

An orphan gene is essential for efficient sperm entry into eggs in *Drosophila melanogaster*

Sara Y. Guay¹, Prajal H. Patel^{1*}, Jonathon M. Thomalla^{2*}, Kerry L. McDermott¹, Jillian M. O'Toole¹, Sarah E. Arnold¹, Sarah J. Obrycki¹, Mariana F. Wolfner², Geoffrey D. Findlay¹

¹Department of Biology, College of the Holy Cross, Worcester, Massachusetts 01610

²Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853

*These authors contributed equally.

SYG current address: Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA

KLM current address: Gynecologic Oncology Program at Dana-Farber Cancer Institute, Boston, MA

JMO current address: Master of Science in Genetic Counseling Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA

SEA current address: Department of Ecology and Evolutionary Biology, Cornell University,
Ithaca, NY

Correspondence to: GDF (gfindlay@holycross.edu)

Running title: *An orphan gene for fly fertilization*

Keywords: orphan gene, *Drosophila*, sperm, reproduction, molecular evolution, fertilization

1 **Abstract**

2

3 While spermatogenesis has been extensively characterized in the *Drosophila melanogaster*
4 model system, very little is known about the genes required for fly sperm entry into eggs. We
5 identified a lineage-specific gene, which we named *katherine johnson* (*kj*), that is required for
6 efficient fertilization. Males that do not express *kj* produce and transfer sperm that are stored
7 normally in females, but sperm from these males enter eggs with severely reduced efficiency.
8 Using a tagged transgenic rescue construct, we observed that the KJ protein localizes around
9 the edge of the nucleus at various stages of spermatogenesis but is undetectable in mature
10 sperm. These data suggest that *kj* exerts an effect on sperm development, the loss of which
11 results in reduced fertilization ability. Interestingly, KJ protein lacks detectable sequence
12 similarity to any other known protein, suggesting that *kj* could be a lineage-specific orphan gene.
13 While previous bioinformatic analyses indicated that *kj* was restricted to the *melanogaster* group
14 of *Drosophila*, we identified putative orthologs with conserved synteny, male-biased expression,
15 and predicted protein features across the genus, as well as likely instances of gene loss in
16 some lineages. Thus, *kj* was likely present in the *Drosophila* common ancestor. It is unclear
17 whether its role in fertility had already evolved at that time or developed later in the lineage
18 leading to *D. melanogaster*. Our results demonstrate a new aspect of male reproduction that
19 has been shaped by a lineage-specific gene and provide a molecular foothold for further
20 investigating the mechanism of sperm entry into eggs in *Drosophila*.

21

22

23 **Introduction**

24

25 In many animal species, fertilization is a complex, yet essential, process that requires the
26 successful production of sperm, the transfer to and storage of sperm within females, the entry of
27 a sperm into an egg cell, and the correct unpackaging and use of paternal chromatin. The first
28 part of this process, spermatogenesis, has been well characterized in a variety of systems,
29 including *Drosophila* (Fabian and Brill 2012), and has broadly similar features across metazoans
30 (White-Cooper et al. 2009). What happens after sperm leave the male, but before development
31 begins, is an active area of study, about which less is known. Upon transfer to females, sperm
32 must navigate through the reproductive tract to reach specialized site(s) at which they can be
33 stored (Wolfner et al. 2023). In mammals, sperm storage typically involves binding to
34 specialized regions of the oviduct epithelium (Suarez 2008), while in insects, specialized sperm
35 storage organs are used (Pitnick et al. 1999). Stored sperm must then be released at a rate
36 appropriate to fertilize oocytes when the latter are ovulated (Bloch Qazi et al. 2003; Manier et al.
37 2010). Upon release, sperm must find the egg and then fertilize it. In many taxa, including
38 mammals and marine invertebrates, initial interactions between sperm and egg include the
39 sperm's acrosome reaction (Okabe 2016), which facilitates the fusion of the sperm and egg
40 plasma membranes and allows the contents of the sperm nucleus to enter the egg (Deneke and
41 Pauli 2021; Elofsson et al. 2024). In *Drosophila* and some fish species, however, a sperm cell
42 gains access to the egg through a cone-shaped projection in the eggshell called the micropyle
43 (Horne-Badovinac 2020). How *Drosophila* sperm locate the micropyle is unknown, as is the
44 mechanism through which the entire *Drosophila* sperm cell passes through the egg plasma

1 membrane. The identification of a fly mutant in which sperm were unable to enter eggs (Perotti
2 et al. 2001) suggested the possibility that specific gene products could be responsible for either
3 of these steps, but that fly line is no longer available, and its affected gene was never identified
4 molecularly. After a fly sperm enters an egg, the sperm plasma membrane breaks down,
5 releasing a lysosome (the former acrosome), the nucleus, and centrioles. This membrane
6 breakdown is mediated by a sperm transmembrane protein, Sneaky, and is required for the
7 subsequent unpackaging of the paternal genome (Fitch and Wakimoto 1998; Wilson et al.
8 2006). After the paternal genome is released, additional male- and female-derived proteins are
9 required for proper chromatin decondensation and use (Loppin et al. 2001; Loppin, Bonnefoy, et
10 al. 2005; Sakai et al. 2009; Tirmarche et al. 2016; Yamaki et al. 2016; Dubruille et al. 2023);
11 mutations in the genes encoding these proteins lead to paternal- or maternal-effect lethality,
12 respectively. Although *Drosophila* genetics has enabled the identification of many of these
13 components (Loppin et al. 2015), our understanding of the processes between spermatogenesis
14 and the onset of development remains incomplete.

15
16 While many aspects of spermatogenesis are conserved, sperm are also among the fastest
17 evolving cell types, likely due to sexual selection (Pitnick et al. 2009; Ramm et al. 2014). Across
18 genus *Drosophila*, species produce different numbers of sperm per differentiated germline stem
19 cell (Schärer et al. 2008), sperm length is highly variable (Lüpold et al. 2016), and males of
20 some species produce multiple types of sperm (Alpern et al. 2019). Correspondingly, females
21 of different species have evolved diverse structures for and patterns of sperm storage (Pitnick et
22 al. 1999). These observations suggest a role for lineage-specific evolution in shaping sperm
23 traits. Such evolution could occur through changes to the coding sequences (Wilburn and
24 Swanson 2016) and/or expression patterns (VanKuren and Long 2018) existing genes. Sperm
25 traits could also evolve through the formation of lineage-specific genes through processes such
26 as gene duplication, gene fusion, horizontal gene transfer or *de novo* gene birth (Long et al.
27 2013).

28
29 Numerous lineage-specific genes have evolved important roles in *Drosophila* spermatogenesis.
30 For example, arising through recent duplication and subsequent regulatory evolution, the *nsr*
31 gene regulates the expression of several Y-linked genes required for sperm individualization
32 and axoneme formation (Ding et al. 2010). The *ms(3)K81* gene arose in the *melanogaster*
33 group of *Drosophila* through retrotransposition and is required for protecting the telomeres of
34 paternal chromatin during fertilization (Loppin, Lepetit, et al. 2005; Dubruille et al. 2010).
35 Lineage-specific duplications of the highly conserved *Arp2* gene, which promotes actin filament
36 nucleation, have evolved testis-specific expression in the *montium* and *obscura* groups of
37 *Drosophila*, and insertion of these paralogs into *D. melanogaster* disrupts spermatogenesis
38 (Stromberg et al. 2023). VanKuren and Long (2018) demonstrated that the duplication of a
39 gene that was likely expressed in both male and female germlines in the ancestor of *D.*
40 *melanogaster* gave rise to paralogs that evolved either testis- or ovary-specific expression, with
41 the male-specific gene, *Apollo*, now being required for spermatid individualization. In addition to
42 these lineage-specific genes that arose via duplication-based processes, we previously
43 identified three genes that appeared to be restricted to the *Drosophila* genus, lacked detectable
44 homology to any other protein, and were essential for robust male fertility (Gubala et al. 2017;

1 Lange et al. 2021; Rivard et al. 2021). For example, *goddard* encodes a protein that localizes to
2 developing sperm axonemes and is required for proper spermatid individualization (Lange et al.
3 2021), while *atlas* encodes a protein that localizes to spermatid nuclei and appears to transiently
4 bind DNA during the process of nuclear condensation (Rivard et al. 2021). Because these
5 genes appear restricted to the *Drosophila* genus and encode proteins with no detectable
6 homology to other proteins, we initially described them as putatively *de novo* evolved.
7

8 *De novo* gene evolution occurs when mutations transform a previously non-coding segment of
9 the genome into a protein-coding gene (Van Oss and Carvunis 2019; L. Zhao et al. 2024). To
10 establish a gene as *de novo* evolved, the syntenic region should be identified in outgroup
11 species and confirmed to be non-genic. This is most feasible for *de novo* genes that are
12 evolutionarily young, so the highest-confidence *de novo* genes are those that are found in only
13 one or a few species and for which closely related outgroup species have genome sequence
14 data available (Levine et al. 2006; Begun et al. 2007; Carvunis et al. 2012; Zhao et al. 2014;
15 Zhang et al. 2019; Vakirlis et al. 2020; Vakirlis et al. 2022). Older genes that appear lineage-
16 restricted and lack detectable homology, but for which a syntenic, non-coding region is not
17 identifiable in outgroup species, have historically been called putative *de novo* genes
18 (McLysaght and Hurst 2016; Van Oss and Carvunis 2019), the term that we applied to genes
19 such as *goddard* and *atlas* (Gubala et al. 2017; Lange et al. 2021; Rivard et al. 2021). As the
20 *de novo* gene field has matured, however, researchers have recognized that issues such as the
21 limited sensitivity of sequence-based homology searches and the breakdown of synteny in
22 progressively more diverged genomes can cause distant homologs of putative *de novo* genes to
23 be missed (Weisman et al. 2020; L. Zhao et al. 2024). Thus, such genes might now be referred
24 to more cautiously as “orphans” (Tautz and Domazet-Lošo 2011; Q. Zhao et al. 2024). This
25 broader term describes lineage-specific genes that lack detectable homologs outside of a
26 particular clade for any reason (e.g., *de novo* origin, divergence beyond recognition, gene loss
27 in outgroup species, horizontal gene transfer, or genome assembly issues).
28

29 One potential advance in distinguishing *de novo* genes from other types of orphans is the use of
30 whole-genome alignments (Peng and Zhao 2024). This approach facilitates the identification of
31 the syntenic region in diverged species, which in turn limits the search space for sequence
32 homology searches, improving their sensitivity. Peng and Zhao (2024) used this approach to
33 identify hundreds of likely *de novo* genes in *D. melanogaster* and, equally importantly, to
34 distinguish other orphans that either had a different origin or for which the origin could not be
35 definitively determined. Despite this significant advance, both early (Wagstaff and Begun 2005;
36 Findlay et al. 2009) and more recent (Gubala et al. 2017; Rivard et al. 2021) experience with
37 cross-species reproductive gene annotation in *Drosophila* suggests that manual annotation of
38 individual genes can sometimes identify orthologs that were undetected by high-throughput
39 bioinformatic analyses.
40

41 Here, we investigated the male reproductive function and molecular evolution of the *D.*
42 *melanogaster* gene CG43167, which we have named *katherine johnson* (*kj*). This gene was
43 identified in two bioinformatic screens (Heames et al. 2020; Peng and Zhao 2024) as likely *de*
44 *novo* evolved and restricted to the *melanogaster* group of *Drosophila*. We show here that

1 knockdown or knockout of *kj* results in a severe reduction in male fertility. Knockout males
2 produce sperm that are stored at normal levels in females' seminal receptacles, but the sperm
3 enter eggs at much reduced rates. Because the KJ protein is detectable in various stages of
4 spermatogenesis, but not in mature sperm, we suggest that *kj* exerts its effect during sperm
5 development, and that in its absence, the ability of sperm to fertilize eggs is significantly
6 impaired. Across the *melanogaster* group of *Drosophila* species, *kj* has maintained a male-
7 biased pattern of expression but shows an elevated rate of sequence evolution. By analyzing
8 gene synteny, expression patterns, and predicted protein features, we identified putative
9 orthologs in outgroup *Drosophila* species, as well as lineages in which the gene is undetectable.
10 These data suggest *kj* was present at the base of the *Drosophila* genus, but might have become
11 expendable in certain lineages as spermatogenic processes diverged. The likely presence of *kj*
12 in a more ancient ancestor makes it harder to determine whether the gene evolved *de novo*, so
13 we consider *kj* to be an orphan gene. Overall, our study provides a potential foothold from
14 which to further our understanding of *Drosophila* fertilization, highlights a critical reproductive
15 role in *D. melanogaster* for an orphan gene, and illustrates a challenge of large-scale
16 bioinformatic identification of *de novo* genes.

17

18 **Methods**

19

20 *Drosophila stocks and experiments*

21

22 Please see the Reagents Table for a full list of fly strains used in this study. Unless otherwise
23 noted, *in vivo* experiments in *Drosophila* were performed at 25°C using standard molasses
24 media consisting of agar (6.5 g/L), brewers yeast (23.5 g/L), cornmeal (60 g/L), molasses (60
25 mL/L), acid mix (4 mL/L; propionic and phosphoric acids), and tegosept (0.13%; antifungal
26 agent).

27

28 *Genetic ablation of CG43167*

29

30 We first constructed a TRiP-style RNAi line (Ni et al. 2011) targeting CG43167 expression and
31 used RT-PCR to assess the degree of knockdown. The oligos used for creating the pValium20
32 plasmid and for RT-PCR are provided in Fig. S1. Fertility of small groups of knockdown and
33 control male flies was assessed as previously described (Rivard et al. 2021).

34

35 We used the co-CRISPR method as previously described (Ge et al. 2016; Lange et al. 2021;
36 Rivard et al. 2021) to engineer a complete deletion of CG43167. Guide RNA sequences used
37 to target the gene and PCR primers used to verify the deletion are provided in Fig. S2. Flies
38 carrying a deletion allele (Δkj) were crossed into the w^{1118} background and balanced over CyO.
39 We generated trans-heterozygotes with no functional copies of *kj* using Bloomington Stock
40 Center deficiency line #9717, with genotype $w^{1118}; Df(2L)BSC243/CyO$.

41

42 Unless otherwise stated, heterozygous control flies used in experiments were generated by
43 crossing the Δkj line to w^{1118} ; we refer to these controls as $\Delta kj/+$.

1 *Cloning and transformation of tagged kj rescue constructs*

2 C-terminally tagged *kj:HA* rescue construct and N-terminally tagged *HA:kj* rescue constructs
3 were generated using Gibson Assembly (Gibson et al. 2009). The *kj* coding sequence and
4 putative upstream and downstream regulatory sequences were amplified from Canton S
5 genomic DNA (prepared using Gentra Puregene Cell Kit, Qiagen) using Q5 High Fidelity
6 Polymerase (NEB). Primers used for making all constructs are listed in the Reagents Table. The
7 3x-HA tag was similarly amplified using pTWH plasmids (T. Murphy, *Drosophila* Genomics
8 Resource Center plasmids 1100 and 1076). Amplified DNA fragments were then assembled into
9 a XbaI/Ascl-linearized *w⁺* *attB* plasmid (a gift of Jeff Sekelsky, Addgene plasmid 30326).
10 Assembled constructs were integrated into the *attP* docking site of PBac{*y⁺*-*attP*-3B}VK00037
11 (Bloomington *Drosophila* Stock Center stock #24872) using PhiC31 integrase (Rainbow
12 Transgenics).

13 *Fertility assays*

14 Male fertility of *kj* nulls, flies carrying rescue constructs, and controls was assessed using
15 matings between single unmated males of each genotype and single unmated Canton S
16 females. Males and females were collected and isolated for a period of 72-96 hours prior to
17 mating. During this period, females were reared in yeasted vials to encourage egg production.
18 Each pair mating was then allowed to proceed for 72 hours before the parents were removed
19 from the vial. Fertility was determined by counting pupal cases on the side of vials 10 days after
20 the initial crossing. Twenty matings were set up for each male genotype; vials with any dead
21 parents or atypical bacterial growth at the end of the mating period were excluded from analysis.

22 *Sperm counts*

23
24 We crossed the *Mst35Bb*-GFP (“protamine-GFP”) marker of mature sperm nuclei (Manier et al.
25 2010) into the *kj* null background and used it to quantify levels of sperm in the seminal vesicles
26 of sexually mature, unmated males (3-5 days old), in the bursae of females 30 minutes after the
27 start of mating (ASM), in the female seminal receptacle 2 hours ASM, and in the female seminal
28 receptacle 4 days ASM. Matings, dissections, imaging and counting were performed as
29 previously described (Gubala et al. 2017). Experimenters were blinded to the male genotype
30 while counting sperm. Two-sample *t*-tests with unequal variances were used to compare sperm
31 levels.

32
33 *Egg-production and egg-to-pupae viability assay*

34
35 We measured the amount of egg-laying, the rate at which eggs developed into pupae, and the
36 total progeny production of Canton S females mated singly to either a *kj* null male or a
37 heterozygous control ($\Delta kj/+$) using standard assays largely as previously described (Ravi Ram
38 and Wolfner 2007; LaFlamme et al. 2012; Findlay et al. 2014). However, because the effects of
39 *kj* knockout were large and consistent across days, we modified these procedures by:
40 measuring egg-laying over four days (with one vial per female per day) instead of 10; analyzing
41 pooled data across all four days of the assay (after observing that each individual day showed

1 the same pattern); and using two-sample *t*-tests with unequal variances to compare knockout
2 and control genotypes for each set of pooled data.

3
4 *Sperm entry into eggs and early embryonic development*
5
6 We recombined the *Dj*-GFP sperm tail marker (Santel et al. 1997) into the Δkj null background.
7 For experiments examining sperm entry and early development, fly strains were maintained on
8 yeast-glucose-agar media (Hu et al. 2020).

9
10 *Embryo collection*
11
12 All embryo collections were performed at room temperature. For each embryo collection cage,
13 approximately 30 2-7 day-old males were mated overnight to approximately 40 3-6 day-old
14 Canton S females. Embryos were collected on grape juice agar plates (2.15% agar, 49% grape
15 juice, 0.5% propionic acid solution (86.3% acid/water mix)) with yeast paste smeared on top. To
16 assess embryo development, plates with embryos were collected after approximately 18 hours.
17 For *Dj*-GFP detection, embryos were pre-collected for 1 hour to allow flies to lay any retained
18 eggs. Then, fresh grape juice plates with yeast paste were replaced in 1 hour intervals.
19

20 *Sperm tail detection using Dj-GFP*
21 Embryos from 1 hour collection plates were immediately dechorionated by treating with 50%
22 bleach for 2 minutes. Embryos were then washed thoroughly with egg wash buffer (0.4% NaCl,
23 0.03% Triton-X100) and transferred to a 22x60mm coverslip prepared with a thin strip of
24 heptane glue (stabilizes embryos lined up in a row to prevent double counting). Excess egg
25 wash buffer was added to the slide to prevent embryo dehydration. Embryos were then imaged
26 live on an Echo Revolve at 10X magnification to determine the proportion with detectable *Dj*-
27 GFP sperm tails. For display purposes, some embryos were also fixed and imaged with
28 confocal microscopy as described below. To ensure mating occurred, females from embryo
29 collection cages were dissected and reproductive tracts were imaged to confirm presence of *Dj*-
30 GFP sperm in the storage organs.

31
32 *Embryo development assay*
33
34 Embryos collected overnight were dechorionated with 50% bleach for 2 minutes and washed
35 thoroughly with egg wash buffer. Embryos were then fixed for 20 minutes at room temperature
36 in 1:1 mixture of 4% paraformaldehyde in 1X PBS and heptane. Embryos were devitellinized in
37 a 1:1 mixture of heptane and methanol by shaking vigorously for 30 seconds. Embryos were
38 then washed three times in both pure methanol followed by 1X PBS-T (0.1% Triton-X100). To
39 detect nuclei, embryos were stained for 20 minutes at room temperature with 10mM Hoechst
40 33342 diluted 1:1000 and then washed thrice with 1X PBS-T. Embryos were then mounted on
41 22x22mm coverslips in Aqua Polymount. Embryos were imaged on a Zeiss LSM710 confocal
42 microscope. Images were captured using either EC-Plan Neofluar 10x/0.45 Air or Plan-
43 Apochromat 63x/1.4 oil objectives.
44

1 *Cytology of KJ subcellular localization*

2

3 We performed whole testis staining as described in Lange et al. (2021). Analysis of KJ
4 expression in isolated cysts was performed as described in Rivard et al. (2021). We tested for
5 KJ in mature sperm by aging male flies in single-sex vials for 10-14 days prior to dissection to
6 allow sperm to accumulate in the seminal vesicles. Seminal vesicles were then dissected on
7 0.01% poly-L-lysine treated slides and pierced to release their sperm content. See the
8 Reagents Table for details on primary and secondary antibodies. Labeled samples were
9 imaged using a TCS SP8 X confocal microscope (Leica Microsystems). Images were captured
10 using HC PL APO CS2 20x/0.75 ILL and HC PL APO CS2 63x/1.40 oil objectives. Post-
11 acquisition processing was performed using ImageJ Fiji (version 1.0).

12

13 *Sperm nuclei decondensation assay*

14

15 Nuclear decondensation was performed using a modified protocol described by Tirmarche et al.
16 (2016). Sperm were isolated from aged seminal vesicles as described above. Sperm nuclei
17 were subsequently decondensed by pretreating sperm with 1X PBS (phosphate buffered saline)
18 supplemented with 1% Triton X-100 for 30 minutes prior to subjecting sperm to decondensation
19 buffer (10 mM DTT and 500 ug/mL heparin sodium salt in 1X PBS). Following treatment, slides
20 were stained with anti-HA antibodies using the immunohistochemistry protocol described
21 (Rivard et al. 2021).

22

23 *Molecular evolutionary analyses*

24

25 We extracted the *kj* protein-coding DNA sequence and predicted amino acid sequence for *D.*
26 *melanogaster* from FlyBase (Öztürk-Çolak et al. 2024). We used the protein as a query in
27 iterative PSI-BLAST searches, which identified annotated orthologs across the *melanogaster*
28 group of *Drosophila*. Because these orthologs varied in the quality of their annotations, we
29 manually checked all orthologs for which genome browsers and RNA-seq data were available
30 through the Genomics Education Partnership (thegep.org). Briefly, we BLASTed the predicted
31 protein sequence of each PSI-BLAST hit against the corresponding species' genome assembly,
32 then manually examined that species' genome in the GEP's implementation of the UCSC
33 Genome Browser (Rele et al. 2022). This allowed us to visualize adult male and adult female
34 RNA-seq reads (Brown et al. 2014; Chen et al. 2014) that mapped to the region so that we
35 could assess expression patterns. To search for orthologs outside of the *melanogaster* group,
36 we examined the syntenic region in outgroup species (Rivard et al. 2021; Rele et al. 2022) as
37 demarcated by three conserved genes with conserved positions relative to each other and to *kj*:
38 CG6614, CG4983 and *Vha100-5*. Any unannotated location in the syntenic region that showed
39 adult male expression by RNA-seq was examined for potential open reading frames, and
40 potential proteins so identified were compared to *D. melanogaster* (and other) KJ orthologs and
41 to the full *D. melanogaster* proteome by BLASTP. We examined the predicted membrane
42 topology of potential orthologs with DeepTMHMM (Hallgren et al. 2022). Finally, potential
43 orthologs found in non-*melanogaster* group species were compared by BLASTP to other
44 *Drosophila* orthologs and by BLASTP and PSI-BLAST to all known proteins in GenBank.

1
2 We examined the molecular evolution of *kj* protein-coding sequences from the *melanogaster*
3 group as described previously (Rivard et al. 2021). In addition to those PAML-based tests of
4 positive selection, we implemented HyPhy-based tests for recurrent (Kosakovsky Pond and
5 Frost 2005) and episodic (Murrell et al. 2015; Wisotsky et al. 2020) positive selection as
6 implemented in the Datamonkey 2.0 web server (Weaver et al. 2018). The sequence alignment
7 used in these analyses was checked for recombination using GARD (Kosakovsky Pond et al.
8 2006), but none was detected.
9

10 **Results**

11 **CG43167 is required for full male fertility**

12 CG43167 was identified as a potential *de novo* evolved gene in two previous bioinformatic
13 analyses (Heames et al. 2020; Peng and Zhao 2024) and shows a highly testis-biased pattern
14 of expression (Vedelek et al. 2018). We found that expression of a short hairpin targeting
15 CG43167 using the *Bam-GAL4*, *UAS-Dicer2* driver had a marked effect on male fertility. Crude
16 fertility assays in which seven knockdown or control males were mated with five unmated wild-
17 type (Canton S) females for 2 days showed knockdown male fertility to be only 7-19% the level
18 of controls. RT-PCR analysis of cDNA synthesized from controls and knockdown males showed
19 virtually no detectable expression in knockdown males, suggesting that the transgenic line
20 efficiently targets CG43167 transcripts (Fig. S1). Consistent with our previous rocket-themed
21 nomenclature for testis-expressed orphan genes (Gubala et al. 2017; Rivard et al. 2021), we
22 named the CG43167 gene *katherine johnson* (*kj*), after the NASA mathematician who calculated
23 rocket orbital mechanics for the Mercury and subsequent crewed missions (Shetterly 2016).
24

25 To confirm these data and to generate a null allele for genetic analysis, we engineered a
26 deletion of the *kj*/CG43167 gene region using CRISPR/Cas9. The resulting deletion allele (Δkj)
27 eliminated the entirety of the protein-coding and untranslated regions and thus most likely
28 constitutes a functional null (Fig. S2). Single pair fertility assays, in which either single control
29 males (w^{1118}) or single Δkj homozygous null males were individually mated to single, wildtype,
30 unmated females, revealed that Δkj null males have a fertility defect of a similar magnitude to
31 that observed in the RNAi assay (Fig. 1). To rule out the effects of off-target mutations
32 generated during CRISPR/Cas9 genome editing, we assessed the fertility of heterozygous
33 males carrying a single copy of the Δkj allele in trans with *Df(2L)BSC243* (henceforth
34 abbreviated as “*Df*”), a large genomic deficiency that uncovers several genes including the *kj*
35 locus. In single pair fertility assays, $\Delta kj/Df$ trans-heterozygous males showed a fertility defect
36 equivalent to Δkj null males, indicating that the severe loss-of-function phenotype in Δkj
37 homozygotes reflects a full loss of *kj* function (Fig. 1). To further characterize the Δkj allele, we
38 determined the fertility of male flies carrying only one copy of the Δkj allele. Removing a single
39 copy of the *kj* gene had no effect on male fertility, ruling out dominance by haploinsufficiency
40 (Fig. 1). Altogether, these experiments show that the Δkj allele acts as a recessive null allele.
41

42

43

1 We confirmed that the fertility defects associated with Δkj are due to loss of the *kj*/CG43167
2 gene by complementing the loss of function phenotype with genomic rescue constructs. We
3 integrated the 5.4-kb *kj* locus, which contained the 583 bp CG43167 transcript-encoding
4 sequence along with putative upstream and downstream regulatory regions. No other annotated
5 genes are present in this stretch of DNA. Two different constructs were produced for this
6 analysis, differing in either the N-terminal or C-terminal location of an introduced hemagglutinin
7 (3xHA) tag. Reintroducing either construct into $\Delta kj/Df$ males restored fertility (Fig. 1). However,
8 the degree of rescue with the C-terminally tagged protein (KJ:HA) was weaker than that of the
9 N-terminally tagged protein (HA:KJ), which showed full fertility restoration (Fig. 1). Thus, for the
10 remainder of the study, we focused on the N-terminally-tagged rescue construct. Collectively,
11 these data indicate that the *kj* gene has an essential function in *Drosophila melanogaster* male
12 fertility.

13
14 *kj* null males produce, transfer and store sperm normally, but the sperm enter eggs inefficiently
15

16 When we examined testis morphology in *kj* null males, we observed no gross differences from
17 control testes (Fig. S3). Furthermore, sperm with apparently normal morphology were present
18 in the seminal vesicles (SV) of both control and mutant tracts, suggesting that spermatogenesis
19 can proceed to completion in the absence of *kj* function. We used the *Mst35Bb*-GFP sperm
20 head marker (Manier et al. 2010) to quantify sperm present in SVs of sexually mature, unmated
21 males. We found a slight decrease in the number of sperm per SV in *kj* null males relative to
22 controls (Table 1). While statistically significant, this difference was not of the same magnitude
23 as the observed fertility difference (Fig. 1) and therefore cannot account for the observed fertility
24 defects in Δkj males.

25
26 In addition to producing mature sperm, *D. melanogaster* males must also transfer sperm into
27 females and generate functional sperm that can swim to female storage organs (Manier et al.
28 2010). We assessed sperm transfer by counting sperm in the female bursa (or uterus) 30
29 minutes after the start of mating (ASM), and observed the opposite pattern, a slight but
30 significant increase in sperm transferred by *kj* null males (Table 1). Again, this difference was
31 not of a comparable magnitude to the null fertility defect, nor was it in the expected direction.
32 Thus, while *kj* null males may exhibit minor differences from controls in sperm production and
33 sperm transfer to females, neither is likely to be the primary cause of the *kj* null fertility defect.

34
35 Since *D. melanogaster* sperm must enter specialized sperm storage organs before they can be
36 used for fertilization, we next quantified sperm levels in the female's primary storage organ, the
37 seminal receptacle (SR), at two timepoints (Table 1). The level of sperm in the SR at 2 hrs ASM
38 indicates the ability of sperm to enter storage, while sperm levels at 4 days ASM provide a
39 readout of sperm persistence in storage and the rate of sperm release during the initial days
40 after mating. Females mated to *kj* null males showed no significant differences in the levels of
41 stored sperm at either time point (Table 1). Thus, sperm from *kj* null males migrate to and enter
42 the SR normally and appear to be released from the SR at a comparable rate to sperm from
43 heterozygous controls.

44

1 We next assessed the rates of egg laying and egg-to-pupal viability in females mated singly to
2 either *kj* null or control males. In the four days following mating, females mated to *kj* null males
3 laid a slightly, but not statistically significantly, lower number of eggs compared to females
4 mated to controls (Fig. 2A). However, a much lower percentage of these eggs hatched (i.e.,
5 developed to pupae) (Fig. 2B), and accordingly, mates of *kj* nulls produced lower levels of
6 progeny (Fig. 2C). Taken together with the sperm storage data (Table 1), these results suggest
7 that the *kj* null fertility defect arises within a narrow, but critical, window of time between the
8 release of sperm from storage and the onset of development.
9

10 As Δkj males produced sperm that can be maintained in storage and do not hamper egg laying
11 in females, we reasoned that the *kj* fertility defect may be due to either an inability of mutant
12 sperm to enter eggs (Perotti et al. 2001) or a defect in a step immediately following sperm entry.
13 Sperm with defects in the latter process fall into the category of paternal effect lethals and
14 reflect aberrations in post-fertilizations events, such as failures in sperm plasma membrane
15 breakdown (Wilson et al. 2006) or in the proper decondensation or initial use of the paternal
16 chromatin inside the embryo (Loppin, Lepetit, et al. 2005; Dubruille et al. 2023).
17

18 To distinguish these possibilities, we crossed the *don juan*-GFP (*Dj*-GFP) marker (Santel et al.
19 1997) into the *kj* null background. This marker labels mature sperm tails and allows for the
20 visualization of sperm entry into eggs. Canton S (wild-type) females were mated to either
21 $\Delta kj/CyO$ or $\Delta kj/\Delta kj$ males expressing *Dj*-GFP and allowed to lay eggs on grape juice plates in
22 one-hour intervals. Eggs were then immediately dechorionated and imaged live by
23 epifluorescence to assess sperm presence in the anterior end of the embryo (for examples of
24 embryos with and without sperm, see fixed confocal images in Fig. 3A-B; example
25 epifluorescence images used for quantification are in Fig. S4). While nearly 80% of embryos laid
26 by females mated to heterozygous males had detectable sperm tails, *Dj*-GFP was detected in
27 only 0.74% of embryos laid by females mated to *kj* null males (Fig. 3A-C). This significant
28 decrease in sperm entry rate was consistent with the magnitude of the fertility differences
29 observed above (Fig. 1, Fig. 2C), so we concluded that the inability of sperm to enter eggs
30 efficiently is the major factor driving the *kj* null subfertility phenotype.
31

32 To evaluate the possibility of an additional defect in embryos successfully fertilized by $\Delta kj/\Delta kj$
33 sperm, mated females were allowed to lay eggs onto grape juice plates for an 18-hour overnight
34 period. Embryos were then collected and stained for DNA to allow us to assess embryonic
35 development. Over 97% of embryos laid by females mated to control males developed
36 normally, with a mix of developing stages up to Stage 16 present as expected (Fig. 3D, F; exact
37 stages not quantified) (Foe et al. 1993). However, embryos laid by females mated to $\Delta kj/\Delta kj$
38 males showed normally developing embryos only 11.6% of the time (Fig. 3E, magenta
39 arrowhead, Fig. 3F), with similar stages present as controls. The remaining 88.4% of embryos
40 were devoid of DNA staining and appeared to have deteriorated (Fig. 3E, cyan arrowhead),
41 consistent with the embryos being successfully laid and activated, but not fertilized (Horner and
42 Wolfner 2008). These experiments indicate that the few eggs that are successfully fertilized by
43 sperm from $\Delta kj/\Delta kj$ males can progress normally through embryogenesis, consistent with the
44 outcomes of our fertility assays. Thus, *kj* expression in the male germline appears not to affect

1 development (i.e., *kj* is not a paternal effect gene), and the *kj* null fertility defect occurs between
2 the time of sperm exit from storage and entry into eggs.

3

4 KJ protein localizes around the edge of the nucleus during spermatogenesis but is not detected
5 in mature sperm

6

7 To investigate potential KJ protein functions, we used the fully functional HA:KJ rescue
8 construct (Fig. 1) in the *kj* null background to examine the expression pattern and subcellular
9 localization of KJ protein within male reproductive tracts. Although *kj* mutants show no major
10 defect in sperm production, we detected HA:KJ in the testes at specific stages of
11 spermatogenesis (Fig. 4A). In spermatocytes (pre-meiotic cells), HA:KJ was enriched around
12 the edge of the nucleus and was observed diffusely in the cytoplasm (Fig. 4B). HA:KJ was also
13 present in post-meiotic spermatids. In these cells, bundled nuclei synchronously proceed
14 through a stepwise condensation process that ultimately produces the thin sperm heads found
15 in mature sperm (Rathke et al. 2014). Round and canoe shaped nuclear bundles reflect
16 elongating stages of spermiogenesis, while needle shaped nuclei, with their fully condensed
17 chromosomes, characterize spermatids undergoing individualization. Analysis of spermatid
18 cysts revealed that HA:KJ localizes transiently around the nucleus during the canoe stages
19 before disappearing at the onset of individualization (Fig. 4C). HA:KJ showed an asymmetric
20 localization in these cells, with enrichment along one long edge of each nucleus. This pattern is
21 reminiscent of proteins that localize to the dense body, a structure that develops during
22 elongation and disappears at the onset of individualization (Fabian and Brill 2012; Li et al.
23 2023). Consistent with the disappearance of HA:KJ from nuclei at individualization, anti-HA
24 staining of mature sperm isolated from SVs did not detect HA:KJ around the nucleus (Fig. 4D).
25 To investigate whether HA:KJ is no longer localized around mature sperm nuclei, or whether it
26 became inaccessible to our antibody due to the extreme degree of nuclear condensation in
27 mature sperm (Eren-Ghiani et al. 2015; Kaur et al. 2022), we performed the same staining after
28 decondensing mature sperm nuclei *in vitro*. Although it was not possible to perform a positive
29 control, the strength and shape of the DNA signal changed in response to this procedure, likely
30 reflecting at least some decondensation. However, HA:KJ remained undetectable (Fig. S5).
31 Overall, these data suggest that KJ plays a role in sperm development that affects later sperm
32 function in females.

33

34 Predicted biochemical properties of KJ protein

35

36 The *D. melanogaster* *kj* gene is located on chromosome 2L (Muller element B), and its single
37 exon is predicted to encode a 126-amino acid protein of predicted molecular weight 15 kDa and
38 a predicted isoelectric point of 8.7. DeepTMHMM (Hallgren et al. 2022) predicts the protein to
39 have one transmembrane domain spanning residues 21-36, with the N-terminus predicted to be
40 outside the membrane and the C-terminus predicted to be inside. AlphaFold3 (Abramson et al.
41 2024) predicts the protein to have two prominent alpha helices predicted with either very high
42 (pLDDT > 90) or high (70 > pLDDT > 90) confidence: one spanning residues 2-61, and another
43 spanning residues 85-106 (Fig. 5A). Most other regions are predicted to be disordered at a
44 lower confidence level. The DeepLoc 2.1 algorithm (Ødum et al. 2024) predicts that the KJ

1 protein localizes to the endoplasmic reticulum with a 0.92 probability (the prediction probabilities
2 to all other locations were < 0.4).

3

4 Molecular evolution of *kj* in *melanogaster* group species

5

6 Because of its lack of identifiable homologs outside of *Drosophila* and lack of identifiable protein
7 domains, the *kj* gene and its encoded protein were characterized as putatively *de novo* evolved
8 in a previous bioinformatic analysis (Heames et al. 2020). Further support for the gene's *de*
9 *novo* status came from a comprehensive investigation of *de novo* genes in *D. melanogaster*,
10 which used a whole-genome alignment approach to assess the age of each gene (Peng and
11 Zhao 2024). Both analyses determined that *kj* was restricted to the *melanogaster* group of the
12 *Drosophila* genus (Fig. 5B). Consistent with these results and with expectations for an orphan
13 or *de novo* gene, our BLASTP and iterative PSI-BLAST searches showed no detectable
14 homology to any other protein. PSI-BLAST (and subsequent manual annotation of hits)
15 identified 22 additional full-length orthologs throughout the *melanogaster* group, but not outside
16 of it (Table S1, File S1). We identified partially annotated ortholog fragments in four additional
17 species. Another species, *D. eugracilis*, initially appeared to have a pseudogenized copy of *kj*
18 due to a 1-nucleotide insertion in the ORF, but upon manual inspection we found that this
19 nucleotide was not present in RNA-seq reads that mapped to this location and thus likely
20 represented an error in the reference genome. Based on TimeTree estimates (Kumar et al.
21 2022), these results would suggest the gene arose ~25-30 million years ago in the common
22 ancestor of this group. RNA-seq data (Brown et al. 2014; Chen et al. 2014) were available
23 through the Genomics Education Partnership for 16 of the 24 species with putatively functional,
24 full-length orthologs. All 16 of these orthologs are expressed in adult males, and nearly all in a
25 male-specific or heavily male-biased pattern (Table S1). AlphaFold3 modeling of KJ from a
26 diverged, in-group ortholog from *D. ananassae* showed a fairly similar structure to that of *D.*
27 *melanogaster* KJ, with two prominent alpha helices at similar positions (Fig. 5A and Fig. S6).
28 Taken together, the expression and structural data suggest *kj* may function in male reproduction
29 across the *melanogaster* group.

30

31 Genes that mediate reproduction often evolve at elevated rates (Wilburn and Swanson 2016).
32 We therefore used an alignment of 22 *melanogaster* group orthologs (Table S1; Fig. S7; File
33 S3) to examine the molecular evolution of the *kj* protein-coding sequence and to ask whether
34 any KJ residues had experienced recurrent adaptive evolution. PAML model M0 (Yang et al.
35 2000) estimated the overall d_N/d_S ratio across the whole gene as 0.42. When similar whole-
36 gene d_N/d_S estimates were calculated genome-wide for six representative species of the
37 *melanogaster* group (Drosophila 12 Genomes Consortium et al. 2007; Chang et al. 2023), a
38 value of 0.42 fell into the top 1-2%, suggesting that *kj* evolves more rapidly than most *D.*
39 *melanogaster* genes.

40

41 When we asked whether specific residues of the KJ protein had experienced adaptive evolution,
42 the results were ambiguous. The PAML sites test (Yang et al. 2000) compares the likelihood of
43 a model of molecular evolution (M7) that allows only purifying and neutral evolution to a model
44 (M8) that additionally allows a subset of sites to evolve adaptively with $d_N/d_S > 1$. This test

1 found no difference in likelihood between the models ($\chi^2 = 0$, 2 df, $p = 1.00$) and thus found no
2 evidence of recurrent, adaptive evolution on any KJ residue. An analogous method to detect
3 this type of recurrent selection, the Fixed Effects Likelihood (FEL) analysis in the DataMonkey
4 suite of programs (Kosakovsky Pond and Frost 2005), identified three positions (each with $p <$
5 0.1) in the alignment as having significant evidence for recurrent, adaptive evolution: positions
6 that aligned to residues 56S and 101R in the *D. melanogaster* protein, as well as residues from
7 other species that aligned to a gap between *D. melanogaster* residues 15A and 16F (Fig. S7).
8 The BUSTED-HM algorithm (Murrell et al. 2015; Wisotsky et al. 2020) found no significant
9 evidence for episodic (as opposed to recurrent) positive selection on specific residues.
10 Consistent with these results, Peng and Zhao (Peng and Zhao 2024) determined, for a different
11 set of *melanogaster* group species, that most non-synonymous substitutions in KJ were non-
12 adaptive. Thus, we conclude that *kj* evolves rapidly, but with only limited evidence for recurrent
13 adaptive evolution on a few of its sites. In spite of its essential function, the gene's high overall
14 rate of evolution may instead be due to relaxed constraint (Dapper and Wade 2020) on at least
15 some portions of the protein, as has been observed for a high fraction of fly seminal proteins
16 (Patlar et al. 2021). Inspection of KJ amino acid alignment (Fig. S7) showed that the highest
17 conservation between *melanogaster* group orthologs was found just before and around the
18 prominent alpha helix near the C-terminus and, to a lesser extent, around the predicted
19 transmembrane domain. It is possible that these regions are of heightened functional
20 importance in this group of species.
21

22 Identification of potential *kj* orthologs outside of the *melanogaster* group

23

24 *Strong evidence for *kj* orthologs in the Drosophila subgenus.* Our previous studies of putative *de*
25 *novo* genes (Gubala et al. 2017; Rivard et al. 2021) have sometimes identified more distantly
26 related orthologs that were not detectable by BLAST and/or not previously annotated as genes.
27 To investigate the possibility of such orthologs for *kj*, we queried *Drosophila* genomes outside of
28 the *melanogaster* group using TBLASTN with relaxed parameters (e-value threshold < 10, word
29 size = 3). Any hits from these searches were evaluated for their genomic location, their
30 expression pattern based on available RNA-seq data, and whether the inferred potential protein
31 showed homology to *D. melanogaster* KJ. This process identified a potential *kj* ortholog in a
32 *virilis* group species of subgenus *Drosophila*, *D. virilis* (Fig. S8). The initial TBLASTN search
33 identified a 75-nt stretch in this species predicted to encode 25 amino acids with 52% identity
34 (72% similarity) to a region of *D. melanogaster* KJ, producing an e-value of 8.3. This hit's
35 position in the *D. virilis* genome is syntenic to the position of *kj* in *D. melanogaster* because it is
36 flanked by three of the same genes that surround *kj* in *D. melanogaster* (orthologs of CG6614
37 and CG4983 upstream, and the ortholog of *Vha100-5* downstream). The region identified by
38 TBLASTN exists within a potential open reading frame (ORF) that could encode 171 amino
39 acids. The genomic region encoding this ORF showed signals of expression in RNA-seq data
40 from both sexes of adult *D. virilis*. The maximum read depth was 43-fold higher in males,
41 consistent with a gene that functions in male reproduction. A pairwise BLASTP comparison of
42 the full *D. virilis* ORF to *D. melanogaster* KJ produced a significant e-value of 10^{-7} , and
43 DeepTMHMM predicted a single transmembrane domain with the same orientation with respect
44 to the membrane (N terminus outside, C terminus inside) as *D. melanogaster* KJ. A small,

1 duplicated amino acid motif in the C terminus of the putative *D. virilis* ortholog contributes to this
2 ortholog's longer length (Fig. S8).

3
4 The presence of a likely *kj* ortholog in the *Drosophila* subgenus implied that the origin of the *kj*
5 gene could be earlier than the previously estimated 25-30 million years ago. To determine the
6 phylogenetic distribution of *kj* across the genus, we used a combination of BLASTP, TBLASTN
7 and synteny to search for additional orthologs in a variety of species and groups (Fig. 5B).
8 These methods identified proteins of similar length and the same DeepTMHMM-predicted
9 topology in another *virilis* group species, *D. novamexicana*; three members of the *repleta* group
10 species (*D. hydei*, *D. mojavensis*, *D. arizonae*); and, additional species *D. busckii* and *Zaprionus*
11 *bogoriensis* (File S2); *Zaprionus* is a genus within the paraphyletic *Drosophila* genus (see Fig.
12 5B.) The synteny region of *repleta* group member *D. navojoa* contained a much shorter ORF
13 (60 a.a.) with male-specific expression and sequence identity to these orthologs, but the
14 predicted protein did not contain a transmembrane domain, so this region may represent a
15 pseudogene or a gene with altered function. Table S2 lists the genomic locations and
16 biochemical properties of the likely orthologs outside of the *melanogaster* group. AlphaFold3
17 modeling of representative orthologs from each lineage produced predicted structures that were
18 fairly similar to those of representative *melanogaster* group orthologs, with a long alpha helix
19 predicted with high confidence toward the N terminus of each ortholog and one or two shorter
20 alpha helices in the C-terminal half of the protein (Fig. S6).

21
22 *Somewhat strong evidence for kj orthologs in the obscura group.* Since we detected *kj*
23 orthologs in both the *Sophophora* and *Drosophila* subgenera, we wondered whether *kj* was
24 present in the *obscura* group, a part of the *Sophophora* subgenus distinct from the
25 *melanogaster* group (Fig. 5B). Using *D. pseudoobscura* and *D. subobscura* as representative
26 species, we identified in their synteny regions ORFs supported as male-expressed by RNA-seq
27 data that could encode proteins of similar length to *D. melanogaster* KJ (Table S2). These
28 ORFs were predicted by DeepTMHMM to have a single transmembrane domain in the same
29 approximate position as the KJ orthologs described above, though the predicted topology (N
30 terminus inside the membrane, C terminus outside) was inverted. The predicted proteins
31 showed significant identity to each other across their full lengths. Pairwise BLASTP homology
32 to the above-detected KJ orthologs was marginal. The *D. pseudoobscura* ORF, for example,
33 matched three orthologs from the *melanogaster* (*D. erecta*, *D. setifemur*) and *repleta* groups (*D.*
34 *arizonae*) with $0.01 < e < 0.05$, and sixteen other orthologs with $e < 5$. Most of these matches
35 corresponded to the predicted transmembrane domain. The data were similar for *D.*
36 *subobscura*: its predicted ORF produced BLAST hits to nine other KJ orthologs with e-values
37 ranging from 0.003 to 0.53, with most regions of sequence identity falling in the predicted
38 transmembrane domain. AlphaFold3 modeling of the *D. pseudoobscura* ORF showed a broadly
39 similar structure to other KJ orthologs (Fig. S6), increasing confidence that these ORFs could
40 represent true *kj* orthologs.

41
42 *Levels of amino conservation in non-melanogaster group orthologs.* We aligned the above-
43 described KJ orthologs to examine levels of amino acid conservation. Two general regions of
44 heightened conservation were apparent (Fig. S9), both similar in position to the two more highly

1 conserved regions of the *melanogaster* group orthologs (Fig. S7). One region was toward the
2 C-terminus and partially overlapped with a predicted alpha helix in the *D. virilis* ortholog. The
3 other surrounded the predicted transmembrane domain toward the N-terminus. Overall levels
4 of conservation were somewhat lower for these orthologs, as expected given the wider
5 phylogenetic range represented by the included species (Fig. 5B).

6
7 *Marginal evidence for a kj ortholog in D. willistoni.* We identified a potential *kj* ortholog in *D.*
8 *willistoni*, a *Sophophora* subgenus species that is an outgroup to both the *melanogaster* and
9 *obscura* groups, by examining regions with male gonad RNA-seq expression data within the
10 syntenic region (Fig. S10). One such region showed the potential to encode a protein of 138
11 amino acids, with one predicted transmembrane domain (though only a single residue, the first
12 methionine of the polypeptide, is predicted to be outside the membrane). The full-length ORF
13 had marginal BLASTP similarity to potential KJ orthologs from the *obscura* group (e-values
14 between 0.5 and 1). Its predicted protein structure, however, did not have the same confidently
15 predicted alpha helices as the other orthologs (Fig. S6), and the amino acid sequence did not
16 align well with the other orthologs. Thus, *D. willistoni* may have a *kj* ortholog, but the evidence
17 is ambiguous.

18
19 *Inability to detect kj in D. grimshawi and D. albomicans.* Two remaining *Drosophila* subgenus
20 species for which good RNA-seq and genome browser data were available were *D. grimshawi*
21 and *D. albomicans*. Both of these species are nested within the *Drosophila* subgenus.
22 TBLASTN searches of the orthologs above against the whole genomes of either species did not
23 produce any meaningful hits, so we focused on the syntenic region. For *D. grimshawi* (Fig.
24 S11), the *D. virilis* ortholog produced a reasonably strong TBLASTN hit within the syntenic
25 region ($e < 10^{-6}$ across a 65-residue region of homology toward the C-terminus of the protein).
26 However, this region had stop codons immediately upstream of it in all three reading frames,
27 and RNA-seq coverage was spotty and at a much lower level than we observed for better-
28 supported orthologs. Thus, we find no evidence of a functional *kj* in the *D. grimshawi* syntenic
29 region; instead, the evidence may be consistent with a somewhat recent pseudogenization
30 event.

31
32 For *D. albomicans*, we identified three regions with male-specific/biased expression in the
33 syntenic region (Fig. S11). None were predicted to encode an ORF of >65 amino acids, and
34 none of the potential ORFs had predicted transmembrane domains. When we used TBLASTN
35 to query the entire syntenic region (150,000 bp) for regions of potential homology to any
36 *Drosophila* subgenus KJ ortholog (Table S2), we found no promising hits. Thus, we conclude
37 there is no detectable *kj* ortholog in the *D. albomicans* syntenic region.

38
39 *Conclusions about kj age and phylogenetic distribution.* Collectively, these phylogenetic data
40 suggest that *kj* was likely present at the base of the *Drosophila* genus, estimated by TimeTree
41 to be ~ 43 million years ago (Kumar et al. 2022). Whether the gene originated in the common
42 ancestor of *Drosophila* or more anciently is unclear. Using similar methods to those described
43 for *D. albomicans* and *D. grimshawi*, we investigated the syntenic region of outgroup species
44 *Scaptodrosophila lebanonensis*. This search yielded no obvious *kj* ortholog, but detecting

1 orthologs of short, fast-evolving *Drosophila* genes outside of the genus is challenging (Weisman
2 et al. 2020). Regardless of the exact timing of *kj*'s origin, it appears to be more ancient than
3 previously estimated (Heames et al. 2020; Peng and Zhao 2024). To be prudent, we describe
4 *kj* as an orphan gene (Tautz and Domazet-Lošo 2011), though we note that none of the
5 evidence above is inconsistent with a *de novo* origin for this gene. We use the more cautious
6 "orphan" terminology, however, to account for other possibilities consistent with our inability to
7 detect orthologs outside of *Drosophila*, such as rapid sequence divergence, movement of the
8 gene to a different genomic location, an origin via gene fusion, gene truncation, or horizontal
9 gene transfer, or an apparent absence in outgroup species due to incomplete genome
10 assemblies. Within genus *Drosophila*, *kj* has been fairly well conserved, but our inability to
11 detect the gene in two lineages (*D. grimshawi* and *D. albomicans*) in which the syntenic region
12 remains intact suggest the possibility of lineage-specific gene loss events (Fig. 5). Additional
13 potential losses, or major changes in protein structure/function, are possible in *D. willistoni* and
14 *D. navojoa*. Within the *melanogaster* group, however, the gene and its male-specific expression
15 pattern are well conserved.

16 Discussion

17 We have identified a *D. melanogaster* gene, *katherine johnson* (*kj*), whose action is required for
18 efficient sperm entry into eggs. Interestingly, *kj* is an orphan gene that was likely present at the
19 origin of the *Drosophila* genus but has evolved rapidly since then. These findings hold promise
20 for unraveling the still mysterious molecular events surrounding *Drosophila* fertilization and
21 reinforce the idea that lineage-specific genes can evolve essential roles in broadly conserved
22 biological processes.

23 Potential functions for KJ in spermatogenesis

24 Relatively little is known about the molecules required for sperm-egg interactions in *Drosophila*
25 (Loppin et al. 2015). Mutations in several genes result in normal sperm production and transfer,
26 but low hatchability, as we observe for *kj*. However, the cellular causes of their fertility defects
27 are distinct. Mutants in genes like *wasted* and *Nep4* cause abnormal sperm storage or release,
28 resulting in lower rates of fertilization (Ohsako and Yamamoto 2011; Ohsako et al. 2021), but
29 sperm from *kj* nulls appear to be stored and released normally (Table 1). Paternal effect
30 mutants cause abnormalities in processes such as sperm membrane dissolution (Fitch and
31 Wakimoto 1998; Wilson et al. 2006) or paternal chromatin unpacking or reorganization (Loppin,
32 Lepetit, et al. 2005; Dubruille et al. 2023), but sperm from these mutant males are proficient at
33 egg entry, unlike sperm from *kj* nulls (Fig. 3). Thus, *kj* is the only extant and molecularly
34 characterized *Drosophila* gene that distinctly affects sperm entry into eggs.

35 One other gene, *casanova* (*csn*), had been reported to have a mutant phenotype similar to what
36 we find for *kj*: *csn* mutant males produce and transfer motile, morphologically normal sperm that
37 are stored properly, but are unable to fertilize eggs (Perotti et al. 2001). Unfortunately, *csn*
38 mutants are no longer available, and the molecular nature of the gene is unknown. It is clear
39 that *csn* is distinct from *kj*, since they map to different chromosomal positions (*kj* is at cytological

1 region 34F4 on chromosome arm 2L; *csn* was mapped to cytological region 95E8-F7 on
2 chromosome arm 3R). It has been proposed that sperm interact with and/or cleave β -N-
3 acetylglucosamine and α -mannose sugars that are present on the egg at the site of sperm entry
4 but are no longer detected after fertilization (Loppin et al. 2015). Sperm plasma membranes
5 have been reported to contain glycosidic enzymes that cleave these sugars (Cattaneo et al.
6 2002; Intra et al. 2006), and sperm β -N-acetylglucosaminidase activity is reduced in *csn*
7 mutants (Perotti et al. 2001). Our data suggest KJ is not involved in such carbohydrate
8 interactions between egg and sperm, as it is not detected by immunofluorescence on mature
9 sperm from seminal vesicles (Fig. 4D). KJ was also not detected in the mature sperm proteome
10 as determined by mass spectrometry (Garlovsky et al. 2022). While we recognize the
11 limitations to negative results with both detection methods, the lack of any sequence similarity of
12 KJ to any glycolytic enzyme supports our view that KJ is unlikely to participate directly in sperm-
13 egg carbohydrate interactions.

14
15 The localization pattern of HA:KJ in the testes (Fig. 4) allows us to hypothesize different
16 potential roles for the KJ protein in spermatogenesis. In spermatocytes, KJ is enriched around
17 the entire edge of the nucleus, with fainter staining visible throughout the cytoplasm. In
18 spermatids, however, KJ localizes along one side of the elongating nuclei. These patterns
19 could be consistent with three possible functions for KJ. First, as predicted by DeepLoc, KJ
20 may localize to all or a portion of the ER, where it could be embedded in the membrane via its
21 predicted transmembrane domain. ER localization is consistent with the observed pattern of
22 HA:KJ in spermatocytes and spermatids (Fig. 4). In spermatocytes, the ER is continuous with
23 the outer nuclear membrane and extends into the cytoplasm (Lindsley and Tokuyasu 1980;
24 Dorogova et al. 2009), matching the HA:KJ localization pattern (Fig. 4B). As spermatid nuclei
25 begin to condense after meiosis, a portion of the ER remains associated with the one edge of
26 the nuclear membrane (Lindsley and Tokuyasu 1980), consistent with our observation of HA:KJ
27 along a single edge of the nucleus at this stage (Fig. 4C). Later, during individualization, the ER
28 (and other organelles) are stripped from the spermatids by individualization complexes and
29 discarded in waste bags at the apical end of the spermatid cyst discarded (Dorogova et al.
30 2009). The removal of the ER during the final stages of spermiogenesis is consistent with the
31 absence of detectable HA:KJ in mature sperm. Under this scenario, the inability of sperm from
32 *kj* null males to enter eggs could potentially be caused by the loss of KJ protein from a key
33 organelle for protein folding, processing and transport, which could in turn result in defects in the
34 production and/or transport of components of the mature sperm proteome that are necessary for
35 efficient egg entry.

36
37 A second possibility, consistent with HA:KJ's localization in spermatids (Fig. 4C), is that KJ
38 could be a component of the dense body. This structure, analogous to the mammalian
39 manchette (Lehti and Sironen 2016), forms through close physical interactions between nuclear
40 membrane proteins, microtubules, and actin-based structures that maintains contact between
41 the condensing spermatid nuclei and microtubules that help form the elongating sperm tail
42 (Fabian and Brill 2012). Unlike *kj* mutants, however, mutations in genes that alter dense body
43 formation cause defects in nuclear shaping at late stages of spermatogenesis, blocking mature
44 sperm production and resulting in complete sterility (Kracklauer et al. 2010; Augière et al. 2019;

1 Li et al. 2023) For example, a recently characterized protein, *Mst27D*, appears to function in
2 dense body formation and nuclear shaping, as it physically links nuclear pore complex proteins
3 with microtubules (Li et al. 2023). As loss of *kj* has no effect on nuclear shaping, *kj* most likely is
4 not required for dense body formation and therefore is likely to act independently of *Mst27D*.
5 Instead, if KJ localizes to the dense body, it might implicate roles for the structure beyond
6 nuclear and sperm head shaping, possibly in sperm head organization and protein trafficking.
7

8 Third, KJ's localization around the entire nucleus in spermatocytes and along one edge of the
9 nucleus in spermatids could be consistent with the protein functioning in or adjacent to the
10 nuclear membrane. Although we do not see gross changes in sperm nucleus/head shape in the
11 absence of *kj*, its loss might cause subtle abnormalities in these regions that make it more
12 difficult for sperm to enter the micropyle, the size of which coevolves with the diameter of insect
13 sperm (Soulsbury and Iossa 2024). Alternatively, it is possible that *kj* mediates (through either
14 nuclear membrane or ER localization) some other aspect of sperm head organization, such as
15 ensuring correct localization of other proteins, or acts in another process required to prepare
16 sperm for efficient egg entry or to release sperm from storage in a way that facilitates their
17 interaction with the egg.
18

19 KJ molecular evolution

20
21 Consistent with the analysis of Peng and Zhao (2024), we found that the *kj* gene is well
22 conserved in the *melanogaster* group. We also observed that these orthologs show strongly
23 male-biased expression. This pattern is consistent with the hypothesis that *kj* may play an
24 important role in male reproduction across species in this clade and, thus, that it might have
25 already evolved its essential function in the common ancestor of this group. However, the *kj*
26 protein-coding sequence has evolved considerably faster than most genes do in this group of
27 species, with limited evidence of recurrent adaptation. This pattern could indicate that only
28 some regions of the KJ protein are important for its essential function (while others evolve under
29 relaxed constraint), consistent with the differing levels of conservation that we observed in the
30 aligned orthologs (Figs. S7 and S9), and/or that the protein's essential function arose in a more
31 recent ancestor of *D. melanogaster*.
32

33 *kj* was initially identified as a putative *de novo* gene because of the lack of detectable orthologs
34 outside of *Drosophila* and the lack of identifiable protein domains (Heames et al. 2020). A
35 sophisticated analysis using whole-genome alignments similarly concluded that *kj* was unique to
36 *melanogaster* group species (Peng and Zhao 2024). Since our approach to ortholog detection
37 was tailored to the *kj* gene, we were able to use features specific to *kj* (such as synteny,
38 expression pattern and predicted protein features) and a relaxed threshold for initial BLAST
39 searches to identify potential *kj* orthologs beyond the *melanogaster* group. This gene-specific
40 approach would not have been feasible for the previous genome-scale studies. Our results
41 highlight the utility of considering gene-specific parameters when searching for orthologs of
42 putative *de novo* genes and suggest that caution may be warranted when a gene's *de novo*
43 status is supported only by high-throughput bioinformatic analysis.
44

1 While we found *kj* orthologs broadly across the *Drosophila* genus, we also found several
2 lineages in which the gene was either undetectable, truncated, or predicted to encode a protein
3 with a drastically different predicted structure from *D. melanogaster* KJ. Thus, while *kj* was
4 likely present in the *Drosophila* common ancestor, it might have been dispensable in some
5 lineages. The phylogenetic distribution of *kj* is similar to the distributions of two other orphan
6 (previously termed “putative *de novo*”) genes with essential male reproductive functions in *D.*
7 *melanogaster*, *saturn* and *atlas* (Gubala et al. 2017; Rivard et al. 2021), which are also well
8 conserved in the *melanogaster* group and detectable in only some outgroup species. Our
9 general hypothesis for this pattern is that these genes could have had slight, positive effects on
10 fertility in the most ancient ancestors of the *Drosophila* genus before evolving more essential,
11 non-redundant roles in the lineage leading to the *melanogaster* group. It is also possible that
12 larger-scale changes to the process of spermatogenesis in specific lineages could have
13 rendered once-beneficial genes superfluous. Indeed, several instances of major, lineage-
14 specific changes in spermatogenesis are known, such as the evolution of three types of sperm,
15 only one of which is fertilization competent, in *D. pseudoobscura* and related species (Alpern et
16 al. 2019), and the evolution of new sex chromosomes, which can affect processes such as the
17 regulation of sex-linked genes in germline cells (Wei et al. 2024) and sex chromosome meiotic
18 drive (Chang et al. 2023).

19
20 While we identified likely *kj* orthologs across *Drosophila* species, neither BLAST, PSI-BLAST
21 nor HMMER (hmmer.org) could detect homologs outside the genus, and we could not identify a
22 homolog in the syntenic region of *S. lebanonensis*. Thus, the phylogenetic distribution of *kj*
23 currently appears to be restricted to genus *Drosophila*. Because there is no evidence that *kj*
24 arose through duplication, we consider it an orphan gene (Tautz and Domazet-Lošo 2011). It is
25 possible that more sensitive sequence- or structure-based methods will at some point identify a
26 *kj* ortholog outside of *Drosophila*. Even if such an ortholog is detected, however, a gene that is
27 required for efficient fertilization and that has evolved within *Drosophila* to the point that it is
28 currently unrecognizable in outgroup species would remain of considerable functional and
29 evolutionary interest. This study provides another demonstration of the important reproductive
30 roles that lineage-specific genes can evolve, in this case in the crucial process of sperm entry
31 into eggs in *D. melanogaster*. As genome editing becomes easier to perform in non-model
32 species (Bubnell et al. 2022), it should also be possible to test whether and how *kj* is required
33 for male fertility in other *Drosophila* species.

34

35

36 **Data Availability Statement**

37

38 Fly strains are available on request. Files S1 and S2 contain the inferred protein sequences of
39 predicted KJ orthologs. File S3 contains the DNA sequence alignment used in the molecular
40 evolutionary analyses. File S4 contains the phylogenetic tree used for PAML analysis. File S5
41 contains the raw data underlying this study’s graphs and statistical analyses. Genome browsers
42 and RNA-seq data for *Drosophila* species were accessed through the Genomics Education
43 Partnership (thegep.org). Other supporting information is provided in either the supplemental
44 figures and tables or in the Reagents Table, all of which have been uploaded to GSA Figshare.

1
2 **Acknowledgments**
3

4 We thank Biounce Casildo Ramirez, Roselyn Pantoja-Ramirez, Rob Bellin and Karen Ober and
5 for technical assistance; Wilson Leung for assistance for checking the *D. eugracilis* RNA-seq
6 reads; Marcus Kilwein for assistance with embryo staging; and Barbara Wakimoto, Emily
7 Rivard, Lars Eicholt, Harmit Malik and members of the Findlay and Wolfner Labs for feedback
8 on the project. The reviewers and editor provided helpful feedback on the manuscript.
9

10 **Funding**
11

12 This work was supported by NSF grants 1652013 and 2212972 to GDF. JMT was supported by
13 a Mann Fellowship (to JMT) and Payne Memorial Funds (to MFW). MFW also acknowledges
14 support from NIH grant R37-HD038921. KLM was supported by a College of the Holy Cross
15 Weiss summer research fellowship.
16

17 **Conflict of Interest**
18

19 The authors do not have any conflicts of interest to declare.

20 **Author Contributions**
21

22 Conceptualization: GDF, PHP
23 Data curation: PHP, JMT, GDF
24 Formal analysis: PHP, JMT, JMO, GDF
25 Funding acquisition: GDF, MFW
26 Investigation: SYG, PHP, JMT, KLM, JMO, SEA, SJO, GDF
27 Project administration: GDF, PHP, MFW
28 Supervision: GDF, PHP, MFW
29 Validation: SYG, PHP, JMT, GDF
30 Visualization: PHP, JMT, GDF
31 Writing: GDF, PHP

32 **References**

33 Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L,
34 Ballard AJ, Bambrick J, et al. 2024. Accurate structure prediction of biomolecular interactions
35 with AlphaFold 3. *Nature*. 630(8016):493–500.

36 Alpern JHM, Asselin MM, Moehring AJ. 2019. Identification of a novel sperm class and its role in
37 fertilization in *Drosophila*. *J Evol Biol*. 32(3):259–266.

38 Augière C, Lapart J-A, Duteyrat J-L, Cortier E, Maire C, Thomas J, Durand B. 2019.
39 *salto/CG13164* is required for sperm head morphogenesis in *Drosophila*. *Mol Biol Cell*.
40 30(5):636–645.

41 Begun DJ, Lindfors HA, Kern AD, Jones CD. 2007. Evidence for *de novo* evolution of testis-
42 expressed genes in the *Drosophila yakuba/Drosophila erecta* clade. *Genetics*. 176(2):1131–

1 1137.

2 Bloch Qazi MC, Heifetz Y, Wolfner MF. 2003. The developments between gametogenesis and
3 fertilization: ovulation and female sperm storage in *Drosophila melanogaster*. *Dev Biol.*
4 256(2):195–211.

5 Brown JB, Boley N, Eisman R, May GE, Stoiber MH, Duff MO, Booth BW, Wen J, Park S,
6 Suzuki AM, et al. 2014. Diversity and dynamics of the *Drosophila* transcriptome. *Nature.*
7 512(7515):393–399.

8 Bubnell JE, Ulbing CKS, Fernandez Begne P, Aquadro CF. 2022. Functional Divergence of the
9 bag-of-marbles Gene in the *Drosophila melanogaster* Species Group. *Mol Biol Evol.*
10 39(7):msac137.

11 Carvunis A-R, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, Simonis N, Charlotteaux B,
12 Hidalgo CA, Barbette J, Santhanam B, et al. 2012. Proto-genes and *de novo* gene birth. *Nature.*
13 487(7407):370–374.

14 Cattaneo F, Ogiso M, Hoshi M, Perotti ME, Pasini ME. 2002. Purification and characterization of
15 the plasma membrane glycosidases of *Drosophila melanogaster* spermatozoa. *Insect Biochem
16 Mol Biol.* 32(8):929–941.

17 Chang C-H, Mejia Natividad I, Malik HS. 2023. Expansion and loss of sperm nuclear basic
18 protein genes in *Drosophila* correspond with genetic conflicts between sex chromosomes. *Elife.*
19 12:e85249.

20 Chen Z-X, Sturgill D, Qu J, Jiang H, Park S, Boley N, Suzuki AM, Fletcher AR, Plachetzki DC,
21 Fitzgerald PC, et al. 2014. Comparative validation of the *D. melanogaster* modENCODE
22 transcriptome annotation. *Genome Res.* 24(7):1209–1223.

23 Dapper AL, Wade MJ. 2020. Relaxed Selection and the Rapid Evolution of Reproductive
24 Genes. *Trends Genet.* 36(9):640–649.

25 Deneke VE, Pauli A. 2021. The Fertilization Enigma: How Sperm and Egg Fuse. *Annu Rev Cell
26 Dev Biol.* 37:391–414.

27 Ding Y, Zhao L, Yang S, Jiang Y, Chen Y, Zhao R, Zhang Y, Zhang G, Dong Y, Yu H, et al.
28 2010. A young *Drosophila* duplicate gene plays essential roles in spermatogenesis by regulating
29 several Y-linked male fertility genes. *PLoS Genet.* 6(12):e1001255.

30 Dorogova NV, Nerusheva OO, Omelyanchuk LV. 2009. Structural organization and dynamics of
31 the endoplasmic reticulum during spermatogenesis of *Drosophila melanogaster*: Studies using
32 PDI-GFP chimera protein. *Biochemistry (Moscow) Supplement Series A: Membrane and Cell
33 Biology.* 3(1):55–61.

34 Drosophila 12 Genomes Consortium, Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B,
35 Markow TA, Kaufman TC, Kellis M, Gelbart W, et al. 2007. Evolution of genes and genomes on
36 the *Drosophila* phylogeny. *Nature.* 450(7167):203–218.

37 Dubruille R, Herbette M, Revel M, Horard B, Chang C-H, Loppin B. 2023. Histone removal in
38 sperm protects paternal chromosomes from premature division at fertilization. *Science.*
39 382(6671):725–731.

1 Dubruille R, Orsi GA, Delabaere L, Cortier E, Couble P, Marais GAB, Loppin B. 2010.
2 Specialization of a *Drosophila* Capping Protein Essential for the Protection of Sperm Telomeres.
3 Current Biology. 20(23):2090–2099.

4 Elofsson A, Han L, Bianchi E, Wright GJ, Jovine L. 2024. Deep learning insights into the
5 architecture of the mammalian egg-sperm fusion synapse. *Elife*. 13:RP93131.

6 Eren-Ghiani Z, Rathke C, Theofel I, Renkawitz-Pohl R. 2015. Prtl99C Acts Together with
7 Protamines and Safeguards Male Fertility in *Drosophila*. *Cell Rep*. 13(11):2327–2335.

8 Fabian L, Brill JA. 2012. *Drosophila* spermiogenesis: Big things come from little packages.
9 *Spermatogenesis*. 2(3):197–212.

10 Findlay GD, MacCoss MJ, Swanson WJ. 2009. Proteomic discovery of previously unannotated,
11 rapidly evolving seminal fluid genes in *Drosophila*. *Genome Res*. 19(5):886–896.

12 Findlay GD, Sitnik JL, Wang W, Aquadro CF, Clark NL, Wolfner MF. 2014. Evolutionary rate
13 covariation identifies new members of a protein network required for *Drosophila melanogaster*
14 female post-mating responses. *PLoS Genet*. 10(1):e1004108.

15 Fitch KR, Wakimoto BT. 1998. The paternal effect gene *ms(3)sneaky* is required for sperm
16 activation and the initiation of embryogenesis in *Drosophila melanogaster*. *Dev Biol*.
17 197(2):270–282.

18 Foe VE, Odell GM, Edgar BA. 1993. Mitosis and morphogenesis in the *Drosophila* embryo:
19 point and counterpoint. In: Bate M, Martinez Arias A, editors. *The Development of Drosophila*
20 *melanogaster*. Vol. 1. Cold Spring Harbor Laboratory Press. p. 149–300.

21 Garlovsky MD, Sandler JA, Karr TL. 2022. Functional Diversity and Evolution of the *Drosophila*
22 Sperm Proteome. *Mol Cell Proteomics*. 21(10):100281.

23 Ge DT, Tipping C, Brodsky MH, Zamore PD. 2016. Rapid Screening for CRISPR-Directed
24 Editing of the *Drosophila* Genome Using white Coconversion. *G3* . 6(10):3197–3206.

25 Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA 3rd, Smith HO. 2009. Enzymatic
26 assembly of DNA molecules up to several hundred kilobases. *Nat Methods*. 6(5):343–345.

27 Gubala A, Schmitz JF, Kearns MJ, Vinh T, Bornberg-Bauer E, Wolfner M, Findlay GD. 2017.
28 The *goddard* and *saturn* genes are essential for *Drosophila* male fertility and may have arisen
29 *de novo*. *Mol Biol Evol*. 34:1066–1082.

30 Hallgren J, Tsirigos KD, Pedersen MD, Armenteros JJA, Marcatili P, Nielsen H, Krogh A,
31 Winther O. 2022. DeepTMHMM predicts alpha and beta transmembrane proteins using deep
32 neural networks. *bioRxiv*.:2022.04.08.487609. doi:10.1101/2022.04.08.487609. [accessed 2024
33 Jul 25]. <https://www.biorxiv.org/content/biorxiv/early/2022/04/10/2022.04.08.487609>.

34 Heames B, Schmitz J, Bornberg-Bauer E. 2020. A Continuum of Evolving *De Novo* Genes
35 Drives Protein-Coding Novelty in *Drosophila*. *J Mol Evol*. 88(4):382–398.

36 Horne-Badovinac S. 2020. The *Drosophila* micropyle as a system to study how epithelia build
37 complex extracellular structures. *Philos Trans R Soc Lond B Biol Sci*. 375(1809):20190561.

38 Horner VL, Wolfner MF. 2008. Transitioning from egg to embryo: triggers and mechanisms of

1 egg activation. *Dev Dyn.* 237(3):527–544.

2 Hu Q, Duncan FE, Nowakowski AB, Antipova OA, Woodruff TK, O'Halloran TV, Wolfner MF.
3 2020. Zinc Dynamics during *Drosophila* Oocyte Maturation and Egg Activation. *iScience.*
4 23(7):101275.

5 Intra J, Cenni F, Perotti M-E. 2006. An alpha-L-fucosidase potentially involved in fertilization is
6 present on *Drosophila* spermatozoa surface. *Mol Reprod Dev.* 73(9):1149–1158.

7 Kaur R, Leigh BA, Ritchie IT, Bordenstein SR. 2022. The Cif proteins from Wolbachia prophage
8 WO modify sperm genome integrity to establish cytoplasmic incompatibility. *PLoS Biol.*
9 20(5):e3001584.

10 Kosakovsky Pond SL, Frost SDW. 2005. Not so different after all: a comparison of methods for
11 detecting amino acid sites under selection. *Mol Biol Evol.* 22(5):1208–1222.

12 Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW. 2006. Automated
13 phylogenetic detection of recombination using a genetic algorithm. *Mol Biol Evol.* 23(10):1891–
14 1901.

15 Kracklauer MP, Wiora HM, Deery WJ, Chen X, Bolival B Jr, Romanowicz D, Simonette RA,
16 Fuller MT, Fischer JA, Beckingham KM. 2010. The *Drosophila* SUN protein Spag4 cooperates
17 with the coiled-coil protein Yuri Gagarin to maintain association of the basal body and spermatid
18 nucleus. *J Cell Sci.* 123(Pt 16):2763–2772.

19 Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, Li M, Stecher G, Hedges SB.
20 2022. TimeTree 5: An Expanded Resource for Species Divergence Times. *Mol Biol Evol.*
21 39(8):msac174.

22 LaFlamme BA, Ram KR, Wolfner MF. 2012. The *Drosophila melanogaster* seminal fluid
23 protease “seminase” regulates proteolytic and post-mating reproductive processes. *PLoS
24 Genet.* 8(1):e1002435.

25 Lange A, Patel PH, Heames B, Damry AM, Saenger T, Jackson CJ, Findlay GD, Bornberg-
26 Bauer E. 2021. Structural and functional characterization of a putative de novo gene in
27 *Drosophila*. *Nat Commun.* 12(1):1667.

28 Lehti MS, Sironen A. 2016. Formation and function of the manchette and flagellum during
29 spermatogenesis. *J Reprod Fertil.* 151(4):R43–54.

30 Levine MT, Jones CD, Kern AD, Lindfors HA, Begun DJ. 2006. Novel genes derived from
31 noncoding DNA in *Drosophila melanogaster* are frequently X-linked and exhibit testis-biased
32 expression. *Proc Natl Acad Sci U S A.* 103(26):9935–9939.

33 Lindsley DL, Tokuyasu KT. 1980. Spermatogenesis. In: Ashburner M, Wright TRF, editors. *The
34 Genetics and Biology of Drosophila*, Volume 2D. London: Academic Press. p. 225–294.

35 Li P, Messina G, Lehner CF. 2023. Nuclear elongation during spermiogenesis depends on
36 physical linkage of nuclear pore complexes to bundled microtubules by *Drosophila* Mst27D.
37 *PLoS Genet.* 19(7):e1010837.

38 Long M, VanKuren NW, Chen S, Vibranovski MD. 2013. New gene evolution: little did we know.
39 *Annu Rev Genet.* 47(1):307–333.

1 Loppin B, Berger F, Couble P. 2001. The *Drosophila* maternal gene *sésame* is required for
2 sperm chromatin remodeling at fertilization. *Chromosoma*. 110(6):430–440.

3 Loppin B, Bonnefoy E, Anselme C, Laurençon A, Karr TL, Couble P. 2005. The histone H3.3
4 chaperone HIRA is essential for chromatin assembly in the male pronucleus. *Nature*.
5 437(7063):1386–1390.

6 Loppin B, Dubruille R, Horard B. 2015. The intimate genetics of *Drosophila* fertilization. *Open*
7 *Biol.* 5(8):150076.

8 Loppin B, Lepetit D, Dorus S, Couble P, Karr TL. 2005. Origin and neofunctionalization of a
9 *Drosophila* paternal effect gene essential for zygote viability. *Curr Biol.* 15(2):87–93.

10 Lüpold S, Manier MK, Puniamoorthy N, Schoff C, Starmer WT, Luepold SHB, Belote JM, Pitnick
11 S. 2016. How sexual selection can drive the evolution of costly sperm ornamentation. *Nature*.
12 533(7604):535–538.

13 Manier MK, Belote JM, Berben KS, Novikov D, Stuart WT, Pitnick S. 2010. Resolving
14 mechanisms of competitive fertilization success in *Drosophila melanogaster*. *Science*.
15 328(5976):354–357.

16 McLysaght A, Hurst L. 2016. Open questions in the study of *de novo* genes: what, how and
17 why. *Nat Rev Genet.* 17:567–578.

18 Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S, Aylward A, Eren K, Pollner T, Martin
19 DP, Smith DM, et al. 2015. Gene-wide identification of episodic selection. *Mol Biol Evol*.
20 32(5):1365–1371.

21 Ni J-Q, Zhou R, Czech B, Liu L-P, Holderbaum L, Yang-Zhou D, Shim H-S, Tao R, Handler D,
22 Karpowicz P, et al. 2011. A genome-scale shRNA resource for transgenic RNAi in *Drosophila*.
23 *Nat Methods*. 8(5):405–407.

24 Ødum MT, Teufel F, Thumuluri V, Almagro Armenteros JJ, Johansen AR, Winther O, Nielsen H.
25 2024. DeepLoc 2.1: multi-label membrane protein type prediction using protein language
26 models. *Nucleic Acids Res.* 52(W1):W215–W220.

27 Ohsako T, Shirakami M, Oiwa K, Ibaraki K, Karr TL, Tomaru M, Sanuki R, Takano-Shimizu-
28 Kouno T. 2021. The *Drosophila Neprilysin 4* gene is essential for sperm function following
29 sperm transfer to females. *Genes Genet Syst.* 96(4):177–186.

30 Ohsako T, Yamamoto M-T. 2011. Sperm of the *wasted* mutant are wasted when females utilize
31 the stored sperm in *Drosophila melanogaster*. *Genes Genet Syst.* 86(2):97–108.

32 Okabe M. 2016. The Acrosome Reaction: A Historical Perspective. *Adv Anat Embryol Cell Biol.*
33 220:1–13.

34 Öztürk-Çolak A, Marygold SJ, Antonazzo G, Attrill H, Goutte-Gattat D, Jenkins VK, Matthews
35 BB, Millburn G, Dos Santos G, Tabone CJ, et al. 2024. FlyBase: updates to the *Drosophila*
36 genes and genomes database. *Genetics*. 227(1):iyad211.

37 Patlar B, Jayaswal V, Ranz JM, Civetta A. 2021. Nonadaptive molecular evolution of seminal
38 fluid proteins in *Drosophila*. *Evolution*. 75(8):2102–2113.

1 Peng J, Zhao L. 2024. The origin and structural evolution of *de novo* genes in *Drosophila*. *Nat*
2 *Commun.* 15(1):810.

3 Perotti ME, Cattaneo F, Pasini ME, Vernì F, Hackstein JH. 2001. Male sterile mutant casanova
4 gives clues to mechanisms of sperm-egg interactions in *Drosophila melanogaster*. *Mol Reprod*
5 *Dev.* 60(2):248–259.

6 Pitnick S, Hosken DJ, Birkhead TR. 2009. Sperm morphological diversity. In: Birkhead TR,
7 Hosken DJ, Pitnick S, editors. *Sperm Biology*. London: Academic Press. p. 69–149.

8 Pitnick S, Markow T, Spicer GS. 1999. Evolution of multiple kinds of female sperm-storage
9 organs in *Drosophila*. *Evolution*. 53(6):1804.

10 Ramm SA, Schärer L, Ehmcke J, Wistuba J. 2014. Sperm competition and the evolution of
11 spermatogenesis. *Molecular human reproduction*. 20(12):1169–1179.

12 Rathke C, Baarens WM, Awe S, Renkawitz-Pohl R. 2014. Chromatin dynamics during
13 spermiogenesis. *Biochim Biophys Acta*. 1839(3):155–168.

14 Ravi Ram K, Wolfner MF. 2007. Sustained post-mating response in *Drosophila melanogaster*
15 requires multiple seminal fluid proteins. *PLoS Genet*. 3(12):e238.

16 Rele CP, Sandlin KM, Leung W, Reed LK. 2022. Manual annotation of *Drosophila* genes: a
17 Genomics Education Partnership protocol. *F1000Res*. 11:1579.

18 Rivard EL, Ludwig AG, Patel PH, Grandchamp A, Arnold SE, Berger A, Scott EM, Kelly BJ,
19 Mascha GC, Bornberg-Bauer E, et al. 2021. A *putative de novo* evolved gene required for
20 spermatid chromatin condensation in *Drosophila melanogaster*. *PLoS Genet*. 17(9):e1009787.

21 Sakai A, Schwartz BE, Goldstein S, Ahmad K. 2009. Transcriptional and developmental
22 functions of the H3.3 histone variant in *Drosophila*. *Curr Biol*. 19(21):1816–1820.

23 Santel A, Winhauer T, Blümer N, Renkawitz-Pohl R. 1997. The *Drosophila don juan* (dj) gene
24 encodes a novel sperm specific protein component characterized by an unusual domain of a
25 repetitive amino acid motif. *Mech Dev*. 64(1-2):19–30.

26 Schärer L, Da Lage J-L, Joly D. 2008. Evolution of testicular architecture in the Drosophilidae: a
27 role for sperm length. *BMC Evol Biol*. 8:143.

28 Shetterly ML. 2016. *Hidden Figures: The American Dream and the Untold Story of the Black*
29 *Women Mathematicians Who Helped Win the Space Race*. HarperCollins.

30 Soulsbury CD, Iossa G. 2024. Coevolution between eggs and sperm of insects. *Proc Biol Sci*.
31 291(2026):20240525.

32 Stromberg KA, Spain T, Tomlin SA, Powell J, Amarillo KD, Schroeder CM. 2023. Evolutionary
33 diversification reveals distinct somatic versus germline cytoskeletal functions of the Arp2
34 branched actin nucleator protein. *Curr Biol*. 33(24):5326–5339.e7.

35 Suarez SS. 2008. Regulation of sperm storage and movement in the mammalian oviduct. *Int J*
36 *Dev Biol*. 52(5-6):455–462.

37 Suvorov A, Kim BY, Wang J, Armstrong EE, Peede D, D'Agostino ERR, Price DK, Waddell P,

1 Lang M, Courtier-Orgogozo V, et al. 2022. Widespread introgression across a phylogeny of 155
2 *Drosophila* genomes. *Curr Biol.* 32(1):111–123.e5.

3 Tautz D, Domazet-Lošo T. 2011. The evolutionary origin of orphan genes. *Nat Rev Genet.*
4 12(10):692–702.

5 Tirmarche S, Kimura S, Dubruille R, Horard B, Loppin B. 2016. Unlocking sperm chromatin at
6 fertilization requires a dedicated egg thioredoxin in *Drosophila*. *Nat Commun.* 7:13539.

7 Vakirlis N, Acar O, Hsu B, Castilho Coelho N, Van Oss SB, Wacholder A, Medetgul-Ernar K,
8 Bowman RW 2nd, Hines CP, Iannotta J, et al. 2020. *De novo* emergence of adaptive membrane
9 proteins from thymine-rich genomic sequences. *Nat Commun.* 11(1):781.

10 Vakirlis N, Vance Z, Duggan KM, McLysaght A. 2022. *De novo* birth of functional microproteins
11 in the human lineage. *Cell Rep.* 41(12):111808.

12 VanKuren NW, Long M. 2018. Gene duplicates resolving sexual conflict rapidly evolved
13 essential gametogenesis functions. *Nat Ecol Evol.* 2(4):705–712.

14 Van Oss SB, Carvunis A-R. 2019. *De novo* gene birth. *PLoS Genet.* 15(5):e1008160.

15 Vedelek V, Bodai L, Grézal G, Kovács B, Boros IM, Laurinyecz B, Sinka R. 2018. Analysis of
16 *Drosophila melanogaster* testis transcriptome. *BMC Genomics.* 19(1):697.

17 Wagstaff BJ, Begun DJ. 2005. Comparative genomics of accessory gland protein genes in
18 *Drosophila melanogaster* and *D. pseudoobscura*. *Mol Biol Evol.* 22(4):818–832.

19 Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL. 2018. Datamonkey
20 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes.
21 *Mol Biol Evol.* 35(3):773–777.

22 Wei KH-C, Chatla K, Bachtrog D. 2024. Single-cell RNA-seq of *Drosophila miranda* testis
23 reveals the evolution and trajectory of germline sex chromosome regulation. *PLoS Biol.*
24 22(4):e3002605.

25 Weisman CM, Murray AW, Eddy SR. 2020. Many, but not all, lineage-specific genes can be
26 explained by homology detection failure. *PLoS Biol.* 18(11):e3000862.

27 White-Cooper H, Doggett K, Ellis RE. 2009. The evolution of spermatogenesis. In: Birkhead TR,
28 Hosken DJ, Pitnick S, editors. *Sperm Biology*. London: Academic Press. p. 151–183.

29 Wilburn DB, Swanson WJ. 2016. From molecules to mating: Rapid evolution and biochemical
30 studies of reproductive proteins. *J Proteomics.* 135:12–25.

31 Wilson KL, Fitch KR, Bafus BT, Wakimoto BT. 2006. Sperm plasma membrane breakdown
32 during *Drosophila* fertilization requires sneaky, an acrosomal membrane protein. *Development.*
33 133(24):4871–4879.

34 Wisotsky SR, Kosakovsky Pond SL, Shank SD, Muse SV. 2020. Synonymous Site-to-Site
35 Substitution Rate Variation Dramatically Inflates False Positive Rates of Selection Analyses:
36 Ignore at Your Own Peril. *Mol Biol Evol.* 37(8):2430–2439.

37 Wolfner MF, Suarez SS, Dorus S. 2023. Suspension of hostility: Positive interactions between

1 spermatozoa and female reproductive tracts. *Andrology*. 11(5):943–947.

2 Yamaki T, Yasuda GK, Wakimoto BT. 2016. The Deadbeat Paternal Effect of Uncapped Sperm
3 Telomeres on Cell Cycle Progression and Chromosome Behavior in *Drosophila melanogaster*.
4 *Genetics*. 203(2):799–816.

5 Yang Z, Nielsen R, Goldman N, Pedersen AM. 2000. Codon-substitution models for
6 heterogeneous selection pressure at amino acid sites. *Genetics*. 155(1):431–449.

7 Zhang L, Ren Y, Yang T, Li G, Chen J, Gschwend AR, Yu Y, Hou G, Zi J, Zhou R, et al. 2019.
8 Rapid evolution of protein diversity by *de novo* origination in *Oryza*. *Nature ecology & evolution*.
9 3(4):679–690.

10 Zhao L, Saelao P, Jones CD, Begun DJ. 2014. Origin and spread of *de novo* genes in
11 *Drosophila melanogaster* populations. *Science*. 343(6172):769–772.

12 Zhao L, Svetec N, Begun DJ. 2024. *De Novo Genes*. *Annu Rev Genet*. 58.
13 doi:10.1146/annurev-genet-111523-102413. <http://dx.doi.org/10.1146/annurev-genet-111523-102413>.

15 Zhao Q, Zheng Y, Li Y, Shi L, Zhang J, Ma D, You M. 2024. An Orphan Gene Enhances Male
16 Reproductive Success in *Plutella xylostella*. *Mol Biol Evol*. 41(7). doi:10.1093/molbev/msae142.
17 <http://dx.doi.org/10.1093/molbev/msae142>.

18
19 **Table 1. Sperm production, transfer and storage for *kj* null males and controls.**

Measurement	<i>kj</i> null males	control males	t-test result
Sperm per male SV	1667.5 ± 81.0	1927.2 ± 96.2	<i>p</i> = 0.049*
Sperm transferred to female bursa, 30 mins ASM	1436.0 ± 120.3	1082.3 ± 76.0	<i>p</i> = 0.021*
Sperm stored in female SR, 2 hrs ASM	241.8 ± 22.0	276.0 ± 22.6	<i>p</i> = 0.29
Sperm stored in female SR, 4 days ASM	145.7 ± 22.1	171.1 ± 23.1	<i>p</i> = 0.42

20 Values are means ± 1 standard error of the mean. Asterisks indicate significance at the *p* <
21 0.05 level. Sample sizes: *n* = 11-14 for each group.

1 **Figures**

2

3 **Figure 1. The *katherine johnson* gene (CG43167) is required for maximal male fertility in**

4 ***D. melanogaster*.** Males homozygous for a complete deletion allele (Δkj) had significantly

5 lower fertility than w^{1118} controls and $\Delta kj/+$ heterozygotes (both $p < 10^{-13}$). $\Delta kj/+$ heterozygotes

6 had no significant fertility difference from w^{1118} ($p = 0.26$), indicating the Δkj allele is fully

7 recessive. Trans-heterozygote males ($\Delta kj/Df$) with no functional copies of kj showed no

8 significant difference in fertility relative to Δkj homozygotes ($p = 0.37$). Fertility of $\Delta kj/Df$

9 heterozygotes was significantly increased upon addition of either of two tagged rescue

10 constructs, HA: kj ($p < 10^{-15}$) or kj :HA ($p < 10^{-5}$). The N-terminally tagged construct had

11 significantly higher fertility than the C-terminally tagged construct ($p < 10^{-5}$) and showed no

12 significant fertility difference from w^{1118} controls ($p = 0.46$). Progeny number was counted as the

13 number of pupal cases produced by females mated to males of a specific genotype. All p -

14 values are from two-tailed t -tests with unequal variances. Horizontal lines show means.

15 Samples sizes were $n = 17$ - 20 per genotype.

16

17 **Figure 2. The fertility defect of *kj* null males results from an egg hatching defect.** a) Egg-

18 laying over a four-day assay by females mated to kj null males or heterozygous ($\Delta kj/+$) controls.

19 The groups showed no significant difference. b) The proportion of eggs from panel (a) that

20 developed to pupae. Eggs laid by mates of kj null males had a significantly lower hatching rate.

21 c) Progeny production for females mated to kj null males is correspondingly lower. The single

22 high outlier for the kj null genotype in panels b and c might have resulted from the use of a mis-

23 identified $\Delta kj/+$ heterozygous male in the kj null group. In each panel, horizontal lines indicate

24 means, and the two genotypes were compared by two-sample t -tests with unequal variances,

25 with p -values given in the graphs.

26

27 **Figure 3. Sperm from *kj* null males fertilize eggs inefficiently.** a-c) Max projection confocal

28 images of fixed <1 hour old embryos laid by Canton S (WT) females mated to either $\Delta kj/CyO$

29 controls or $\Delta kj/\Delta kj$ males expressing Dj -GFP (scale bars = 50 μ m). a) Dj -GFP sperm from

30 $\Delta kj/CyO$ flies were frequently detected in the anterior of <1 hour old WT embryos. b) Dj -GFP

31 sperm from $\Delta kj/\Delta kj$ flies were rarely detected in the anterior of <1 hour old WT embryos. c)

32 Quantification of a,b. Embryos fathered by $\Delta kj/CyO$ flies are positive for Dj -GFP 79.2% of the

33 time ($n=212$ embryos), compared to 0.7% when fathered by $\Delta kj/\Delta kj$ flies ($n=275$ embryos). d-f)

34 Max projection confocal images of fixed, Hoechst-stained embryos collected overnight from WT

35 females mated to either $\Delta kj/CyO$ or $\Delta kj/\Delta kj$ males (scale bars = 100 μ m). d) Embryos fertilized

36 by $\Delta kj/CyO$ males develop normally and reach up to Stage 16 of embryonic development during

37 the collection period. e) When fertilized by $\Delta kj/\Delta kj$ males, embryos appear to develop normally

38 (magenta arrowhead). Unfertilized embryos deteriorate during the collection period (cyan

39 arrowhead). f) Quantification of d,e. Embryos from females mated to $\Delta kj/CyO$ males appear to

40 develop normally 97.3% of the time ($n=504$ embryos), compared to 11.6% of the time when

41 mated to $\Delta kj/\Delta kj$ males ($n=544$ embryos). *** $p < 0.0001$, unpaired t -test, two-tailed. At least

42 three biological replicates were performed for each experiment.

43

1 **Figure 4. KJ is found around the edge of nuclei in both spermatocytes and spermatids**
2 **but is undetectable in mature sperm.** a) In whole mount testes, HA:KJ (full genotype: $\Delta kj/\Delta kj$;
3 $HA:KJ/+$) is enriched in spermatocytes and condensing spermatid nuclei. A low level of
4 background is present w^{1118} control testes stained with anti-HA. b) In isolated spermatocytes,
5 HA:KJ has a diffuse localization throughout the cytoplasm but is enriched at the edge of the
6 nucleus and at large punctate structures of unknown identity. c) In canoe-stage spermatid
7 nuclei, HA:KJ is localized to condensing nuclei, with an enrichment on one side of each nucleus
8 reminiscent of dense bodies. By the needle stage of condensation, marked by the presence of
9 actin-rich investment cones at the base of nuclei, HA:KJ is no longer detectable around nuclei.
10 d) Staining of mature sperm isolated from seminal vesicles shows no detectable HA:KJ around
11 sperm nuclei. Control sperm are from w^{1118} males.

12
13 **Figure 5. Predicted KJ protein structure and molecular evolution of *kj* in *Drosophila*.** a) AlphaFold3-predicted structure of the 126-residue *D. melanogaster* KJ protein. The position of
14 the predicted transmembrane (TM) domain is shown. Color indicates the degree of model
15 confidence (dark blue: very high confidence, pLDDT > 90; light blue: high confidence, 90 >
16 pLDDT > 70; yellow: low confidence, 70 > pLDDT > 50). b) Phylogenetic distribution and
17 potential gene loss events for *kj* in genus *Drosophila*. Orthologs of *kj* were detected in both
18 subgenera, *Sophophora* and *Drosophila*, but not outside of genus *Drosophila*, implying that *kj*
19 was present at the base of the genus. The lack of detectable, intact orthologs in the syntenic
20 regions of the genomes of *D. grimshawi* and *D. albomicans* suggests potential gene loss
21 events in these lineages. Gray text indicates uncertainty about the ortholog identified in *D.*
22 *willistoni*. For clarity, some species are collapsed into groups; the number of species from the
23 group for which full-length orthologs were detected is shown in parentheses. Branch lengths
24 are not to scale; tree topology shows species relationships inferred by Suvorov et al. (2022).

25
26

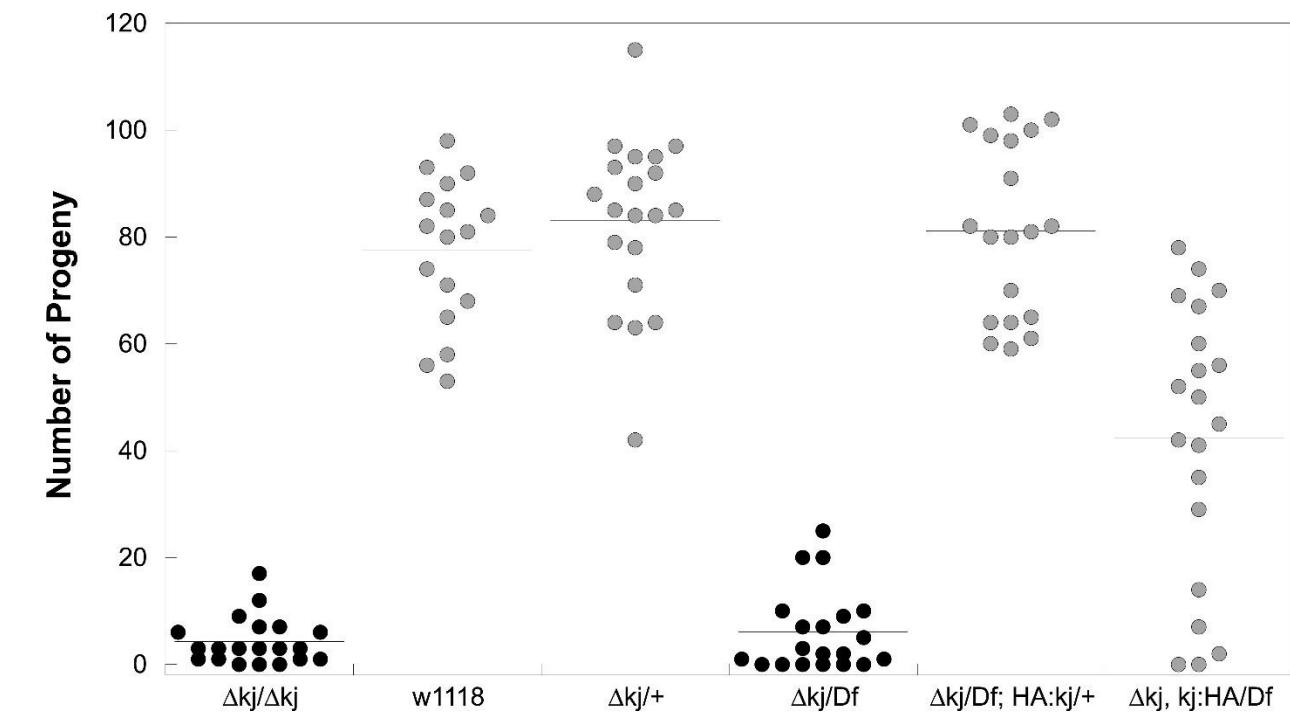


Figure 1
238x133 mm (DPI)

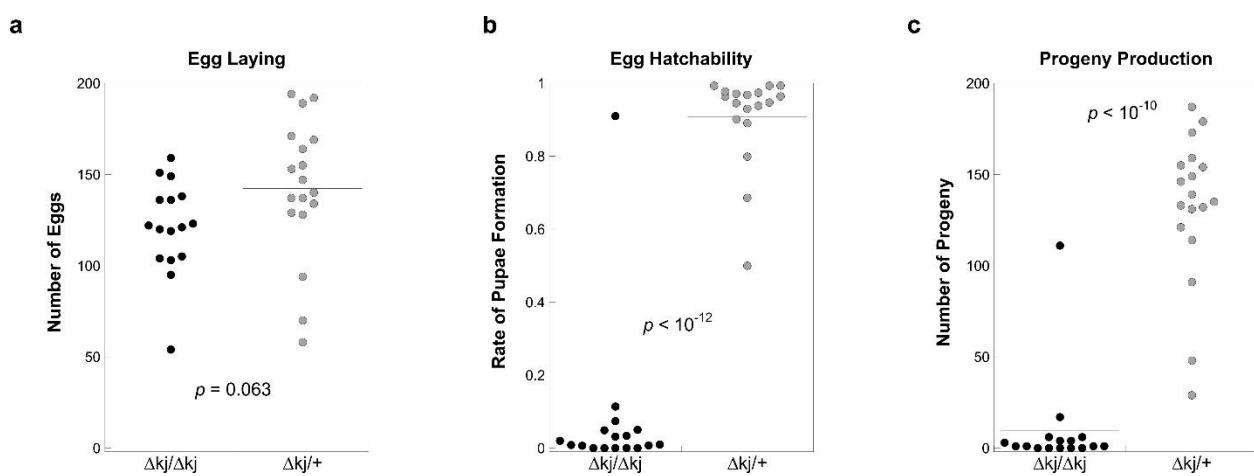


Figure 2
249x91 mm (DPI)

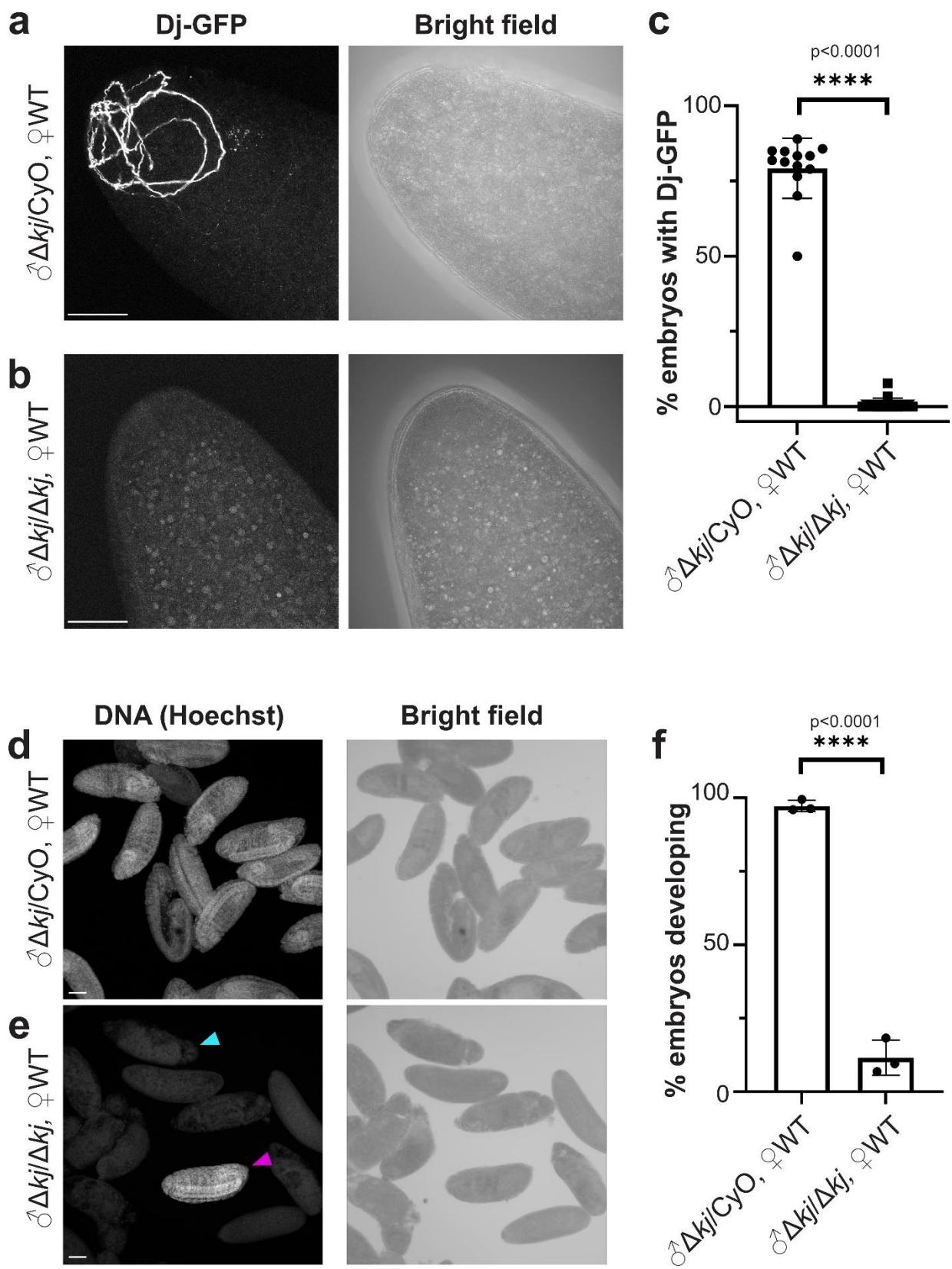
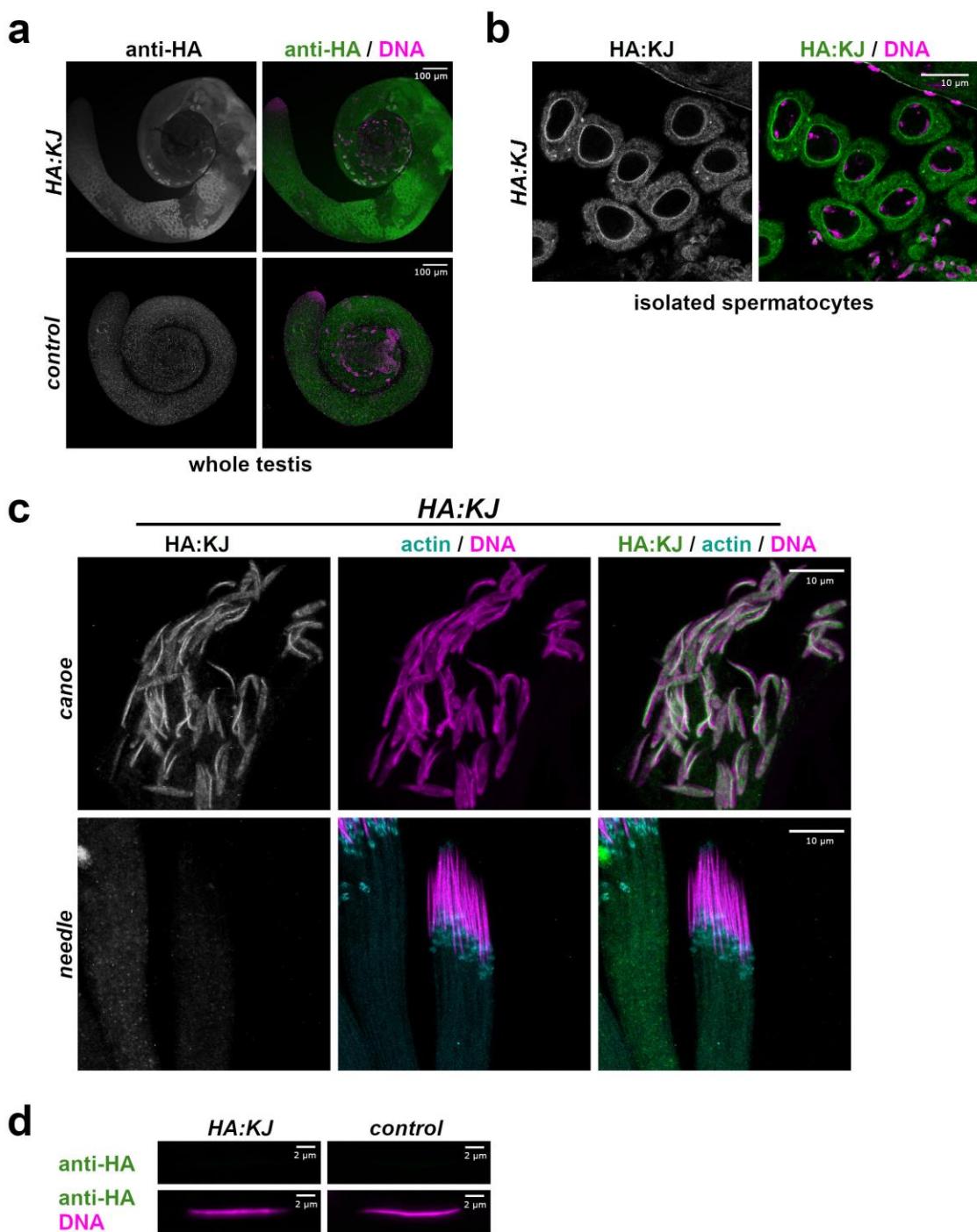



Figure 3
196x261 mm (DPI)

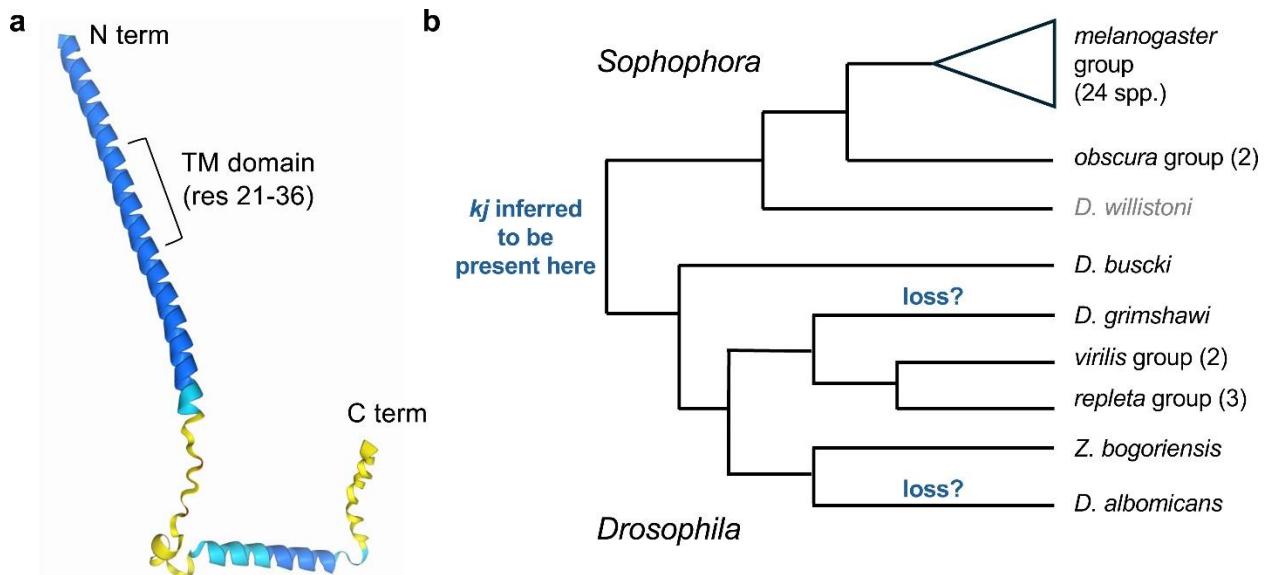


Figure 5
200x95 mm (DPI)