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ABSTRACT:
This paper introduces a feature extraction technique that identifies highly informative features from sonar magnitude

spectra for automated target classification. The approach involves creating feature representations through

convolution of a two-dimensional Gabor wavelet and acoustic color magnitudes to capture elastic waves. This fea-

ture representation contains extracted localized features in the form of Gabor stripes, which are representative of

unique targets and are invariant of target aspect angle. Further processing removes non-informative features through

a threshold-based culling. This paper presents an approach that begins connecting model-based domain knowledge

with machine learning techniques to allow interpretation of the extracted features while simultaneously enabling

robust target classification. The relative performance of three supervised machine learning classifiers, specifically a

support vector machine, random forest, and feed-forward neural network are used to quantitatively demonstrate the

representations’ informationally rich extracted features. Classifiers are trained and tested with acoustic color spectro-

grams and features extracted using the algorithm, interpreted as stripes, from two public domain field datasets. An

increase in classification performance is generally seen, with the largest being a 47% increase from the random forest

tree trained on the 1–31 kHz PondEx10 data, suggesting relatively small datasets can achieve high classification

accuracy if model-cognizant feature extraction is utilized.VC 2020 Acoustical Society of America.
https://doi.org/10.1121/10.0002168
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I. INTRODUCTION

Sonar target classification continues to be an ongoing

challenge due to unpredictable, varying parameters present

in underwater ocean acoustics. As a sonar signal travels

through the ocean, it changes and weakens due to spreading,

scattering, and absorption—due to shear viscosity, density

fluctuations, sound speed fluctuations, and frequency

changes caused by the Doppler effect.1 Sound speed in the

ocean is dependent on temperature, salinity, and pressure,2

while the sound speed profile changes with latitude, season,

time of day, and weather.3 Generalized equations have been

created to provide a rough estimate of the speed, but param-

eters such as temperature and salinity must also be esti-

mated.4 The sea has irregular boundaries with motion

fluctuating constantly,5 and reflection and scattering from

the sea surface and sea bottom introduce multipath effects

dependent on various sediment properties.6 Furthermore,

target properties and location such as geometry, material,

orientation, size, depth, and proud/buried status creates a

nonlinear combination of the listed parameters making sonar

target classification difficult.7

We propose a two-dimensional (2-D) Gabor wavelet-

based algorithm for post-processing sonar acoustic color

images to extract highly informative features specific to a

target class. The algorithm is applied to experimental field

data from the Pond Experiment in March 20108 (PondEx10)

and the Target and Reverberation Experiment in April 2013

(TREX13).9 There are three main advantages to employ the

2-D Gabor wavelet. First, in image processing, it has been

shown to provide data compression through separation and

localization of features; this is shown true when the 2-D

Gabor wavelet is convolved across the acoustic color magni-

tude domain. Second, in sonar reverberation modeling, two

main types of models exist: (i) the point-scatterer model and

(ii) the Rayleigh reverberation-envelope model (cell-scatter-

ing model).10,11 The latter is caused by clutter in the sea

environment. If the number of scatterers in a cell is large

enough, the amplitude distribution tends to be Rayleigh dis-

tributed resulting in a Gaussian distributed reverberation

assuming the central limit theorem holds.11 Third, the Gabor

wavelets can be easily shifted in frequency and contracted

or dilated making them reasonable representations for elas-

tic target resonances. The 2-D Gabor wavelet is a Gaussian

modulated with a plane wave. By tuning the 2-D Gabor

bandwidth, important frequencies are captured while others

are filtered out. By tuning the standard deviation of the

Gaussian envelope the assumed Rayleigh distribution can

also be captured. When the 2-D Gabor wavelet is properly

matched to the acoustic color magnitude, highly informative

features are extracted which provide an increase in classifi-

cation accuracy. The remainder of the algorithm identifies
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and removes small non-informative features, culminating in

the creation of features we refer to as “Gabor stripes” or

simply “stripes” since they manifest as striped features rep-

resenting a target. Target classification has been performed

using a support vector machine (SVM), random forest tree

(RFT), and a feed-forward neural network (NN) to quantita-

tively show the increased accuracy of our feature extraction

techniques across the different classifiers as well as ensure

focus on our feature extraction rather than the development

of novel machine learning algorithms. We show with the

application of this algorithm the overall classification accu-

racy increases as features are more representative of their

respective targets.

The organization of this paper is as follows: Sec. I pro-

vides the background motivation for this work and key con-

tributions are described in the following paragraphs. Related

research can be found in Sec. II. Data descriptions are pre-

sented in Sec. III. A mathematical description of the Gabor

wavelet and optimal parameter selection is provided in Sec.

IV, the weighting of the Gabor stripes is also discussed. The

developed algorithm is described in Sec. V. Section VI

presents the results and related discussion. Last, Sec. VII

provides concluding remarks and future considerations. A

quantitative validation of an algorithm parameter is shown

in Appendix A and a list of acronyms used throughout are

provided in Appendix B.

The novelty and archival value of this work is in our

effort to combine domain knowledge and machine learning

to achieve quantifiable gains in classification performance

using model-cognizant feature extraction. We demonstrate

using a wavelet in the form of a plane wave restricted by a

Gaussian envelope leads to superior feature extraction. Our

results, validated over two separate public domain field

datasets, suggest relatively small datasets can achieve high

classification accuracy through these informationally-rich

features.

The output of the feature extraction algorithm is a com-

pact representation that embodies the frequency-cross range

signature of various targets as stripes. The feature stripes are

generated by convolving an optimal 2-D Gabor wavelet

across a target’s acoustic color image. The extracted feature

stripes will be referred to as Gabor stripes with either a

binary weighting or unique weighting. Results indicate

some of the Gabor feature stripes are target aspect angle

invariant, as they change shape but not their overlap

relationship.

Although we present machine learning results, the focus

of this work is not machine learning, but rather feature

extraction and interpretation of the feature representations.

Hence, we present machine learning results as a quantitative

comparison between unfiltered and filtered data and present

qualitative results of the Gabor stripe representation.

II. RELATEDWORK

Due to the complicated nature of robust sonar target

identification and classification of unexploded ordinances

(UXOs), there have been various feature extraction algo-

rithms and machine learning techniques developed and tested

on both simulated data and experimental field data. We now

describe recent research12–17 in the field. Acoustic color

images were simulated for UXOs via finite-element analy-

sis,12 used to train a relevance vector machine (RVM), and

then tested on experimental data. In another instance, acoustic

color images were processed differently,13 where features

were generated with ellipsoid manifolds from the acoustic

color images of experimental field data and used to distin-

guish and characterize targets using an SVM. Fischell and

Schmidt14 used an SVM to classify spherical versus cylindri-

cal bistatic scattering data from both simulated data and

experimental data collected by an autonomous underwater

vehicle. Robinson et al.15 generated a persistence diagram

from synthetic aperture sonar and target-to-target distance

metrics as features before hierarchical classification of experi-

mental field data. Hall et al.16 demonstrated the use of fast

ray model simulations to generate acoustic color images,

these were used to train a variation of the matched subspace

classifier (MSC) and then tested on experimental data to dis-

criminate between UXOs and non-UXOs. Last, improved res-

olution for synthetic aperture sonar through compressive

sampling was demonstrated by Xenaki and Pailhas.17

Gabor wavelets are a common choice for processing

sonar data due to the ability to capture localized target fea-

tures in the acoustic color domain. For example, Gabor-like

signals were used to model the echolocation clicks of marine

life prior to automated characterization.18 Others19–21 have

designed a filter-bank of Gabor wavelets for edge detection

before application of their developed algorithms due to the

wavelet’s variable frequency and orientations. More specifi-

cally, a filter-bank of Gabor wavelets was used prior to an

amplitude based dominant component analysis for channel

selection and segmentation of a sonar image.19 Song et al.20

employed a filter-bank of Gabor wavelets for edge feature

extraction in a method to register images from a forward-

looking sonar. Similarly, Zhang et al.21 extracted feature

points via a filter-bank of Gabor wavelets coupled with a

polar transform to register forward-looking sonar images.

Other works have used a single Gabor wavelet to localize

features.22,23 A Gabor wavelet was applied to acoustic color

images of experimental field data prior to classification via a

linear SVM.22 We develop a similar approach as the previ-

ous reference,22 but differ in the extraction and weighting of

features as Gabor stripes. Additionally, classification is per-

formed across all ranges of the processed images rather than

a small section. Many modifications can be made when

extracting the Gabor stripe representation, one specifically is

discussed here, but the overarching algorithm can be tai-

lored to other experimental field data as well.

Various machine learning techniques have been

employed for target classification and source localization

throughout the years. Recently, an overview relevant to

acoustic data was provided by Bianco et al.24 Of specific

interest to this research are the sections regarding SVMs and

NNs. Niu et al.25 describe the same supervised machine
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learning techniques explored in this paper, but for source

localization rather than target classification. A Bayesian

learning approach has also been used for source localization

by many sonar researchers.26–31 Although not an extensive

list, we include these to show the success of Bayesian learn-

ing in the field. Our deviation from the Bayesian approach

was adopted to perform classification without prior knowl-

edge. Online active learning techniques, in which human

interaction is required to classify the decision with the high-

est uncertainty, was demonstrated to significantly decrease

the chances of model divergence,32 specifically when paired

with unsupervised clustering. We differentiate our work

from these works through autonomous classification via

model-based features.

III. EXPERIMENTAL SETUPAND DATA DESCRIPTION

Public domain field data from the Pond Experiment per-

formed in 20108 (PondEx10) and the Target and

Reverberation Experiment (TREX13) performed in 20139

were used throughout this project. In PondEx10, 11 targets

were placed at different aspect angles in a fresh water pond

at the Naval Surface Warfare Center in Panama City. The

University of Washington’s Applied Physics Laboratory’s

rail system8 was used to collect the data. Of the 11

PondEx10 targets, we analyze four: a solid aluminum cylin-

der 2 ft (61 cm) long with a 1 ft (30.5 cm) inner diameter, an

aluminum replica of a 4 in. artillery shell, a steel replica of a

4 in. artillery shell, and rock number 1. In TREX13,

responses were collected for 27 targets, we analyze the solid

aluminum cylinder, the aluminum replica of a 4 in. artillery

shell, the steel replica of a 4 in. artillery shell, and a 155mm

Howitzer with collar due to insufficient rock data. All tar-

gets were proud at 10 meters with aspect angles of �80� to
þ80� in 20� increments; broadside to the rail system was

considered 0�. An example of a target at a þ20� aspect

angle is shown in Fig. 1, where a cross range of 0 meters is

at the midpoint of the rail system and the target is located 10

meters away from the rail system. For both datasets, the

transmitted source was a 6ms 1-31kHz linear frequency

modulated (LFM) chirp.8,9

The raw field data were backscattered data from the

proud targets and presented in the cross range-time domain.33

These data were transformed into acoustic color magnitudes

by taking a Blackman windowed 8192 point fast Fourier trans-

form (FFT) of the time signal for each cross range position.

An example of this transformation is shown in Fig. 2, where

decibels are relative to the highest pixel value.

IV. ADAPTING THE GABORWAVELET TO PRODUCE
FEATURE STRIPES

The 2-D Gabor wavelet was generated through a 2-D

Gaussian multiplied by a sinusoid. To reduce the number of

variable parameters when finding the optimal Gabor wave-

let, the 2-D Gaussian spatial aspect ratio and the sinusoid’s

orientation and phase offset were kept constant at 1, 1, and

0�, respectively. After this simplification, the 2-D Gabor

wavelet reduces to Eq. (1). The dimensions of the Gabor

wavelet are in pixels. A single pixel has physical units of

7.57Hz� 2.5 cm for both datasets.

FIG. 1. Experiment geometry with respect to a target at a þ20� aspect

angle.

FIG. 2. Transformation from the (a) cross range-time domain to (b) an acoustic color image using a Blackman windowed 8192-FFT for the PondEx10 steel

UXO target at a þ80� aspect angle, units are with reference to the largest pixel value.

J. Acoust. Soc. Am. 148 (4), October 2020 Kubicek et al. 2063

https://doi.org/10.1121/10.0002168

 05 Septem
ber 2024 15:50:32

https://doi.org/10.1121/10.0002168


gðx; y; k; rÞ ¼ exp � x2 þ y2

2r2

� �
exp

j2px
k

� �
; (1)

where x denotes the spatial resolution of the cross-range

axis in pixels, y denotes the spatial resolution of the fre-

quency axis in pixels, k represents the spatial wavelength

(pixels/cycles), equivalent to the inverse of the preferred

spatial frequency 1=f , of the sinusoid, and r represents the

standard deviation of the Gaussian envelope.

The half magnitude spatial bandwidth (BW) of the

Gabor wavelet is defined in Eq. (2),

BW ¼ log2

rp
k

þ lnð2Þ
2

rp
k

� lnð2Þ
2

0
BB@

1
CCA ¼ log2

rpþ lnð2Þ
2

rp� lnð2Þ
2

0
BB@

1
CCA; (2)

where the previous notation holds and r is the ratio of the

standard deviation of the Gaussian envelope to the spatial

wavelength, r ¼ r=k. The half magnitude spatial bandwidth

of the Gabor wavelet is measured in units of octaves apart

from the preferred spatial frequency, f ¼ 1=k, described in

Eq. (3),

Oct ¼ log2
f2
f1

� �
¼ log2

k1
k2

� �
; (3)

where f1 corresponds to the lower spatial frequency, f2 corre-
sponds to the higher spatial frequency, k1 corresponds to the

larger spatial wavelength, and k2 corresponds to the smaller

spatial wavelength. As the Gabor wavelet is a bandpass fil-

ter, adjusting the spatial wavelength, k, allows for capture of
informative spatial frequencies. Adjusting the standard devi-

ation of the Gaussian, r allows for scaling of the bandwidth

of the Gabor wavelet, either loosening or tightening the

focus about the specified spatial frequency. By adjusting

this quantity we match the defining/scaling parameter of the

Rayleigh distribution.

A. Description of feature Gabor stripes

Mathematically, the representation of an n-stripe Gabor
feature of a target is given as

Cðx; yÞ ¼ [n
i¼1wiðx; yÞ; (4)

where fwiðx; yÞgi; i ¼ 1;…; n denotes the ith stripe of the n-
stripe group in the spectral domain, [ denotes the set theory

union operator, and x and y denote the spatial resolution of

the cross-range and frequency axis in pixels, respectively.

For interpretation as Gabor stripes, computationally

wiðx; yÞ is equivalent to the indicator function representing a

target’s spectral signature S. This ensures every stripe is

considered equally weighted,

wiðx; yÞ ¼ I i ¼
1 ðx; yÞ 2 S
0 else:

(
(5)

To distinguish unique Gabor stripes, each wiðx; yÞ is

assigned a linearly spaced number in the range from 0 to 10

to ensure different weights for separated feature stripes. In

terms of a weighted indicator function,

wiðx; yÞ ¼ wI i ¼
10

n
i ðx; yÞ 2 S

0 else;

8<
: (6)

where wI i is a weighted indicator function and n is the total

number of stripes. This allows classifiers to distinguish

between separated stripes.

B. Optimal Gabor wavelet parameter selection

An SVM is used to determine optimal parameters for

the Gabor wavelet by applying the algorithm, described in

Sec. V, with varying k and ratio r ¼ r=k. Results from the

PondEx10 dataset are included throughout this section as a

visual explanation; similar analysis has also been performed

on the TREX13 dataset. Experimental field data is randomly

separated into two groups, one subset is used to determine

the optimal Gabor wavelet parameters and the other subset

is for classification results. This was done to remove bias

from optimal parameter selection from the use of all experi-

mental data.

The various wavelengths and ratios simulated for the

PondEx10 data are enumerated as: k 2 {2, 2.5, 3, 3.5, 4, 4.5,

5, 10, 15} and r 2 {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1,

1.5, 2, 2.5, 5, 7, 10, 15, 20, 25}; the binary weighting [Eq.

(5)] was used. From the previously listed values, the choices

for k and r are chosen empirically through examination of

Fig. 3, which depicts the PondEx10 dataset’s SVM overall

classification accuracy versus the ratio for different k.
The lines accented by bold in Fig. 3 represent parame-

ters that resulted in an overall classification accuracy greater

than 99%. A wavelength of k ¼ 5:0 and ratio r ¼ r=k ¼ 1:2
(r¼ 6) were chosen as the optimal Gabor parameters to

classify the remaining images. Similar analysis was per-

formed on the TREX13 data, where optimal parameters

FIG. 3. Optimal PondEx10 Gabor parameter selection: SVM overall classi-

fication accuracy versus the ratio, r, as a function of k. Lines in bold accent

a classification accuracy over 99%, where k ¼ 2; 2:5; 3; 3:5; 4:5; and 5 meet

the criteria. Parameters of k¼ 5, r¼ 1.2, (r¼ 6) were chosen as optimal.
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were determined to be k¼ 10 and r¼ 0.5 (r ¼ 5:0). Sub-
optimal parameters of k ¼ 5:0 and ratio r ¼ r=k ¼ 0:2
(r¼ 1) were used to generate a poor Gabor wavelet for the

PondEx10 dataset, sub-optimal parameters of k¼ 10 and

r ¼ 0:2ðr ¼ 2Þ were chosen for the TREX13 dataset. This

was done to examine the impact of choosing an incorrectly

matched wavelet for both datasets.

V. ALGORITHM DESCRIPTION

After Gabor parameter selection, we employ a three-

stage technical approach described below to extract the

Gabor feature stripes and perform classification.

(i) Stage 1: Extract spectral features that incorporate

domain knowledge of physical phenomena, described

in Sec. VA. We achieve Gabor feature extraction

through the employment of a seven-step algorithm.

(ii) Stage 2: Project the extracted features into the stripe rep-

resentation and assign weighting given in Eqs. (5) or (6).

(iii) Stage 3: Interface with three machine learning techniques

for classification of sonar targets, described in Sec. VC.

A. Stage 1—Extraction of spectral features

To achieve stage 1, we have adapted the Rayleigh

reverberation-envelope model10,11 and developed a feature

extraction technique that employs the 2-D Gabor wavelet

filter to separate overlapped spectral acoustic color magni-

tudes. The feature extraction technique consists of a seven-

step algorithm. Select steps are visually explained in Fig. 4

using the steel UXO with an þ80� aspect angle from the

PondEx10 dataset.

Step 1: Vertically augment the acoustic color magnitude

images.

Step 2: Apply the 2-D Gabor wavelet as a filter to the

acoustic color magnitude image via 2-D convolution,

shown in Fig. 4(a).

Step 3: Generate a histogram from the magnitudes of each

Gabor filtered acoustic color image. The bin width is calcu-

lated using Scott’s rule described in Eq. (7). Calculate the

magnitude of the 90th percentile of the histogram to be

used as a threshold in Step 4. The 90th percentile was cho-

sen empirically as it provided visually pleasing separated

stripes, quantitative validation is provided in Appendix A,

where an increase in overall accuracy (OA) is seen between

the 85th and 90th percentile,

bin width ¼ 3:5r n�1=3: (7)

Step 4: Use the magnitude of the 90th percentile as a

threshold to binarize the acoustic color images.

Step 5: Label the connected pixels of the resulting image

using both 4- and 8-connectivity to create objects. Here, 4-

connectivity is described as pixels touching on their edges

but not vertices, and 8-connectivity is described as pixels

touching on their edges or vertices.34 In Fig. 4(b), there are

39 connected objects.

Step 6: Cull non-informative features by removing con-

nected objects made up of pixels with less than 10% of the

maximum number of pixels per object per image. In Fig.

4(c), there are five connected objects compared to the 39

connected objects listed in step 5.

Step 7: Dimensional reduction by reducing the image size

prior to feature stripe weighting. The highest and lowest

frequency feature locations and the leftmost and rightmost

cross range feature locations of all images were determined

and used as boundaries, leaving the most amount of infor-

mation in the smallest form. In Fig. 4(d), the pixels outside

the red dotted lines were removed.

B. Stage 2—Feature representations/data
standardization

The outputs of the algorithm were feature representa-

tions in the form of matrices, visualized throughout this

manuscript as images for convenient interpretation. The fea-

ture extraction algorithm treats the data as an n� p matrix

where each cell represents a pixel of the image. In stage 2,

the extracted features are weighted as a binary Gabor stripes

[Eq. (5)] or as unique Gabor stripes [Eq. (6)].

C. Stage 3—Classifiers

To determine the impact of the Gabor wavelet and

stripe representations, classifiers are trained on the (i) origi-

nal unfiltered binarized images, (ii) images produced

through sub-optimal Gabor wavelet parameters, and (iii)

images produced through optimal Gabor wavelet parame-

ters. After Gabor wavelet parameter selection, the second

subset of data is divided into 80% for training, and 20% for

testing. The classifiers are iteratively trained and tested with

results tabulated in Table I.

All classifiers are trained and tested on the same proc-

essed data but in different forms. The four-class linear SVM

and RFT are trained and tested on the n� p matrices

reshaped into a feature vector of a 1� ðnpÞ array. Each

pixel from an image is considered a feature such that

xi 2 RðnpÞ, where xi represents a single observation. The out
of bag prediction error is used to determine the number of

trees grown for the RFT, illustrated in Fig. 5. An out of bag

observation refers to the remaining observations after bag-

ging has been used to create trees (not seen during training).

An elbow emerges near 80–90 trees in Fig. 5, resulting in 85

trees grown for the RFT.

The NN is trained and tested on the matrices saved as a

JPEG image and is designed as a feed-forward, three-layer net-

work for classification. This network consists of an input layer

of the same size as the feature image, xi 2 RðnpÞ. A fully con-

nected layer follows zi 2 Rk�np. The output layer contains a

softmax activation function, Eq. (8), with yi 2 Rk,

ykðx;wÞ ¼
expðbkÞX

k

exp ðbkÞ
; (8)

where y is the output, k is the number of classes (in this

case 4), z is the output vector from the fully connected layer
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input to the softmax function, and b is the bias. The stochas-

tic gradient descent with momentum solver is used, the

default value of 0.9 is used for momentum, and the learning

rate is initialized at 0.01.

VI. RESULTS

There are four subsections of results, presented in such

a way to complement each other, by first providing the

quantitative classifier results then qualitatively explaining

the impact of our feature extraction techniques for both

PondEx10 and TREX13 datasets.

Section VIA provides the OA [Eq. (9)] of the classifiers

when compared amongst each other for both weightings of

the Gabor stripe feature representations. Here we quantita-

tively validate claims that the Gabor stripe feature represen-

tation increases classifier accuracy and investigate the

impact of the two feature weightings [Eqs. (5) and (6)].

Section VIB visually explores the impact of the Gabor

wavelet spatial bandwidth on the extracted feature stripes.

Section VI C visually investigates the separation and con-

nections of the Gabor feature stripes. Last, the Gabor feature

stripes of a target at all aspect angles for both datasets

are visually compared to unfiltered extracted features in

Sec. VID.

A. Overall classification accuracy for the SVM, RFT,
and NN

The OA is a metric that describes, on average, how well

the classifier performed. Overall classification accuracy is

calculated using Eq. (9),

OA ¼ Total Images Correctly Classified

Total Images Attempted
� 100%: (9)

The OA for the SVM, RFT, and NN trained and tested

on the binary Gabor feature stripes and the uniquely

weighted Gabor feature stripes are listed in Table I. An

increase in OA is seen after the application of the optimal

FIG. 4. Illustration of select algorithm steps: (a) Gabor filtered data, a decibel is relative to the highest pixel value, (b) labeled connected pixel objects, each

color represents a different connected object. (c) Non-informative feature culling: remove connected objects with a pixel count of less than 10% of the maxi-

mum pixel count per object for an image. (d) Dimensional reduction by removing pixels that do not contain information. The red dashed line represents the

boundary, where the inside square is input to the classifiers. (a)–(c) have been zoomed in to the area of interest.
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Gabor wavelet, supporting our claim of an increase in classi-

fication accuracy through the application of a physics-

conscious wavelet and feature extraction technique. The

increased OA when comparing the SVM to the RFT could

be due to bias when selecting the optimal Gabor wavelet

parameters, as the Gabor parameters were selected through

using the SVM. In most cases, the largest increase in OA is

seen when the features are equally weighted binary as

Gabor stripes rather than uniquely weighted Gabor stripes

due to the features not fully separating or connecting (see

Fig. 8 and Sec. VI C). This lack of separation propagates

through the uniquely weighted Gabor stripes by assigning

incorrect values to Gabor stripes that should be either sepa-

rated or connected, resulting in a worse OA. The binary

Gabor stripe weighting inherently treats all features the

same, thereby reducing the effect of incorrectly labeled

Gabor stripes.

B. Impact of Gabor wavelet parameters on feature
extraction

When originally determining the Gabor wavelet param-

eters to use throughout this investigation, an increase in the

overall classification accuracy occurred where the ratio was

near one (Fig. 3, p. 4), where r is the ratio of the standard

deviation of the Gaussian distribution to the spatial

wavelength, r ¼ r=k, introduced in Sec. IVB. The ratio is

inversely proportional to the half magnitude spatial band-

width of the Gabor filter. Optimal ratios were converted to

half magnitude spatial bandwidths using Eq. (2), with units

of octaves away from the preferred frequency, 1=k; refer to
Eq. (3) for a mathematical definition of an octave. Ratios of

r¼ 0.2, 5 are included as extremity cases. The spatial fre-

quency band of the Gabor wavelet was calculated through

Eq. (3); both the half magnitude spatial bandwidth and spa-

tial frequency bands are displayed in Table II.

Figures 6 and 7 show extracted features of the

PondEx10 steel UXO at a þ80� aspect angle and the

TREX13 aluminum UXO with a þ60� aspect angle, respec-
tively. Figures 6(a) and 7(a) show the original images, Figs.

6(b) and 7(b) show the filtered images with BW¼ 4.941

(r¼ 0.2), and Figs. 6(c) and 7(c) filtered images with

BW¼ 0.108 (r¼ 5). Each color represents a different Gabor

stripe described by Eq. (6). At large bandwidths (small

ratios), the Gaussian envelope is too large and allowed

nearly all information through, shown in Table II by the

large spatial frequency pass-band. This resulted in Gabor

stripes seemingly “unfiltered” and mimics the original unfil-

tered images, thereby not disentangling the spectral overlap.

At small bandwidths (large ratios), the Gaussian envelope

tightens and allows little information due to the small spatial

frequency pass-band shown in Table II. This has the effect

of smoothing and combining Gabor stripes. At the optimal

ratio or bandwidth, the Gaussian envelope allows enough

information to pass through and creates distinct, separated

stripes, shown for the PondEx10 data in Fig. 4(c).

C. Gabor feature stripe separation and connection

The binarized pixel groups generated through 4-

connectivity were compared to those generated through 8-

connectivity, Sec. VA step 5. In all cases, it is found that

99.9% of the pixels contained the same value after binariza-

tion. Since there was less than a 0.1% difference between

the type of connectivity used, all results previously shown

are generated using 8-connectivity.

It is found that the algorithm did not completely disentan-

gle spectral overlap and generate individual stripes in all cases.

Ideal feature separation is shown in the case of the PondEx10

steel UXO at a þ80� aspect angle in Fig. 4(c), where distinct

Gabor stripes are formed. Two non-ideal cases are seen in the

PondEx10: in Fig. 8(a) the aluminum UXO at a �20� aspect

angle, and in Fig. 8(b), the rock at a �20� aspect angle. For

FIG. 5. Out of bag prediction error used to determine the number of trees to

grow for RFT. Eighty-five trees were chosen to be grown, with an out of

bag prediction error of 3.125%.

TABLE I. Overall accuracy (OA) and for the SVM, RFT, and NN when trained and tested on the equally weighted binary Gabor feature stripes described

by Eq. (5) and uniquely weighted Gabor stripes described by Eq. (6) for both the PondEx10 and TREX13 datasets. For the definition of OA, refer to Eq. (9).

Original images Sub-optimal images Optimal images

Data/classifier SVM RFT NN SVM RFT NN SVM RFT NN

PondEx10/equal weights OA (%) 72.5 66.2 50 75 63.3 72.5 97.1 98.5 94.1

PondEx10/unique weights OA (%) 71.3 56.6 48.5 69.1 54.4 64 89 86 95.6

TREX13/equal weights OA (%) 30.9 31.7 36.8 39 36 50.7 72.8 52.2 88.9

TREX13/unique weights OA (%) 30.2 32.4 46.3 31.7 36 41.2 57.4 36.8 55.9
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the TREX13 data, two non-ideal cases are seen in Fig. 8(c) of

the aluminum UXO at a �40� aspect angle and in Fig. 8(d) of

the 155mm Howitzer at aþ20� aspect angle.
In the case of the aluminum UXO [Figs. 8(a) and 8(c)],

the stripes did not properly separate and created two large

Gabor stripes. After visual inspection, the circled feature

stripes in Figs. 8(a) and 8(c) should be separated into three or

four stripes rather than one. In the case of the rock [Fig. 8(b)],

the stripes did not fully connect. The circled stripes should be

one or two connected stripes rather than three. This is also seen

in Fig. 8(d), where the four features should be connected.

D. Gabor feature stripes across all target aspect
angles

We have claimed that the Gabor stripe representation is

independent of a target’s aspect angle, providing a higher clas-

sification rate when compared to the unfiltered magnitude

spectra. To qualitatively validate this claim, all target aspect

angles have been vertically augmented and sent through the

algorithm for the unfiltered and optimally filtered data. All

resulting binary features have been summed across the feature

domain to create a complete response of unfiltered and opti-

mally filtered features. These are displayed in Fig. 9, where

Figs. 9(a) and 9(b) show the PondEx10 steel UXO and Figs.

9(c) and 9(d) show the TREX13 aluminum UXO.

A clear invariance is seen in the PondEx10 dataset,

where the unfiltered features [Fig. 9(a)] are spread out across

all frequencies and cross ranges and the filtered Gabor fea-

ture stripes [Fig. 9(b)] form distinct localized stripes. When

examining the TREX13 dataset, the Gabor feature stripes

are not completely aspect angle invariant. However, locali-

zation still occurs when comparing the unfiltered features

[Fig. 9(c)] to the filtered features [Fig. 9(d)].

VII. CONCLUDING REMARKS

We developed a 3-stage algorithm to represent and clas-

sify sonar acoustic color images, centered around a 2-D

Gabor wavelet representative of the Rayleigh reverberation-

envelope model. We determined the optimal Gabor wavelet

parameters through an SVM for two sets of public domain

field data. After Gabor parameter selection, three machine

learning techniques were utilized for classification.

Classification was performed on original binarized acoustic

color images, sub-optimal Gabor parameter filtered images,

and optimal Gabor parameter filtered images. All classifiers

yielded higher than a 94% overall classification accuracy

when PondEx10 images were generated with optimal Gabor

parameters and Gabor stripes were binary weighted.

Classifiers yielded higher than an 86% OA when filtered

with a sub-optimal Gabor wavelet. We demonstrated

improvements in machine classification accuracy due to

model-informed feature extraction using the Gabor wavelet

(domain-interpretable features) when compared to the origi-

nal image (domain-agnostic) classification overall accura-

cies. We also provide a theoretic interpretation of the

extracted Gabor features in terms of stripes of the targets’

representation. As a target aspect angle changes, the feature

Gabor stripes may change their shape, but not the overlap

relationships between the stripes, providing robust target

classification that is aspect angle invariant. This allows

TABLE II. Ratios converted to spatial bandwidths with Eq. (2) and converted to lower and upper bounds of the spatial frequency band with Eq. (3).

PondEx10 (k¼ 5) TREX13 (k¼ 10)

Ratio 0.2 1.2 5 0.2 0.5 5

Bandwidth (Oct) 4.941 0.454 0.108 4.941 1.137 0.108

Lower bounds spatial freq. (cycles/pixel) 0.036 0.171 0.193 0.018 0.067 0.096

Upper bounds spatial freq. (cycles/pixel) 1.109 0.234 0.208 0.554 0.148 0.104

FIG. 6. Extracted features for the PondEx10 steel UXO at a þ80� aspect angle for the (a) unfiltered, (b) filtered with BW¼ 4.941, and (c) filtered with

BW¼ 0.108. Poor feature extraction is shown in (b), where the BW was too large to generate a meaningful representation. All spatial frequency components

were allowed to pass through the Gabor wavelet. Poor feature extraction is also shown in (c), where the BW was too small and the spatial frequency pass-

band did not allow enough information to pass through the Gabor wavelet. Ideal feature extraction is shown in Fig. 4(c) where separated Gabor stripes are

formed.
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potentially overlapping sonar acoustic features with non-

linear spectral morphology to be represented as binary pixel

maps. We observed that taking the stripe representation at

the granularity of individual stripes was counter-productive

as the classification was vulnerable to incorrectly weighted

stripes. Future directions include expanding upon the stripe

representation through assigning weights, studying the

impact of changing additional Gabor parameters, analyzing

additional public domain field data from targets with differ-

ent geometries, and interfacing the Gabor stripe features

FIG. 7. Extracted features for the TREX13 aluminum UXO at a þ60� aspect angle for the (a) unfiltered, (b) filtered with BW¼ 4.941, and (c) filtered with

BW¼ 0.108. Poor feature extraction is shown in (b), where the BW was too large to generate a meaningful representation. All spatial frequency components

were allowed to pass through the Gabor wavelet, resulting in the filtered image mimicking the original image, (a) and (b). Poor feature extraction is also

shown in (c), where the BW was too small and the spatial frequency pass-band did not allow enough information to pass through the Gabor wavelet.

FIG. 8. Features not fully separated in the (a) PondEx10 aluminum UXO at a �20� aspect angle, and features not fully connected in the (b) PondEx10 rock

at a �20� aspect angle. The red circles enclose features incorrectly formed. TREX13 non-ideal features are seen in the not separated Gabor feature stripes in

the (c) aluminum UXO at a �40� aspect angle, and the features not connected in the (d) 155mm Howitzer at a þ20� aspect angle. Features properly con-

nected and separated in the PondEx10 steel UXO at a þ80� aspect angle are shown in Fig. 4(c).
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with more sophisticated machine learning techniques, such

as active learning generative adversarial networks.
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APPENDIX A: VALIDATION OF HISTOGRAM
PERCENTILE

Throughout the optimal parameter selection in Sec.

IVB, the 90th percentile of the Gabor acoustic color magni-

tude histogram was used as a threshold to binarize the image

prior to feature culling and classification. This percentile

was empirically chosen through visually examining the

Gabor stripes to ensure they were fully separated and

FIG. 9. Illustration of all target aspect angles after application of the feature extraction algorithm. Panels (a) and (b) show the unfiltered and filtered

PondEx10 steel UXO, respectively. Panels (c) and (d) show the unfiltered and filtered TREX13 aluminum UXO. The colorbar associated with each panel

shows the number of similar features present per pixel across all aspect angles where 18 is the maximum number of features possible. The horizontal line of

symmetry seen near 15 kHz is due to the vertical augmentation of the unfiltered response in step 1 of the feature extraction algorithm.

FIG. 10. SVM overall classification accuracy as a function of the histogram

percentile used as a threshold to binarize the image. The black dotted line

indicates the 90th percentile used in determining the optimal Gabor

parameters.
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connected (discussed in Sec. VI C). To quantitatively vali-

date this choice, the PondEx10 optimal Gabor parameters

(k ¼ 5; r ¼ r=k ¼ 0:8; r ¼ 4) were kept constant while the

histogram percentile, p, was varied such that p 2 {70,

71,…,98, 99} on the first subset of data. The resulting data

was sent through the SVM classifier, where the OA was

used to validate the percentile, shown in Fig. 10.
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