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Surrogates

Uncertainty quantification

surrogates approximating a homogenization operator is a fairly classical topic that has been
addressed through various methods, including polynomial- and deep-learning-based models.
Such approaches, and their extensions to probabilistic settings, remain expensive and hard to
deploy when the nonlinear upscaled quantities of interest exhibit large statistical variations
(in the case of non-separated scales, for instance) and potential non-locality. The aim of this
paper is to present a methodology that addresses this particular setting from the point of
view of probabilistic learning. More specifically, we formulate the approximation problem
using conditional statistics, and use probabilistic learning on manifolds to draw samples of
the nonlinear constitutive model at mesoscale. Two applications, relevant to inverse problem
solving and forward propagation, are presented in the context of nonlinear elasticity. We show
that the framework enables accurate predictions (in probability law), despite the small amount
of training data and the very high levels of nonlinearity and stochasticity in the considered
system.

1. Introduction
1.1. Background

Concurrent nonlinear simulations involve the strong coupling between a macroscopic (or structural) formulation and a micro-
scopic description capturing subscale details [1-8]. One popular approach is the so-called FE? method [3,4], where information
(in the form of a deformation gradient and any adapted stress variable) is transferred back-and-forth between quadrature points
at the macroscale and statistical or representative volume elements (depending on whether the separation of scales exists or not).
While versatile and powerful, such frameworks require significant computational resources that often surpass the capabilities of
intermediate-power computers, especially when the underlying behavior is highly nonlinear. In this context, the development of
surrogate models for large-scale systems has become a very active research domain and has generated a substantial body of literature.
Various methodologies have been proposed to address this challenge, including (in a non-exhaustive manner) the development of
deterministic representations [9-20] and probabilistic/statistical-based approaches [21-26], and more recently, the integration of
machine learning (ML) tools, both with and without probabilistic/statistical formulations; see, e.g., [27-36].
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In most of the above contributions, the multiscale surrogate is built either through polynomial approximations or deep learning
models, and applied locally at each point of the coarse scale discretization. In these settings, the intrinsic randomness — and potential
non-locality — induced by random media with non-separated scales is very challenging to capture due to representation limitations.
In this work, we explore an alternative path to address this problem and seek to construct a statistical surrogate model where
the forward map of interest (specifically, the non-local constitutive model) is approximated using statistical conditioning. Instead
of calibrating a regression model between the input (e.g., the deformation gradient) and the output (say, a stress measure), we
aim to directly generate samples from the input-output joint probability measure, and to estimate quantities of interest through
conditional means. This viewpoint requires the use of a generative model capable of accurately capturing measure concentration
and the (unknown) geometry of the support of the measure in the small data limit — a task that remains particularly challenging for
strongly non-Gaussian distributions in high dimensions. We note that the construction of generative models is a vibrant topic across
many scientific communities, and providing an extensive review on existing techniques is beyond the scope of this paper. In the
present study, we employ probabilistic learning on manifolds (PLoM) [37-39] to perform this task. The choice of this technique is
motivated by (i) its capability to sample the probability measure defined by the training dataset and in particular, to respect measure
concentration and support information (as demonstrated in [40-51]), (ii) relative ease of implementation, and (iii) its reliance on
low-dimensional, interpretable parameterization. Our main contributions are as follows. First, we formulate the approximation of
the non-local homogenized response in nonlinear elasticity as a learning problem. Second, we perform extensive numerical studies
and address the validation of the framework under two scenarios relevant to inverse problem solving and forward propagation.
In the former case, the approach can be used, for instance, to calibrate hyperparameters in the material model at fine scale,
integrating data at the coarse scale. The latter case represents the classical surrogate setting with aleatoric uncertainties induced
by subscale randomness (without separation of scales). Notice that while the proposed developments are derived in the context of
nonlinear elasticity, they remain applicable to other classes of constitutive models — at the expense of adapting the mechanistic
parameterization.

This paper is organized as follows. The multiscale mechanistic framework is first introduced in Section 2. The deterministic scale-
coupling problems (and their stochastic counterparts) are presented, together with the stochastic model enabling the representation
of material randomness at mesoscale. Section 3 provides a comprehensive overview on the probabilistic learning framework,
including both theoretical and algorithmic aspects. In Section 4, the proposed framework is applied in the context of finite elasticity.
The two aforementioned scenarios are specifically introduced to assess the robustness of the method (in probability law). Concluding
comments are finally provided in Section 5.

1.2. Main notation

(i) Conventions for variables.

A lower-case Latin or Greek letter, such as x or 5, is a deterministic real variable.

A boldface lower-case Latin or Greek letter, such as x or 7, is a deterministic vector.

An upper-case Latin or Greek letter, such as X or £, is a real-valued random variable.

A boldface upper-case Latin letter, such as X, is a vector-valued random variable.

A lower- or upper-case Latin letter between brackets, such as [x] or [X], is a deterministic matrix.

A boldface upper-case letter between brackets, such as [X], is a matrix-valued random variable.

(ii) Probability space, random variable, probability measure, and probability density function.

For any finite integer m > 1, the Euclidean space R"” is equipped with the o-algebra Brn. If Y is a R”-valued random variable
defined on the probability space (0,7, P), Y is a mapping 6 — Y(0) from O into R™, measurable from (6, 7) into (R", Bgn), and
Y(0) is a realization (sample) of Y for # € ©. The probability distribution of Y is the probability measure Py(dy) on the measurable
set (R™, Brn) (we will simply say on R™). The Lebesgue measure on R™ is denoted by dy and Py(dy) = py(y)dy, with py the
probability density function (pdf) on R” of Py(dy) with respect to dy. Finally, E denotes the mathematical expectation operator.
(iii) Algebraic notations.

RR: set of all the real numbers.

RR": Euclidean vector space on R of dimension n.

M, ,: set of all the (n x m) real matrices.

M,: set of all the square (n X n) real matrices.

M;: set of all the positive-definite symmetric (n x n) real matrices.

[1,]: identity matrix in M,,.

X = (xq,...,x,): point in R".

(X,y) = x1y; + -+ + x,,y,: inner product in R".

[|x||: norm in R” such that || x || = (x,x).

[x]”: transpose of matrix [x].

|| [x]]]: Frobenius norm of matrix [x].

64+ Kronecker’s symbol.
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2. Description of the mechanistic framework
2.1. Definition of the structural problem

Let 2, be an open bounded domain in R? (here, d = 2 without loss of methodological generality) representing the reference
configuration for the structure of interest, and denote by 0£2,. the boundary of Q.. For any material point x € £, the spatial point
x? in the deformed configuration Qf_ is given by x? = ¢(x), where ¢ is the deformation map. To make the presentation concrete,
we assume that the material (at fine scale) is hyperelastic, compressible and isotropic. For any x € £, the deformation gradient
[F] is a second-order tensor defined as [F] = [V x?]. The right Cauchy-Green deformation tensor is defined as [C] = [FIT[F], and
the Green-Lagrange strain tensor defined as [Eg; ] = %([C] — [1]). For the sake of simplicity, we consider a Saint Venant-Kirchhoff

model, with a strain energy density function given by

w(Eg D) = %[tr([EGLm2 +utt((Eg 1), @

where A and y are the Lamé parameters (see Section 2.3.1 for details). It is well-known that the above Saint Venant-Kirchhoff
material is not polyconvex (see, e.g., Section 4.3 in [52]). The use of this model may thus lead to poor numerical stability and
pathological behaviors in general. Such issues were not observed in the applications presented in this paper, given the multiscale
surrogate modeling context. In particular, the boundary conditions inherited from the structural boundary value problem did not
generate asymptotic behavior. The results supporting the relevance of the proposed methodology (and more specifically, the ability
to approximate the homogenized constitutive model) are therefore not expected to be fundamentally affected by this choice. Note
also that the proposed approach can accommodate other types of constitutive behaviors, and that the above choice pertaining to
the strain energy density function is not expected to impact the methodological results presented in this research.

In a general setting, the strong form (resulting from the balance of linear momentum) of the boundary value problem (BVP) in
the reference configuration is stated as [52]

Div[PX)]+bx) =0, Vx€ Qy,, 2)
ux) =u(x), Yx €2, ©)
[PX)]-nX) =t(x), Vxe ol “@

str’
where Div denotes the divergence operator in the reference configuration, [P] is the first Piola-Kirchhoff stress tensor defined as

oy ([F])

[P]= oF]

()

the vector b is the body force, n is unit vector normal to the boundary in the reference configuration, u and t are given smooth
vector fields on the Dirichlet and Neumann boundaries, denoted by 022 and 0@ respectively. The solution to the above problem

is classically sought (in an appropriate function space) as a stationary point of the following energy functional [52-54]:

H((p):/w([F])dV—/b~(pdV—/ t-pdA. ©)
B B 0By

In this work, we apply a Dirichlet boundary condition u on 02, (i.e., no traction is applied, and the body force is neglected).
2.2. Definition of the macroscopic problem in the context of concurrent multiscale approaches

Let Q.. C 2, denote the reference configuration for the subdomain where the surrogate must be constructed, and denote by
082, its boundary (see Fig. 1). Let u,,. be the restriction of the solution to the structural problem (defined in the previous section)
to the boundary 042,,.. The strong form of the boundary value problem in the reference configuration of Q. is stated as

Div [Py (X)] =0, Vxe .., 7)
ux) = Up,.(x), VX € IR, (8)

where [P,..] is the first Piola-Kirchhoff stress tensor at macroscale.

In order to define the multiscale setting, we consider a statistical volume element £, .,(x) located at point x € £, and denote
by 02, the boundary of 2., (as shown in Fig. 1). Given a finite element discretization of 2, and at a given iteration in the
nonlinear (Newton—Raphson) solver, the concurrent method proceeds by estimating the deformation gradient [Fy,.(x?)] at any
quadrature point x¢ in Q,,,., and by evaluating the apparent first Piola—Kirchhoff stress tensor defined as

OV mac ([ Fnac(X)]; 2mes(x9))

O[Fipac(x9)] ' ®

[Prac(xD] =

where ¥ ..(; 265(x9)) is the apparent strain energy density function associated with the mesoscopic domain Q.,(x?), using
localization (through [F,,.(x?)]) and homogenization (via ¥ .. (-; 2mes(x9))). Note that as previously pointed out, scale separation is
not enforced and thus, all quantities obtained by upscaling are termed apparent, following the convention introduced by Huet [55]
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{\x,0),x € Qutr }

Qmes
Omac

Qs‘cr

Fig. 1. Definition of scales in the concurrent multiscale simulations. Fluctuations in the first Lamé parameter A are introduced at fine scale.

(see also [56]). In order to compute [P,,.] at each quadrature point x? € £,,., we use the FE? method [4,57] and solve the boundary
value problem defined as

DIV [Ppes()] =0, VX € Qpes(x7), (10)

u(x) = ([FpacXDI = [IDX, VX € 02p(x7), an

in the reference configuration of £, .(x?), where [F,.(x9)] is the deformation gradient inherited from the macroscale boundary
value problem at x9. The apparent first Piola—Kirchhoff stress tensor at x? is then evaluated as [58]

[PracxD] = [Pnes(®)] dx. (12)

1

| Rmnes(x9)] /.Qmes(xq)
As we will explain in the next section, the pairs of associated deformation gradients and first Piola-Kirchhoff stress tensors at all
quadrature points in the macroscopic domain ,,,. are then used to compute the pairs of associated right Cauchy-Green deformation
tensors and second Piola—Kirchhoff stress tensors, which are the (objective) mechanistic variables considered in the probabilistic
learning process introduced in Section 3. Note that while the deformation gradient and the first Piola—Kirchhoff stress tensor could
also be used in the learning approach, the choice of the right Cauchy—Green deformation tensor and second Piola-Kirchhoff stress
tensor as quantities of interest leads to smaller dimensions since both tensors are symmetric. It should also be pointed out that
preserving mechanical variables over the entire domain (namely, £.,..) enables the consideration of a nonlocal apparent constitutive
model, as opposed to the calibration of a surrogate at one particular point in the domain (which is more relevant to local constitutive
models).

2.3. Description of material uncertainties

2.3.1. Definition of the stochastic model

In this section, we detail the construction of the stochastic model for the strain energy density function defined by Eq. (1).
Given the scope of this work, which is focused on the learning perspective rather than stochastic modeling, the hyperelastic model
is randomized by defining the first Lamé parameter, 4, as a random field. Models enabling the randomization of all parameters
in various classes of strain energy density functions can be found in the references provided after Eq. (15), and in [59,60] for
linear elasticity (for all symmetry classes). We also note that results published elsewhere reporting on the (first-order) marginal
cross-correlation of elastic moduli suggest that one latent random field may be sufficient to induce multiscale-informed stochasticity
in the isotropic case (depending on the material under consideration; see, e.g., [61] for a reinforced composite material).

The first Lamé parameter random field is denoted by {A(x),x € €.}, is defined on probability space (0,7, P), and takes values
in IR(’( 0 In this paper, we define {A(x),x € £, } as

AMX)=H(EX), VXE Q. (13)

where H denotes a so-called transport map, constructed to enforce admissibility (in the almost sure sense), and {Z(x),x € R%}
is a centered homogeneous Gaussian random field. This Gaussian field is completely defined by its correlation function (x,x’) —
p(x,x") = E{Z(x)E(x')}, which is taken as

d x; —x' z
p(x,x’):Hexp —< lf '> , Vx,x)eRIxRY, 14
o .

i=

for the sake of illustration, with #, a model parameter such that [;"* exp (=(r/¢,)?) dt = L,, where L, is the spatial correlation
length of the Gaussian random field (which is assumed to be independent of the direction, for simplicity), with L, = £, \/;/2.
Following the methodology introduced in [62] in the context of anisotropic linear elasticity, the transport map is constructed using
information theory and the principle of maximum entropy [63-65]; see [66] for an introduction to concepts and methodologies, as
well as [67] for specific results in (linear and nonlinear) mechanics of materials. Specifically, H is defined by imposing that

A =H(EX) ~ Pyp. VX E Q. s)
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3.0 3.0
24 63000
25
18 57000
12
20 51000
0.6
45000
00 15
b 39000
10
-12 33000
-18 05
27000
-2.4
0.0 21000
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(a) Sample of {Z(x),x € Qg }. (b) Sample of {\(x), X € Qg } computed from (a).

Fig. 2. Realizations of the underlying Gaussian field (left) and material parameter random field (right).

where Py is the probability measure induced by entropy maximization under constraints. General methodologies and information-
theoretic results for a large class of models in nonlinear elasticity can be found in [68,69], for the cases of isotropic incompressible
and compressible materials, respectively. Extensions to spatially-dependent anisotropic hyperelastic models can be found in [70,711,
and applications including calibration and validation using experimental data are available in [71-73] (see also [74] and the
references therein for a review of applications to canonical mechanics problems). Since 4 corresponds to an elasticity parameter,
results obtained in the context of stochastic linearized elasticity can also be invoked. Accounting for the positiveness constraint, as
well as for the existence of second-order moments for the linearized elasticity tensor and its inverse [62,75], it can be shown that
Py corresponds to a Gamma distribution. Denoting by 4 and §, the mean and coefficient of variation of 4, it follows that

_ gl
H= FQ(&;Z,@;Z)OFN(O")’ (16)

where F! is the inverse cumulative distribution function of the Gamma distribution with shape and scale parameters given by 5;2
and 415;26, respectively, and F,r( ) is the cumulative distribution function of the standard Gaussian distribution. Notice that these
hyperparameters can be made spatially-dependent to improve expressiveness in the model: this sophistication is, however, irrelevant
for the objectives pursued in this paper.

In the applications presented below, the underlying Gaussian random field { =(x),x € R} is sampled using a truncated Karhunen-
Loéve expansion, with an order of truncation determined such that the L? error falls below a given threshold (chosen as le—2).
Samples for both the Gaussian and non-Gaussian random fields are shown in Fig. 2, for 4 =40000, 6, = 0.2, and L. = 0.3.

2.3.2. Definition of the stochastic boundary value problems
Considering the Lamé parameter random field defined in Section 2.3.1 in the BVPs introduced in Sections 2.1 and 2.2 leads to
the definition of stochastic boundary value problems (SBVPs), which are briefly described below for the sake of readability. All
equalities below hold in the almost sure sense.
Following the retained modeling setup, the structural stochastic boundary value problem is given by
Div[P(X)] =0, Vx€E Q. 17
Ux) =u®x), VxeaP (18)

str’

where [P] is the stochastic Piola—Kirchhoff stress tensor (arising from the randomization of the strain energy density function via 1),
{U(x),x € Q4,} is the displacement solution random field and x ~ u(x) is the known deterministic field introduced in Section 2.1.
Similarly, the macroscopic SBVP on the domain of interest £ .. (where the statistical surrogate is built) writes

Div[Ppac®)] =0, VXE Q... (19)

Ux) = Uppe(x), VX €020 (20)

where {Up, (X)X € 02} is now a random field with values in R9, due to the fact that the background medium is stochastic.
Finally, the SBVP considered in the concurrent approach (for any subdomain £,,.,(x?) centered at quadrature point x? in 2, ) is

Div [Ppes(¥)] =0, VX € Q05(x9), (21)
UX) = ([Fpaex)] = IDX, VX € 02,05(x%), (22)

where [F,,.(x9)] is the stochastic deformation gradient at x4, defined through localization.



P. Chen et al. Computer Methods in Applied Mechanics and Engineering 422 (2024) 116837

1071 E E|

1075 F =

Hu —auh ‘ 9

1070k L w
10715 10! 10—%:5

he

Fig. 3. Convergence of the L? error (h-refinement) for the reference solution.
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Fig. 4. Sample of the material parameter 4 (left) and associated displacement magnitudes for the solutions on @, (middle) and Q. (right).

In this work, we consider the strong stochastic solutions to the weak formulations (using the Galerkin method and a finite
element discretization) of the above SBVPs. The Monte Carlo approach is chosen as the stochastic solver. The pairs of right Cauchy—
Green deformation tensors and second Piola—Kirchhoff stress tensors (denoted by {[Cpac(x?)], [Smac(xq)]}qQ:“;“) are collected at all
quadrature points, for all samples of the Lamé parameter random field, to constitute the dataset for the probabilistic learning
procedure introduced in Section 3.

2.4. Implementation verification for the FE 2 method (with deterministic background media)

For the sake of illustration, we consider the structural domain g, = [0, 3]%, and define the macroscopic domain of interest as
Qmac = [1,2]%. The mesoscopic domain £,,.,(x?) at quadrature point x? is defined by a characteristic length Lg,.. =0.025. Spatial
discretization is realized using Q4 elements at all mesh resolutions. The number of elements per direction is 15 in Qy,, 5 in 2.,
and 5 in Q.. The Dirichlet boundary conditions applied on the boundary of £, are given by

ux)=0, x,=0, Vx,€[0,3], (23)

u(x) = [0(')1], x; =3, Vx, €[0,3]. (24)
As described in the previous section, the solution vector u in Q. along the boundary 9,,.. of 2,.. is applied as the Dirichlet
boundary condition for the multi-scale problem.

Implementation was performed within the MOOSE finite element framework [76]. A convergence study on the solution on Q.
was first conducted. A manufactured displacement field taken as uMMS(x) = (0.01 sin(y), 0.01 sin(x))” is considered, with material
parameters given by A = 40000 [kg/cmz] and x = 10000 [kg/cm2] (these values, taken from [77], correspond to a soft biological
tissue, modeled as a Saint Venant-Kirchhoff material). Dirichlet boundary conditions in accordance with the above solution are
prescribed on all boundaries. A body force is defined such that the manufactured solution corresponds to the nonlinear boundary
value problem defined in Section 2.1. Regarding numerical solving, a standard Newton—-Raphson solver was used with a maximum
number of nonlinear iterations set to 25, with a relative tolerance taken as le—10, and an absolute tolerance given by le—12. The
convergence order is measured by the L2-norm of the difference between the approximation u” and the reference solution ™ within
the domain [0,3]%. Standard h-convergence is observed, as illustrated in Fig. 3.

Next, the implementation of the FE2 method was verified by comparing the normalized L?-norm error between the solution
vector (at all nodes) on £, without multiscale coupling, and the solution vector (at all nodes) obtained by using the FE? method in
the subdomain Q,. = [1,2]?. Fig. 4 shows the first sample of the material random field A (for A = 40000, 5, = 0.2, and L, = 0.3), as
well as solutions to the structural and macroscale problems. In order to perform a statistical analysis on the error, 500 independent
samples of A were generated. The mean of the normalized L? error is 4.69e—4, and the coefficient of variation is 0.22. The probability
density function of the normalized L? norm error is shown in Fig. 5. These results indicate proper implementation of the concurrent
multiscale method, which is used to build the dataset for the probabilistic learning technique (introduced in the next section).



P. Chen et al. Computer Methods in Applied Mechanics and Engineering 422 (2024) 116837

4000

3500

w

o

o

o
T

N

a1

o

o
T

2000 -

1500

Probability density function

[

o

o

o
T

a1

o

o
T

9 10
2 -4
L“-norm error x10

Fig. 5. Probability density function of the normalized L?>-norm error (estimated with 500 samples).

3. Overview of the probabilistic learning on manifolds (PLoM) algorithm and its parameterization

In this section, we provide a concise overview of the PLoM algorithm. The reason for providing this review is twofold. First,
we aim to assist readers in analyzing and comprehending the underlying parameterization, the values chosen for the parameters,
and the results pertaining to algorithmic control and convergence. Second, there is no published paper that summarizes all the
ingredients of the PLoM approach that are used in this work. Early developments addressing, for instance, the quantification of
probability measure concentration and the estimation of the smoothing parameter in the calculation of the diffusion maps basis
and its truncation order, are disseminated in a series of papers (see below). On the other hand, some presented results are new,
including the expression of the relaxation parameters as a function of the iteration number (in the implementation of the learning
algorithm), and the expression of the drift matrix associated with the normalization condition.

The PLoM approach [37-39] starts with the consideration of a training dataset D,, comprising a relatively small number n, of
points generated from an underlying stochastic manifold associated with a R"-valued random variable X = (Q, W), defined on a
probability space (0,7, P). Here, Q represents the quantity of interest and is a R"s-valued random variable, while W denotes the
control parameter and is a R"«-valued random variable. The total dimension is n = n, + n,,. Another R"s-valued random variable
U, defined on (O, T, P), is also considered as an uncontrolled parameter. The random variable Q is assumed to be expressed as
Q = f(U, W), where the measurable mapping f is not explicitly known. The joint probability distribution Py y;(dw,du) of W and
U is assumed to be given. The non-Gaussian probability measure Px(x) = Pqw(dq,dw) of X = (Q, W) is concentrated in a region
of R", for which the only available information is the cloud of points in the training dataset D,;. The PLoM method enables the
generation of the learned dataset D,, for X, consisting of ny,. > n, points (learned realizations) generated by the non-Gaussian
probability measure estimated using the training dataset. The preservation of the probability measure concentration is guaranteed
by the utilization of a diffusion-maps basis, which enriches the available information from the training dataset. Utilizing the learned
dataset D,,, PLoM enables the computation of conditional statistics, such as w Pojw(do|]W = w), on C,,. Here, O = £(Q), where
& is a measurable mapping from R into R", allowing for the construction of statistical surrogate models (metamodels) within a
probabilistic framework. The formulas for the computation of conditional mathematical expectations, conditional probability density
functions, and conditional cumulative distribution functions, given any w, in C,, are given in Appendix.

The training dataset D, comprises n, independent realizations xg = (qg,wg) in R" = R"™ x R" for j € {1,...,n,;} of random
variable X = (Q, W), in which qu =f (ufi, wf,). The PLoM method allows for generating the learned dataset D,,, consisting of n,. > n,
learned realizations {x/,# = 1,...,n,} of random vector X. Once the learned dataset is constructed, the learned realizations for Q

ar’
and W can be extracted as (g, w) =x, for £ =1,...,ny,.

3.1. Construction of a reduced representation

The n,; independent realizations {x{i, j=1,....n,} are represented by the matrix [x,] = [x“i xZ" linM,, - Let [X] = X1, ..., X"]
be the random matrix with values in M,,, , where its columns are n, independent copies of random vector X. Utilizing Principal
Component Analysis (PCA) of X, random matrix [X] is written as,

[X] = [x] + [@] [1]"/? [H], (25)

where [H] = [H',..., H%] is a M,,, -valued random matrix (v < n), and [y] is the (v x v) diagonal matrix of the v positive

eigenvalues of the empirical estimate of the covariance matrix of X. The (n X v) matrix [¢] consists of the associated eigenvectors
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such [¢]” [@] = [I,]. The matrix [x] in M, has identical columns, each being equal to the empirical estimate x € R" of the
mean value of random vector X. The columns of [H] are n, independent copies of a random vector H with values in R", satisfying
the normalization conditions, E{H} = 0, and E{H ® H} = [I,]. The realization [5;] = [njl 11;" ]le ]Mv’nd of [H] is computed by
[n41= [~ [@]" ([x4]1 — [x]). The value v is classically calculated in order that the L?- error function v - erry(v), defined by

Zz,:l Hq
E{|IX]12}°

be smaller than e,,. If v < n— 1, statistical reduction occurs.

errx(v) =1-— (26)

3.2. Probability measure of H

The probability measure Py of H has to be estimated in order to construct the probability measure of random matrix [H] used in
the PLoM methodology. Let Py(dn) = py(n) dn be the probability measure on R" of H, whose probability density function n — pg(n)
on RY is estimated by using the Gaussian kernel-density estimation (KDE) with the training dataset Dy, () = {#/,j = 1,...,n4},

d
pu(m = L Z

_r exp<
"a ;= (Vax sy

In these equations, §, is a modification of the standard Silverman bandwidth s, defined by

. 5 ) _{ 4 }1/(v+4)
v 1 T ng(2+v) ’

§2 4 ma=l

v ng

1 3 .
——l=w-nl*) . VaeR". 27)
2§52 7 s,

With such a modification, the normalization of H is preserved for any value of n,, that is to say,

L

EH) = [ nptnan= 3

ﬁ=0v,

(ng =1
n

2 .
E{H®H} =/ (n®m) py(m)dn = §[1,] + j_z [Cul=1[1,],
RV

v
where € RY and [Cy] € M are the estimates of the mean value and the covariance matrix of H, performed with D, ().
Theorem 3.1 in [38] proves that, for all 5 fixed in RY, Eq. (27) is a consistent estimation of the sequence { PH I, for n; - +oo.

3.3. Development of a reduced-order basis using diffusion maps

To preserve the concentration of the learned realizations in the region where the points of the training dataset are concentrated,
PLoM relies on an algebraic basis in vector space R"¢, constructed using the diffusion-maps basis [78]. Let [K] and [b] be matrices
such that, for all i and j in {1,....n,}, [K],; = exp{—(4ep) "I, — )1} and [b];; = 6,; b, with b, = z;il[K],.j, where ¢, > 0 is a
smoothing parameter. Let [IP] = [b]"'[K] be the matrix in IMnd, with positive entries, satisfying Z;’i | [P]; =1 foralli=1,...,n,.
Matrix [[P] can be regarded as the transition matrix of a Markov chain that represents the probability of transition in one step.
The eigenvalues 4,,..., 4, and the associated eigenvectors w!,...,y" of the right-eigenvalue problem [P]y® = A, y* satisfy
1=4; >4 > 2 4,, and are computed by solving the generalized eigenvalue problem [K]y® = 4, [b]y* with the normalization
condition ([b] yw*, y’) = 645 The eigenvector y! associated with A, = 1 is a constant vector. For a given integer x > 0, the diffusion-
maps basis {g!,...,g% ...,g"} forms a vector basis of R”¢ defined by g* = A% w®. The reduced-order diffusion-maps basis of order
m is defined, for a given integer m, as the set {g', ..., g"}, represented by the matrix [g,] = [g' ...g"] € M, m with g* = (€. gffd)
and [g,,] o = g;?’. This basis depends on two parameters, ¢, and m, which need to be identified. It is proven in [38], that the PLoM
method does not depend on k, which can therefore be chosen to 0. We aim to determine the optimal value mqy < n, for m and the
smallest value &4, > 0 for e,y such that (see [39])

1= A1 > Ay(Eopt) = o & Ay, Eop) > Aoy 1(Eop) = -+ 2 Ay, (Eop) > 0, (28)

with an amplitude jump equal to an order of magnitude (a factor 10, as demonstrated in [38]) between )”mopl (eopy) and A,,,Opl +1(Egp)-
A more detailed analysis leads to the following algorithm for estimating eqp and mgp. Let epy = Jump(epy) be the function on
10, +o0[ defined by

Jump(epy) = Am()pt+l (epm)/ A2(Epy) - (29)

The algorithm is as follows: set the value of m to mg, = v + 1 and identify the smallest possible value e, of epy such that
Jump(sopt) < 0.1 and Eq. (28) is satisfied.
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3.4. Reduced-order representation of random matrices [H] and [X] to preserve probability measure concentration

The diffusion-maps vectors g!,...,g" € R” span a subspace of R”¢ that characterizes, for the optimal values Mopy and eqpc Of m
and &,,,, the local geometry structure of dataset {7, = 1,...,n,}. The PLoM method introduces the M, -valued random matrix
[H,] = [Z,][g,]" with m < n,, corresponding to a data-reduction representation of random matrix [H], in which [Z,] is a M, -
valued random matrix. The MCMC generator of random matrix [Z,,] is chosen from the class of Hamiltonian Monte Carlo methods,
explicitly described in [37], and mathematically detailed in Theorem 6.3 of [38]. For generating the learned dataset, the best
probability measure of [ H,,] is obtained for m = my and by using the previously defined basis [gmopt]' For these optimal quantities

mopy and (g, ‘], the generator allows for computing ny realizations {[z{ ], = 1,...,myc} of [Z’"opt] and therefore, for deducing the
nyvic reallzatlons (). =1,....nyc} of [H ot The reshaping of matrix [r},] € IMW,d allows for obtaining n,. = myc X n; learned
realizations {"ar’ =1,.. ,nar} of H. These learned realizations enable the estimation of converged conditional statistics, which

are then utilized to construct statistical surrogate models related to X, and subsequently, to (Q, W).

3.5. Quantifying the probability measure concentration of random matrix [H,, ]

Mopt
For m < n,, the probability measure concentration of random matrix [H,,] is defined (see [39]) by:

d; (m) = E([IH,] = [ng11*}/lltnalll* (30)
Let My = {mopt, mope + 1,....ng }, where mOpt represents the optimal value of m as defined earlier. Theorem 7.8 of [38] shows that
min,,¢ Mopt nz(m) <+ mgy / (ng—1) < d? (1), indicating that the PLoM method, for m = mqp and [gm0 .1, is a better method than

the standard one corresponding to d2 (nd) =1+n,/(n; —1) ~ 2. Using the ny realizations {[nar] ¢=1,....nyc} of [H Opl], we have
the estimate d? - (Mopt) = (1/nyic) ZnMC {||['1,Jlr = 111”3/l 1112

3.6. Generation of learned realizations { nar, ¢' =1,..., ny} for the random vector H

The MCMC generator is detailed in [37]. Let {([Z(")], [Y(®)]), t € R*} be the unique asymptotic (as t - +oo) stationary diffusion
stochastic process with values in M, ,, lxMV Topt? representing the following reduced-order ISDE (stochastic nonlinear second-order
dissipative Hamiltonian dynamic system), for t > 0,

dIZ0] = V@) d1,
dY®1 = [LAZOD dt — %fo Y01 d1 + /o [dWVE )],
with [Z(0)] = [1,][a] and [P(0)] = [N][al, in which

]T

[a] = (8o ) (&1 (8o D™ € My -

@D [LTZOD] = [L(Z®)] [gmopl]T)] [a] is a random matrix with values in Mv.mOpl‘ Forall [u] = [u'...u"]in Mv,nd withw/ = (u{, ,uﬂ)

in RY, the matrix [L([u])] in ]Mmd is defined, for all k =1,...,vand for all j =1,...,n4, by

(LDl = (j){ W P} (31)
/)= = Z exp{——n n/ —u/|?},
ng oA
Y pw)= — 2<§ryf—u/>exp{——u '~ W)

2
§/nma iy S 28

(i) WV (1)] = [WWien(r)] [a] where {[W™en(r)], r € R*} is the M, -valued normalized Wiener process.

(iii) [N] is the ley,,d -valued normalized Gaussian random matrix that is independent of process [WW"].

(iv) We then have (Z,,,]=1lim,_ ,, [Z("] in probability distribution. The Stérmer—Verlet scheme is used for solving the reduced-
order ISDE (see [37]), which allows for generating the learned realizations, [z;r] Y [z"MC], and then, generating the learned
realizations [r ], ..., [1;°] such that [r] = [2Z,] [gmopl]T It should be noted that the calculation of the realizations of [Z,, ont J is
done in parallel computation, each realization [z ] of [Z, ] being calculated on a “worker” associated with a realization [W"'*" 4]

of the Wiener process [W"i€"].

(v) The free parameter f|,, satisfying 0 < f, < 4/§,, allows for the control of the dissipation term in the nonlinear second-order
dynamic system (a dissipative Hamiltonian system) to quickly damp the transient effects induced by the initial conditions. A
commonly used value is f, = 4 (noting that §, < 1). Consequently, the ISDE is solved over the interval ]0, 7], where T depends on
fo and represents the smallest integration final time allowing [Z"‘opt] to be chosen as [Z(T)] while being in the stationary regime.

Mopt

(vi) The learned realizations {xf ¢ = ..,ny} of random vector X are then obtained by reshaping the realizations {[xgr] =
x]+ (@] [ /2 051, =1, ... ,nyc} (see Eq. (25)) with ng = nye X ny.
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3.7. Preserving normalization conditions through constraints on second-order moments of H

In general, the mean value of H estimated using the n,, learned realizations {ngr',f’ = 1,...,ny,}, is sufficiently close to zero.
Similarly, the estimate of the covariance matrix of H is also sufficiently close to the identity matrix. However, there are instances
where the mean value may not be sufficiently small, and the diagonal entries of the estimated covariance matrix can fall below
1. The normalization conditions can be reestablished during the learning algorithm described in Section 3.6 by imposing, for all

k=1,...,v, the constraints E{H,} =0 and E{(H,)*} = 1. These constraints can be globally rewritten as
E{h(H)}=b on R, (32)
in which n, = 2v. Here, the function h = (h, ..., hy,) and the vector b = (b, ..., b, ) are defined such that, for all k in {1,...,v}, we

have h,(H) = Hy, h;,,(H) = (H,)?, b, =0, and b, = 1.

(i) Methodology for imposing the constraint in the learning algorithm. We apply the Kullback-Leibler minimum cross-entropy principle
as proposed in [79,80]. Let H, be the RV-valued random variable that satisfies the constraint defined by Eq. (31), expressed as
E{h(H,)} = b. The learned probability measure Py (dn) = py, (1) dn, represented by a density py_ on RY, which satisfies the constraint
and which is closest to py defined by Eq. (27), is the solution of the following optimization problem,

pu, = arg pngln / Vp(n) 10g< p(?))> dn, (33)

in which the admissible set C,q, is defined by

Cadp = {n'—w(n) "R > ]R+’/R p(m)dn = L/R h(n)p(n)dn=b} . (34)

It is proven that there exists a unique solution to the optimization problem defined by Egs. (33) and (34), which is reformulated
using Lagrange multipliers to account for the constraints in the admissible set (refer to Proposition 1 in [80] for the construction of
the probability measure of H, and the proof of its existence and uniqueness).
(ii) Learning algorithm implementation. To take into account the constraints in the learning algorithm defined in Section 3.6, Eq. (31)
is replaced by the following one,

(L (D] = ( oy Yo P = A= 2 gt -
in which the Lagrange multiplier A € R", associated with the constraint defined by Eq. (32), is calculated using an iteration
algorithm (see [80]). At each iteration i, the value of A is denoted by A’ and the corresponding random vector H, is denoted by H 2ie
The value A'*! is computed as a function of A’ by

A = ) " AHT' T L, P20,
A0 =

ne ?

in which I'(4') = b — E{h(H,/)} and [I""(A")] = [cOV{h(H,))}] (the covariance matrix). The positive coefficient ; is a relaxation
parameter (less than 1) that is introduced for controlling the convergence of the iteration algorithm. For given i, > 2, for given
p; and B, such that 0 < g, < p, < 1, a; is defined, for i < i5, by a; = ; + (B, — p)(i — 1)/(i, — 1), and for i > i,, by a; = p,. The
convergence of the iteration algorithm is controlled by the error function i — err(i) defined by

err(i) = ||b— E{h(H,)}||/[|b]| . (35)

At each iteration i, E{h(H )} and [cOV{h(H,/)}] are estimated using n,, = nyc X n; learned realizations of the random vector

m(ypl(l‘), which is obtained by reshaping the ny - learned realizations of the random matrix [H,, [(/l‘)]
4. Application

4.1. Notation and definition of case studies

In order to deploy and assess the performance of the PLoM approach, two scenarios are introduced as follows.

+ In the first scenario, relevant to inverse problem solving, the stochastic boundary conditions on £_,,. and the hyperparameters
in the random field model (see Section 2.3) are used as control parameters. Let Wy, be the random vector corresponding to
the discretization of the random field {U,,,.(X),X € 02} (see Section 2.3.2), and let W,y be the random vector associated
with the randomization of the mean value, the coefficient of variation, and the correlation length of 1. The control variables
are Wy, and W,

+ In the second scenario, related to propagation, the hyperparameters for the random field model are set to their mean values
and are not considered as control variables. The latter only comprise the boundary displacements on £2,,., gathered in W;g,.

10
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In the context of statistical surrogate modeling, our goal is then to estimate conditional distributions for the mechanistic variables
in the homogenized constitutive model (namely, the right Cauchy-Green deformation tensor and the second Piola-Kirchhoff stress
tensor), at any quadrature point of interest in the region where concurrent multiscale coupling is considered, given specific values
of the control parameters. For the first scenario, this would enable, through the formulation of an ad hoc statistical inverse problem,
the identification of the hyperparameters in the material random field model, assuming that (e.g., experimental) data on the above
tensors are available. In the second scenario, this would allow for the estimation of the stress and strain variables (defined as
conditional means) for given values of the (Dirichlet) boundary conditions on the macroscopic domain — a statistical extension
to standard surrogate modeling where the mapping [Cp,.(x%,0)] = [Spacx%.0)], 1 < g < Op, would be approximated using,
e.g., regression.

For the sake of illustration, non-informative prior models are chosen in the first scenario. More specifically, the mean, coefficient
of variation, and the correlation lengths are assumed to be statistically independent and uniformly distributed on [32000,48000],
[0.1,0.3], and [0.2,0.4], respectively. The truncation order in the Karhunen-Loéve expansion is computed for each sample of the
correlation length, using the same threshold (le—2).

The relationships between the notations used for the PLoM algorithm summarized in Section 3 and the notations of mechanical
quantities are as follows. We recall that, for the n, = 100 Gauss points referred to by the set of indices T = {i = L,...,n,},
(C,;»j = 1,2,3) represents the 3 components of the random Cauchy-Green tensor at index point i € 7, and {.S; j»J =1,2,3} represents
the 3 components of the random second Piola-Kirchhoff stress tensor. We will also use the notations C and S for the reshaping of
these two random tensors, which are then random vectors with values in R>». Finally, plots of probability density functions are
obtained using (non-parametric) kernel density estimators, while the conditional probability density functions are estimated using
Eq. (31).

(i) Quantity of interest. The R"-valued random variable Q is defined by Q = (S, C) with n, =2x(3n,) = 600.

(i) Control parameter. Following the previous discussion, let Wy, be the R"d»-valued random variable for which the n,, 4, = 48
components are the discretized displacements on the boundary. Let Wy, = (Wi 1 Wiypo, Wiyp3) be the hyperparameters that
control the prior probability model of the random medium (defined in Section 2.3). For the construction of the training and learned
datasets, the definition of the IR"»-control parameter W depends on the scenario.

* Scenario 1: the training and learned datasets are constructed with W = (Wy,, W) and n,, = 3 + n, gi, = 3 + 48 = 51. The
o - . _ 3
conditional statistics are constructed for given Wy, = wy,,, , € R°.
* Scenario 2: the training and learned datasets are constructed with W = W, and n,, = n,,
to the statistical mean value Wop = @y

disp = 48. The value of W, is fixed

ol Wiyp22 W 3) of the prior probability model of Wy,,,. The conditional statistics are

constructed for given Wy, = Wgigp, € R™.

The random variable U (uncontrolled parameter) corresponds to the stochastic germs in the Karhunen-Loéve expansion of the
underlying Gaussian random field, which are statistically independent normalized Gaussian random variables.

4.2. Conditional statistics

For the validation of the proposed methodology, the conditional statistics estimated with the learned dataset and those estimated
with the validation dataset (considered as a reference) will be compared. Below, we define the considered conditional statistics,
including the conditional probability density functions and the conditional mean functions (given the control parameter).

+ Scenario 1: for all i € Z, for j € {1,2,3}, for w, given in R, and for all ¢ in R, we consider

9+ bc; |whyp(4|wa), q= Ds; |whyp(4|wg),

i E(Cy Wiy =) = [ apc, jw, (a1 w,)da
and
i E{S;; | Wy =W,} = /qus,j |Whyp(q |w,)dq.
+ Scenario 2: for all i € Z, for j € {1,2,3}, for w, given in R*, and for all ¢ in R, we consider

45 ey 1Waipy (@1 Wo) s 40 P i, @1 Wo)

i E{Ci; | Wyisp = W, } =/ 4Pcy; | Wiy @1 Wo) d4.
R
and

i E{S;; | Wgip = W,} =/ aps, ‘Wdigp(q|wo)dq.
R s

11
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Fig. 6. Convergence of the PCA reduced representation (a). Eigenvalues of the transition matrix [IP] for the diffusion-maps basis (b). Scenario 1 (thin line),
Scenario 2 (thick line).

4.3. Parameter values and convergence analysis of PLoM algorithms for scenarios 1 and 2

In this section, we define the parameter values used by the PLoM algorithms (as summarized in Section 3), and we present
the convergence analysis for both scenarios. Notations are those introduced in Section 3. To simplify referencing with respect to
each scenario, the first provided value corresponds to Scenario 1, while the second value corresponds to Scenario 2. For instance,
“n, =280 and 272” means that n, = 280 for Scenario 1 and n, = 272 for Scenario 2. When a single value is given, it applies to both
scenarios. For example “n; = 500” means that n; = 500 for Scenario 1 and Scenario 2.

(D) Values of the general parameters. The total dimension of X = (Q, W) is n = n, + n,, = 651 and 648. The number of points in the
training dataset D, is n; = 500.

(ii) Reduced representation and diffusion-maps basis. Fig. 6(a) displays the graph of the function v — errx(v) defined by Eq. (26). For
Scenario 1, convergence of the representation is achieved at v = 140, resulting in an error of errx(140) = 2.85 x 10~*. In Scenario 2,
convergence occurs at v = 136, with an error of erry(136) = 2.99 x 10~*. Regarding the computation of the diffusion-maps basis
introduced in Section 3.3, the optimal value of the smoothing parameter &, is determined as e, = 454 and 278, corresponding to
the optimal value mqy, = 141 and 137 of parameter m. Fig. 6(b) shows the graph of the function a + 4, representing the eigenvalues
of the transition matrix [IP].

(iii) Generating the learned realization. The learned realizations are generated as explained in Section 3.6, incorporating the constraints
outlined in Section 3.7. The free parameter f, is chosen as 4, and the integration step Ar of the Stormer—Verlet scheme is 0.21. Each
realization [zf] represents the #th realization of [Z(T)] for T = 30 x 4t (due to the damping controlled by f, = 4, T is a time at
which the stationary response is reached). We have chosen nyc = 100, resulting in n,, = nyc X ny; = 50 000.

(iv) Constraints on second-order moments of H. For Scenario 1, the number of constraints is n, = 280, and the relaxation parameter «;
is defined by g, = 0.01,i, = 10, and g, = 0.1. For Scenario 2, n, = 272, and g, = 0.01,i, = 20, and g, = 0.5. The convergence of the
iterative algorithm presented in Section 3.7-(ii), to take into account the constraints on second-order moments of H in PLoM, as a
function of iteration number i, is studied in analyzing the graph of the error function i ~ err(i) defined by Eq. (35) (see Fig. 7(a))
and the graph of the function i — ||A’|| (see Fig. 7(b)). A very good convergence is observed, with err(2000) = 10~3 (Scenario 1) and
err(109) = 3.2 x 10~* (Scenario 2). For both scenarios and for all k in {1,...,v}, at convergence, it holds that |E (H .} < 10~7 and
0.999 < E{ij} <1

(v) Concentration of the learned probability measure. As explained in Section 3.5, the quality of the PLoM algorithm is assessed by
examining the value of dﬁd(mop[), defined by Eq. (30). At convergence, we obtain dgd (mopy) = 0.17 and 0.16, indicating excellent
quality of PLoM to preserve the concentration of the learned probability measure.

(vi) Illustration of the learned pdf of components of H and of the clouds of the learned points. In H,, the subscript ¢ is removed to simplify
the writing. Fig. 8 (Scenario 1) and Fig. 9 (Scenario 2) depict the probability density functions of components H;, Hs,, and H, of
H, estimated using the training dataset and the learned dataset. These figures exhibit a good coherence. It should be noted that the
convergence of these estimates is not the same, as there are n, = 500 points in the training dataset and n,. = 50000 points in the
learned dataset. Fig. 10(a) (Scenario 1) and Fig. 10(b) (Scenario 2) display the clouds of the learned points and the training points
of H, associated with components H,, Hs,, and Hy,. These results illustrate the preservation of the concentration of the probability
measure.

4.4. Validation analysis

In this section, we present a validation of the proposed methodology. This methodology is based on the construction of conditional
statistics (statistical surrogate model) defined in Section 4.2, which are estimated with the n,, points of the learned dataset, generated

12
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Fig. 7. Convergence analysis of the iterative algorithm to take into account the constraints on second-order moments of H in PLoM as a function of iteration
number i, presented in log-log scales. Scenario 1 (thin line), Scenario 2 (thick line).
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Fig. 8. Scenario 1: probability density functions of components H,, Hy,, and H,, of H, estimated with the training dataset (dashed line) and with the learned
dataset (solid line).
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Fig. 9. Scenario 2: probability density functions of components H,, H;,, and H,, of H, estimated with the training dataset (dashed line) and with the learned
dataset (solid line).
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Fig. 10. Clouds of the learned points and the training points of H, associated with components H,, Hs), and Ho,.
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Fig. 11. Validation of Scenario 1: Graph of the conditional pdf given Wy, = w, of component 1 of the random tensors C and S at point 60. Learned dataset
(solid line), validation dataset (dashed line).

with the PLoM algorithm. The estimates of these conditional statistics are converged because n,, is large. For validation purposes,
these conditional statistics must be compared with a reference. This reference can only be obtained by constructing a validation
dataset with n, points generated with the nonlinear computational model used to construct the n, points of the training dataset.
Ideally, n, =~ n, and the construction of a validation dataset can be achieved for both scenarios. Here, due to limitations in
computational resources, we only consider the construction of a new validation dataset for Scenario 2. This validation dataset
D, comprises n, = 20000 independent realizations (qf ,wf ) in R” = R™ x R" with n, = 600 and n,, = 48, for # € {1,...,n,} of
the random variable (Q, W) (note that n, < ny in this case). The constitution of this dataset requires solving 2040000 nonlinear
finite-element computations overall. The following settings are then considered.

* For Scenario 1: as explained in Section 4.1, we have W = (W, W;,,) and n,, = 3 + 48 = 51. To construct the reference
conditional statistics with the validation dataset D,, we can therefore consider a single value n, = 1, w, = w, € R? of the
random control parameter Wy, ,. The realizations { w’} 45, are not useful, and only the realizations {q’} 5, are used.

* For Scenario 2: for the validation of the conditional statistics, the control variable is W = W, with n,, = n,, 4, = 48. To
construct the reference conditional statistics with the validation dataset D,,, we introduce n, values, {w,, € R",k=1,...,n,},
of the random control parameter W with values in R"«~. We have randomly drawn, with a uniform distribution, the n, vectors
{Woik=1,....n,} from the set {w/,# =1,...,n,}. Due to space limitations, we consider n, = 2: these two vectors correspond
to the realizations #1882 and #19 502 in the set {wf, ¢ =1,...,20000}.

The validation results are presented below for each scenario.
(i) Validation for Scenario 1. Concerning the conditional probability density functions, we select the first components at point #60,
corresponding to the random variables Cg; and S relative to the random tensors C and S, as quantities of interest. This point
is relatively central in the macroscopic domain, and the first components at this location present significant fluctuations — hence
making this choice a reasonable one from a validation standpoint. Fig. 11 displays the graphs of the conditional probability density
functions g — PCay Wy @1Wo) of random variable C¢; and g — p Se0.1Whyp (41 Wo) of random variable Sq; given Wy, = w,, estimated
with the learned dataset and the validation dataset. It can be seen that the width of the supports, which control the variances, is
well predicted.

For the three components indexed by j € {1,2,3}, Fig. 12 displays the graphs of the conditional mathematical expectations
i E{C; j|Wyy, = W,} for the family {C;;,i € T} of random variables, while Fig. 13 displays the graphs of i — E{S; j|Why, = W,}

14
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Fig. 12. Validation of Scenario 1: Graph of the conditional mathematical expectation as function of points i given Wy, = w, for the three components of the
random tensor C. Learned dataset (solid line), validation dataset (dashed line).
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Fig. 13. Validation of Scenario 1: Graph of the conditional mathematical expectation as function of points i given Wyy, = w, for the three components of the
random tensor S. Learned dataset (solid line), validation dataset (dashed line).

for the family {.S; ;,i € 7}. While very large variations are observed over the quadrature points, the accuracy in the predictions of
the conditional expectations remains remarkably good given the small number of training data. It should be noted that the graphs
in Figs. 12(b) and 13(b) differ only from a constant.

(ii) Validation for Scenario 2. The conditional probability density functions are estimated for the first components of the tensorial
quantities of interest at point #60, as for Scenario 1. For the two values of the control parameter, k = 1 and k = 2, Fig. 14 displays
the graphs of the conditional probability density functions ¢ — Py IW, disp(qlwo’,{) for random variable Gy given Wy, = W,
estimated with the learned dataset and the validation dataset. Similarly, Fig. 15 displays the graphs of ¢ — p Seo.1|W disp(qlwo,k) for
random variable Sg; given W, = Wy ;. Again, it is seen that the supports of the (marginal) distributions are well predicted, and
the validation results are reasonably good.

For j € {1,2,3} and the two values of the control parameter (k = 1 and k = 2), Figs. 16 and 17 display the graphs of the
conditional mathematical expectations i = E{C; ;|W, = W, } for the family {C; ;,i € T} of random variables, while Figs. 18 and
19 display the graphs of i = E{.S; ;|Wy, = w,,} for the family {S;;,i € I}. Good accuracy is observed over all quadrature points,
which demonstrates the capability of the framework to capture the non-smooth large variations generated by the localization in the
nonlinear stochastic boundary value problems.

4.4.1. Remarks on CPU time

For the probabilistic learning algorithm, the total CPU time is due to the construction of the learned dataset, the numerical cost
of conditional statistics being completely negligible. For the construction of learned datasets, the CPU time is directly proportional
to the number of iterations required to satisfy the normalization constraints. For the first scenario, 2000 are used and the total CPU
time is 4 hr and 26 min. For the second scenario, only 109 iterations are necessary to reach excellent convergence and the total
CPU time is 19 min. It should be noted that for scenario 1, the convergence tolerance could have been reduced without significantly
penalizing the quality of the results, and this would have significantly reduced the number of iterations and therefore CPU time.

Regarding the generation of the training dataset using nonlinear finite element simulations and the FE> approach, the average
CPU time to complete one simulation is 449.80 s, and one multiscale simulation at any Gauss point (and final increment) takes
from 0.5 to 5.401 s (depending on both the sample of the local material properties and the applied boundary conditions). Assuming
that conditional statistics would be computed using 50,000 samples, the CPU time associated with a brute force approach (with
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Fig. 14. Validation of Scenario 2: Graph of the conditional pdf given Wgjsp = Wo; or Wy, of component 1 of the random tensor C at point 60. Learned dataset
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Fig. 15. Validation of Scenario 2: Graph of the conditional pdf given W5, = wy; or wy, of component 1 of the random tensor § at point 60. Learned dataset
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Fig. 16. Validation of Scenario 2: Graph of the conditional mathematical expectation as function of points i given Wg;sp = W for the three components of the
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sequential execution) would then be ~ 50,000 x 450 = 6250 h. While this time can be reduced using distributed computing, it

remains much larger than the cost induced by the learning method.

5. Conclusion

In this work, we have introduced a statistical surrogate model for concurrent multiscale simulations involving nonlinear materials
with non-separated scales. The methodology combines probabilistic learning on manifolds, a generative model that allows for
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Fig. 17. Validation of Scenario 2: Graph of the conditional mathematical expectation as function of points i given Wdisp = Woo for the three components of the
random tensor C. Learned dataset (solid line), validation dataset (dashed line).
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Fig. 18. Validation of Scenario 2: Graph of the conditional mathematical expectation as function of points i given Wg;sp = W, for the three components of the
random tensor S. Learned dataset (solid line), validation dataset (dashed line).
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Fig. 19. Validation of Scenario 2: Graph of the conditional mathematical expectation as function of points i given Wgjsp = W, for the three components of the
random tensor S. Learned dataset (solid line), validation dataset (dashed line).

measure concentration and support information to be accurately captured, with the use of conditional statistics to approximate
the mapping between apparent strain and stress variables — namely, the right Cauchy-Green tensor and the second Piola—Kirchhoff
stress tensor — at a finite set of points (defining a subregion of interest where concurrent coupling must be deployed). As opposed to
standard techniques relying on, e.g., polynomial or neural network surrogates, the proposed approach (1) can readily accommodate
the (aleatoric) randomness raised by the multiscale setting, (2) enables the seamless integration of nonlocal interactions through the
consideration of joint distributions, and (3) can perform efficiently in the small data regime. Two applications, relevant to inverse
problem solving and forward propagation, were presented in the context of nonlinear elasticity. In the first case, the hyperparameters
for the prior model defining the random media and boundary conditions at mesoscale are considered as control parameters. This
setting can be used, for instance, to identify the hyperparameters when experimental observations are available. In the second
application, only mesoscopic boundary displacements are used as control variables. In this case, the prior model at fine scale is
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fixed, and the effect of material randomness can be quantified. In both cases, large spatial variations, large statistical fluctuations,
and strong non-Gaussianity are observed. It was shown that despite these challenges, the framework remains capable of delivering
reasonably accurate estimations, even with a fairly limited amount of training data. The information contained in the latter is a
critical aspect in the methodology: this information must be rich enough to learn the probability measure and discover the geometry
of the manifold defining its support.
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Appendix. Formulas for conditional statistics

In this Appendix, we use the following notation. The real-valued random variable Q denotes any component of the R"-
Valued random variable Q, and the real variable ¢ represents the corresponding component of the vector q in R"s. Let O and
=(W..... w,,) be the normalized random variables defined by

0=Q-9/og » Wi=W-w)foy, . k=1,..n,, (A1)

where q, W , and op, oy, are the mean values and standard deviations of the random variables Q and W,. These values are estimated
using emplrlcal statistical estimators based on the learned realizations {(an, w )€ =1,...,ny}. For any value wy = (wg , ... 2 Wo )
of the control parameter given in C,, ¢ R"», we define the vector w, in R"» such that

Wox = Wy —w)/ow, » k=1...n,. (A2)

The Gaussian KDE estimation of the joint probability distribution of O and W, with respect to d§dWw, is written as

nar

1 2) 1 )
P @ W) = (——(q T —— exp(—— W = Wo.[I1?). (A.3)
ow nar £=1 27rs . (\V27s)w 252 o
In Eq. (A.3), s is the Silverman bandwidth defined by
4 1/(n+4)
= — , =1 , A.4
{ nar(2 + n) } " e (A-4)
and, for £ =1,...,n,,, 55} and w;k are defined by
ar = (qur - ﬂ)/o-Q ’ wirk (wdrk wk)/UVVk s k=1 M - (A.5)

From Eq. (A.3), the following formulas for conditional statistics are derived.
(D The conditional mathematical expectation E{Q |W = w,} of O given W = w,, in C,, is given by

n; e _ st 2
o @ exp(—ﬁnw() — WP

E{Q|W=w)}=q+0p (A.6)
- 1 exp(— 55 Wy — Worll?)
(i) The conditional probability den51ty function pgyw(g | wo) with respect to dg of Q given W = w;, in C,, is defined as
2 weR
1 eXp(— Gt N P eXP(— 5 [IWo — Wi, lI%) -
Poyw(q | W) = 2 - . G=@-9)/%- (A7)
vV ZII'SGQ / 1 exp(—2 5) ”WO ar” )

(ii)) The conditional cumulative distribution function Fyw(q*|w,) = Proba{Q < ¢* |W = w,} of O given W = w; in C,, is estimated
using
. G >xexp<— o N
Forw(q"Iwy) = s =G -9/, (A.8)
ol tar &2 zrre
" exp(— 3y %01
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with
y
Fay=L v Le LG - ) . erf(y) = 2 / e dr. (A.9)
2 2 \/5 s \/; 0
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