are
obtained using (non-parametric) kernel density estimators, while the conditional probability density functions are estimated using
Eq. (31).
(i) Quantity of interest . The R𝑛-valued random variable 𝐐 is defined by 𝐐 = (𝐒,𝐂) with 𝑛𝑞 = 2 × (3 𝑛𝑝) = 600.
(ii) Control parameter . Following the previous discussion, let 𝐖disp be the R𝑛𝑤,disp -valued random variable for which the 𝑛𝑤,disp = 48
components are the discretized displacements on the boundary. Let 𝐖hyp = (𝑊hyp,1,𝑊hyp,2,𝑊hyp,3) be the hyperparameters that
control the prior probability model of the random medium (defined in Section 2.3). For the construction of the training and learned
datasets, the definition of the R𝑛𝑤 -control parameter 𝐖 depends on the scenario.

• Scenario 1: the training and learned datasets are constructed with 𝐖 = (𝐖hyp,𝐖disp) and 𝑛𝑤 = 3 + 𝑛𝑤,disp = 3 + 48 = 51. The
conditional statistics are constructed for given 𝐖hyp = 𝐰hyp,𝑜 ∈ R3.

• Scenario 2: the training and learned datasets are constructed with 𝐖 = 𝐖disp and 𝑛𝑤 = 𝑛𝑤,disp = 48. The value of 𝐖hyp is fixed
to the statistical mean value 𝐰hyp = (𝑤hyp,1, 𝑤hyp,2, 𝑤hyp,3) of the prior probability model of 𝐖hyp. The conditional statistics are
constructed for given 𝐖disp = 𝐰disp,𝑜 ∈ R48.

The random variable U (uncontrolled parameter) corresponds to the stochastic germs in the Karhunen–Loève expansion of the
nderlying Gaussian random field, which are statistically independent normalized Gaussian random variables.

.2. Conditional statistics

For the validation of the proposed methodology, the conditional statistics estimated with the learned dataset and those estimated
ith the validation dataset (considered as a reference) will be compared. Below, we define the considered conditional statistics,
ncluding the conditional probability density functions and the conditional mean functions (given the control parameter).

• Scenario 1: for all 𝑖 ∈ , for 𝑗 ∈ {1, 2, 3}, for 𝐰𝑜 given in R3, and for all 𝑞 in R, we consider

𝑞 ↦ 𝑝𝐶𝑖𝑗 |𝐖hyp
(𝑞 |𝐰𝑜) , 𝑞 ↦ 𝑝𝑆𝑖𝑗 |𝐖hyp

(𝑞 |𝐰𝑜) ,

𝑖 ↦ 𝐸{𝐶𝑖𝑗 |𝐖hyp = 𝐰𝑜} = ∫R
𝑞 𝑝𝐶𝑖𝑗 |𝐖hyp

(𝑞 |𝐰𝑜) 𝑑𝑞

and

𝑖 ↦ 𝐸{𝑆𝑖𝑗 |𝐖hyp = 𝐰𝑜} = ∫R
𝑞 𝑝𝑆𝑖𝑗 |𝐖hyp

(𝑞 |𝐰𝑜) 𝑑𝑞 .

• Scenario 2: for all 𝑖 ∈ , for 𝑗 ∈ {1, 2, 3}, for 𝐰𝑜 given in R48, and for all 𝑞 in R, we consider

𝑞 ↦ 𝑝𝐶𝑖𝑗 |𝐖disp
(𝑞 |𝐰𝑜) , 𝑞 ↦ 𝑝𝑆𝑖𝑗 |𝐖disp

(𝑞 |𝐰𝑜) ,

𝑖 ↦ 𝐸{𝐶𝑖𝑗 |𝐖disp = 𝐰𝑜} = ∫R
𝑞 𝑝𝐶𝑖𝑗 |𝐖disp

(𝑞 |𝐰𝑜) 𝑑𝑞,

and

𝑖 ↦ 𝐸{𝑆𝑖𝑗 |𝐖disp = 𝐰𝑜} = 𝑞 𝑝𝑆 |𝐖 (𝑞 |𝐰𝑜) 𝑑𝑞 .
11
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Fig. 6. Convergence of the PCA reduced representation (a). Eigenvalues of the transition matrix [P] for the diffusion-maps basis (b). Scenario 1 (thin line),
Scenario 2 (thick line).

4.3. Parameter values and convergence analysis of PLoM algorithms for scenarios 1 and 2

In this section, we define the parameter values used by the PLoM algorithms (as summarized in Section 3), and we present
the convergence analysis for both scenarios. Notations are those introduced in Section 3. To simplify referencing with respect to
each scenario, the first provided value corresponds to Scenario 1, while the second value corresponds to Scenario 2. For instance,
‘‘𝑛𝑐 = 280 and 272’’ means that 𝑛𝑐 = 280 for Scenario 1 and 𝑛𝑐 = 272 for Scenario 2. When a single value is given, it applies to both
scenarios. For example ‘‘𝑛𝑑 = 500’’ means that 𝑛𝑑 = 500 for Scenario 1 and Scenario 2.
(i) Values of the general parameters. The total dimension of 𝐗 = (𝐐,𝐖) is 𝑛 = 𝑛𝑞 + 𝑛𝑤 = 651 and 648. The number of points in the
training dataset 𝑑 is 𝑛𝑑 = 500.
(ii) Reduced representation and diffusion-maps basis. Fig. 6(a) displays the graph of the function 𝜈 ↦ err𝐗(𝜈) defined by Eq. (26). For
Scenario 1, convergence of the representation is achieved at 𝜈 = 140, resulting in an error of err𝐗(140) = 2.85 × 10−4. In Scenario 2,
convergence occurs at 𝜈 = 136, with an error of err𝐗(136) = 2.99 × 10−4. Regarding the computation of the diffusion-maps basis
introduced in Section 3.3, the optimal value of the smoothing parameter 𝜀DM is determined as 𝜀opt = 454 and 278, corresponding to
the optimal value 𝑚opt = 141 and 137 of parameter 𝑚. Fig. 6(b) shows the graph of the function 𝛼 ↦ 𝜆𝛼 representing the eigenvalues
of the transition matrix [P].
(iii) Generating the learned realization. The learned realizations are generated as explained in Section 3.6, incorporating the constraints
outlined in Section 3.7. The free parameter 𝑓0 is chosen as 4, and the integration step 𝛥𝑡 of the Störmer–Verlet scheme is 0.21. Each
realization [𝑧𝓁𝛼 ] represents the 𝓁th realization of [(𝑇 )] for 𝑇 = 30 × 𝛥𝑡 (due to the damping controlled by 𝑓0 = 4, 𝑇 is a time at
which the stationary response is reached). We have chosen 𝑛MC = 100, resulting in 𝑛ar = 𝑛MC × 𝑛𝑑 = 50 000.
(iv) Constraints on second-order moments of 𝐇. For Scenario 1, the number of constraints is 𝑛𝑐 = 280, and the relaxation parameter 𝛼𝑖
is defined by 𝛽1 = 0.01, 𝑖2 = 10, and 𝛽2 = 0.1. For Scenario 2, 𝑛𝑐 = 272, and 𝛽1 = 0.01, 𝑖2 = 20, and 𝛽2 = 0.5. The convergence of the
iterative algorithm presented in Section 3.7-(ii), to take into account the constraints on second-order moments of 𝐇 in PLoM, as a
function of iteration number 𝑖, is studied in analyzing the graph of the error function 𝑖 ↦ err(𝑖) defined by Eq. (35) (see Fig. 7(a))
and the graph of the function 𝑖 ↦ ‖𝝀𝑖‖ (see Fig. 7(b)). A very good convergence is observed, with err(2000) = 10−3 (Scenario 1) and
err(109) = 3.2 × 10−4 (Scenario 2). For both scenarios and for all 𝑘 in {1,… , 𝜈}, at convergence, it holds that |𝐸{𝐻𝑐,𝑘}| ≤ 10−7 and
0.999 ≤ 𝐸{𝐻2

𝑐,𝑘} ≤ 1.
(v) Concentration of the learned probability measure. As explained in Section 3.5, the quality of the PLoM algorithm is assessed by
examining the value of 𝑑2𝑛𝑑 (𝑚opt), defined by Eq. (30). At convergence, we obtain 𝑑2𝑛𝑑 (𝑚opt) = 0.17 and 0.16, indicating excellent
quality of PLoM to preserve the concentration of the learned probability measure.
(vi) Illustration of the learned pdf of components of 𝐇 and of the clouds of the learned points. In 𝐇𝑐 , the subscript 𝑐 is removed to simplify
the writing. Fig. 8 (Scenario 1) and Fig. 9 (Scenario 2) depict the probability density functions of components 𝐻1, 𝐻30, and 𝐻70 of
𝐇, estimated using the training dataset and the learned dataset. These figures exhibit a good coherence. It should be noted that the
convergence of these estimates is not the same, as there are 𝑛𝑑 = 500 points in the training dataset and 𝑛ar = 50 000 points in the
learned dataset. Fig. 10(a) (Scenario 1) and Fig. 10(b) (Scenario 2) display the clouds of the learned points and the training points
of 𝐇, associated with components 𝐻1, 𝐻30, and 𝐻70. These results illustrate the preservation of the concentration of the probability
measure.

4.4. Validation analysis

In this section, we present a validation of the proposed methodology. This methodology is based on the construction of conditional
12

statistics (statistical surrogate model) defined in Section 4.2, which are estimated with the 𝑛ar points of the learned dataset, generated
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Fig. 7. Convergence analysis of the iterative algorithm to take into account the constraints on second-order moments of 𝐇 in PLoM as a function of iteration
number 𝑖, presented in log–log scales. Scenario 1 (thin line), Scenario 2 (thick line).

Fig. 8. Scenario 1: probability density functions of components 𝐻1, 𝐻30, and 𝐻70 of 𝐇, estimated with the training dataset (dashed line) and with the learned
ataset (solid line).

Fig. 9. Scenario 2: probability density functions of components 𝐻1, 𝐻30, and 𝐻70 of 𝐇, estimated with the training dataset (dashed line) and with the learned
ataset (solid line).
13
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Fig. 10. Clouds of the learned points and the training points of 𝐇, associated with components 𝐻1, 𝐻30, and 𝐻70.

Fig. 11. Validation of Scenario 1: Graph of the conditional pdf given 𝐖hyp = 𝐰0 of component 1 of the random tensors 𝐂 and 𝐒 at point 60. Learned dataset
(solid line), validation dataset (dashed line).

with the PLoM algorithm. The estimates of these conditional statistics are converged because 𝑛ar is large. For validation purposes,
these conditional statistics must be compared with a reference. This reference can only be obtained by constructing a validation
dataset with 𝑛𝑣 points generated with the nonlinear computational model used to construct the 𝑛𝑑 points of the training dataset.
Ideally, 𝑛𝑣 ≃ 𝑛ar and the construction of a validation dataset can be achieved for both scenarios. Here, due to limitations in
computational resources, we only consider the construction of a new validation dataset for Scenario 2. This validation dataset
𝑣 comprises 𝑛𝑣 = 20 000 independent realizations (𝐪𝓁𝑣 ,𝐰𝓁

𝑣 ) in R𝑛 = R𝑛𝑞 × R𝑛𝑤 with 𝑛𝑞 = 600 and 𝑛𝑤 = 48, for 𝓁 ∈ {1,… , 𝑛𝑣} of
the random variable (𝐐,𝐖) (note that 𝑛𝑣 < 𝑛ar in this case). The constitution of this dataset requires solving 2 040 000 nonlinear
finite-element computations overall. The following settings are then considered.

• For Scenario 1: as explained in Section 4.1, we have 𝐖 = (𝐖hyp,𝐖disp) and 𝑛𝑤 = 3 + 48 = 51. To construct the reference
conditional statistics with the validation dataset 𝑣, we can therefore consider a single value 𝑛𝑜 = 1, 𝐰𝑜 = 𝐰hyp ∈ R3 of the
random control parameter 𝐖hyp. The realizations {𝐰𝓁

𝑣 }𝓁≥1 are not useful, and only the realizations {𝐪𝓁𝑣 }𝓁≥1 are used.
• For Scenario 2: for the validation of the conditional statistics, the control variable is 𝐖 = 𝐖disp with 𝑛𝑤 = 𝑛𝑤,disp = 48. To
construct the reference conditional statistics with the validation dataset 𝑣, we introduce 𝑛𝑜 values, {𝐰𝑜,𝑘 ∈ R𝑛𝑤 , 𝑘 = 1,… , 𝑛𝑜},
of the random control parameter 𝐖 with values in R𝑛𝑤 . We have randomly drawn, with a uniform distribution, the 𝑛𝑜 vectors
{𝐰𝑜,𝑘, 𝑘 = 1,… , 𝑛𝑜} from the set {𝐰𝓁

𝑣 ,𝓁 = 1,… , 𝑛𝑣}. Due to space limitations, we consider 𝑛𝑜 = 2: these two vectors correspond
to the realizations #1882 and #19 502 in the set {𝐰𝓁

𝑣 ,𝓁 = 1,… , 20 000}.

The validation results are presented below for each scenario.
(i) Validation for Scenario 1. Concerning the conditional probability density functions, we select the first components at point #60,
corresponding to the random variables 𝐶60,1 and 𝑆60,1 relative to the random tensors 𝐂 and 𝐒, as quantities of interest. This point
is relatively central in the macroscopic domain, and the first components at this location present significant fluctuations — hence
making this choice a reasonable one from a validation standpoint. Fig. 11 displays the graphs of the conditional probability density
functions 𝑞 ↦ 𝑝𝐶60,1|𝐖hyp

(𝑞|𝐰𝑜) of random variable 𝐶60,1 and 𝑞 ↦ 𝑝𝑆60,1|𝐖hyp
(𝑞|𝐰𝑜) of random variable 𝑆60,1 given𝐖hyp = 𝐰0, estimated

with the learned dataset and the validation dataset. It can be seen that the width of the supports, which control the variances, is
well predicted.

For the three components indexed by 𝑗 ∈ {1, 2, 3}, Fig. 12 displays the graphs of the conditional mathematical expectations
14

𝑖 ↦ 𝐸{𝐶𝑖,𝑗 |𝐖hyp = 𝐰𝑜} for the family {𝐶𝑖,𝑗 , 𝑖 ∈ } of random variables, while Fig. 13 displays the graphs of 𝑖 ↦ 𝐸{𝑆𝑖,𝑗 |𝐖hyp = 𝐰𝑜}
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Fig. 12. Validation of Scenario 1: Graph of the conditional mathematical expectation as function of points 𝑖 given 𝐖hyp = 𝐰0 for the three components of the
andom tensor 𝐂. Learned dataset (solid line), validation dataset (dashed line).

Fig. 13. Validation of Scenario 1: Graph of the conditional mathematical expectation as function of points 𝑖 given 𝐖hyp = 𝐰0 for the three components of the
andom tensor 𝐒. Learned dataset (solid line), validation dataset (dashed line).

or the family {𝑆𝑖,𝑗 , 𝑖 ∈ }. While very large variations are observed over the quadrature points, the accuracy in the predictions of
he conditional expectations remains remarkably good given the small number of training data. It should be noted that the graphs
n Figs. 12(b) and 13(b) differ only from a constant.
ii) Validation for Scenario 2. The conditional probability density functions are estimated for the first components of the tensorial
uantities of interest at point #60, as for Scenario 1. For the two values of the control parameter, 𝑘 = 1 and 𝑘 = 2, Fig. 14 displays
he graphs of the conditional probability density functions 𝑞 ↦ 𝑝𝐶60,1|𝐖disp

(𝑞|𝐰𝑜,𝑘) for random variable 𝐶60,1 given 𝐖disp = 𝐰0,𝑘,
stimated with the learned dataset and the validation dataset. Similarly, Fig. 15 displays the graphs of 𝑞 ↦ 𝑝𝑆60,1|𝐖disp

(𝑞|𝐰𝑜,𝑘) for
andom variable 𝑆60,1 given 𝐖disp = 𝐰0,𝑘. Again, it is seen that the supports of the (marginal) distributions are well predicted, and
he validation results are reasonably good.
For 𝑗 ∈ {1, 2, 3} and the two values of the control parameter (𝑘 = 1 and 𝑘 = 2), Figs. 16 and 17 display the graphs of the

onditional mathematical expectations 𝑖 ↦ 𝐸{𝐶𝑖,𝑗 |𝐖disp = 𝐰𝑜,𝑘} for the family {𝐶𝑖,𝑗 , 𝑖 ∈ } of random variables, while Figs. 18 and
9 display the graphs of 𝑖 ↦ 𝐸{𝑆𝑖,𝑗 |𝐖hyp = 𝐰𝑜,𝑘} for the family {𝑆𝑖,𝑗 , 𝑖 ∈ }. Good accuracy is observed over all quadrature points,
hich demonstrates the capability of the framework to capture the non-smooth large variations generated by the localization in the
onlinear stochastic boundary value problems.

.4.1. Remarks on CPU time
For the probabilistic learning algorithm, the total CPU time is due to the construction of the learned dataset, the numerical cost

f conditional statistics being completely negligible. For the construction of learned datasets, the CPU time is directly proportional
o the number of iterations required to satisfy the normalization constraints. For the first scenario, 2000 are used and the total CPU
ime is 4 hr and 26 min. For the second scenario, only 109 iterations are necessary to reach excellent convergence and the total
PU time is 19 min. It should be noted that for scenario 1, the convergence tolerance could have been reduced without significantly
enalizing the quality of the results, and this would have significantly reduced the number of iterations and therefore CPU time.
Regarding the generation of the training dataset using nonlinear finite element simulations and the FE2 approach, the average

PU time to complete one simulation is 449.80 s, and one multiscale simulation at any Gauss point (and final increment) takes
rom 0.5 to 5.401 s (depending on both the sample of the local material properties and the applied boundary conditions). Assuming
hat conditional statistics would be computed using 50,000 samples, the CPU time associated with a brute force approach (with
15
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(

Fig. 14. Validation of Scenario 2: Graph of the conditional pdf given 𝐖disp = 𝐰0,1 or 𝐰0,2 of component 1 of the random tensor 𝐂 at point 60. Learned dataset
(solid line), validation dataset (dashed line).

Fig. 15. Validation of Scenario 2: Graph of the conditional pdf given 𝐖disp = 𝐰0,1 or 𝐰0,2 of component 1 of the random tensor 𝐒 at point 60. Learned dataset
solid line), validation dataset (dashed line).

Fig. 16. Validation of Scenario 2: Graph of the conditional mathematical expectation as function of points 𝑖 given 𝐖disp = 𝐰0,1 for the three components of the
random tensor 𝐂. Learned dataset (solid line), validation dataset (dashed line).

sequential execution) would then be ≈ 50, 000 × 450 = 6250 h. While this time can be reduced using distributed computing, it
remains much larger than the cost induced by the learning method.

5. Conclusion

In this work, we have introduced a statistical surrogate model for concurrent multiscale simulations involving nonlinear materials
with non-separated scales. The methodology combines probabilistic learning on manifolds, a generative model that allows for
16
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Fig. 17. Validation of Scenario 2: Graph of the conditional mathematical expectation as function of points 𝑖 given 𝐖disp = 𝐰0,2 for the three components of the
random tensor 𝐂. Learned dataset (solid line), validation dataset (dashed line).

Fig. 18. Validation of Scenario 2: Graph of the conditional mathematical expectation as function of points 𝑖 given 𝐖disp = 𝐰0,1 for the three components of the
random tensor 𝐒. Learned dataset (solid line), validation dataset (dashed line).

Fig. 19. Validation of Scenario 2: Graph of the conditional mathematical expectation as function of points 𝑖 given 𝐖disp = 𝐰0,2 for the three components of the
random tensor 𝐒. Learned dataset (solid line), validation dataset (dashed line).

measure concentration and support information to be accurately captured, with the use of conditional statistics to approximate
the mapping between apparent strain and stress variables — namely, the right Cauchy–Green tensor and the second Piola–Kirchhoff
stress tensor — at a finite set of points (defining a subregion of interest where concurrent coupling must be deployed). As opposed to
standard techniques relying on, e.g., polynomial or neural network surrogates, the proposed approach (1) can readily accommodate
the (aleatoric) randomness raised by the multiscale setting, (2) enables the seamless integration of nonlocal interactions through the
consideration of joint distributions, and (3) can perform efficiently in the small data regime. Two applications, relevant to inverse
problem solving and forward propagation, were presented in the context of nonlinear elasticity. In the first case, the hyperparameters
for the prior model defining the random media and boundary conditions at mesoscale are considered as control parameters. This
setting can be used, for instance, to identify the hyperparameters when experimental observations are available. In the second
application, only mesoscopic boundary displacements are used as control variables. In this case, the prior model at fine scale is
17
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a
a

fixed, and the effect of material randomness can be quantified. In both cases, large spatial variations, large statistical fluctuations,
and strong non-Gaussianity are observed. It was shown that despite these challenges, the framework remains capable of delivering
reasonably accurate estimations, even with a fairly limited amount of training data. The information contained in the latter is a
critical aspect in the methodology: this information must be rich enough to learn the probability measure and discover the geometry
of the manifold defining its support.
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Appendix. Formulas for conditional statistics

In this Appendix, we use the following notation. The real-valued random variable 𝑄 denotes any component of the R𝑛𝑞 -
valued random variable 𝐐, and the real variable 𝑞 represents the corresponding component of the vector 𝐪 in R𝑛𝑞 . Let 𝑄̃ and
𝐖 = (𝑊1,… ,𝑊𝑛𝑤 ) be the normalized random variables defined by

𝑄̃ = (𝑄 − 𝑞)∕𝜎𝑄 , 𝑊𝑘 = (𝑊𝑘 −𝑤𝑘)∕𝜎𝑊𝑘
, 𝑘 = 1,… , 𝑛𝑤 , (A.1)

where 𝑞, 𝑤𝑘, and 𝜎𝑄, 𝜎𝑊𝑘
are the mean values and standard deviations of the random variables 𝑄 and𝑊𝑘. These values are estimated

using empirical statistical estimators based on the learned realizations {(𝐪𝓁ar,𝐰
𝓁
ar),𝓁 = 1,… , 𝑛ar}. For any value 𝐰0 = (𝑤0,1,… , 𝑤0,𝑛𝑤 )

of the control parameter given in 𝑤 ⊂ R𝑛𝑤 , we define the vector 𝐰̃0 in R𝑛𝑤 such that

𝑤̃0,𝑘 = (𝑤0,𝑘 −𝑤𝑘)∕𝜎𝑊𝑘
, 𝑘 = 1,… , 𝑛𝑤 . (A.2)

The Gaussian KDE estimation of the joint probability distribution of 𝑄̃ and 𝐖, with respect to 𝑑𝑞 𝑑𝐰̃, is written as

𝑝𝑄̃,𝐖(𝑞, 𝐰̃) = 1
𝑛ar

𝑛ar
∑

𝓁=1

1
√

2𝜋𝑠
exp(− 1

2𝑠2
(𝑞 − 𝑞𝓁ar)

2) 1

(
√

2𝜋𝑠)𝑛𝑤
exp(− 1

2𝑠2
‖𝐰̃ − 𝐰̃𝓁

ar‖
2) . (A.3)

In Eq. (A.3), 𝑠 is the Silverman bandwidth defined by

𝑠 =
{

4
𝑛ar(2 + 𝑛)

}1∕(𝑛+4)
, 𝑛 = 1 + 𝑛𝑤 , (A.4)

and, for 𝓁 = 1,… , 𝑛ar, 𝑞𝓁ar and 𝑤̃
𝓁
ar,𝑘 are defined by

𝑞𝓁ar = (𝑞𝓁ar − 𝑞)∕𝜎𝑄 , 𝑤̃𝓁
ar,𝑘 = (𝑤𝓁

ar,𝑘 −𝑤𝑘)∕𝜎𝑊𝑘
, 𝑘 = 1,… , 𝑛𝑤 . (A.5)

From Eq. (A.3), the following formulas for conditional statistics are derived.
(i) The conditional mathematical expectation 𝐸{𝑄 |𝐖 = 𝐰𝑜} of 𝑄 given 𝐖 = 𝐰0 in 𝑤 is given by

𝐸{𝑄 |𝐖 = 𝐰0} = 𝑞 + 𝜎𝑄

∑𝑛ar
𝓁=1 𝑞

𝓁
ar × exp(− 1

2𝑠2 ‖𝐰̃0 − 𝐰̃𝓁
ar‖

2)
∑𝑛ar

𝓁=1 exp(−
1
2𝑠2 ‖𝐰̃0 − 𝐰̃𝓁

ar‖
2)

. (A.6)

(ii) The conditional probability density function 𝑝𝑄|𝐖(𝑞 |𝐰0) with respect to 𝑑𝑞 of 𝑄 given 𝐖 = 𝐰0 in 𝑤 is defined as

𝑝𝑄|𝐖(𝑞 |𝐰0) =
1

√

2𝜋 𝑠 𝜎𝑄

∑𝑛ar
𝓁=1 exp(−

1
2𝑠2 (𝑞 − 𝑞

𝓁
ar)

2) × exp(− 1
2𝑠2 ‖𝐰̃0 − 𝐰̃𝓁

ar‖
2)

∑𝑛ar
𝓁=1 exp(−

1
2𝑠2 ‖𝐰̃0 − 𝐰̃𝓁

ar‖
2)

, 𝑞 = (𝑞 − 𝑞)∕𝜎𝑄 . (A.7)

(iii) The conditional cumulative distribution function 𝐹𝑄|𝐖(𝑞∗|𝐰0) = Proba{𝑄 ≤ 𝑞∗ |𝐖 = 𝐰0} of 𝑄 given 𝐖 = 𝐰0 in 𝑤 is estimated
using

𝐹𝑄|𝐖(𝑞∗|𝐰0) =

∑𝑛ar
𝓁=1 𝐹

𝓁(𝑞∗) × exp(− 1
2𝑠2 ‖𝐰̃0 − 𝐰̃𝓁

‖

2)
∑𝑛ar 1 𝓁 2

, 𝑞∗ = (𝑞∗ − 𝑞)∕𝜎𝑄 , (A.8)
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with

𝐹 𝓁(𝑞∗) = 1
2
+ 1

2
erf( 1

√

2 𝑠
(𝑞∗ − 𝑞𝓁ar)) , erf(𝑦) = 2

√

𝜋 ∫

𝑦

0
𝑒−𝑡

2
𝑑𝑡 . (A.9)
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