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Whistler waves propagating nearly parallel to the ambient magnetic field experience a nonlinear

instability due to transverse currents when the background plasma has a population of sufficiently

low energy electrons. Intriguingly, this nonlinear process may generate oblique electrostatic waves,

including whistlers near the resonance cone with properties resembling oblique chorus waves in

the Earth’s magnetosphere. Focusing on the generation of oblique whistlers, earlier analysis of the

instability is extended here to the case where low-energy background plasma consists of both a

”cold” population with energy of a few eV and a ”warm” electron component with energy of the

order of 100 eV. This is motivated by spacecraft observations in the Earth’s magnetosphere where

oblique chorus waves were shown to interact resonantly with the warm electrons. The main new

results are: i) the instability producing oblique electrostatic waves is sensitive to the shape of the

electron distribution at low energies. In the whistler range of frequencies, two distinct peaks in the

growth rate are typically present for the model considered: a peak associated with the warm electron

population at relatively low wavenumbers and a peak associated with the cold electron population

at relatively high wavenumbers; ii) overall, the instability producing oblique whistler waves near

the resonance cone persists (with a reduced growth rate) even in the cases where the temperature

of the cold population is relatively high, including cases where cold population is absent and only

the warm population is included; iii) particle-in-cell simulations show that the instability leads to

heating of the background plasma and formation of characteristic plateau and beam features in the

parallel electron distribution function in the range of energies resonant with the instability. The

plateau/beam features have been previously detected in spacecraft observations of oblique chorus

waves. However, they have been attributed to external sources and have been proposed to be the

mechanism generating oblique chorus. In the present scenario, the causality link is reversed and the

instability generating oblique whistler waves is shown to be a possible mechanism for formation of

the plateau and beam features.

I. INTRODUCTION

Whistler waves play a critical role in the dynamics of the Earth’s magnetosphere since wave-particle interactions

with whistlers play a dual role of both accelerating and scattering of energetic electrons. The corresponding diffusion

coefficients depend on the global distribution of spectral power and polarization of the waves, making understanding of

these properties essential for successful modeling of ring current or radiation belt dynamics [52]. As a consequence, there

exists a significant interest in understanding of the basic physical processes affecting evolution of the magnetospheric

waves in general and of whistler waves in particular.

Statistical studies show that whistler waves in the Earth’s magnetosphere appear either as “chorus”, i.e. discrete

emissions appearing typically in two distinct frequency bands in a region outside the plasmasphere [9, 32, 54], or

“hiss”, i.e. broadband emissions found predominantly in the plasmasphere [15, 25, 45, 53] and in plasmaspheric

plumes [11]. The chorus waves are associated with local energization of energetic particles [35, 36, 49], as well as

electron precipitation in the form of diffuse [40, 50] and pulsating aurora [27, 41], or microbursts [8, 42]. Chorus waves

observed in the Earth’s magnetosphere can reach very large amplitudes, e.g. [10, 55, 56, 59]. For small magnetic
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latitudes, lower-band chorus waves are predominantly field-aligned [2, 24, 26, 31, 32, 51], which is consistent with

their excitation via a cyclotron instability of anisotropic electrons with energies in the range of several to tens of

keV [18, 22, 23, 29]. In addition to the field-aligned chorus waves, waves near the resonance cone angle are often

present [2, 32, 33, 46, 51]. The oblique waves play an important role in scattering of energetic electrons [4, 37]. In

general, the whistler waves become more oblique as they propagate to high latitudes. They may further experience

significant radial propagation, which complicates identification of their sources [12]. Nevertheless, it is likely that the

oblique chorus at small magnetic latitudes is generated by a mechanism distinct from that producing field-aligned

chorus [4]. Analyses of specific events often find plateau/beam-like features in the parallel electron energy distribution

with typical energy from ∼ 100 eV [33] to several keV [3]. This led to suggestions that oblique modes are generated by

a linear instability associated either with temperature anisotropy of ∼ keV electrons plus a plateau/beam distribution

at lower energies or with a beam-plasma instability driven by low-energy (≲ 1 keV) beams [5, 33, 38]. An alternative

mechanism was proposed by [19], who suggested that oblique chorus waves are generated by wave-wave nonlinear

coupling from the interaction of quasi-field-aligned chorus waves in the lower band and mildly oblique upper-band

chorus waves.

Since chorus waves are typically observed in the regions adjacent to the plasmasphere, the density of cold plasma

populations in these regions is often significant ( here ”cold” is loosely defined to mean energies below approximately

100eV.) In fact, in cases where the total plasma density can be measured by spacecraft (e.g. from the frequency

of the upper-hybrid line), it is often found that cold plasma populations dominate the total density. The focus

of this paper is on a recently identified nonlinear instability experienced by whistler waves in the presence of cold

plasma populations [44]. Specifically, kinetic simulations and theory were used to show that in the presence of cold

electron populations, quasi-field-aligned whistler waves of sufficiently large amplitude experience a parametric nonlinear

instability. This process leads to damping of quasi-field-aligned waves, heating of the cold plasma, and generation of

oblique electrostatic modes, including oblique whistlers waves near the resonance cone. The latter in particular are of

significant interest since the instability in question may provide a new mechanism of generating oblique chorus that is

complementary to the earlier proposed models. In this paper, we extend the analysis of the instability to the case of a

multi-component distribution of low-energy electrons, focusing specifically on the generation of the oblique whistlers.

Inclusion of such additional electron populations is motivated by the need to make a closer contact with observations

that often show presence of “warm” electron populations with energies in the range of ∼ 100 eV, which can also

strongly interact with the oblique chorus waves [e.g. 3, 30, 33]. Using theoretical analysis and kinetic particle-in-cell

(PIC) simulations, we show that the previously identified instability producing oblique whistler waves is robust in the

sense that is remains operational in the presence of such warm electron populations. Further, it may produce observed

features of the electron distributions, such as formation of a plateau or a weak beam in the resonant range of energies.

Properties of cold plasma populations, especially of the electrons, are hard to measure because their typical energies

are comparable to the spacecraft potential and/or the energy of the photo-electrons emitted by the spacecraft [see

e.g., a review in 13]. Photo-electrons, in particular, strongly confound the measurements of ambient cold electrons

for spacecraft in sunlight. As a result, the energy distribution of the cold populations remains poorly constrained by

observations even if the total plasma density could sometimes be estimated from wave measurements. In the present

work, we treat the temperature of the cold populations as an unknown and vary it parametrically.

In what follows, we use the following notations: the background magnetic field B0 is along z in a local Cartesian

(x, y, z) system. Perpendicular and parallel directions are defined with respect to B0. The plasma frequency for species

s is defined by ω2
p,s = 4πe2ns/ms, with ns the density of species s, e is the absolute value of the electron charge, and

ms is the species mass. Index s = eC, eW, eH, i labels cold (eC), warm (eW) and hot (eH) electrons and ions (i).

Here ”hot” refers to an anisotropic population with energies in the range of several keV and above. The electron

plasma frequency computed with the total electron density n0 = n0eC + n0eW + n0eH is denoted by ωpe and the total

electron inertial length is de = c/ωpe with c the speed of light. The cyclotron frequency is Ωc,s = eB0/msc. The

species thermal velocity is vt,s =
√︁
Ts/ms, where Ts is the temperature (which could be anisotropic). The inertial

length is ds = c/ωp,s. We will interchangeably use the terms “parent”, “driver”, or “primary” wave to refer to quasi
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field-aligned (whistler) wave that is the source of energy for the nonlinear interactions considered.

II. LINEAR THEORY

The specific nonlinear mechanisms that are the focus of this investigation originate from relative drifts between cold

electrons and ions transverse to the background magnetic field. In principle, it is well known that transverse drifts,

when present, may produce instabilities that play an important role in many settings in laboratory and space plasmas

(see e.g. a review of instabilities in the shock foot by [39]). In the cases discussed here, the drifts are induced by the

oscillating electric field of the parent whistler wave. The key observations are: i) whistlers are often present in the

region where density is dominated by cold plasma populations and ii) for large, but realistic amplitude of whistlers (i.e.

comparable to the observed values), the drifts can be significant in relation to the thermal speed of the cold electron

component.

The kinetic theory to study the instabilities of quasi- parallel whistler waves caused by relative transverse drift was

presented by [44]. The key features of the theory are: i) the underlying equilibrium corresponds to a time-dependent

circularly-polarized flow of cold plasma populations induced by the primary whistler wave; ii) The dispersion relation

for a given wavevector k couples several frequencies, separated by harmonics of the driver frequency ω0; iii) For typical

parameters of magnetospheric plasmas, the dominant instabilities are either quasi-perpendicular, short-wavelength

modes related to Electron Cyclotron Drift Instability [16, 17], or oblique short-wavelength whistler modes near the

resonance cone.

Specifically, the electrostatic dispersion relation, generalized here to account for multiple electron species, reads:⎧⎨⎩k2 +
∑︂

s=eC,eW

ω2
pe,s

v2t,s

+∞∑︂
n=−∞

[︄
1 +

ω√
2vt,skz

Z (ξs,n)

]︄
Γn (λs)

⎫⎬⎭ ϕ̃(k, ω)

=
ω2
pi

2v2ti

+∞∑︂
p,m=−∞

Jp (a) Jm (a)Z ′
(︃
ω + pω0√

2kvti

)︃
ϕ̃(k, ω + (p−m)ω0).

(1)

Expression (1) is written in the electron co-moving (rotating) frame of reference. Here ω is the frequency, k = |k|
is the magnitude of the wavevector k = {0, ky, kz}, a = kyV0/ω0, Γn(λ) = e−λIn (λ), λs = k2yv

2
t,s/Ω

2
ce, ξs,n =

(ω−nΩce)/(
√
2vt,skz) , Z is the plasma dispersion function, Jm (In) is the (modified) Bessel function of first kind, and

ϕ̃(k, ω) is the Fourier component of the electrostatic potential in that frame, while V0 and ω0 are the amplitude and

frequency of the equilibrium electron flow induced by a primary whistler wave. Eq. (1) is derived under assumption

that the spatial variation of the driving quasi-parallel whistler mode can be neglected. This is rigorously justified

under condition kz ≫ kz0, where kz0 is characteristic wavenumber of the driving mode. We note that in deriving

Eq. 1, we assumed that the cold and warm populations are isotropic. Accounting for anisotropy is straighforward:

corresponding expressions describing electron response (in non-rotating frame) are given in many textbooks, e.g. [48].

As is emphasized above, expression (1) couples the response of the system at a given k and ω with that at the same

k but at at different values of ω, Doppler-shifted by the frequency of the driver ω0. Thus, relation (1) constitutes

a system of equations for ω and sidebands ω ± pω0, where p is integer. However, when |ω + pω0| ≫ kvti the ion

contribution (terms on the right-hand side of equation (1)) can be neglected. In this case, system (1) describes the usual

electron waves in a hot plasma, expressed however in the rotating frame. Instabilities may appear near intersections of

a specific hot-plasma electron wave with the Doppler-shifted ion response, i.e. when |ω + pω0| ≲ kvti . Finally, the

transformation between Fourier components of any quantity A in the co-moving frame Ã and those in the stationary

(ion) frame Â is given by Ã(ω, k) =
∑︁

m Jm(a)Â(ω+mω0, k) [28]. Since observations are made in the stationary frame,

this implies that a mode with a single frequency ω in the co-moving frame may be observed as a series of sidebands.

A variety of useful approximations to Eq. (1) could be readily obtained. First, we ignore coupling to the side-bands
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and focus on perturbations in the vicinity of the resonance cone ω ≈ Ωce cos θ to obtain a simplified dispersion relation

(c.f. Eq. 7 of [44]):

k2 +
∑︂

s=eC,eW

ω2
pe,s

v2t,s

+∞∑︂
n=−∞

[︄
1 +

ω√
2vt,skz

Z (ξe,n)

]︄
Γn (λ) =

ω2
pi

2v2ti
|J1(a)|2Z ′

(︃
ω − ω0√
2kvti

)︃
(2)

A justification of the assumptions leading to Eq. 2 was discussed by [44].

A further insight into the nature of the instability generating oblique whistler modes can be obtained by by

considering a configuration where the warm population is absent and using cold plasma approximation for the left-hand

side, |Ωce/(kyvte)| ≫ 1 and |Ωce/(kzvte)| ≫ 1. The system (1) then reduces to

k2y

(︄
1−

ω2
pe

ω2 − Ω2
ce

)︄
+ k2z

(︄
1−

ω2
pe

ω2

)︄
−

ω2
pi

2v2ti
J2
−1 (a)Z

′ (ζ) = 0, (3)

with ζ = (ω − ω0)/(
√
2kvti), and a = ky|V0|/ω0. Expanding the Z function in the small argument limit, Z ′ ∼

−2i
√
πζ exp(−ζ2)− 2, and assuming γ/ωr ≪ 1, where γ = Imω and ωr = Reω, yields an analytic expression for the

instability growth rate:

γ

ωr
=

√
π

2

me

mi

J2
−1(a)

v2ti

ω0 − ωr√
2kvti

[︄
k2yω

2
r

(ω2
r − Ω2

ce)
2
+

k2z
ω2
r

]︄−1

(4)

where ωr is the solution of

k2y

(︄
1−

ω2
pe

ω2
r − Ω2

ce

)︄
+ k2z

(︄
1−

ω2
pe

ω2
r

)︄
+

ω2
pi

v2ti
J2
−1 (a) = 0. (5)

The nature of the instability now becomes evident. When there is no flow, the terms involving J−1 are zero and there

is no coupling between electrons and ions. In that case there is no instability and Eq. (5) describes whistler waves

near the resonance cone angle, cos θR ≈ ωr/Ωce. The presence of the flow leads to coupling with the ions and to a drift

instability when ωr < ω0 which leads to the generation of the oblique whistler waves near the resonance cone.

In order to understand the influence of the low-energy part of the electron energy spectrum on the instability, we

turn to the form of the dispersion relation given by Eq. 2, which retains the resonance terms. An example of its solution

is presented in Fig. 1. Here, we assumed parameters approximately corresponding to simulation case D discussed

in Section III below: ωpe/Ωce = 4, n0eW /n0 = 0.2, n0eC/n0 = 0.75, TeC = Ti = 5eV, TeW = 100eV, ω0 = 0.3Ωce,

V0 ≈ 0.8vteC , and mi/me = 1836. We observe that in the presence of warm and cold populations, there are typically

two distinct peaks in the growth rate, one at relatively low values of k and the other at relatively high values of k.

The nature of these two peaks could be elucidated by varying the parameters of the background plasma. For example,

increasing the temperature of the cold populations by a factor of two strongly affects the peak at higher values of k,

but leaves the peak at low values of k virtually unchanged (see curve labeled TeC × 2 in Fig. 1. In contrast, increasing

the temperature of the warm population affects both peaks, significantly reducing the growth rate at the low values of

k (curve labeled TeW × 2). Examination of the case where the warm population is absent (curve labeled neW = 0)

suggests that the peaks are formed due to suppression of the growth rate in the range of wavenumbers where the warm

population is resonant with the mode |ξeW,0| = 1.

Overall, the results of the linear analysis illustrate strong dependence of the instability properties on the energy

spectrum of the electrons in the range below a few hundred eV. Further, it may be anticipated that development of the

instability may influence distribution functions in this part of the energy spectrum, leading for example to formation

of plateau and/or beam features in the distribution due to resonances. This point is illustrated further in the following

section using PIC simulations.
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We also note that the oblique instability near the whistler resonance cone persists (for a fixed driver amplitude) for

relatively large values of electron temperature. For the parameters considered in the example above, that included cases

where the cold population was absent and only the warm population with TeW = 100eV was included, as shown in

Fig. 1. While the corresponding growth rate becomes lower with increasing temperature of the background populations,

this behavior is in contrast to the strong temperature dependence of quasi-perpendicular ECDI-type modes. The latter

generally appear when the magnitude of the transverse drift V0 is comparable to the thermal speed of the low-energy

populations vte. The oblique instability of the whistler type clearly exist in the regime V0 < vte. This observation

suggests that the oblique chorus generated by the mechanism presented here could often accompany large-amplitude

quasi-field aligned chorus waves in the Earth’s magnetosphere.

III. EVOLUTION OF THE OBLIQUE INSTABILITIES AND ENERGIZATION OF THE BACKGROUND

PLASMA: PIC SIMULATIONS

A. Simulation model

In the simulation model presented here, the field-aligned whistler waves are excited by cyclotron (temperature

anisotropy) instability of an electron population with the energy in the range of ∼ 10 keV. The initial conditions

correspond to plasma with protons and up to three species of electrons with different energies. All populations are

initially characterized by (bi-) Maxweillian distributions with density n0s, parallel (along the background magnetic

field) temperature Ts|| and perpendicular temperature Ts⊥. The hot (∼ keV) electrons are characterized by the

anisotropy A = TeH⊥/TeH|| − 1. The cold (∼ eV) and warm (∼ 100 eV) electrons and the ions are isotropic and

hence can be identified by a single temperature, TeC , TeW and Ti. Simulations are performed with the Particle-In-Cell

(PIC) code VPIC [7] using the parameters summarized in Table I. The simulations are performed in a two-dimensional

Cartesian domain (y, z) of dimension Ly × Lz, discretized by Ny ×Nz cells and use a uniform time step ∆t. In all

cases ωpe/Ωce = 4 and ni/n0 = 1.

We mainly vary the temperature of the cold electrons and ions relative to the 100 eV warm electrons to investigate

the influence of cold plasma temperature on the growth of oblique whistlers and ECDI. The simulation domain size was

selected to accommodate the growth of waves expected from the linear theory described in the previous section. Some

additional runs were performed to investigate a fully 3D system, and special cases with no warm electrons present.

B. Simulation results

All of the simulations summarized here behave qualitatively in the same way. The initial configuration is unstable

to a cyclotron instability due to the presence of an anisotropic hot electron population. This instability quickly

creates the primary, predominantly field aligned, whistler waves. After the primary whistler waves reach saturation,

electrostatic fluctuations with finite k⊥ appear, which are driven by the nonlinear processes discussed in Section II. For

the parameters considered, the oblique fluctuations are related to electron Bernstein modes and oblique electrostatic

whistler modes near the resonance cone. These fluctuations lead to damping of the primary whistler modes and heating

of the cold and warm electrons. For most of the simulations considered in this study, the most intense transfer of

energy from the primary whistler to the low-energy electron populations is associated with the oblique electrostatic

whistlers. The final state of the system is characterized by the presence of the oblique whistler modes. An important

observational property of these waves is that they have nearly the same frequency as the primary, field-aligned whistlers,

but higher wavenumbers and wave-normal angles near the resonance cone.

In order to illustrate this typical behavior, we focus on simulation D (see Table I). Fig. 2 summarizes time-evolution

of several relevant diagnostics. Panel a) shows evolution of the average magnitude of the magnetic field fluctuations.

The energy density PE of the electric field fluctuations with finite k⊥ is shown in Panel b). To differentiate between
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electron Bernstein and oblique electrostatic whistler waves, PE is computed in two narrow ranges of perpendicular

wavenumbers PE(k1, k2) =
∑︁k2

k⊥=k1
|E(k)|2, where |E(k)|2 = |Ex(k)|2 + |Ey(k)|2 + |Ez(k)|2. Panel c) shows parallel

and perpendicular cold electron temperatures. The spectrogram of the electric field fluctuations is shown in panel d).

This is computed by performing Fast Fourier Transform (FFT) in a sliding time window of width 100Ω−1
ce , averaged

over y and z. Panel e) shows the wave normal angle computed using singular value decomposition (SVD) of the

electromagnetic wave correlation matrix [47] in the same sliding windows. The results are only shown in the areas

where the spectrum density SE(ω, t) in panel d) is larger than a chosen threshold. To complement this estimate, Fig.

2 (f) shows the wave normal angle for the peak of the wavenumber spectrum at a given time.

As is seen in panel a) of Fig. 2, the primary whistler waves in simulation D grow on a timescale of a few hundred

Ω−1
ce . The waves are characterized by frequency ω ≈ 0.35Ωce (see panel d) and are field-aligned (see panels e and f).

Electrostatic fluctuations with finite k⊥ appear in the electric field at tΩce ∼ 1500. The orange line in panel b) of Fig. 2

corresponds to quasi-perpendicular electron Bernstein-like waves (PE is computed in the range 100 ≤ k⊥de ≤ 120)

and is multiplied by 10 for clarity, while the blue line corresponds to the highly oblique whistler waves near the

resonance cone and is obtained by taking 2πde/L⊥ ≤ k⊥de ≤ 50 while computing PE . Note that when the electrostatic

fluctuations appear, the amplitude of the primary whistler waves begins to decrease (panel a). The most intense

damping coincides with excitation of the highly oblique whistlers. The final amplitude of the magnetic field fluctuations

associated with the primary whistler waves is 20% of the initial saturated amplitude. Moreover, as the primary whistler

waves damp, cold electrons heat, as seen in Panel c) of Fig. 2. After approximately tΩce = 2000, the spectrum is

dominated by the highly oblique waves at the same frequency of the initial parent wave (see panels e and f). Harmonics

of the initial wave frequency ω0 are clearly evident in panel (d), corresponding to both the highly oblique whistlers

and the electron Bernstein waves. In particular, the transition at around tΩce = 2000, when the amplitude of the

secondary modes is the highest (see panel b), is characterized by a rich spectral signature.

The properties of the electric field fluctuations appearing at tΩce > 1500 are consistent with the predictions of the

kinetic linear theory introduced above. Figure 3 (left) shows the spectrum of fluctuations of the magnitude of the

electric field |E(k)|2 for simulation D, computed at Ωcet ≈ 1520, once the electrostatic fluctuations are beginning to

appear. On the right panel, the contour levels for γ/ωpe = 0.001 (blue) and γ/ωpe = 0.005 (red) are plotted, obtained

from the full dispersion relation (1) with N = 3 sidebands and keeping ±20 terms in the summation over n. The

other necessary parameters are extracted from the saturated state of the primary whistler wave before the onset of

the secondary instabilities and correspond to ω0 = 0.35Ωce and V0/c = 2× 10−3. One can see that the linear theory

reproduces quite well the range of unstable secondary modes seen in the simulation. The highly oblique whistler waves

are excited near the resonance cone indicated by the white dashed lines in Fig. 3 (left), which corresponds to a wave

normal angle of ≈ 70◦. Moreover, quasi-perpendicular electron Bernstein are also excited, characterized in Fig. 3 (left)

by large values of the perpendicular wave number, k⊥de ∼ 100. Note that k⊥de ∼ 100 corresponds to k⊥ρeC ∼ 1.25,

i.e. the Bernstein waves have wavelengths of the order of the cold electron gyroradius.

Resonant interaction of the oblique whistler modes with low-energy electrons leads to formation of the beam-like

features in the electron distribution function. This is illustrated by Figure 4, which shows the electron distribution

function in the (v⊥, v∥) space (top panel) and the distribution function along the cut corresponding to pitch angles

α = 10◦ (bottom panel). The latter roughly corresponds to the angular resolution of the Helium, Oxygen, Proton, and

Electron (HOPE) mass spectrometer [20] on the Van Allen Probes spacecraft. The energy resolution of the presented

diagnostic is however much higher than that of HOPE, enabling unequivocal resolution of sub-100eV structures that

may not be picked up by a survey using HOPE. Flattening of the distribution function at parallel energies around

50 eV is apparent. Using the value of k|| corresponding to the peak growth rate from the linear stability analysis,

k||de ∼ 7, and the Landau resonance condition with the highly oblique whistler waves at ω/Ωce ≈ 0.35, V|| = ω/k||,

leads to |V|||/c = 0.0125 and a resonant energy of ∼ 40 eV. This is in good agreement with the position of the plateau.

It is also interesting that the distribution function is slightly non-monotonic as a function of parallel energy, reminiscent

of a shallow beam. The non-monotonicity is not an artifact of a particular choice of α and is present at all small angles,

as well as in the integral of the distribution function over small pitch angles. As was discussed in the introduction,
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beams are often present concomitant with observations of highly oblique chorus waves. This led to the hypothesis that

the oblique waves are in fact driven by the electron beams. In the present scenario, the plateau/beam-feature forms

due to the secondary drift instabilities and is the consequence of the appearance of the highly oblique whistler waves.

The features observed in simulation D are common to all of the simulations in Table II. In all cases the highly oblique

whistler waves are formed with large wave normal angles near the resonance cone, as shown in Fig. 5. The primary

whistler waves damp significantly, losing at least 50% of the |δB|2 acquired after the initial saturation, and in some

cases damping almost completely (≥ 95%). This is reported in Table II, showing ∆B2 = 1−max|δB|2/|δB(tend)|2,
where max|δB|2 is the maximum of |δB|2 = |B−B0|2 and tend is the final simulation time. Since quasi-linear resonant

diffusion rates scale as |δB|2, such a drastic reduction in wave amplitude also implies a drastic reduction in resonant

pitch-angle scattering and energization rates.

Part of the primary wave energy is converted into heating of cold/warm electrons, as shown in Table II which reports

the change in temperature ∆T in the perpendicular and parallel directions, respectively. This gives an indication of

heating, although we remark that the electron temperature is not always fully saturated at the end of the simulations.

An insight into the nature of the energization of background plasma could be obtained by comparing the ratio of

cold-to-warm energy change ∆TeC/∆TeW with the ratio of growth rates at the two peaks of the dispersion relation at

small and large values of k discussed in Section II. This is presented in Fig. 6, where the scaling of ∆TeC/∆TeW with

the growth rate ratio is shown for both parallel and perpendicular direction. The growth rates for each case were

obtained by numerically solving Eq. 2 with the parameters of the corresponding simulations and searching for a local

maximum of the growth rate as a function of k and θ in two ranges of wavenumbers. We excluded cases B and F from

the analysis since in each case the numerical heating appears to strongly influence the results. The remaining cases

follow a linear scaling for both the parallel and perpendicular direction. There is more variability in the perpendicular

energization, which may be related to the contribution from the heating by electron Bernstein modes.

We remark that most of the simulations of Table II were performed in relatively short spatial domains (admitting

only one wavelength of the most unstable modes). The saturation amplitude is generally higher in longer domains, as

could be seen by comparing cases A and I. While this limitation may affect specific values of ∆B2 and ∆T for given

initial conditions, it does not affect the overall conclusions. In fact, one can simply interpret the reported values as

being representative of situations where primary waves of a given amplitude have been generated, but the driving

mechanism is no longer operational, either because the waves propagated out of the source region, or because the

anisotropy of the hot population has reached marginal stability.

IV. SUMMARY AND DISCUSSION

Quasi-field-aligned whistler waves experience a nonlinear instability due to transverse currents when they propagate

through a background plasma of sufficiently low energy. One of the most interesting effects associated with the

instability is the generation of oblique electrostatic waves, including highly oblique whistler waves near the resonance

cone. These modes are of great interest due to their possible connection with oblique whistler-mode chorus waves

in the Earth’s magnetosphere that are routinely observed by spacecraft and are known to play an important role

in wave-particle interactions. The results presented in this paper extend earlier analysis of [44] to the case where

low-energy background consists of both a cold electron population with characteristic energy in the range of a few eV

and a warm component with characteristic energy in range of ∼ 100 eV. This is motivated by spacecraft observations

in the Earth’s magnetosphere where oblique chorus waves were shown to interact resonantly with the warm electrons.

In the presented analysis the low-energy electrons are modeled by including two (cold+warm) Maxwellian populations.

The main conclusions are: i) the instability producing oblique electrostatic waves is sensitive to the shape of the

electron distribution at low energies. This is manifested by the sensitivity of both the wavenumbers corresponding to

the maximum growth rate and the growth rate magnitude to the temperatures and the relative density of the two

low-energy populations. Typically, two distinct peaks in the growth rate are present for the model considered: a
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peak at relatively low wavenumbers that is most sensitive to the properties of the warm population and a peak at

relatively high wavenumbers that is most sensitive to the properties of the cold population. The sensitivity of these

processes to the low-energy electron distribution function reinforces the need for the development of robust techniques

for in-situ measurements in this energy range [13, 34]; ii) overall, the instability producing oblique whistler waves near

the resonance cone persists even in the cases where the temperature of the cold populations is relatively high. For a

reference case with (high) amplitude of the parent field-aligned whistler wave δB/B0 ∼ 0.01, the maximum growth

rate of the oblique whistler mode was γ/Ωce ≈ 4× 10−3 when the background consisted only of the warm component

with temperature equal to 100 eV. iii) PIC simulations show that the development of the instability leads to heating of

the low-energy electrons and formation of characteristic plateau and beam features in the parallel electron distribution

function in the range of energies resonant with the instability. The characteristic energy of the resonant particles

changes from 50eV to 1keV for the cases considered depending on the parameters of the background plasma and

the driver. The plateau/beam features have been previously detected in spacecraft observations of oblique chorus

waves. However, they have been previously attributed to external sources and have been proposed to be one of the

mechanisms producing the oblique chorus [33]. In the present scenario, the causality link is reversed and the oblique

whistler waves generated by the instability of the parent quasi-field-aligned whistler are the reason for formation of

the plateau and the beam. Finally, (iv) the relative energization of the background populations in the simulations,

quantified by the relative change in energy between the cold and the warm populations, have been shown to scale

linearly with the ratio of the corresponding peak values of the linear growth rates. We note that formation of the

plateau in the parallel electron distribution functions has been proposed by [30] as the mechanism responsible for

two-banded structure of the chorus. In that scenario, plateau is formed due to interaction with a slightly oblique

primary whistler waves (in our terminology) and is consequently located at higher energies compared to the case

discussed here, where the plateau is formed by interaction with highly oblique secondary whistlers.

In the presented analysis, the effect of drift-type instabilities associated with the presence of cold plasma has been

to a large degree isolated by imposing geometrical constraints on the simulations. For example, the simulations were

mostly 2D, were performed in relatively small domains with periodic boundary conditions, and considered only uniform

background magnetic field and plasma conditions. Relaxing these constraints and changing the configuration towards

a more realistic one (e.g. a dipolar magnetic field with non-uniform density) will introduce other important nonlinear

phenomena into the problem, such as frequency chirping and the formation of rising or falling chorus elements [43],

nonlinear scattering of whistlers [21], parametric interaction of whistler waves with electrostatic modes [6, 57], and

several others, e.g. [1, 5, 14, 58]. Understanding of the relative significance of the processes discussed in this paper in

the presence of other phenomena is an important future direction of this work.
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FIGURE CAPTIONS
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FIG. 1: Linear theory: effect of the warm electron population. The figure shows dispersion relation γ(k) obtained by
solving Eq. 2 for angle θ corresponding to the resonance cone cos θ = ω0/Ωce, for reference case with the parameters
indicated in the text, two cases with the temperatures of the cold and warm population increased by a factor of 2
compared to the reference case, and for the cases where the warm or cold populations are absent. The wavenumber

corresponding to condition |ξeW,0| = 1 is indicated by the red arrow at kde ≈ 12.6.
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FIG. 2: Time evolution in simulation D: (a) amplitude of the transverse magnetic field perturbation δB relative to the
background magnetic field B0; (b) energy density of electric field fluctuations |E|2 in a narrow range of wavenumbers
corresponding to the highly oblique whistler waves (blue) and the electron Bernstein waves (orange, multiplied by 10
for clarity); (c) temperature of cold electrons normalized to the initial cold temperature T0 = 5eV; (d) spectrogram of
electric field fluctuations |E|2; (e) wave normal angle spectrum obtained by the SVD method; (f) wave normal angle

corresponding to the peak of the spectrum in panel (d). The dashed line corresponds to the resonance angle
θR = 69.5◦. See text for details
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FIG. 3: Comparison of the wavenumber spectrum of electric field fluctuations measured in the simulation D (left) with
the prediction of the linear theory (right).
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FIG. 4: Iso-contours of the total electron distribution function logFe(v∥, v⊥) (top) and the cut of distribution at
pitch-angle α = 10◦ (bottom). The second axis on the bottom panel indicates energy in eV corresponding to the given
value of the electron velocity. The horizontal dashed line is included as a visual guide, to highlight existence of a

velocity range with a weak positive gradient in the distribution.
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FIG. 6: Scaling of electron heating with linear growth rate. The figure shows ratios of ∆TeC/∆TeW for parallel (top)
and perpendicular (bottom) direction as a function of the ratio between linear growth rate peaks at high and low

wavenumbers (see Fig. 1).
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