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Sonar target representation using two-dimensional Gabor
wavelet features

Bernice Kubicek,"® Ananya Sen Gupta,'® and Ivars Kirsteins®
'Electrical and Computer Engineering, University of lowa, lowa City, lowa 52240, USA

’Naval Undersea Warfare Center, Newport, Rhode Island, 02841, USA

ABSTRACT:

This paper introduces a feature extraction technique that identifies highly informative features from sonar magnitude
spectra for automated target classification. The approach involves creating feature representations through
convolution of a two-dimensional Gabor wavelet and acoustic color magnitudes to capture elastic waves. This fea-
ture representation contains extracted localized features in the form of Gabor stripes, which are representative of
unique targets and are invariant of target aspect angle. Further processing removes non-informative features through
a threshold-based culling. This paper presents an approach that begins connecting model-based domain knowledge
with machine learning techniques to allow interpretation of the extracted features while simultaneously enabling
robust target classification. The relative performance of three supervised machine learning classifiers, specifically a
support vector machine, random forest, and feed-forward neural network are used to quantitatively demonstrate the
representations’ informationally rich extracted features. Classifiers are trained and tested with acoustic color spectro-
grams and features extracted using the algorithm, interpreted as stripes, from two public domain field datasets. An
increase in classification performance is generally seen, with the largest being a 47% increase from the random forest
tree trained on the 1-31kHz PondEx10 data, suggesting relatively small datasets can achieve high classification
accuracy if model-cognizant feature extraction is utilized. © 2020 Acoustical Society of America.
https://doi.org/10.1121/10.0002168

(Received 5 March 2020; revised 14 September 2020; accepted 19 September 2020; published online 14 October 2020)

[Editor: Zoi-Heleni Michalopoulou] Pages: 2061-2072

. INTRODUCTION images to extract highly informative features specific to a
target class. The algorithm is applied to experimental field
data from the Pond Experiment in March 2010® (PondEx10)
and the Target and Reverberation Experiment in April 2013
(TREX13).° There are three main advantages to employ the

2-D Gabor wavelet. First, in image processing, it has been

Sonar target classification continues to be an ongoing
challenge due to unpredictable, varying parameters present
in underwater ocean acoustics. As a sonar signal travels
through the ocean, it changes and weakens due to spreading,

scattering, and absorption—due to shear viscosity, density . . .
. . shown to provide data compression through separation and
fluctuations, sound speed fluctuations, and frequency

1 . localization of features; this is shown true when the 2-D
changes caused by the Doppler effect.” Sound speed in the . . .
. .. > Gabor wavelet is convolved across the acoustic color magni-

ocean is dependent on temperature, salinity, and pressure,

. . . tude domain. Second, in sonar reverberation modeling, two
while the sound speed profile changes with latitude, season, . . .
. 3 ; . main types of models exist: (i) the point-scatterer model and
time of day, and weather.” Generalized equations have been .. . .
. . (i1) the Rayleigh reverberation-envelope model (cell-scatter-
created to provide a rough estimate of the speed, but param- . 10,11 . .
. . ing model). " The latter is caused by clutter in the sea
eters such as temperature and salinity must also be esti- . . .
4 . . . . environment. If the number of scatterers in a cell is large
mated.” The sea has irregular boundaries with motion . e . :
. 5 . . enough, the amplitude distribution tends to be Rayleigh dis-
fluctuating constantly,” and reflection and scattering from

. . tributed resulting in a Gaussian distributed reverberation
the sea surface and sea bottom introduce multipath effects . .. 11 oy
. . .6 assuming the central limit theorem holds.” " Third, the Gabor
dependent on various sediment properties.” Furthermore,

. . . wavelets can be easily shifted in frequency and contracted
target properties and location such as geometry, material, . . .
. . . . or dilated making them reasonable representations for elas-
orientation, size, depth, and proud/buried status creates a

. S . . tic target resonances. The 2-D Gabor wavelet is a Gaussian
nonlinear combination of the listed parameters making sonar . .
. . . 7 modulated with a plane wave. By tuning the 2-D Gabor
target classification difficult.

We propose a two-dimensional (2-D) Gabor wavelet- bandwidth, important frequencies are captured while others

. . . are filtered out. By tuning the standard deviation of the
based algorithm for post-processing sonar acoustic color . . s
Gaussian envelope the assumed Rayleigh distribution can

also be captured. When the 2-D Gabor wavelet is properly
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matched to the acoustic color magnitude, highly informative
features are extracted which provide an increase in classifi-
cation accuracy. The remainder of the algorithm identifies
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and removes small non-informative features, culminating in
the creation of features we refer to as “Gabor stripes” or
simply “stripes” since they manifest as striped features rep-
resenting a target. Target classification has been performed
using a support vector machine (SVM), random forest tree
(RFT), and a feed-forward neural network (NN) to quantita-
tively show the increased accuracy of our feature extraction
techniques across the different classifiers as well as ensure
focus on our feature extraction rather than the development
of novel machine learning algorithms. We show with the
application of this algorithm the overall classification accu-
racy increases as features are more representative of their
respective targets.

The organization of this paper is as follows: Sec. I pro-
vides the background motivation for this work and key con-
tributions are described in the following paragraphs. Related
research can be found in Sec. II. Data descriptions are pre-
sented in Sec. III. A mathematical description of the Gabor
wavelet and optimal parameter selection is provided in Sec.
IV, the weighting of the Gabor stripes is also discussed. The
developed algorithm is described in Sec. V. Section VI
presents the results and related discussion. Last, Sec. VII
provides concluding remarks and future considerations. A
quantitative validation of an algorithm parameter is shown
in Appendix A and a list of acronyms used throughout are
provided in Appendix B.

The novelty and archival value of this work is in our
effort to combine domain knowledge and machine learning
to achieve quantifiable gains in classification performance
using model-cognizant feature extraction. We demonstrate
using a wavelet in the form of a plane wave restricted by a
Gaussian envelope leads to superior feature extraction. Our
results, validated over two separate public domain field
datasets, suggest relatively small datasets can achieve high
classification accuracy through these informationally-rich
features.

The output of the feature extraction algorithm is a com-
pact representation that embodies the frequency-cross range
signature of various targets as stripes. The feature stripes are
generated by convolving an optimal 2-D Gabor wavelet
across a target’s acoustic color image. The extracted feature
stripes will be referred to as Gabor stripes with either a
binary weighting or unique weighting. Results indicate
some of the Gabor feature stripes are target aspect angle
invariant, as they change shape but not their overlap
relationship.

Although we present machine learning results, the focus
of this work is not machine learning, but rather feature
extraction and interpretation of the feature representations.
Hence, we present machine learning results as a quantitative
comparison between unfiltered and filtered data and present
qualitative results of the Gabor stripe representation.

Il. RELATED WORK

Due to the complicated nature of robust sonar target
identification and classification of unexploded ordinances
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(UXOs), there have been various feature extraction algo-
rithms and machine learning techniques developed and tested
on both simulated data and experimental field data. We now
describe recent research'*™’ in the field. Acoustic color
images were simulated for UXOs via finite-element analy-
sis,'? used to train a relevance vector machine (RVM), and
then tested on experimental data. In another instance, acoustic
color images were processed differently,'® where features
were generated with ellipsoid manifolds from the acoustic
color images of experimental field data and used to distin-
guish and characterize targets using an SVM. Fischell and
Schmidt'* used an SVM to classify spherical versus cylindri-
cal bistatic scattering data from both simulated data and
experimental data collected by an autonomous underwater
vehicle. Robinson e al."> generated a persistence diagram
from synthetic aperture sonar and target-to-target distance
metrics as features before hierarchical classification of experi-
mental field data. Hall er al.'® demonstrated the use of fast
ray model simulations to generate acoustic color images,
these were used to train a variation of the matched subspace
classifier (MSC) and then tested on experimental data to dis-
criminate between UXOs and non-UXOs. Last, improved res-
olution for synthetic aperture sonar through compressive
sampling was demonstrated by Xenaki and Pailhas."”

Gabor wavelets are a common choice for processing
sonar data due to the ability to capture localized target fea-
tures in the acoustic color domain. For example, Gabor-like
signals were used to model the echolocation clicks of marine
life prior to automated characterization.'® Others'®™' have
designed a filter-bank of Gabor wavelets for edge detection
before application of their developed algorithms due to the
wavelet’s variable frequency and orientations. More specifi-
cally, a filter-bank of Gabor wavelets was used prior to an
amplitude based dominant component analysis for channel
selection and segmentation of a sonar image.'® Song er al.°
employed a filter-bank of Gabor wavelets for edge feature
extraction in a method to register images from a forward-
looking sonar. Similarly, Zhang er al.*' extracted feature
points via a filter-bank of Gabor wavelets coupled with a
polar transform to register forward-looking sonar images.
Other works have used a single Gabor wavelet to localize
features.”>** A Gabor wavelet was applied to acoustic color
images of experimental field data prior to classification via a
linear SVM.?> We develop a similar approach as the previ-
ous reference,”” but differ in the extraction and weighting of
features as Gabor stripes. Additionally, classification is per-
formed across all ranges of the processed images rather than
a small section. Many modifications can be made when
extracting the Gabor stripe representation, one specifically is
discussed here, but the overarching algorithm can be tai-
lored to other experimental field data as well.

Various machine learning techniques have been
employed for target classification and source localization
throughout the years. Recently, an overview relevant to
acoustic data was provided by Bianco er al.** Of specific
interest to this research are the sections regarding SVMs and
NNs. Niu et al.®® describe the same supervised machine

Kubicek et al.
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FIG. 1. Experiment geometry with respect to a target at a +20° aspect
angle.

learning techniques explored in this paper, but for source
localization rather than target classification. A Bayesian
learning approach has also been used for source localization
by many sonar researchers.”’®=' Although not an extensive
list, we include these to show the success of Bayesian learn-
ing in the field. Our deviation from the Bayesian approach
was adopted to perform classification without prior knowl-
edge. Online active learning techniques, in which human
interaction is required to classify the decision with the high-
est uncertainty, was demonstrated to significantly decrease
the chances of model divergence,** specifically when paired
with unsupervised clustering. We differentiate our work
from these works through autonomous classification via
model-based features.

lll. EXPERIMENTAL SETUP AND DATA DESCRIPTION

Public domain field data from the Pond Experiment per-
formed in 2010° (PondEx10) and the Target and
Reverberation Experiment (TREX13) performed in 2013°
were used throughout this project. In PondEx10, 11 targets
were placed at different aspect angles in a fresh water pond
at the Naval Surface Warfare Center in Panama City. The

Raw Data
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-60
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(a)

University of Washington’s Applied Physics Laboratory’s
rail system® was used to collect the data. Of the 11
PondEx10 targets, we analyze four: a solid aluminum cylin-
der 2 ft (61 cm) long with a 1 ft (30.5 cm) inner diameter, an
aluminum replica of a 4 in. artillery shell, a steel replica of a
4 in. artillery shell, and rock number 1. In TREX13,
responses were collected for 27 targets, we analyze the solid
aluminum cylinder, the aluminum replica of a 4 in. artillery
shell, the steel replica of a 4 in. artillery shell, and a 155 mm
Howitzer with collar due to insufficient rock data. All tar-
gets were proud at 10 meters with aspect angles of —80° to
+80° in 20° increments; broadside to the rail system was
considered 0°. An example of a target at a +20° aspect
angle is shown in Fig. 1, where a cross range of 0 meters is
at the midpoint of the rail system and the target is located 10
meters away from the rail system. For both datasets, the
transmitted source was a 6ms 1-31kHz linear frequency
modulated (LFM) chirp.®*

The raw field data were backscattered data from the
proud targets and presented in the cross range-time domain.>
These data were transformed into acoustic color magnitudes
by taking a Blackman windowed 8192 point fast Fourier trans-
form (FFT) of the time signal for each cross range position.
An example of this transformation is shown in Fig. 2, where
decibels are relative to the highest pixel value.

IV. ADAPTING THE GABOR WAVELET TO PRODUCE
FEATURE STRIPES

The 2-D Gabor wavelet was generated through a 2-D
Gaussian multiplied by a sinusoid. To reduce the number of
variable parameters when finding the optimal Gabor wave-
let, the 2-D Gaussian spatial aspect ratio and the sinusoid’s
orientation and phase offset were kept constant at 1, 1, and
0°, respectively. After this simplification, the 2-D Gabor
wavelet reduces to Eq. (1). The dimensions of the Gabor
wavelet are in pixels. A single pixel has physical units of
7.57Hz x 2.5 cm for both datasets.

Unfiltered Acoustic Magnitude

-20
15 =
N
é -30
> —
é 10 -35 S
oy -40
o
L 5 -45
-50
0 -55
-10 -5 0 5 10
Cross Range [m]
(b)

FIG. 2. Transformation from the (a) cross range-time domain to (b) an acoustic color image using a Blackman windowed 8192-FFT for the PondEx 10 steel
UXO target at a +-80° aspect angle, units are with reference to the largest pixel value.
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2 42 ;
g(x,y;4,0) = exp <—x ;O__zy >eXp (ﬂ%) (1)
where x denotes the spatial resolution of the cross-range
axis in pixels, y denotes the spatial resolution of the fre-
quency axis in pixels, 1 represents the spatial wavelength
(pixels/cycles), equivalent to the inverse of the preferred
spatial frequency 1/f, of the sinusoid, and ¢ represents the
standard deviation of the Gaussian envelope.

The half magnitude spatial bandwidth (BW) of the
Gabor wavelet is defined in Eq. (2),

o In(2) _— n(2)
_ A 2 _
BW = log, on  In(2) log i n(2) |’ @

g2 T
where the previous notation holds and r is the ratio of the
standard deviation of the Gaussian envelope to the spatial
wavelength, » = ¢ /2. The half magnitude spatial bandwidth
of the Gabor wavelet is measured in units of octaves apart

from the preferred spatial frequency, f = 1//, described in
Eq. 3),

Oct = log, (f) = log, ()Ll> , 3)
1 e

where f; corresponds to the lower spatial frequency, f; corre-
sponds to the higher spatial frequency, 4, corresponds to the
larger spatial wavelength, and A, corresponds to the smaller
spatial wavelength. As the Gabor wavelet is a bandpass fil-
ter, adjusting the spatial wavelength, A, allows for capture of
informative spatial frequencies. Adjusting the standard devi-
ation of the Gaussian, ¢ allows for scaling of the bandwidth
of the Gabor wavelet, either loosening or tightening the
focus about the specified spatial frequency. By adjusting
this quantity we match the defining/scaling parameter of the
Rayleigh distribution.

A. Description of feature Gabor stripes

Mathematically, the representation of an n-stripe Gabor
feature of a target is given as

r(x>y) = U?:llpi(xay)a (4)

where {y;(x,y)};,i = 1, ..., n denotes the ith stripe of the n-
stripe group in the spectral domain, U denotes the set theory
union operator, and x and y denote the spatial resolution of
the cross-range and frequency axis in pixels, respectively.

For interpretation as Gabor stripes, computationally
W;(x,y) is equivalent to the indicator function representing a
target’s spectral signature S. This ensures every stripe is
considered equally weighted,

a//,«<x7y)=Ii={1 wy) €S 5)

0 else.

2064  J. Acoust. Soc. Am. 148 (4), October 2020

To distinguish unique Gabor stripes, each ;(x,y) is
assigned a linearly spaced number in the range from O to 10
to ensure different weights for separated feature stripes. In
terms of a weighted indicator function,

Yile,y) =wl; =4 n (©)
0 else,

where wZ; is a weighted indicator function and 7 is the total
number of stripes. This allows classifiers to distinguish
between separated stripes.

B. Optimal Gabor wavelet parameter selection

An SVM is used to determine optimal parameters for
the Gabor wavelet by applying the algorithm, described in
Sec. V, with varying 1 and ratio » = ¢ /2. Results from the
PondEx 10 dataset are included throughout this section as a
visual explanation; similar analysis has also been performed
on the TREX13 dataset. Experimental field data is randomly
separated into two groups, one subset is used to determine
the optimal Gabor wavelet parameters and the other subset
is for classification results. This was done to remove bias
from optimal parameter selection from the use of all experi-
mental data.

The various wavelengths and ratios simulated for the
PondEx10 data are enumerated as: 4 € {2, 2.5, 3, 3.5, 4, 4.5,
5,10, 15} and r € {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1,
1.5,2,25,5, 7,10, 15, 20, 25}; the binary weighting [Eq.
(5)] was used. From the previously listed values, the choices
for 4 and r are chosen empirically through examination of
Fig. 3, which depicts the PondEx10 dataset’s SVM overall
classification accuracy versus the ratio for different A.

The lines accented by bold in Fig. 3 represent parame-
ters that resulted in an overall classification accuracy greater
than 99%. A wavelength of A = 5.0 and ratior = o/4 = 1.2
(0 =6) were chosen as the optimal Gabor parameters to
classify the remaining images. Similar analysis was per-
formed on the TREX13 data, where optimal parameters

Overall Accuracy [%]

Gaussian Envelope to Wavelength [0 / A]

FIG. 3. Optimal PondEx10 Gabor parameter selection: SVM overall classi-
fication accuracy versus the ratio, r, as a function of . Lines in bold accent
a classification accuracy over 99%, where 2 = 2,2.5,3,3.5,4.5, and 5 meet
the criteria. Parameters of =35, r=1.2, (¢ = 6) were chosen as optimal.
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were determined to be 2A=10 and r=0.5 (¢ = 5.0). Sub-
optimal parameters of A =35.0 and ratio r =g/41=0.2
(o =1) were used to generate a poor Gabor wavelet for the
PondEx10 dataset, sub-optimal parameters of A=10 and
r =0.2(c =2) were chosen for the TREX13 dataset. This
was done to examine the impact of choosing an incorrectly
matched wavelet for both datasets.

V. ALGORITHM DESCRIPTION

After Gabor parameter selection, we employ a three-
stage technical approach described below to extract the
Gabor feature stripes and perform classification.

1) Stage 1: Extract spectral features that incorporate
domain knowledge of physical phenomena, described
in Sec. VA. We achieve Gabor feature extraction
through the employment of a seven-step algorithm.

(i)  Stage 2: Project the extracted features into the stripe rep-
resentation and assign weighting given in Egs. (5) or (6).

(i)  Stage 3: Interface with three machine learning techniques
for classification of sonar targets, described in Sec. V C.

A. Stage 1—Extraction of spectral features

To achieve stage 1, we have adapted the Rayleigh
reverberation-envelope model'™'! and developed a feature
extraction technique that employs the 2-D Gabor wavelet
filter to separate overlapped spectral acoustic color magni-
tudes. The feature extraction technique consists of a seven-
step algorithm. Select steps are visually explained in Fig. 4
using the steel UXO with an +80° aspect angle from the
PondEx 10 dataset.

Step 1: Vertically augment the acoustic color magnitude
images.

Step 2: Apply the 2-D Gabor wavelet as a filter to the
acoustic color magnitude image via 2-D convolution,
shown in Fig. 4(a).

Step 3: Generate a histogram from the magnitudes of each
Gabor filtered acoustic color image. The bin width is calcu-
lated using Scott’s rule described in Eq. (7). Calculate the
magnitude of the 90th percentile of the histogram to be
used as a threshold in Step 4. The 90th percentile was cho-
sen empirically as it provided visually pleasing separated
stripes, quantitative validation is provided in Appendix A,
where an increase in overall accuracy (OA) is seen between
the 85th and 90th percentile,

bin width = 3.5an"'/>. (7

Step 4: Use the magnitude of the 90th percentile as a
threshold to binarize the acoustic color images.

Step 5: Label the connected pixels of the resulting image
using both 4- and 8-connectivity to create objects. Here, 4-
connectivity is described as pixels touching on their edges
but not vertices, and 8-connectivity is described as pixels
touching on their edges or vertices.>* In Fig. 4(b), there are
39 connected objects.

J. Acoust. Soc. Am. 148 (4), October 2020

Step 6: Cull non-informative features by removing con-
nected objects made up of pixels with less than 10% of the
maximum number of pixels per object per image. In Fig.
4(c), there are five connected objects compared to the 39
connected objects listed in step 5.

Step 7: Dimensional reduction by reducing the image size
prior to feature stripe weighting. The highest and lowest
frequency feature locations and the leftmost and rightmost
cross range feature locations of all images were determined
and used as boundaries, leaving the most amount of infor-
mation in the smallest form. In Fig. 4(d), the pixels outside
the red dotted lines were removed.

B. Stage 2—Feature representations/data
standardization

The outputs of the algorithm were feature representa-
tions in the form of matrices, visualized throughout this
manuscript as images for convenient interpretation. The fea-
ture extraction algorithm treats the data as an n X p matrix
where each cell represents a pixel of the image. In stage 2,
the extracted features are weighted as a binary Gabor stripes
[Eq. (5)] or as unique Gabor stripes [Eq. (6)].

C. Stage 3—Classifiers

To determine the impact of the Gabor wavelet and
stripe representations, classifiers are trained on the (i) origi-
nal unfiltered binarized images, (ii) images produced
through sub-optimal Gabor wavelet parameters, and (iii)
images produced through optimal Gabor wavelet parame-
ters. After Gabor wavelet parameter selection, the second
subset of data is divided into 80% for training, and 20% for
testing. The classifiers are iteratively trained and tested with
results tabulated in Table I.

All classifiers are trained and tested on the same proc-
essed data but in different forms. The four-class linear SVM
and RFT are trained and tested on the n X p matrices
reshaped into a feature vector of a 1 x (np) array. Each
pixel from an image is considered a feature such that
x; € R where X; represents a single observation. The out
of bag prediction error is used to determine the number of
trees grown for the RFT, illustrated in Fig. 5. An out of bag
observation refers to the remaining observations after bag-
ging has been used to create trees (not seen during training).
An elbow emerges near 80-90 trees in Fig. 5, resulting in 85
trees grown for the RFT.

The NN is trained and tested on the matrices saved as a
JPEG image and is designed as a feed-forward, three-layer net-
work for classification. This network consists of an input layer
of the same size as the feature image, x; € R A fully con-
nected layer follows z; € R¥%  The output layer contains a
softmax activation function, Eq. (8), with y; € Rk,

yi(x,w) = 76Xp(bk) ,
TS e
X

where y is the output, k£ is the number of classes (in this
case 4), z is the output vector from the fully connected layer

®)
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FIG. 4. Illustration of select algorithm steps: (a) Gabor filtered data, a decibel is relative to the highest pixel value, (b) labeled connected pixel objects, each
color represents a different connected object. (c) Non-informative feature culling: remove connected objects with a pixel count of less than 10% of the maxi-
mum pixel count per object for an image. (d) Dimensional reduction by removing pixels that do not contain information. The red dashed line represents the
boundary, where the inside square is input to the classifiers. (a)—(c) have been zoomed in to the area of interest.

input to the softmax function, and b is the bias. The stochas-
tic gradient descent with momentum solver is used, the
default value of 0.9 is used for momentum, and the learning
rate is initialized at 0.01.

VI. RESULTS

There are four subsections of results, presented in such
a way to complement each other, by first providing the
quantitative classifier results then qualitatively explaining
the impact of our feature extraction techniques for both
PondEx10 and TREX13 datasets.

Section VI A provides the OA [Eq. (9)] of the classifiers
when compared amongst each other for both weightings of
the Gabor stripe feature representations. Here we quantita-
tively validate claims that the Gabor stripe feature represen-
tation increases classifier accuracy and investigate the
impact of the two feature weightings [Egs. (5) and (6)].
Section VIB visually explores the impact of the Gabor
wavelet spatial bandwidth on the extracted feature stripes.

2066  J. Acoust. Soc. Am. 148 (4), October 2020

Section VIC visually investigates the separation and con-
nections of the Gabor feature stripes. Last, the Gabor feature
stripes of a target at all aspect angles for both datasets
are visually compared to unfiltered extracted features in
Sec. VID.

A. Overall classification accuracy for the SVM, RFT,
and NN

The OA is a metric that describes, on average, how well
the classifier performed. Overall classification accuracy is
calculated using Eq. (9),

OA — Total Images Correctly Classified

-100%. 9
Total Images Attempted ? ©)

The OA for the SVM, RFT, and NN trained and tested
on the binary Gabor feature stripes and the uniquely
weighted Gabor feature stripes are listed in Table 1. An
increase in OA is seen after the application of the optimal
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FIG. 5. Out of bag prediction error used to determine the number of trees to
grow for RFT. Eighty-five trees were chosen to be grown, with an out of
bag prediction error of 3.125%.

Gabor wavelet, supporting our claim of an increase in classi-
fication accuracy through the application of a physics-
conscious wavelet and feature extraction technique. The
increased OA when comparing the SVM to the RFT could
be due to bias when selecting the optimal Gabor wavelet
parameters, as the Gabor parameters were selected through
using the SVM. In most cases, the largest increase in OA is
seen when the features are equally weighted binary as
Gabor stripes rather than uniquely weighted Gabor stripes
due to the features not fully separating or connecting (see
Fig. 8 and Sec. VIC). This lack of separation propagates
through the uniquely weighted Gabor stripes by assigning
incorrect values to Gabor stripes that should be either sepa-
rated or connected, resulting in a worse OA. The binary
Gabor stripe weighting inherently treats all features the
same, thereby reducing the effect of incorrectly labeled
Gabor stripes.

B. Impact of Gabor wavelet parameters on feature
extraction

When originally determining the Gabor wavelet param-
eters to use throughout this investigation, an increase in the
overall classification accuracy occurred where the ratio was
near one (Fig. 3, p. 4), where r is the ratio of the standard
deviation of the Gaussian distribution to the spatial

wavelength, » = ¢ /4, introduced in Sec. IV B. The ratio is
inversely proportional to the half magnitude spatial band-
width of the Gabor filter. Optimal ratios were converted to
half magnitude spatial bandwidths using Eq. (2), with units
of octaves away from the preferred frequency, 1/4; refer to
Eq. (3) for a mathematical definition of an octave. Ratios of
r=0.2, 5 are included as extremity cases. The spatial fre-
quency band of the Gabor wavelet was calculated through
Eq. (3); both the half magnitude spatial bandwidth and spa-
tial frequency bands are displayed in Table II.

Figures 6 and 7 show extracted features of the
PondEx10 steel UXO at a +80° aspect angle and the
TREX13 aluminum UXO with a +60° aspect angle, respec-
tively. Figures 6(a) and 7(a) show the original images, Figs.
6(b) and 7(b) show the filtered images with BW =4.941
(r=0.2), and Figs. 6(c) and 7(c) filtered images with
BW =0.108 (r=35). Each color represents a different Gabor
stripe described by Eq. (6). At large bandwidths (small
ratios), the Gaussian envelope is too large and allowed
nearly all information through, shown in Table II by the
large spatial frequency pass-band. This resulted in Gabor
stripes seemingly “unfiltered” and mimics the original unfil-
tered images, thereby not disentangling the spectral overlap.
At small bandwidths (large ratios), the Gaussian envelope
tightens and allows little information due to the small spatial
frequency pass-band shown in Table II. This has the effect
of smoothing and combining Gabor stripes. At the optimal
ratio or bandwidth, the Gaussian envelope allows enough
information to pass through and creates distinct, separated
stripes, shown for the PondEx 10 data in Fig. 4(c).

C. Gabor feature stripe separation and connection

The binarized pixel groups generated through 4-
connectivity were compared to those generated through 8-
connectivity, Sec. V A step 5. In all cases, it is found that
99.9% of the pixels contained the same value after binariza-
tion. Since there was less than a 0.1% difference between
the type of connectivity used, all results previously shown
are generated using 8-connectivity.

It is found that the algorithm did not completely disentan-
gle spectral overlap and generate individual stripes in all cases.
Ideal feature separation is shown in the case of the PondEx10
steel UXO at a +80° aspect angle in Fig. 4(c), where distinct
Gabor stripes are formed. Two non-ideal cases are seen in the
PondEx10: in Fig. 8(a) the aluminum UXO at a —20° aspect
angle, and in Fig. 8(b), the rock at a —20° aspect angle. For

TABLE I. Overall accuracy (OA) and for the SVM, RFT, and NN when trained and tested on the equally weighted binary Gabor feature stripes described
by Eq. (5) and uniquely weighted Gabor stripes described by Eq. (6) for both the PondEx10 and TREX13 datasets. For the definition of OA, refer to Eq. (9).

Original images

Sub-optimal images Optimal images

Data/classifier SVM RFT NN SVM RFT NN SVM RFT NN
PondEx10/equal weights OA (%) 72.5 66.2 50 75 63.3 72.5 97.1 98.5 94.1
PondEx10/unique weights OA (%) 71.3 56.6 48.5 69.1 54.4 64 89 86 95.6
TREX13/equal weights OA (%) 30.9 31.7 36.8 39 36 50.7 72.8 522 88.9
TREX13/unique weights OA (%) 30.2 324 46.3 31.7 36 41.2 574 36.8 55.9
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TABLE II. Ratios converted to spatial bandwidths with Eq. (2) and converted to lower and upper bounds of the spatial frequency band with Eq. (3).

PondEx10 (1 =5)

TREX13 (1= 10)

Ratio 0.2 1.2

Bandwidth (Oct) 4.941 0.454
Lower bounds spatial freq. (cycles/pixel) 0.036 0.171
Upper bounds spatial freq. (cycles/pixel) 1.109 0.234

5 0.2 0.5 5

0.108 4.941 1.137 0.108
0.193 0.018 0.067 0.096
0.208 0.554 0.148 0.104

the TREX13 data, two non-ideal cases are seen in Fig. 8(c) of
the aluminum UXO at a —40° aspect angle and in Fig. 8(d) of
the 155 mm Howitzer at a +20° aspect angle.

In the case of the aluminum UXO [Figs. 8(a) and 8(c)],
the stripes did not properly separate and created two large
Gabor stripes. After visual inspection, the circled feature
stripes in Figs. 8(a) and 8(c) should be separated into three or
four stripes rather than one. In the case of the rock [Fig. 8(b)],
the stripes did not fully connect. The circled stripes should be
one or two connected stripes rather than three. This is also seen
in Fig. 8(d), where the four features should be connected.

D. Gabor feature stripes across all target aspect
angles

We have claimed that the Gabor stripe representation is
independent of a target’s aspect angle, providing a higher clas-
sification rate when compared to the unfiltered magnitude
spectra. To qualitatively validate this claim, all target aspect
angles have been vertically augmented and sent through the
algorithm for the unfiltered and optimally filtered data. All
resulting binary features have been summed across the feature
domain to create a complete response of unfiltered and opti-
mally filtered features. These are displayed in Fig. 9, where
Figs. 9(a) and 9(b) show the PondEx10 steel UXO and Figs.
9(c) and 9(d) show the TREX13 aluminum UXO.

A clear invariance is seen in the PondEx10 dataset,
where the unfiltered features [Fig. 9(a)] are spread out across
all frequencies and cross ranges and the filtered Gabor fea-
ture stripes [Fig. 9(b)] form distinct localized stripes. When
examining the TREX13 dataset, the Gabor feature stripes

Original Binarized Image
Target: steel_uxo
Aspect Angle [deg]: +80

n
o
N
o

Gabor Filtered
Target: steel_uxo, Aspect Angle [deg]: +80
BW [Oct]: 4.941

are not completely aspect angle invariant. However, locali-
zation still occurs when comparing the unfiltered features
[Fig. 9(c)] to the filtered features [Fig. 9(d)].

VIl. CONCLUDING REMARKS

We developed a 3-stage algorithm to represent and clas-
sify sonar acoustic color images, centered around a 2-D
Gabor wavelet representative of the Rayleigh reverberation-
envelope model. We determined the optimal Gabor wavelet
parameters through an SVM for two sets of public domain
field data. After Gabor parameter selection, three machine
learning techniques were utilized for classification.
Classification was performed on original binarized acoustic
color images, sub-optimal Gabor parameter filtered images,
and optimal Gabor parameter filtered images. All classifiers
yielded higher than a 94% overall classification accuracy
when PondEx 10 images were generated with optimal Gabor
parameters and Gabor stripes were binary weighted.
Classifiers yielded higher than an 86% OA when filtered
with a sub-optimal Gabor wavelet. We demonstrated
improvements in machine classification accuracy due to
model-informed feature extraction using the Gabor wavelet
(domain-interpretable features) when compared to the origi-
nal image (domain-agnostic) classification overall accura-
cies. We also provide a theoretic interpretation of the
extracted Gabor features in terms of stripes of the targets’
representation. As a target aspect angle changes, the feature
Gabor stripes may change their shape, but not the overlap
relationships between the stripes, providing robust target
classification that is aspect angle invariant. This allows
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FIG. 6. Extracted features for the PondEx10 steel UXO at a +80° aspect angle for the (a) unfiltered, (b) filtered with BW =4.941, and (c) filtered with
BW =0.108. Poor feature extraction is shown in (b), where the BW was too large to generate a meaningful representation. All spatial frequency components
were allowed to pass through the Gabor wavelet. Poor feature extraction is also shown in (c), where the BW was too small and the spatial frequency pass-
band did not allow enough information to pass through the Gabor wavelet. Ideal feature extraction is shown in Fig. 4(c) where separated Gabor stripes are

formed.
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FIG. 7. Extracted features for the TREX13 aluminum UXO at a +60° aspect angle for the (a) unfiltered, (b) filtered with BW =4.941, and (c) filtered with
BW =0.108. Poor feature extraction is shown in (b), where the BW was too large to generate a meaningful representation. All spatial frequency components
were allowed to pass through the Gabor wavelet, resulting in the filtered image mimicking the original image, (a) and (b). Poor feature extraction is also
shown in (c), where the BW was too small and the spatial frequency pass-band did not allow enough information to pass through the Gabor wavelet.

potentially overlapping sonar acoustic features with non-  stripes. Future directions include expanding upon the stripe
linear spectral morphology to be represented as binary pixel — representation through assigning weights, studying the
maps. We observed that taking the stripe representation at  impact of changing additional Gabor parameters, analyzing
the granularity of individual stripes was counter-productive  additional public domain field data from targets with differ-
as the classification was vulnerable to incorrectly weighted  ent geometries, and interfacing the Gabor stripe features
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FIG. 8. Features not fully separated in the (a) PondEx10 aluminum UXO at a —20° aspect angle, and features not fully connected in the (b) PondEx10 rock
at a —20° aspect angle. The red circles enclose features incorrectly formed. TREX13 non-ideal features are seen in the not separated Gabor feature stripes in
the (c) aluminum UXO at a —40° aspect angle, and the features not connected in the (d) 155 mm Howitzer at a +20° aspect angle. Features properly con-
nected and separated in the PondEx 10 steel UXO at a +80° aspect angle are shown in Fig. 4(c).
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FIG. 9. Illustration of all target aspect angles after application of the feature extraction algorithm. Panels (a) and (b) show the unfiltered and filtered
PondEx10 steel UXO, respectively. Panels (c) and (d) show the unfiltered and filtered TREX13 aluminum UXO. The colorbar associated with each panel
shows the number of similar features present per pixel across all aspect angles where 18 is the maximum number of features possible. The horizontal line of
symmetry seen near 15 kHz is due to the vertical augmentation of the unfiltered response in step 1 of the feature extraction algorithm.

with more sophisticated machine learning techniques, such
as active learning generative adversarial networks.
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APPENDIX A: VALIDATION OF HISTOGRAM
PERCENTILE

Throughout the optimal parameter selection in Sec.
IV B, the 90th percentile of the Gabor acoustic color magni-
tude histogram was used as a threshold to binarize the image
prior to feature culling and classification. This percentile
was empirically chosen through visually examining the
Gabor stripes to ensure they were fully separated and
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FIG. 10. SVM overall classification accuracy as a function of the histogram
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connected (discussed in Sec. VIC). To quantitatively vali-
date this choice, the PondEx10 optimal Gabor parameters
(A=5,r=0/1=0.8,0 =4) were kept constant while the
histogram percentile, p, was varied such that p € {70,
71,...,98, 99} on the first subset of data. The resulting data
was sent through the SVM classifier, where the OA was
used to validate the percentile, shown in Fig. 10.

APPENDIX B: ACRONYMS

TABLE III. List of acronyms and their meanings.

Acronym Full description

2-D Two-dimensional

al_cyl Aluminum cylinder target (from PondEx10
and TREX13 public domain field data)

al_uxo Aluminum UXO target (from PondEx10
and TREX13 public domain field data)

dB Decibel

NN Neural network

OA Overall accuracy [see Eq. (9) for a mathe-

matical definition]
Opt. Optimal (refers to optimal Gabor parame-
ters used to generate images prior to
training and testing of classifiers)
Orig. Original (refers to the original images used
to train and test classifiers)

PDF Probability density function

PondEx10 Pond experiment performed March 2010

RFT Random forest tree

rock Rock 1 target (from PondEx 10 public

domain field data)
steel_uxo Steel UXO target (from PondEx10 and

TREX13 public domain field data)
Sub-opt. Sub-optimal (refers to sub-optimal Gabor
parameters used to generate images prior
to training and testing of classifiers)
SVM Support vector machine
UXO Un-exploded ordinance

X. Lurton, An Introduction to Underwater Acoustics: Principles and
Applications (Springer Science & Business Media, New York, 2002).

2C. C. Leroy, “Development of simple equations for accurate and more
realistic calculation of the speed of sound in seawater,” J. Acoust. Soc.
Am. 46(1B), 216-226 (1969).

3S. M. Flatté and F. D. Tappert, “Calculation of the effect of internal waves
on oceanic sound transmission,” J. Acoust. Soc. Am. 58(6), 1151-1159
(1975).

*V. A. Del Grosso, “New equation for the speed of sound in natural waters
(with comparisons to other equations),” J. Acoust. Soc. Am. 56(4),
1084-1091 (1974).

SW. L. Roderick and B. F. Cron, “Frequency spectra of forward-scattered
sound from the ocean surface,” J. Acoust. Soc. Am. 48(3B), 759-799
(1970).

°K. L. Williams and D. R. Jackson, “Bistatic bottom scattering: Model,
experiments, and model/data comparison,” J. Acoust. Soc. Am. 103(1),
169—181 (1998).

"R. J. Urick, Principles of Underwater Sound for Engineers (Tata
McGraw-Hill Education, New York, 1967).

8S. G. Kargl and K. L. Williams, “Serdp project mr-1665" (2012).

°S. G. Kargl, “Serdp project mr-2231-fr” (2015).

J. Acoust. Soc. Am. 148 (4), October 2020

%p ¢, Etter, Underwater Acoustic Modeling and Simulation (CRC Press,
Boca Raton, FL, 2018).

"'D. A. Abraham and A. P. Lyons, “Simulation of non-rayleigh reverbera-
tion and clutter,” IEEE J. Oceanic Eng. 29(2), 347-362 (2004).

12, A. Bucaro, Z. J. Waters, B. H. Houston, H. J. Simplson, A. Sarkissian,
S. Dey, and T. J. Yoder, “Acoustic identification of buried underwater
unexploded ordnance using a numerically trained classifier (1),” J. Acoust.
Soc. Am. 132(6), 3614-3617 (2012).

13D, Schupp, A. S. Gupta, and . Kirsteins, “Characterization and classifica-
tion of sonar targets using ellipsoid features,” in Proceedings of the 2015
IEEE Global Conference on Signal and Information Processing
(GlobalSIP), Orlando, FL (December 1416, 2015), pp. 1352-1356.

“E. M. Fischell and H. Schmidt, “Classification of underwater targets from
autonomous underwater vehicle sampled bistatic acoustic scattered
fields,” J. Acoust. Soc. Am. 138(6), 3773-3784 (2015).

M. Robinson, S. Fennell, B. DiZio, and J. Dumiak, “Geometry and topol-
ogy of the space of sonar target echos,” J. Acoust. Soc. Am. 143(3),
1630-1645 (2018).

167, J. Hall, M. R. Azimi-Sadjadi, S. G. Kargl, Y. Zhao, and K. L. Williams,
“Underwater unexploded ordnance (UXO) classification using a matched
subspace classifier with adaptive dictionaries,” IEEE J. Oceanic Eng.
44(3), 739-752 (2019).

'7A. Xenaki and Y. Pailhas, “Compressive synthetic aperture sonar imaging
with distributed optimization,” J. Acoust. Soc. Am. 146(3), 1839-1850
(2019).

183, Madhusudhana, A. Gavrilov, and C. Erbe, “Automatic detection of
echolocation clicks based on a Gabor model of their waveform,”
J. Acoust. Soc. Am. 137(6), 3077-3086 (2015).

19y. Attaf, A. O. Boudraa, and C. Ray, “Amplitude-based dominant compo-
nent analysis for underwater mines extraction in side scans sonar,” in
Proceedings of OCEANS 2016, Shanghai, China (April 10-13, 2016), pp.
1-4.

20g. Song, J. M. Herrmann, K. Liu, S. Li, and X. Feng, “Forward-looking
sonar image mosaicking by feature tracking,” in 2016 IEEE International
Conference on Robotics and Biomimetics (ROBIO), Qingdao, China
(December 3-7, 2016), pp. 1613-1618.

21y, Zhang, F. Sohel, H. Bian, M. Bennamoun, and S. An, “Forward-looking
sonar image registration using polar transform,” in Proceedings of
OCEANS 2016 MTS/IEEE, Monterey, CA (September 19-23, 2016), pp.
1-6.

22A. S. Gupta and D. Schupp, “Characterization of sonar target data using
Gabor wavelet features,” in 2015 49th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA (November 8-11, 2015), pp.
1723-1726.

A, S. Gupta and 1. Kirsteins, “Disentangling sonar target features using
braided feature graphs,” in Proceedings of OCEANS 2017, Anchorage,
AK (September 18-21, 2017), pp. 1-5.

M. J. Bianco, P. Gerstoft, J. Traer, E. Ozanich, M. A. Roch, S. Gannot,
and C.-A. Deledalle, “Machine learning in acoustics: Theory and
applications,” J. Acoust. Soc. Am. 146(5), 3590-3628 (2019).

2H. Niu, E. Reeves, and P. Gerstoft, “Source localization in an ocean
waveguide using supervised machine learning,” J. Acoust. Soc. Am.
142(3), 1176-1188 (2017).

6L, Guillon, S. E. Dosso, N. R. Chapman, and A. Drira, “Bayesian geoa-
coustic inversion with the image source method,” IEEE J. Oceanic Eng.
41(4), 1035-1044 (2016).

2TA. Xenaki, E. Fernandez-Grande, and P. Gerstoft, “Block-sparse beam-
forming for spatially extended sources in a bayesian formulation,”
J. Acoust. Soc. Am. 140(3), 1828—-1838 (2016).

8C. Chen, A. Zare, H. N. Trinh, G. O. Omotara, J. T. Cobb, and T. A.
Lagaunne, “Partial membership latent dirichlet allocation for soft
image segmentation,” IEEE Trans. Image Process. 26(12), 5590-5602
(2017).

2D, Bush and N. Xiang, “A model-based bayesian framework for sound
source enumeration and direction of arrival estimation using a coprime
microphone array,” J. Acoust. Soc. Am. 143(6), 3934-3945 (2018).

30A. C. Barros and P. J. Gendron, “A computational bayesian approach for
localizing an acoustic scatterer in a stratified ocean environment,”
J. Acoust. Soc. Am. 146(3), EL245-EL250 (2019).

37 H. Michalopoulou, A. Pole, and A. Abdi, “Bayesian coherent and inco-
herent matched-field localization and detection in the ocean,” J. Acoust.
Soc. Am. 146(6), 48124820 (2019).

Kubicek etal. 2071

2€:05:G1 ¥20z Joquaydas G0


https://doi.org/10.1121/1.1911673
https://doi.org/10.1121/1.1911673
https://doi.org/10.1121/1.380798
https://doi.org/10.1121/1.1903388
https://doi.org/10.1121/1.1912200
https://doi.org/10.1121/1.421109
https://doi.org/10.1109/JOE.2004.828202
https://doi.org/10.1121/1.4763997
https://doi.org/10.1121/1.4763997
https://doi.org/10.1121/1.4938017
https://doi.org/10.1121/1.5027825
https://doi.org/10.1109/JOE.2018.2835538
https://doi.org/10.1121/1.5126862
https://doi.org/10.1121/1.4921609
https://doi.org/10.1121/1.5133944
https://doi.org/10.1121/1.5000165
https://doi.org/10.1109/JOE.2016.2516421
https://doi.org/10.1121/1.4962325
https://doi.org/10.1109/TIP.2017.2736419
https://doi.org/10.1121/1.5042162
https://doi.org/10.1121/1.5126351
https://doi.org/10.1121/1.5138134
https://doi.org/10.1121/1.5138134
https://doi.org/10.1121/10.0002168

2E, Kriminger, J. T. Cobb, and J. C. Principe, “Online active learning for auto-
matic target recognition,” IEEE J. Oceanic Eng. 40(3), 583-591 (2015).

K. L. Williams, S. G. Kargl, E. I. Thorsos, D. S. Burnett, J. L. Lopes, M.
Zampolli, and P. L. Marston, “Acoustic scattering from a solid aluminum

2072  J. Acoust. Soc. Am. 148 (4), October 2020

cylinder in contact with a sand sediment: Measurements, modeling, and
interpretation,” J. Acoust. Soc. Am. 127(6), 3356-3371 (2010).

34R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, Vol. 1
(Addison-Wesley, Reading, UK, 1992), pp. 28-30.

Kubicek et al.

2€:05:G1 ¥20z Joquaydas G0


https://doi.org/10.1109/JOE.2014.2340353
https://doi.org/10.1121/1.3419926
https://doi.org/10.1121/10.0002168

