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Abstract
Contraction properties of transport maps between probability measures play an impor-
tant role in the theory of functional inequalities. The actual construction of such maps,
however, is a non-trivial task and, so far, relies mostly on the theory of optimal trans-
port. In this work, we take advantage of the infinite-dimensional nature of the Gaussian
measure and construct a new transport map, based on the Föllmer process, which
pushes forward the Wiener measure onto probability measures on Euclidean spaces.
Utilizing the tools of the Malliavin and stochastic calculus in Wiener space, we show
that this Brownian transport map is a contraction in various settings where the anal-
ogous questions for optimal transport maps are open. The contraction properties of
the Brownian transport map enable us to prove functional inequalities in Euclidean
spaces, which are either completely new or improve on current results. Further and
related applications of our contraction results are the existence of Stein kernels with
desirable properties (which lead to new central limit theorems), as well as new insights
into the Kannan–Lovász–Simonovits conjecture. We go beyond the Euclidean setting
and address the problem of contractions on theWiener space itself. We show that opti-
mal transport maps and causal optimal transport maps (which are related to Brownian
transport maps) between the Wiener measure and other target measures on Wiener
space exhibit very different behaviors.

Mathematics Subject Classification Primary 49Q22; Secondary 39B62 · 60B11

1 Introduction

One of the basic tools in the study of functional inequalities in Euclidean spaces is the
use of Lipschitz maps T : Rd → R

d [20, 37]. A good starting point for this discussion
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is Caffarelli’s contraction theorem [12] (see also [19, 29, 41, 62] for other proofs): If γd

is the standard Gaussian measure onRd and p is a probability measure onRd which is
more log-concave than γd , then the optimal transport map of Brenier T : Rd → R

d ,
which pushes forward γd to p, is 1-Lipschitz. In other words, that p is more log-
concave than γd is manifested by the contractive properties of the transport map T .
With the existence of T in hand, we can easily transfer to p functional inequalities
which are known to be true for γd . For example, the Poincaré inequality states that for
η : Rd → R we have

Varγd [η] ≤
∫

|∇η|2dγd .

As T is 1-Lipschitz, its derivative is bounded, |DT |op ≤ 1, so

Varp[η] = Varγd [η ◦ T ] ≤
∫

|∇(η ◦ T )|2dγd ≤
∫

|DT |2op (|∇η| ◦ T )2dγd ≤
∫

|∇η|2dp

(1.1)
where we used that p is the pushforward of γd under T . We see that p satisfies the
Poincaré inequality with the same constant as γd .

This paper starts with the observation that since the Gaussian measure is infinite-
dimensional in nature,1 the search for contractive transport maps from the Gaussian
measure to some target measure should not be confined to Euclidean spaces, even if
the target measure is a measure onRd . Specifically, we will take our source measure to
be the Wiener measure (an infinite-dimensional Gaussian measure) which will allow
us to take advantage of the Malliavin and stochastic calculus of the Wiener space.
Given a target measure p on R

d , our construction relies on the Föllmer process: The
solution X = (Xt ) to the stochastic differential equation

d Xt = ∇ log P1−t

(
dp

dγd

)
(Xt )dt + d Bt , t ∈ [0, 1], X0 = 0 (1.2)

where (Bt ) is the standard Brownian motion in R
d and (Pt ) is the heat semigroup.

This process can be seen as Brownian motion conditioned on being distributed like p
at time 1; i.e., X1 ∼ p. Hence, we view the solution to (1.2) at time 1 as a transport
map, which we call the Brownian transport map, X1 : � → R

d which pushes forward
the Wiener measure γ on the Wiener space2 � to the target measure p on Rd .

In the remainder of the introduction we present our results on the contractive prop-
erties of the Brownian transport map, as well as applications to functional inequalities
and to central limit theorems. We also study the behavior of the Brownian transport

1 The infinite-dimensional nature of the Gaussian is manifested by the fact that it enjoys several quantitative
analytic properties, like thePoincaré inequality,which donot dependon the ambient dimension. In particular,
the Wiener measure, which is the infinite-dimensional analogue of the Gaussian measure, satisfies the same
analytic properties.
2 The Wiener measure γ is such that � � ω ∼ γ is a standard Brownian motion in R

d where � is the
classical Wiener space of continuous paths in R

d parameterized by time t ∈ [0, 1].
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map when considered as a map from the Wiener space to itself. This point of view
further elucidates the connection between our results and optimal transport theory.

1.1 Almost-sure contraction

Before presenting our first result we discuss the types of measures for which it is
reasonable to expect that theBrownian transportmapwill be an almost-sure contraction
(the reader is referred to Sect. 2 for the exact definition). The rough intuition is that if the
measure γ is squeezed into amore concentratedmeasure then the transportmap should
be a contraction. We focus on several mechanisms which in principle could facilitate
such contractions. The first mechanism works by requiring that S := diam(supp(p))
is finite so that the entire mass of p is confined into a region with finite volume.
The second mechanism, inspired by Caffarelli’s result, works by imposing convexity
assumptions on p: We say that p is κ-log-concave for some κ ∈ R if

−∇2 log

(
dp

dx

)
(x) 	 κIdd ∀ x ∈ supp(p).

Note that we allow κ to take negative values and that the case κ = 0 corresponds to
p being log-concave. When κ ≥ 1 we see that p is more log-concave than γd (κ = 1

when p = γd as −∇2 log
(

dγd
dx

)
= Idd ) so in that sense p is more concentrated than

γd and we expect some type of contraction.
The following result shows that the Brownian transport map is an almost-sure

contraction when the target measure satisfies either a convexity assumption or a finite-
volume of support assumption. For example, as will be clear from the subsequent
discussion, Theorem 1.1 always improves on the analogous result of Caffarelli which
states that when p is κ-log-concave, for κ > 0, the optimal transport map is 1√

κ
-

Lipschitz. In the remainder of the paper we refer to �-Lipschitz maps as contractions
with constant �.

Theorem 1.1 (Almost-sure contraction) Let p be a κ-log-concave measure for some
κ ∈ R and let S := diam(supp(p)).

(i) If κS2 ≥ 1 then the Brownian transport map between γ and p is an almost-sure
contraction with constant 1√

κ
.

(ii) If κS2 < 1 then the Brownian transport map between γ and p is an almost-sure

contraction with constant

(
e1−κS2+1

2

)1/2
S.

To unpack Theorem 1.1 let us consider some of its important special cases.

• S < ∞ and κ = 0. This setting corresponds to the case where p is log-concave
with bounded convex support. It is an open question [41, Problem 4.3] whether
the optimal transport map of Brenier between γd and p is a contraction with a
dimension-free constant. On the other hand, Theorem 1.1 shows that the Brow-
nian transport map between γ and p is in fact an almost-sure contraction with a
dimension-free constant of the optimal dependence O(S).
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• κ > 0. If κS2 ≥ 1 then we obtain the exact analogue of Caffarelli’s result for
the optimal transport map [41, Theorem 2.2]. If κS2 < 1 then part (ii) shows
that the Brownian transport map is an almost-sure contraction with constant(

e1−κS2+1
2

)1/2
S ≤ 1√

κ
; the last inequality holds as κS2 < 1 and by the esti-

mate 1− 1
x ≤ log x . Thus, we get an improvement on the analogue of Caffarelli’s

result.
• S < ∞ andκ < 0. In this setting, only part (ii) applies andwe see that theBrownian

transport map is an almost-sure contractionwith constant

(
e1+|κ|S2+1

2

)1/2
S. There

are no analogous results for other transport maps.
• S = ∞ and κ ≤ 0. The bounds provided by Theorem 1.1 are trivial in this case.
This is unavoidable, as we explain in Sect. 1.3.

Remark 1.2 The distinction between κS2 ≥ 1 and κS2 < 1 is not necessary and one
could get more refined results; see Remark 3.5. The formulation of Theorem 1.1,
however, is the cleanest which is why we chose it.

Theorem1.1 goes beyond the above examples by capturing the effect of the interplay
of convexity (including κ < 0) and support size on the contraction properties of the
Brownian transport map.3

The reasonwhywe can prove the results in Theorem 1.1, which are unknown for the
Brenier map, is because the Malliavin calculus available in the Wiener space allows
us to write a differential equation for the derivative of the Brownian transport map,
which in turn shows that it is a contraction. This feature does not have an analogue
in optimal transport maps (but see [37, equation (1.8)] for a different transport map).
Moreover, as will be shown in Sect. 8, trying to replace the Brownian transport map by
the optimal transport map on the Wiener space (see Sect. 1.5 for more details) is not
possible since the optimal transport map onWiener space will essentially reduce to the
optimal transport map between γd and p for which the desired contraction properties
are not known.

In our second result we identify a third mechanism to promote the existence of
contractive transport maps. In essence, the idea is that taking well-behaved mixtures
of Gaussians will also have tame concentration profiles. Indeed, in the case where the
mixing measure has bounded support we establish the the Brownian transport map is
a contraction.

Theorem 1.3 (Gaussian mixtures) Let p := γd�ν be the convolution of the standard
Gaussian measure γd with a probability measure ν onRd supported on a ball of radius
R. Then, the Brownian transport map between γ and p is an almost-sure contraction

with constant

(
e2R2−1

2

)1/2
1
R .

3 Note that the quantity κS2 is scale-invariant since the effect of rescaling R
d by r turns a κ-log-concave

measure into a κ

r2
-log-concave measure while the size of the support of the measure rescales from S to r S.

Because the source measure is γ , which corresponds to a Gaussian with unit variance, we expect to have a
threshold at κS2 = 1 which is indeed the case in Theorem 1.1; but see Remark 1.2 and Remark 3.5.
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In the one-dimensional case, an analogue of Theorem 1.3 was established in [67],
for the Brenier map. The proof relied on the explicit expression for transport maps
between measures on the real line. While it is unknown whether the Brenier map
enjoys similar properties in higher dimensions, our analysis of the Brownian transport
map affords Theorem 1.3 as an extensive generalization to arbitrary dimensions. As a
corollary we are able to deduce several new functional inequalities, as well as improve
upon existing ones, for Gaussian mixtures (see Sect. 1.2 below).

1.2 Functional inequalities

Once Theorems 1.1 and 1.3 are established, the generality of the transport method
towards functional inequalities opens the door to the improvement of numerous func-
tional inequalities. Section5 is dedicated to proving such results which include the
isoperimetric inequality, 
-log-Sobolev inequalities; a generalization of the log-
Sobolev inequality, and q-Poincaré inequalities, a generalization of the Poincaré
inequality.

In Table 1 we summarize our results and note the ones which seem to be new. The
definitions and exact statements are deferred to Sect. 5. As can be seen from the table,
for log-concave measures some of the results are not new. However, let us note that
the proofs of the mentioned results, obtained gradually over the last several decades,
utilized a myriad of different techniques. These techniques include, among others,
localization methods, Bakry-Émery calculus, and Brunn-Minkowski theory, and often
require ad-hoc arguments for the specific functional inequality in question. In contrast,
our transportation approach provides a unifying framework to study such functional
inequalities. As a result we are also able to obtain new, previously unknown, results
such that as 
-log-Sobolev and q-Poincaré inequalities for log-concave measures
with bounded support. While it is likely that one could use other techniques to prove
comparable results, the benefit of our approach is that no further arguments are needed,
other than Theorem 1.1 and arguments similar to the one outlined in (1.1).

The bottom row of Table 1 deals with Gaussian mixtures. The question of exis-
tence of functional inequalities for a mixture of distributions, given the existence of
the corresponding inequalities for the individual components, has been investigated
for some time. Only recently has it been settled for the Poincaré and log-Sobolev
inequalities, [17, Theorem 1]. The result of [17] is very general and applies to many
families of mixture distributions but, on the other hand, the method of proof seems
to be specialized to the Poincaré and log-Sobolev inequalities. In this case, the gen-
erality of the transport method allows to tackle inequalities which seem to lie outside
of the scope of previous methods. In addition, the generality of the method of [17]
misses the special nature of mixtures of Gaussians. Indeed, our results improve on [17,
Corollaries 1,2].

1.3 Log-concavemeasures

As we saw in Sect. 1.2, measures which are κ-log-concave (with κ > 0) satisfy a
Poincaré inequality with constant κ−1 (which in particular does not depend on the
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dimension d). When κ = 0, this constant blows up which leaves open the question
of the existence of a Poincaré inequality for log-concave measures. The Kannan–
Lovász–Simonovits conjecture [36], in one of its formulations, states that there exists
a constant Ckls, which does not depend on the dimension d, such that for any isotropic
(i.e., centered with covariance equal to the identity matrix) log-concave measure p on
R

d we have

Varp[η] ≤ Ckls

∫
|∇η|2dp for η : Rd → R.

In words, any isotropic log-concavemeasure onRd satisfies a Poincaré inequality with
a constant Ckls which is dimension-free. In light of the above discussion, transport
maps offer a natural route to proving the conjecture: Given an isotropic log-concave
measure p on R

d we would like to construct a transport map, from γd or γ , to p
which is an almost-sure contraction with constant Ckls. Unfortunately, in general,
such a map cannot exist: Indeed, as seen in Table 1, such a map will imply that p
satisfies a log-Sobolev inequality with a dimension-free constant. But this is known
to be false because the existence of a log-Sobolev inequality is equivalent to sub-
Gaussian concentration [46, Theorem 5.3], which does not hold for the two-sided
exponential measure even though it is isotropic and log-concave. Nonetheless, the
transport approach towards the conjecture can still be made to work by using a weaker
notion of contraction and using an important result of E. Milman. Indeed, consider
the Brownian transport map and suppose that instead of having an almost-sure bound
|DX1| ≤ Ckls we only have a bound in expectation,

Eγ [|DX1|2] ≤ C,

for some dimension-free constant C . Repeating the argument above, and using
Hölder’s inequality, we find that

Varp[η] ≤ C Lip2(η)

where Lip(η) := supx∈Rd |∇η(x)|. In principle, this bound is weaker than a Poincaré
inequality because of the use of the L∞ norm on the gradient rather than the L2 norm.
However, as shown by E. Milman [55], a Poincaré inequality is equivalent, up to a
dimension-free constant, to first moment concentration which follows from the above
L∞ bound. In conclusion, the Kannan–Lovász–Simonovits conjecture is proven as
soon as we can show that Eγ [|DX1|2] ≤ C .

Significant progress towards the resolution of theKannan–Lovász–Simonovits con-
jecture was made in a series of works [18, 25, 38, 39, 49]. Building on these results
and techniques, we are able to make the, so far missing, connection between measure
transportation and the Kannan–Lovász–Simonovits conjecture.
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Theorem 1.4 (Contraction in expectation for log-concave measures) Let p be an
isotropic log-concave measure onRd with compact support.4, and let X1 : � → R

d be
the Brownian transport map from the Wiener measure γ to p. There exists a universal
constant ζ such that, for any positive integer m,

Eγ

[
|DX1|2m

L(H ,Rd )

]
≤ ζm(2m + 1)!(log d)12m,

where | · |L(H ,Rd ) is the operator norm of operators from the Cameron-Martin space
H to R

d .

Taking m = 1 in Theorem 1.4 we see that Ckls is almost dimension-free, as would
be expected from the Kannan–Lovász–Simonovits conjecture. In fact, our transport
perspective allows us to go beyond m = 1, which is needed for the applications
outlined below.

Remark 1.5 As explained in this section, an expectation bound of the form
Eγ [|DT |2] < C , where T is a transportmap fromeither γ orγd to p, with a dimension-
free universal constant C , would lead to a proof of the Kannan–Lovász–Simonovits
conjecture. In fact, one of the novelties of the proof of Theorem 1.4 is that it reveals
that the reverse is also true, up to log d factors, when T is the Brownian transport
map. That is, assuming that the Kannan–Lovász–Simonovits conjecture is true we

would get, up to log d factors, an expectation bound Eγ

[
|DX1|2m

L(H ,Rd )

]
≤ Cm for a

dimension-free universal constant Cm which depends only on m.

1.4 Stein kernels and central limit theorems

Our proof of Theorem 1.4 is based on known results concerning Ckls. Thus,
Theorem 1.4 does not supply any new information regarding the Kannan–Lovász–
Simonovits conjecture itself. However, for isotropic log-concave measures, the
transport approach is useful not only in the study of the conjecture but also in
the theory of Stein kernels. As will become evident soon, these results go beyond
the Poincaré inequality, and hence do not follow from the current results on the
Kannan–Lovász–Simonovits conjecture.

Given a centered measure p on Rd , a matrix-valued map sp is called a Stein kernel
for p if

Ep[η(x)x] = Ep[∇η(x)sp(x)]

for a big-enough family of functions η : Rd → R. Gaussian integration by parts shows
that p = γd if and only if the constant matrix Idd is a Stein kernel for p. Hence, the
distance of sp from Idd controls the extent to which p can be approximated by γd .

4 The assumption of compact support does not effect the connection to the Kannan–Lovász–Simonovits
conjecture [18, section 2.6] In particular, the bounds in the theorem are independent of the size of the
support of p.
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Specifically, the Stein discrepancy of sp is defined as

S2(sp) := Ep[|sp − Idd |2HS].

The quantity S(sp) plays an important role in functional inequalities [48, 58, 61] and
normal approximations [23, 28, 47, 57]. For applications, often it is enough to bound
Ep[|sp|2HS]. While in one dimension the Stein kernel of a given measure is unique
and given by an explicit formula, in high-dimensions these kernels are non-unique
and their construction is often non-trivial [23]. It was observed in [15] that transport
maps with certain properties are good candidates for constructing Stein kernels. We
will follow this strategy and construct Stein kernels with small Hilbert-Schmidt norm,
based on the Brownian transport map, for a very large class of measures.

Theorem 1.6 (Stein kernels) Let p be an isotropic log-concave measure on R
d with

compact support. Let χ : Rd → R
k be a continuously differentiable function with

bounded partial derivatives such that Ep[χ ] = 0 and Ep[|∇χ |8op] < ∞. Then, the

pushforward measure q := χ∗ p on R
k admits a Stein kernel τq satisfying

Eq [|τq |2HS] ≤ ad(log d)24
√
Ep[|∇χ |8op],

for some universal constant a > 0.

For example, taking k = d and χ(x) := x shows that for p isotropic and log-
concave

Ep[|τp|2HS] ≤ ad(log d)24. (1.3)

The analogous bound of (1.3), with a better polylog and a different Stein kernel sp,
follows from [23] that showed Ep[|sp|2HS] ≤ dC p, where C p is the Poincaré constant
of p. Indeed, since C p ≤ c log d by the result of [38], the bound (1.3) holds for sp.
However, unlike previous constructions, our construction is well-behaved with respect
to compositions. It allows to consider general χ , which leads to the existence of Stein
kernels τq with bounded Hilbert-Schmidt norm, where now q does not necessarily
satisfy a Poincaré inequality.

As a concrete application we will use Theorem 1.6 to deduce new central limit
theorems with nearly optimal convergence rates. The best dimensional dependence in

the convergence rate one could expect is of order
√

d
n , as can be seen by consider-

ing product measures. Most known results establish general rates of convergence, in
various distances, which are not better than d√

n
, and typically require a super-linear

dependence in the dimension (see [9, 16] for some notable examples). To improve
on such bounds, several recent works have shown that, by imposing strong structural
assumptions on the common law of the summands, one can reduce the rate of con-

vergence to
√

d
n . However, these works dealt with highly regular measures, such as

log-concave measures [27], measures with small support [66], or measures satisfying
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a Poincaré inequality [23, 28]. These assumptions can be restrictive for certain appli-
cations involving heavy-tailed measures, whose moment generating function may not
be well-defined and hence do not have sub-exponential tails.

We will bypass the above restrictive assumptions by utilizing the Stein kernel
approach to normal approximations combined with Theorem 1.6. The starting point
is the inequality,

W 2
2 (p, γd) ≤ S2(sp), (1.4)

valid for any Stein kernel sp, where W2 is the Wasserstein 2-distance [47, Proposition
3.1]. In particular, inequality (1.4) can be used to prove central limit theorems: Suppose
that p is isotropic and let {Yi } be an i.i.d. sequence sampled from p. Then, as shown
in [47, section 2.5], for every given Stein kernel sp, there exists a Stein kernel spn ,
where 1√

n

∑n
i=1 Yi ∼ pn , such that

S2(spn ) ≤ S2(sp)

n
.

Combining (1.4) with the triangle inequality thus yields

W 2
2 (pn, γd) ≤ 2

n

{
Ep[|sp|2HS] + d

}
.

The upshot of this discussion is that if we can construct a Stein kernel sp with a small
Hilbert-Schmidt norm we then obtain a central limit theorem with a good rate. In

particular, whenever Ep[|sp|2HS] = O(d), we get an
√

d
n rate of convergence. Using

our Stein kernel τp and the bound in Theorem 1.6 we obtain:

Corollary 1.7 (Central limit theorem) Let p, q, andχ be as in Theorem 1.6, and further
suppose that q is isotropic. Then, if {Yi } are i.i.d. sampled from q we have, with
1√
n

∑n
i=1 Yi ∼ qn,

W 2
2 (qn, γk) ≤ 2

√
Ep[|∇χ |8op] d(log d)24 + k

n
,

for some universal constant a > 0.

Corollary 1.7 allows to significantly relax the regularity assumptions of the above
mentioned works, while still maintaining a nearly optimal rate of convergence. For
example, if χ has a quadratic growth then q can have super-exponential tails, so
it cannot satisfy a Poincaré inequality. In contrast, in such a setting, Corollary 1.7
provides results which are comparable, up to the Sobolev norm of χ and log d terms,
to the ones obtained for log-concave measures [23, 28]. Another appealing feature
is the ability to treat singular measures when k > d. A particular case of interest is
χ(x) := x⊗m for some positive integer m. Even though q may be heavy-tailed in this
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case, since Ep[|∇χ |8op] is finite when p is log-concave we get a central limit theorem
for sums of i.i.d. tensor powers. Proving such a result was a question posed in [53,
section 3] where it was also suggested that finding an appropriate transport map could
prove useful. Using our construction, Corollary 1.7 resolves this question.

1.5 Contractions onWiener space

In the previous sections we viewed the solution X to (1.2) as a map X1 : � → R
d .

We can go however beyond the Euclidean setting by not restricting ourselves to the
value of X at time t = 1. We then get a map X : � → � which transports the Wiener
measure γ to the measure μ on� given by dμ(ω) = dp

dγd
(ω1)dγ (ω) for ω ∈ �where

ωt is the value of ω at time t ∈ [0, 1]. In words, μ is obtained from γ by reweighting
the probability of ω according to γ by the value of dp

dγd
: R

d → R
d at ω1 ∈ R

d .
This leads to the following question: Is X a contraction, in a suitable sense, from the
Wiener measure γ to μ under appropriate conditions on μ? In fact, this question can
be placed in the general context of transport maps onWiener space as we now explain.

We start by recalling that the Wiener space � contains the important Cameron-
Martin space H1 whose significance lies in the fact that the law of ω+ h is absolutely
continuous with respect to the law of γ whenever h ∈ H1. The Cameron-Martin space
is the continuous injection of the space H := L2(�,R) under the anti-derivative map
ḣ ∈ H �→ h := ∫ ·

0 ḣ ∈ H1 and it induces a cost on � by setting, for x, y ∈ �,
|x − y|H1 with the convention that |x − y|H1 = +∞ if x − y /∈ H1. Based on this
cost two notions of optimal transport maps on � can be defined:

Given probability measures measure ν, μ on� let�(ν,μ) be the set of probability
measures on � × � such that their two marginals are equal to ν and μ, respectively.
The (squared) Wasserstein 2-distance between ν and μ is defined as

W 2
2 (ν, μ) = inf

π∈�(ν,μ)

∫
�×�

|x − y|2H1dπ(x, y).

Assuming that W 2
2 (ν, μ) < ∞, the optimal transport map O : � → �, when its

exists, is a map which transports ν into μ satisfying

∫
�

|ω − O(ω)|2H1dν(ω) = W 2
2 (ν, μ).

This definition is the generalization of the definition appearing in the classical optimal
transport theoryonEuclidean spaces [64]. InEuclidean spaces, the existence of optimal
transportmaps and their regularitywas proven byBrenier [64, Theorem2.12]while the
analogous result in Wiener space is due to Feyel and Üstünel [31]. Since W 2

2 (ν, μ) <∞, we may write O(ω) = ω + ξ(ω) where ξ : � → H1 so that

W 2
2 (ν, μ) := inf

ξ
Eγ

[
|ξ(ω)|2H1

]
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where the infimum is taken over all maps ξ : � → H1 such that Law(ω+ ξ(ω)) = μ

with ω ∼ ν. Importantly, we do not make the requirement that ξ(ω) is an adapted5

process. We now turn to the second notion of optimal transport: Given probability
measures ν, μ on �, we define6 the causal optimal transport map A : � → � to be
the map which transports ν to μ satisfying

∫
�

|ω − A(ω)|2H1dν(ω) = inf
ξ adapted

Eγ

[
|ξ(ω)|2H1

]

where the infimum is taken over all maps ξ : � → H1 such that Law(ω+ ξ(ω)) = μ

with ω ∼ ν, and with the additional requirement that ξ is an adapted process. This
notion of optimality, sometimes referred to as adapted optimal transport, has recently
gained a lot of traction (e.g, [7] and references therein).

The connection between these transport maps and the Brownian transport map
follows from the work of Lassalle [44]. It turns out that when dμ(ω) = dp

dγd
(ω1)dγ (ω)

for ω ∈ �, the causal optimal transport map A : � → �, which transports γ to μ,
is precisely the Föllmer process X : � → �. This is essentially a consequence
of Girsanov’s theorem as well as the entropy-minimization property of the Föllmer
process [33].

Once a notion of optimal (causal or non-causal) transport map in Wiener space
is established, the question of contraction arises: Given a measure μ on � which is
more log-concave than the Wiener measure γ , is either O or A a contraction? We are
not aware of any such results in the current literature. To make this question precise
we need a notion of convexity on � as well as a notion of contraction. We postpone
the precise definitions to Sect. 8 and for now denote such a notion of contraction as
Cameron-Martin contraction. Let us state some of our results in this direction.

Theorem 1.8 (Cameron-Martin contraction)

• Let p be any 1-log-concave measure on R
d and let μ be a measure on the Wiener

space given by dμ(ω) = dp
dγd

(ω1)dγ (ω) for ω ∈ �. Then, the optimal transport
map O from the Wiener measure γ to μ is a Cameron-Martin contraction with
constant 1.

• There exists a 1-log-concave measure p on R
d such that the causal transport

map A between γ to μ, where dμ(ω) = dp
dγd

(ω1)dγ (ω) for ω ∈ �, is not a
Cameron-Martin contraction with any constant.

The first part of the theorem is a straightforward consequence of Caffareli’s con-
traction theorem. The second part requires some work by constructing a non-trivial
example (see Remark 7.1) where the causal optimal transport map fails to be a
Cameron-Martin contraction.

5 Colloquially, a process is adapted if it cannot anticipate the future; see Sect. 2 for the precise definition.
6 This definition is the analogue of the Monge problem rather than the Wasserstein distance. There is a
more general definition [44] of causal optimal transport corresponding to adapted Wasserstein distance but
this is not important for our work.
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Organization of the paper

Section 2 contains the preliminaries necessary for this work including the definition
of the Brownian transport map based on the Föllmer process. Section3 contains the
construction of the Föllmer process and the analysis of its properties which then leads
to the almost-sure contraction properties of the Brownian transport map. The main
results in this section are contained in Theorem 3.1. Section4 focuses on the setting
where the target measure is log-concave with compact convex support and shows
that, in this setting, we can bound the moments of the derivative of the Brownian
transport map; the main result is Theorem 4.2. In addition, Sect. 4 contains a short
explanation of the connection between stochastic localization and the Föllmer process.
In Sect. 5 we use the almost-sure contraction established in Theorem 3.1 to prove new
functional inequalities. In addition, Sect. 5 contains our results on Stein kernels and
their applications to central limit theorems. In Sect. 6 we set up the preliminaries
necessary for the study of contraction properties of transport maps on the Wiener
space itself. In Sect. 7 we show that causal optimal transport maps are not Cameron-
Martin contractions even when the target measure is κ-log-concave, for any κ . Finally,
Sect. 8 is devoted to optimal transport on the Wiener space.

2 Preliminaries

For the rest of the paper we fix a dimension d and let f : Rd → R≥0 be a function
such that

∫
Rd f dγd = 1 where γd is the standard Gaussian measure onRd . We denote

the probability measure p(x)dx := f (x)dγd(x) and further assume that the relative

entropy H(p|γd) := ∫
Rd log

(
dp
dγd

)
dp < +∞. We set S := diam(supp(p)). We write

〈·, ·〉 for the Euclidean inner product and | · | for the corresponding norm. Our notion
of convexity is the following:

Definition 2.1 Aprobabilitymeasure p is κ-log-concave for some κ ∈ R if the support

of p is convex and −∇2 log
(

dp
dx

)
(x) 	 κIdd for all x ∈ supp(p).

Next we recall some basics on the classical Wiener space and the Malliavin
calculus [59].

Wiener space

Let (�,F , γ ) be the classical Wiener space: � = C0([0, 1];Rd) is the set of
continuous functions from [0, 1] to R

d , γ is the Wiener measure, and F is the com-
pletion (with respect to γ ) of the Borel sigma-algebra generated by the uniform norm
|ω|∞ := supt∈[0,1] |ωt | for ω ∈ �. In words, a path ω ∈ � sampled according to
γ has the law of a Brownian motion in R

d running from time 0 to time 1. We set
Wt := W (ω)t := ωt for t ∈ [0, 1] and let (Ft )t∈[0,1] be the sigma-algebra on � gen-
erated by (Wt )t∈[0,1] together with the null sets of F . We say that a process (ut )t∈[0,1]
is adapted if ut : � → R

d is Ft -measurable for all t ∈ [0, 1]. For the rest of the paper
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we define a probability measure μ on � by

dμ(ω) = f (ω1)dγ (ω).

An important Hilbert subspace in� is the Cameron-Martin space H1 which is defined
as follows: Let H = L2([0, 1],Rd) andgiven g ∈ H set i(g) ∈ �by i(g)t := ∫ t

0 gsds.
Then H1 := {i(g) : g ∈ H} and we often write ht = ∫ t

0 ḣsds for ḣ ∈ H and h ∈ H1.
The space H1 has an inner product induced from the inner product of the Hilbert
space H , namely, 〈h, g〉H1 := ∫ 10 〈ḣs, ġs〉ds. The significance of the Cameron-Martin
space is that the measure of the process W + h = (ωt + ht (ω))t∈[0,1] is absolutely
continuous with respect to γ whenever h(ω) ∈ H1 γ -a.e. and (ht (ω))t∈[0,1] is adapted
and regular-enough; this is a consequence of Girsanov’s theorem. Given ḣ ∈ H we set
W (ḣ) := ∫ 1

0 ḣt dWt where the integral is the stochastic Itô integral; in this notation,
Wt = W (1[0,t]).

Next we define the notion of contraction which is compatible with the Cameron-
Martin space.

Definition 2.2 A measurable map T : � → R
d is an almost-sure contraction with

constant C if

|T (ω + h) − T (ω)| ≤ C |h|H1 ∀ h ∈ H1 γ -a.e.

In Euclidean space, a function is Lipschitz if and only if its derivative (which exists
almost-everywhere) is bounded. In order to find the analogue of this result for our
notion of contraction we need an appropriate definition of derivatives on the Wiener
space.

Malliavin calculus

The calculus on theWiener space was developed by P. Malliavin in the 70’s and it will
play an important role in our proof techniques. The basic objects of analysis in this
theory is the variation of a function F : � → R as the input ω ∈ � is perturbed. In
order for the calculus to be compatible with the Wiener measure only perturbations
in the direction of the Cameron-Martin space H1 are considered. We now sketch the
construction of the Malliavin derivative and refer to [59] for a complete treatment.
The construction of derivatives of F starts with the definition of the class S of smooth
random variables: F ∈ S if there exists m ∈ Z+ and a smooth function η : Rm → R

whose partial derivatives have polynomial growth such that

F = η(W (ḣ1), . . . ,W (ḣm))

for some ḣ1, . . . , ḣm ∈ H . The Malliavin derivative of a smooth random variable F
is a map DF : � → H defined by

DF =
m∑

i=1

∂iη(W (ḣ1), . . . ,W (ḣm))ḣi .
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To get some intuition for this definition observe that

〈DF(ω), ḣ〉H = d

dε
F(ω + εh)

∣∣
ε=0

for γ -a.e. ω ∈ � and every ḣ ∈ H with H1 � h = ∫
0 ḣ, is the Gâteaux derivative

of F in the direction ḣ. The Malliavin derivative is then extended to a larger class of
functions on the Wiener space: Given p ≥ 1 we let D1,p be the closure of the class S
with respect to the norm

‖F‖1,p := (Eγ [|F |p]+ Eγ

[|DF |p
H

]) 1
p .

In other words, D1,p is the domain in L p(�, γ ) of the Malliavin derivative operator
D. The value of DF ∈ H at time t ∈ [0, 1] is denoted as Dt F .

The notion of the Malliavin derivative allows us to define the appropriate notion
of derivatives of transport maps F : � → R

k . Let F = (F1, . . . , Fk) : � → R
k

with Fi : � → R a Malliavin differentiable random variable for i ∈ [k], and let
Dt F be the k × d matrix given by [Dt F]i j = D j

t Fi where we use the notation

Dt Fi = (D1
t Fi , . . . , Dd

t Fi ) ∈ R
d for i ∈ [k]; in other words, D j

t Fi is the j th
coordinate of Dt Fi . For γ -a.e. ω ∈ � we define the linear Malliavin derivative
operator DωF : H → R

d by

DωF[ḣ] :=
∫ 1

0
Dt F(ω)ḣt dt = 〈DF(ω), ḣ〉H , ḣ ∈ H .

When no confusion arises we omit the subscript dependence on ω and writeDF . The
next result shows that almost-sure contraction is equivalent to the boundedness of the
corresponding Malliavin derivative operator. In the following we denote byL(H ,Rd)

the space of linear operators from H toRd equippedwith the operator norm |·|L(H ,Rd ).
For example, note that DF ∈ L(H ,Rd) for γ -a.e. ω ∈ �.

Lemma 2.3 • Suppose T : � → R
d is an almost-sure contraction with constant C.

Then DT exists γ -a.e. and |DT |L(H ,Rd ) ≤ C γ -a.e.
• Let T : � → R

d be such that there exists q > 1 so that Eγ [|T |q ] < ∞ and
DT exists γ -a.e. If |DT |L(H ,Rd ) ≤ C γ -a.e. then there exists an almost-sure

contraction T̃ : � → R
d with constant C such that γ -a.e. T̃ = T .

Proof The first part will follow from [10, Theorem 5.11.2(ii)] while the second part
will follow from [10, Theorem 5.11.7] once we check that these results can be applied.
We take the domain to be � ( a locally convex space) with the measure γ (a centered
Radon Gaussian measure). The space H1 is the Cameron-Martin space while the
image of T is a subset of Rd (a separable Banach space with the Radon-Nikodym
property). It remains to check that the Gâteaux derivative of T along H1 is equal to
DT . For smooth cylindrical maps T [10, p. 207] this is clear and the general result
follows from [10, Theorem 5.7.2]. ��
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The Föllmer process and the Brownian transport map

Thehistory of theFöllmer process goes back to theworkofE. Schrödinger in 1932 [52],
but it was H. Föllmer who formulated the problem in the language of stochastic
differential equations [33]; see also the work of Dai Pra from the stochastic control
approach [24]. Let p = f dγd be our probability measure on Rd and let (Bt )t∈[0,1] be
the standard Brownian motion inRd . The Föllmer drift v(t, x) is such that the solution
(Xt )t∈[0,1] of the stochastic differential equation

d Xt = v(t, Xt )dt + d Bt , X0 = 0, (2.1)

satisfies X1 ∼ p and, in addition,
∫ 1
0 Eγ

[|v(t, Xt )|2
]

dt is minimal among all such
drifts. It turns out that the Föllmer drift v has an explicit solution: Let (Pt )t≥0 be the
heat semigroup on R

d acting on functions η : Rd → R by

Ptη(x) =
∫
η(x + √

t z)dγd(z),

then, the Föllmer drift v : [0, 1] × R
d → R

d is given by

v(t, x) := ∇ log P1−t f (x).

That X1 ∼ p with the above v can be seen, for example, from the Fokker-Planck
equation of (2.1). Further, as a consequence of Girsanov’s theorem, the optimal drift
satisfies

H(p|γd) = 1

2

∫ 1

0
Eγ

[
|v(t, Xt )|2

]
dt . (2.2)

We refer to [33, 51] for more details. Specifically, the validity of (2.2) is guaranteed
in our setting by [24, Theorem 3.1] (using the uniqueness of the solution to (2.1)).

The Brownian transport map is defined as the map X1 : � → R
d . This definition

makes sense only if (2.1) has a strong solution which in particular is defined at t = 1;
we will address this issue in the next section.

3 Almost-sure contraction properties of Brownian transport maps

In this section we show that the Brownian transport map is an almost-sure contraction
in various settings. The following is the main result of this section and it covers the
almost-sure contraction statements of Theorem 1.1 and Theorem 1.3.

Theorem 3.1 (1) Suppose that either p is κ-log-concave for some κ > 0, or that p is
κ-log-concave for some κ ∈ R and that S < +∞. Then (2.1) has a unique strong
solution for all t ∈ [0, 1]. Furthermore,
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(a) If κS2 ≥ 1 then X1 is an almost-sure contraction with constant 1√
κ

;

equivalently,

|DX1|2L(H ,Rd )
≤ 1

κ
γ -a.e.

(b) If κS2 < 1 then X1 is an almost-sure contraction with constant(
e1−κS2+1

2

)1/2
S; equivalently,

|DX1|2L(H ,Rd )
≤
(

e1−κS2 + 1

2

)
S2 γ -a.e.

(2) Fix a probability measure ν on R
d supported on a ball of radius R and let p :=

γd�ν. Then (2.1) has a unique strong solution for all t ∈ [0, 1]. Furthermore, X1

is an almost-sure contraction with constant

(
e2R2−1

2

)1/2
1
R ; equivalently,

|DX1|2L(H ,Rd )
≤ e2R2 − 1

2R2 γ -a.e.

Remark 3.2 The dichotomy of κS2 ≥ 1 versus κS2 < 1 is just a convenient way of
organizing the various caseswe consider, i.e., κ nonpositive or nonnegative and S finite
or infinite. This dichotomy is ambiguous when κ = 0 and S = ∞ since we need to
make a convention regarding 0 ·∞. Either way, the bound provided by Theorem 3.1(1)
is trivial, since it is equal to ∞, so when proving Theorem 3.1(1) we will ignore issues
arising from this case. Will come back to the case κ = 0 when proving Theorem 4.2.

The proof of Theorem 3.1, ignoring for now the issue of existence of solutions to
(2.1), relies on the fact that the Malliavin derivative of the Föllmer process satisfies
the following linear equation:

Dr Xt = Idd +
∫ t

r
∇v(s, Xs)Dr Xsds ∀ r ≤ t and Dr Xt = 0 ∀ r > t .

Using this equation we show that

|DXt |2L(H ,Rd )
≤
∫ t

0
e2
∫ t

s λmax(∇v(r ,Xr ))dr ds ∀ t ∈ [0, 1] γ -a.e.

Hence, the proof of Theorem 3.1 now boils down to estimating λmax(∇v(r , Xr )).
In Sect. 3.1 we express ∇v(r , Xr ) as a covariance matrix which allows us to bound
λmax(∇v(r , Xr )). In Sect. 3.2 we use those estimates to establish the existence and
uniqueness of a strong solution to (2.1). Consequently,we derive a differential equation
for DXt , which together with the estimates on λmax(∇v(r , Xr )), allow us to bound
|DXt |2L(H ,Rd )

. We complete the proof of Theorem 3.1 in Sect. 3.3.
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Remark 3.3 As explained above, the key point behind the proof of Theorem 3.1 is to
upper bound λmax(∇v(r , Xr )) = λmax(∇2 log P1−r (Xr )). However, once a Hessian
estimate on∇2 log P1−r (Xr ) is obtained, it can be used to prove functional inequalities
without the usage of the Brownian transport map:

(a) The first way to do so is to work with the semigroup of (Xt ), and mimic
the classical Bakry-Émery calculation (see [8]). The downside of this approach is
that it is well suited to functional inequalities such as the log-Sobolev inequality,
but not to isoperimetric-type inequalities. In contrast, transport approaches, such as
the Brownian transport map, can provde all of these functional inequalities in one
streamlined framework.

(b) The second way to apply the Hessian estimate is to use it within the context of
the heat flow transport map of Kim and Milman [37]. This approach avoids the issues
mentioned in part (a). On the other hand, the usage of this transportmap is only suitable
if we want to prove pointwise estimates on the Lipschitz constant of the transport map.
In contrast, the Brownian transport map allows us to prove estimates on the Lipschitz
constant of the transport map in expectation, which is what is needed to make the
connection with the Kannan–Lovász–Simonovits conjecture; cf. Theorem 1.4. (We
remark however that the heat flow map has its own advantages, as explained in [54,
p.3].)

3.1 Covariance estimates

We begin by representing ∇v as a covariance matrix. Define the measure px,t on Rd ,
for fixed t ∈ [0, 1] and x ∈ R

d , by

dpx,t (y) := f (y)ϕx,t (y)

Pt f (x)
dy (3.1)

where ϕx,t is the density of the d-dimensional Gaussian distribution with mean x and
covariance tIdd .

Claim

∇v(t, x) = 1

(1 − t)2
Cov(px,1−t ) − 1

1 − t
Idd ∀ t ∈ [0, 1] (3.2)

and

− 1

1 − t
Idd � ∇v(t, x) ∀ t ∈ [0, 1]. (3.3)

Proof The estimate (3.3) follows immediately from (3.2). To prove (3.2) note that
since

P1−t f (x) =
∫

f (y)ϕx,1−t (y)dy
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we have

∇ P1−t f (x) = 1

1 − t

∫
(y − x) f (y)ϕx,1−t (y)dy,

∇2P1−t f (x) = 1

(1 − t)2

∫
(y − x)⊗2 f (y)ϕx,1−t (y)dy − 1

1 − t

(∫
f (y)ϕx,1−t (y)dy

)
Idd ,

and hence,

∇v(t, x) = ∇2 log P1−t f (x) = ∇2P1−t f (x)

P1−t f (x)
−
(∇ P1−t f (x)

P1−t f (x)

)⊗2

= 1

(1 − t)2

∫
(y − x)⊗2dpx,1−t (y)

− 1

(1 − t)2

(∫
(y − x)dpx,1−t (y)

)⊗2

− 1

1 − t
Idd

= 1

(1 − t)2

∫
y⊗2dpx,1−t (y) − 1

(1 − t)2

(∫
ydpx,1−t (y)

)⊗2

− 1

1 − t
Idd

= 1

(1 − t)2
Cov(px,1−t ) − 1

1 − t
Idd .

��
We start by using the representation (3.2) to upper bound ∇v.

Lemma 3.4 Define the measure dp = f dγd and let S := diam(supp(p)). Then,

(1) For every t ∈ [0, 1],

∇v(t, x) �
(

S2

(1 − t)2
− 1

1 − t

)
Idd .

(2) Let κ ∈ R and suppose that p is κ-log-concave. Then, for any t ∈
[

κ
κ−11κ<0, 1

]
,

∇v(t, x) � 1 − κ

κ(1 − t) + t
.

(3) Fix a probability measure ν on R
d supported on a ball of radius R and let p :=

γd�ν. Then,

∇v(t, x) � R2Idd .

Proof (1) By (3.2), it suffices to show that Cov(px,1−t ) � S2Idd which is clear from
the definition of px,1−t .
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(2) If p is κ-log-concave then, for any t ∈ [0, 1), px,1−t is
(
κ + t

1−t

)
-log-concave

because

−∇2 log

(
dpx,1−t

dy

)
(y) = −∇2 log

(
f (y)ϕ0,1(y)

)

−∇2 log

(
ϕx,1−t (y)

ϕ0,1(y)

)
	 κIdd + t

1 − t
Idd

where we used that dp(y) = f (y)ϕ0,1(y)dy. If t ∈
[

κ
κ−11κ<0, 1

]
, then(

κ + t
1−t

)
≥ 0 so by the Brascamp-Lieb inequality [3, Theorem 4.9.1], applied

to functions of the form R
d � x �→ 〈x, v〉 for v ∈ Sd−1, we get

Cov(px,1−t ) �
(
κ + t

1 − t

)−1

Idd

and the result follows by (3.2).
(3) We have

dpx,1−t (y)

dy
= (γd�ν)(y)

ϕ0,1(y)

ϕx,1−t (y)

P1−t

(
γd�ν

ϕ0,1

)
(x)

= Ax,t

∫
ϕz,1(y)ϕ

x
t ,

1−t
t (y)dν(z)

for some constant Ax,t depending only on x and t . Hence,

dpx,1−t (y)

dy
=
∫
ϕ(1−t)z+x,1−t (y) d ν̃(z)

where ν̃ is a probability measure which is a multiple of ν by a positive function.
In particular, ν̃ is supported on the same ball as ν. Let G be a standard Gaussian
vector in Rd and Z ∼ ν̃ be independent. Then

√
1 − tG + x + (1 − t)Z ∼ px,1−t

so

Cov(px,1−t ) = (1 − t)Idd + (1 − t)2Cov(Z) � (1 − t)[1 + (1 − t)R2]Idd .

By (3.2),

∇v(t, x) � 1 + (1 − t)R2

1 − t
Idd − 1

1 − t
Idd = R2Idd .

��
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Remark 3.5 In principle, we could use more refined Brascamp-Lieb inequalities [43,
Theorem 3.3], or use the results of [22] (which imply a stronger Poincaré inequality;
we omit the details of this implication), to improve Lemma 3.4(2) and the subsequent
results. However, the improvement will end up being not too significant at a cost of
much more tedious computations so we omit the details.

The majority of this section focuses on part (1) of Theorem 3.1 since once that part
is settled, part (2) will follow easily. The next two corollaries combine the bounds
of Lemma 3.4(1,2) to obtain a bound on λmax(∇v(t, x)), as well as its exponential,
which is needed to bound DXt . The first corollary handles the case κ ≥ 0 with
no assumptions on S while the second corollary handles the case κ < 0 under the
assumption S < ∞.

Corollary 3.6 Define the measure dp = f dγd with S := diam(supp(p)) and suppose
that p is κ-log-concave with κ ∈ [0,+∞).

• If κS2 ≥ 1 then

λmax(∇v(t, x)) ≤ θt := 1 − κ

(1 − κ)t + κ
, t ∈ [0, 1]

and

∫ t

0
e2
∫ t

s θr dr ds = t((1 − κ)t + κ)

κ
, t ∈ [0, 1].

• If κS2 < 1 then

λmax(∇v(t, x)) ≤ θt :=
⎧⎨
⎩

t+S2−1
(1−t)2

for t ∈
[
0, 1−κS2

(1−κ)S2+1

]
,

1−κ
(1−κ)t+κ for t ∈

[
1−κS2

(1−κ)S2+1
, 1
]
,

and, for t ∈
[

1−κS2

(1−κ)S2+1
, 1
]
,7

∫ t

0
e2
∫ t

s θr dr ds = 1

2S2 ((1 − κ)S2t + κS2)2
{

e2(1−κS2) − 1
}

+ ((1 − κ)t + κ)(κS2 + t + (1 − κ)t S2 − 1).

Proof By Lemma 3.4, the two upper bounds we can get on λmax(∇v(t, x)) are t+S2−1
(1−t)2

and 1−κ
κ(1−t)+t . Simple algebra shows that

t + S2 − 1

(1 − t)2
≤ 1 − κ

κ(1 − t) + t
if and only if (S2 − κS2 + 1)t ≤ 1 − κS2.

7 In order to simplify the computations this bound is proven only for t large enough, which is all we will
end up needing, rather than for all t ∈ [0, 1).
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We consider two cases.

• κS2 ≥ 1: By considering κS2 = 1we see that the bound (S2−κS2+1)t ≤ 1−κS2

cannot hold so it is always advantageous to use the bound

λmax(∇v(t, x)) ≤ θt := 1 − κ

κ(1 − t) + t
= 1 − κ

(1 − κ)t + κ
.

Next we will compute
∫ t
0 e2

∫ t
s θr dr ds and we first check that the integral

∫ t
s θr dr is

well-defined. The only issue is if (1−κ)t +κ = 0 which happens when t0 := κ
κ−1 .

If κ ∈ (0, 1) then t0 < 0 so θt is integrable on [0, 1], and if κ ≥ 1, then t0 > 1 so
again θt is integrable on [0, 1]. The only issue is when κ = 0 in which case t0 = 0.
However, in that case we cannot have κS2 ≥ 1 as κ = 0. Compute,

∫ t

s
θr dr = (1 − κ)

{
1

1 − κ
log((1 − κ)r + κ)

} ∣∣∣∣
t

s
= log

(
(1 − κ)t + κ

(1 − κ)s + κ

)

so

∫ t

0
e2
∫ t

s θr dr ds = ((1 − κ)t + κ)2
∫ t

0

1

((1 − κ)s + κ)2
ds

= − ((1 − κ)t + κ)2

1 − κ

{
1

(1 − κ)t + κ
− 1

κ

}
= t((1 − κ)t + κ)

κ
.

• κS2 < 1: The condition (S2 − κS2 + 1)t ≤ 1 − κS2 is equivalent to

t ≤ 1 − κS2

(1 − κ)S2 + 1

since the denominator is nonnegative as κS2 < 1. Hence we define

λmax(∇v(t, x)) ≤ θt :=
⎧⎨
⎩

t+S2−1
(1−t)2

for t ∈
[
0, 1−κS2

(1−κ)S2+1

]
,

1−κ
(1−κ)t+κ for t ∈

[
1−κS2

(1−κ)S2+1
, 1
]
.

From now until the end of the proof we assume that t ≥ 1−κS2

(1−κ)S2+1
. In order to

compute
∫ t

s θr dr we start by noting that r
(1−r)2

= d
dr

[
1

1−r + log(1 − r)
]
. We also

note that, following the discussion in theκS2 ≥ 1 case, the denominator (1−κ)t+κ

does not vanish in the range where it is integrated. For s ∈
[
0, 1−κS2

(1−κ)S2+1

]
we have

∫ t

s
θr dr =

∫ 1−κS2

(1−κ)S2+1

s

(
r + S2 − 1

(1 − r)2

)
dr +

∫ t

1−κS2

(1−κ)S2+1

1 − κ

(1 − κ)r + κ
dr
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=
{

1

1 − r
+ log(1 − r)

} ∣∣∣∣
1−κS2

(1−κ)S2+1

s
+ (S2 − 1)

{
1

1 − r

} ∣∣∣∣
1−κS2

(1−κ)S2+1

s

+ (1 − κ)

{
1

1 − κ
log((1 − κ)r + κ)

} ∣∣∣∣
t

1−κS2

(1−κ)S2+1

= {log(1 − r)}
∣∣∣∣

1−κS2

(1−κ)S2+1

s
+ S2

{
1

1 − r

} ∣∣∣∣
1−κS2

(1−κ)S2+1

s

+ {log((1 − κ)r + κ)}
∣∣∣∣
t

1−κS2

(1−κ)S2+1

= log

(
S2

(1 − κ)S2 + 1

)
− log(1 − s) + (1 − κ)S2 + 1 − S2

1 − s

+ log((1 − κ)t + κ) − log

(
1

(1 − κ)S2 + 1

)

= {(1 − κ)S2 + 1 + log((1 − κ)S2t + κS2)} −
{
log(1 − s) + S2

1 − s

}
.

Hence,

e2
∫ t

s θr dr ds = e2(1−κ)S2+2((1 − κ)S2t + κS2)2
e− 2S2

1−s

(1 − s)2
.

For s ∈
[

1−κS2

(1−κ)S2+1
, 1
]
we have,

∫ t

s
θr dr =

∫ t

s

1 − κ

(1 − κ)r + κ
dr = log

(
(1 − κ)t + κ

(1 − κ)s + κ

)

and so

e2
∫ t

s θr dr ds =
(
(1 − κ)t + κ

(1 − κ)s + κ

)2
.

It follows that

∫ t

0
e2
∫ t

s θr dr ds

= e2(1−κ)S2+2((1 − κ)S2t + κS2)2
∫ 1−κS2

(1−κ)S2+1

0

e− 2S2
1−s

(1 − s)2
ds

+ ((1 − κ)t + κ)2
∫ t

1−κS2

(1−κ)S2+1

1

((1 − κ)s + κ)2
ds,
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and we note that both integrals are finite because (1 − κ)s + κ does not vanish in
the range of integration. The first integral reads

∫ 1−κS2

(1−κ)S2+1

0

e− 2S2
1−s

(1 − s)2
ds =

{
− 1

2S2
e− 2S2

1−s

} ∣∣∣∣
1−κS2

(1−κ)S2+1

0
= − 1

2S2

{
e−2(1−κ)S2−2 − e−2S2

}

so

e2(1−κ)S2+2((1 − κ)S2t + κS2)2
∫ 1−κS2

(1−κ)S2+1

0

e− 2S2
1−s

(1 − s)2
ds

= 1

2S2 ((1 − κ)S2t + κS2)2
{

e2(1−κS2) − 1
}
.

The second integral reads

∫ t

1−κS2

(1−κ)S2+1

1

((1 − κ)s + κ)2
ds = − 1

1 − κ

{
1

(1 − κ)s + κ

} ∣∣∣∣
t

1−κS2

(1−κ)S2+1

= − 1

1 − κ

{
1

(1 − κ)t + κ
− ((1 − κ)S2 + 1)

}

so

((1 − κ)t + κ)2
∫ t

1−κS2

(1−κ)S2+1

1

((1 − κ)s + κ)2
ds

= − (1 − κ)t + κ

1 − κ

{
1 − ((1 − κ)t + κ)((1 − κ)S2 + 1)

}

= ((1 − κ)t + κ)(κS2 + t + (1 − κ)t S2 − 1).

Adding everything up gives the result. ��
Corollary 3.7 Define the measure dp = f dγd and suppose that S :=
diam(supp(p)) < ∞ and that p is κ-log-concave with κ ∈ (−∞, 0). We have

λmax(∇v(t, x)) ≤ θt :=
⎧⎨
⎩

t+S2−1
(1−t)2

for t ∈
[
0, 1−κS2

(1−κ)S2+1

]
,

1−κ
(1−κ)t+κ for t ∈

[
1−κS2

(1−κ)S2+1
, 1
)
,

and, for t ∈
[

1−κS2

(1−κ)S2+1
, 1
]
,

∫ t

0
e2
∫ t

s θr dr ds = 1

2S2 ((1 − κ)S2t + κS2)2
{

e2(1−κS2) − 1
}

+ ((1 − κ)t + κ)(κS2 + t + (1 − κ)t S2 − 1).
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Proof By Lemma 3.4, the two upper bounds we can get on λmax(∇v(t, x)) are t+S2−1
(1−t)2

for any t ∈ [0, 1] and 1−κ
κ(1−t)+t for t ∈

[
κ

κ−1 , 1
]
. Hence, for t ∈ [0, κ

κ−1 ), we must

use the bound t+S2−1
(1−t)2

. Next we note that 0 < κ
κ−1 < 1−κS2

(1−κ)S2+1
≤ 1 and that (using

κ(1 − t) + t ≥ 0 for t ≥ κ
κ−1 ),

t + S2 − 1

(1 − t)2
≤ 1 − κ

κ(1 − t) + t
for t ∈

[
κ

κ − 1
,

1 − κS2

(1 − κ)S2 + 1

]
.

We define

λmax(∇v(t, x)) ≤ θt :=
⎧⎨
⎩

t+S2−1
(1−t)2

for t ∈
[
0, 1−κS2

(1−κ)S2+1

]
,

1−κ
(1−κ)t+κ for t ∈

[
1−κS2

(1−κ)S2+1
, 1
]
.

As in the proof of Corollary 3.6, we have

e2
∫ t

s θr dr =

⎧⎪⎨
⎪⎩

e2(1−κ)S2+2((1 − κ)S2t + κS2)2 e
− 2S2
1−s

(1−s)2
, s ∈

[
0, 1−κS2

(1−κ)S2+1

]
(
(1−κ)t+κ
(1−κ)s+κ

)2
, s ∈

[
1−κS2

(1−κ)S2+1
, 1
]
.

Since κ
κ−1 < 1−κS2

(1−κ)S2+1
, the above term can be integrated as in the proof of

Corollary 3.6. ��

3.2 TheMalliavin derivative of the Föllmer process

The bounds provided by (3.3) and Lemma 3.4 are only strong enough to establish
the existence of a unique strong solution to (2.1) only until t < 1 because at t = 1
these bounds can blow up. For our purposes, however, it is crucial to have the solution
well-defined at t = 1 since we need X1 ∼ p. We will proceed by first analyzing the
behavior of the solution before time 1, which will then allow us to extend the solution
and its Malliavin derivative to t = 1; see Proposition 3.10.

Lemma 3.8 Let dp = f dγd with S := diam(supp(p)) and suppose that either S < ∞
or p is κ-log-concave with κ ≥ 0. The Eq. (2.1) has a unique strong solution (Xt ) for
t ∈ [0, 1) satisfying

Dr Xt = Idd +
∫ t

r
∇v(s, Xs)Dr Xsds ∀ r ≤ t and Dr Xt = 0 ∀ r > t, γ -a.e.

In addition,

|DXt |2L(H ,Rd )
≤
∫ t

0
e2
∫ t

s λmax(∇v(r ,Xr ))dr ds, ∀ t ∈ [0, 1) γ -a.e.
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Proof Fix T ∈ (0, 1) and note that by (3.3) and Lemma 3.4, v : [0, T ] × R
d → R

d

is uniformly Lipschitz in x (with the Lipschitz constant depending on T ). Writing
v(t, x) = v(t, 0) + ∫ 10 ∇v(t, r x)xdr we see, again by (3.3) and Lemma 3.4, that v is
of linear growth. It is standard that under these conditions the Eq. (2.1) has a unique
strong solution [59, Lemma 2.2.1]. The Malliavin differentiability of (Xt )t∈[0,1) and
the formula for its derivative follow from [59, Theorem 2.2.1 and p. 121], as we
now elaborate. According to [59, Theorem 2.2.1], if (Xt ) is a solution to a stochastic
differential equation

d Xt = d Bt +
∫ t

0
b(s, Xs)ds,

with b globally Lipschitz and of linear growth, then

Dr Xt =
∫ t

r
b̄(s, Xs)Dr Xsds ∀ r ≤ t and Dr Xt = 0 ∀ r > t, γ -a.e.,

where b̄ = ∇b (see [59, p. 121]). As mentioned above, b := v is indeed globally
Lipschitz and of linear growth, which implies the result.

Turning to the bound on DXt , fix ḣ ∈ H and define αḣ : [0, 1) → R
d by

αḣ(t) := DXt [ḣ] =
∫ t

0
Dr Xt [ḣr ]dr .

The equation for DXt and Fubini’s theorem (which can be applied since∇v is bounded
and by using Grönwall’s inequality on any norm of Dr Xt ) imply that

αḣ(t) =
∫ t

0
Idd [ḣr ]dr +

∫ t

0

∫ t

r
∇v(s, Xs)Dr Xs[ḣr ]dsdr

= ht +
∫ t

0

∫ t

0
∇v(s, Xs)Dr Xs[ḣr ]dsdr (because Dr Xs = 0 for s < r)

= ht +
∫ t

0
∇v(s, Xs)

(∫ t

0
Dr Xs[ḣr ]dr

)
ds

= ht +
∫ t

0
∇v(s, Xs)

(∫ s

0
Dr Xs[ḣr ]dr

)
ds (because Dr Xs = 0 for s < r)

= ht +
∫ t

0
∇v(s, Xs)αḣ(s)ds.

Hence

∂tαḣ(t) = ḣt + ∇v(t, Xt )αḣ(t) ∀ t ∈ [0, 1).

Set λt := λmax(∇v(t, Xt )). It follows from the Cauchy-Schwarz inequality that

∂t |αḣ(t)|2 = 2〈∂tαḣ(t), αḣ(t)〉 = 2〈ḣt , αḣ(t)〉 + 2〈αḣ(t),∇v(t, Xt )αḣ(t)〉
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≤ 2|ḣt |
√

|αḣ(t)|2 + 2λt |αḣ(t)|2

so defining y : [0, 1) → R by y(t) := |αḣ(t)|2 we find

∂t y(t) ≤ 2|ḣt |
√

y(t) + 2λt y(t).

In order to analyze y(t)we note that the solution of the Bernoulli ordinary differential
equation

∂t z(t) = 2|ḣt |
√

z(t) + 2λt z(t), z(0) = 0

can be verified to be

z(t) =
(

e
∫ t
0 λs ds

∫ t

0
e− ∫ s

0 λr dr |ḣs |ds

)2
.

By the Cauchy-Schwarz inequality,

z(t) ≤ e2
∫ t
0 λs ds

∫ t

0
e−2

∫ s
0 λr dr ds

∫ t

0
|ḣs |2ds =

∫ t

0
e2
∫ t

s λr dr ds
∫ t

0
|ḣs |2ds

so since y(t) ≤ z(t) for all t ∈ [0, 1) we conclude that

|DXt |2L(H ,Rd )
= sup

ḣ∈H :|ḣ|H =1

|αḣ(t)|2 ≤
∫ t

0
e2
∫ t

s λr dr ds.

��
Combining Lemma 3.8 and Corollaries 3.6, 3.7 we obtain:

Corollary 3.9 Let dp = f dγd with S := diam(supp(p)) and suppose that p is κ-log-
concave for some κ ∈ R. Then, γ -a.e.,

(a) Suppose κ ≥ 0.

• If κS2 ≥ 1:

|DXt |2L(H ,Rd )
≤ t((1 − κ)t + κ)

κ
, t ∈ [0, 1).

• If κS2 < 1: For t ∈
[

1−κS2

(1−κ)S2+1
, 1
)

,

|DXt |2L(H ,Rd )
≤ 1

2S2 ((1 − κ)S2t + κS2)2
{

e2(1−κS2) − 1
}

+((1 − κ)t + κ)(κS2 + t + (1 − κ)t S2 − 1).
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(b) Suppose κ ≤ 0 and that S < +∞. For t ∈
[

1−κS2

(1−κ)S2+1
, 1
)

,

|DXt |2L(H ,Rd )
≤ 1

2S2 ((1 − κ)S2t + κS2)2
{

e2(1−κS2) − 1
}

+((1 − κ)t + κ)(κS2 + t + (1 − κ)t S2 − 1).

We will now extend the solution X and its Malliavin derivatives to t = 1.

Proposition 3.10 Let dp = f dγd with S := diam(supp(p)) and suppose that either p
is κ-log-concave for some κ > 0, or that p is κ-log-concave for some κ ∈ R and that
S < +∞. The Eq. (2.1) has a unique strong solution (Xt ) for t ∈ [0, 1] satisfying,
γ -a.e.,

∀ r ≤ t, Dr Xt = Idd +
∫ t

r
∇v(s, Xs)Dr Xsds and Dr Xt = 0 ∀ r > t

and

|DXt |2L(H ,Rd )
≤
∫ t

0
e2
∫ t

s λmax(∇v(r ,Xr ))dr ds ∀ t ∈ [0, 1].

In addition:

(a) Suppose κ ≥ 0.

• If κS2 ≥ 1:

|DXt |2L(H ,Rd )
≤ t((1 − κ)t + κ)

κ
, t ∈ [0, 1].

• If κS2 < 1: For t ∈
[

1−κS2

(1−κ)S2+1
, 1
]
,

|DXt |2L(H ,Rd )
≤ 1

2S2 ((1 − κ)S2t + κS2)2
{

e2(1−κS2) − 1
}

+((1 − κ)t + κ)(κS2 + t + (1 − κ)t S2 − 1).

(b) Suppose κ ≤ 0 and S < +∞. For t ∈
[

1−κS2

(1−κ)S2+1
, 1
]
,

|DXt |2L(H ,Rd )
≤ 1

2S2 ((1 − κ)S2t + κS2)2
{

e2(1−κS2) − 1
}

+((1 − κ)t + κ)(κS2 + t + (1 − κ)t S2 − 1).

Proof We start by establishing the solution to (2.1) all the way to t = 1. Let (Xt )t∈[0,1)
be the process given by Lemma 3.8. For k ∈ Z+ define tk := 1 − 1

k and compute, for
l ≥ k,

E[|Xtl − Xtk |2] ≤ 2E[|Btl − Btk |2]
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+ 2
∫ tl

tk
E[|v(s, Xs)|2]ds ≤ 2d(tl − tk) + 2(tl − tk)H(p|γd)

≤ 2d

k
+ 2

k
H(p|γd)

where we used (2.2) and tl − tk ≤ 1 − (1 − 1
k

) = 1
k . Given ε > 0 let N be such that

2d
N + 2

N H(p|γd) < ε (which is possible as H(p|γd) < ∞) to conclude that Eγ [|Xtl −
Xtk |2] ≤ ε for any k, l ≥ N . Hence, {Xtk } is a Cauchy sequence in L2(�,Rd)which is
complete; we denote the limit by X1. Repeating the above argument on the right-hand
side of (2.1) shows that (Xt )t∈[0,1] solves (2.1) for all t ∈ [0, 1].

To extend the derivative to t = 1 we start by showing that DX1 exists. Fix w ∈ R
d

and take ḣ ≡ w so that

|DXt [ḣ]|2 =
∣∣∣∣
∫ t

0
Dr Xtwdr

∣∣∣∣
2

.

Takingw = e j , the j th element of the standard basis of Rd , and using that D j
r Xi

t = 0
if r > t , we have

|DXt [ḣ]|2 =
d∑

j=1

(∫ t

0
D j

r Xi
t dr

)2

=
d∑

j=1

(∫ 1

0
D j

r Xi
t dr

)2
≤

d∑
j=1

|D j Xi
t |2H .

By Corollary 3.9, it follows that supk |D j Xi
tk |2H < ∞ for any i, j ∈ [d], γ -a.e.

Hence, by [59, Lemma 1.2.3], for any i, j ∈ [d], D j Xi
1 exists and D j Xi

tk converges
to D j Xi

1 in the weak topology of L2(�, H). Hence, for a fixed ḣ ∈ H , we have that
Eγ [|DXtk [ḣ] −DX1[ḣ]|2] → 0 as k → ∞. In particular, for a fixed ḣ ∈ H ,DXtk [ḣ]
converges to DX1[ḣ] in probability.

On the other hand, fix ḣ ∈ H and recall the definition of αḣ : [0, 1) → R
d from the

proof of Lemma 3.8. The definition of αḣ as an integral, and the fact that the integrand
is bounded (since supk |D j Xi

tk |2H < ∞ and ḣr is in L2([0, 1],Rd)), show that, γ -a.e.,
{αḣ(tk)} is a Cauchy sequence so it converges to some limit denoted as αḣ(1). Hence,
γ -a.e, DXtk [ḣ] converges to αḣ(1) for any ḣ ∈ H . In particular, DXtk [ḣ] converges
to αḣ(1) in probability.

It follows that, γ -a.e., αḣ(1) = DX1[ḣ]. Since αḣ(t) = DXt [ḣ] for all t ∈ [0, 1)
we conclude that, γ -a.e., for any ḣ ∈ H , DXt [ḣ] converges to DX1[ḣ]. By the
Banach-Steinhaus theorem, γ -a.e., the limiting operatorDX1 : H → R

d is linear and
continuous with |DX1|L(H ,Rd ) ≤ lim inf t↑1 |DXt |L(H ,Rd ). The proof is complete. ��
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3.3 Proof of Theorem 3.1

We start by noting that Lemma 2.3 applies in our setting because the moment assump-
tion holds by either convexity or the boundedness of the support (including in the
Gaussian mixture case).

Part (1): Combining the results in Proposition 3.10 and plugging in t = 1 we get:

(a) If κS2 ≥ 1:

|DX1|2L(H ,Rd )
≤ 1

κ
γ -a.e.

(b) If κS2 < 1:

|DX1|2L(H ,Rd )
≤
(

e1−κS2 + 1

2

)
S2 γ -a.e.

This completes the proof.
Part (2): By Lemma 3.4(3),

∇v(t, x) � R2Idd

so the previous arguments of this section apply to show that (2.1) has a unique strong
solution in the setting where p is a mixture of Gaussians. In addition, the bound
∇v(t, x) � R2Idd implies that

λmax(∇v(t, x)) ≤ θt := R2 ∀t ∈ [0, 1].

Hence, repeating the computations earlier in this section yields

|DX1|2L(H ,Rd )
≤
∫ 1

0
e2
∫ 1

s θr dr ds = e2R2 − 1

2R2 .

4 Contraction properties of Brownian transport maps for log-concave
measures

In this section we suppose that p is an isotropic log-concave measure with compact
support. Our main result, Theorem 4.2, bounds the norms of the derivative of the
Brownian transport map (Theorem 1.4). The proof of Theorem 4.2 relies on the result
of [38] and the technique of [18], which is based on the stochastic localization of
Eldan; see also [25, 39, 49].
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Preliminaries

We start by explaining the connection between stochastic localization and the Föllmer
process. Recall that the Föllmer process is the solution (Xt )t∈[0,1] to the stochastic
differential equation (2.1):

d Xt = ∇ log P1−t f (Xt )dt + d Bt , X0 = 0

and has the property that X1 ∼ p where p = f dγ . We also recall the definition (3.1):

dpx,t (y) = f (y)ϕx,t (y)

Pt f (x)
dy.

Let us denote by pt the (random) law of X1|Xt , that is,
∫
Rd ηdpt = Eγ [η(X1)|Xt ]

a.s. for all η : R
d → R continuous and bounded. The next lemma establishes the

connection between the Föllmer process and stochastic localization. The proof is
well-known and we provide it for completeness.

Lemma 4.1 For t ∈ [0, 1) the random law pt has a density with respect to the Lebesgue
measure, denoted by pt (y), which satisfies pt (y)dy = dpXt ,1−t (y). Further, given
y ∈ R

d the random process (pt (y))t∈[0,1) satisfies the stochastic differential equation

dpt (y) = pt (y)

〈
y − ∫ zdpt (z)

1 − t
, d Bt

〉
. (4.1)

In stochastic localization (in its simplified setting), equation (4.1), up to time-change
(t �→ 1

1−t − 1), serves as the definition of the process. We refer [26, 50], and [40,
section 4] for more information.

Proof of Lemma 4.1 Let (Xt )t∈[0,1] be the Föllmer process and let μ be its associated
measure on theWiener space�: dμ

dγ (ω) = f (ω1) forω ∈ �. Then, for anyη : Rd → R

continuous and bounded, we have

Eγ [η(X1)|Xt ] = Eμ[η(ω1)|Xt ] =
Eγ

[
dμ
dγ (ω1)η(ω1)

∣∣∣∣Xt

]

Eγ

[
dμ
dγ (ω1)

∣∣∣∣Xt

]

= Eγ [ f (ω1)η(ω1)|Xt ]
Eγ [ f (ω1)|Xt ] = P1−t ( f η)(Xt )

P1−t f (Xt )

= 1

P1−t f (Xt )

∫
Rd

η(y) f (y)
exp
(

− |y−Xt |2
2(1−t)

)

(2π(1 − t))d/2
dy

=
∫
Rd

η(y)pXt ,1−t (y)dy.

123



D. Mikulincer, Y. Shenfeld

It follows that pt = pXt ,1−t with density

pt (y) = f (y)

P1−t f (Xt )

exp
(

− |y−Xt |2
2(1−t)

)

(2π(1 − t))d/2

which is well-defined for all t ∈ [0, 1). Fix y ∈ R
d and let

α(t, x) := 1

P1−t f (x)
and β(t, x) :=

exp
(

− |y−x |2
2(1−t)

)

(2π(1 − t))d/2

so that pt (y) = α(t, Xt )β(t, Xt ). By the heat equation,

∂tα(t, x) = −∂t P1−t f (x)

P1−t f (x)2
= 1

2

�P1−t f (x)

P1−t f (x)2
,

∂tβ(t, x) =
exp
(

− |y−x |2
2(1−t)

)

(2π(1 − t))d/2

{
d

2

1

1 − t
− |y − x |2

2(1 − t)2

}
,

∇α(t, x) = −∇ P1−t f (x)

P1−t f (x)2
, ∇β(t, x) =

exp
(

− |y−x |2
2(1−t)

)

(2π(1 − t))d/2
y − x

1 − t
,

�α(t, x) = −�P1−t f (x)

P1−t f (x)2
+ 2

|∇ P1−t f (x)|2
P1−t f (x)3

,

�β(t, x) =
exp
(

− |y−x |2
2(1−t)

)

(2π(1 − t))d/2

{ |y − x |2
(1 − t)2

− d

1 − t

}
,

and hence,

∂t [α(t, x)β(t, x)] = pt (y)

{
1

2

�P1−t f (x)

P1−t f (x)
+ d

2

1

1 − t
− |y − x |2

2(1 − t)2

}
,

∇[α(t, x)β(t, x)] = pt (y)

{
−∇ P1−t f (x)

P1−t f (x)
+ y − x

1 − t

}
,

1

2
�[α(t, x)β(t, x)] = pt (y)

{
−1

2

�P1−t f (x)

P1−t f (x)
+ |∇ P1−t f (x)|2

P1−t f (x)2

−
〈∇ P1−t f (x)

P1−t f (x)
,

y − x

1 − t

〉
+ |y − x |2

2(1 − t)2
− d

2(1 − t)

}
.

It follows from Itô’s formula that

d[α(t, Xt )β(t, Xt )] = pt (y)

{ |∇ P1−t f (Xt )|2
P1−t f (Xt )2

−
〈∇ P1−t f (Xt )

P1−t f (Xt )
,

y − Xt

1 − t

〉}
dt

+ pt (y)

〈
−∇ P1−t f (Xt )

P1−t f (Xt )
+ y − Xt

1 − t
, d Xt

〉
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= pt (y)

〈
−∇ P1−t f (Xt )

P1−t f (Xt )
+ y − Xt

1 − t
, d Bt

〉
.

By integration by parts,

∇ P1−t f (x)

P1−t f (x)
=
∫

z − x

1 − t
dpx,1−t (z) �⇒ −∇ P1−t f (Xt )

P1−t f (Xt )
= Xt − ∫ zdpt (z)

1 − t
,

so

dpt (y) = pt (y)

〈
y − ∫ zdpt (z)

1 − t
, d Bt

〉
.

��

Moments of the derivative of the Brownian transport map

Our next goal is to bound the moments of DXt . To this end, we will use the current
best bounds in the Kannan–Lovász–Simonovits conjecture. Let k ≥ 0 be such that

Ckls ≤ adk

where a > 0 is some dimension-free constant. If the Kannan–Lovász–Simonovits
conjecture is true, we can take k = 1

log d to get Ckls ≤ ae, which is a dimension-

free constant. The result of [38] is that we can take k = log log d
log d , which then yields

Ckls ≤ a log d.

Theorem 4.2 (Isotropic log-concave measures) Let p be an isotropic log-concave
measure with compact support. Then (2.1) has a unique strong solution on [0, 1].
Further, there exists a universal ζ such that, for any positive integer m,

Eγ

[
|DXt |2m

L(H ,Rd )

]
≤ ζm(2m + 1)!(log d)12m ∀t ∈ [0, 1].

Remark 4.3 The assumption in Theorem 4.2 that p has a compact support is not impor-
tant for the application to the Kannan–Lovász–Simonovits conjecture; see [18, section
2.6]. In particular, the bounds in the theorem are independent of the size of the support
of p.

Proof By Proposition 3.10, there exists a unique strong solution (Xt ) to (2.1) for all
t ∈ [0, 1] with X1 ∼ p and, for any m > 0,

Eγ

[
|DXt |2m

L(H ,Rd )

]
≤ Eγ

[(∫ t

0
e2
∫ t

s λmax(∇v(r ,Xr ))dr ds

)m]
∀t ∈ [0, 1]. (4.2)
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Hence, our goal is to upper bound the right-hand side of the inequality above. Given
α > 2 define the stopping time

τ := r0 ∧ inf{r ∈ [0, 1] : λmax(∇v(r , Xr )) ≥ α}

for some r0 ∈ [0, t
2

]
to be chosen later. By Lemma 3.4(2) (with κ = 0), we have

λmax(∇v(r , Xr )) ≤ 1
r for all r ∈ [0, 1]while, on the other hand,λmax(∇v(r , Xr )) ≤ α

for r ∈ [0, τ ] by the definition of τ . Hence,

∫ t

s
λmax(∇v(r , Xr ))dr =

∫ τ

s
λmax(∇v(r , Xr ))dr +

∫ t

τ

λmax(∇v(r , Xr ))dr ≤ αr0

+
∫ t

τ

1

r
dr = αr0 + log t − log τ

so it follows that

e2
∫ t

s λmax(∇v(r ,Xr ))dr ≤ e2αr0 t2

τ 2
.

We conclude that

Eγ

[(∫ t

0
e2
∫ t

s λmax(∇v(r ,Xr ))dr ds

)m]
≤ e2mαr0 t2m

Eγ

[
1

τ 2m

]
,

and hence, by (4.2),

Eγ

[
|DXt |2m

L(H ,Rd )

]
≤ e2mαr0Eγ

[
1

τ 2m

]
t2m . (4.3)

In light of (4.3), we need to choose α, r0 appropriately and show that Eγ
[

1
τ 2m

]
can

be sufficiently bounded. The control of the moments of 1
τ
will rely on showing that

this random variable has a sub-exponential tail.

Lemma 4.4 Suppose there exist nonnegative constants (possibly dimension dependent)
bα, cα such that

Pγ

[
1

τ
≥ r

]
≤ cαe−bαr ∀r ∈

[
1

r0
,∞
]
.

Then,

Eγ

[
1

τm

]
≤ 1

rm
0

[
1 +

(
1

bm
α

+ 1

)
m!cαme

− bα
r0

]
.
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Proof Wewill apply the identityE[Y m] = m
∫∞
0 ym−1

P[Y ≥ y]dy, for a nonnegative

random variable Y , with Y = 1
τ
. By the definition of τ ,Pγ

[ 1
τ

≥ s
] = 1 for s ∈

[
0, 1

r0

]
so, for any positive integer m,

Eγ

[
1

τm

]
= m

∫ 1
r0

0
rm−1dr + m

∫ ∞
1

r0

rm−1
Pγ

[
1

τ
≥ r

]
dr

≤ 1

rm
0

+ cαm
∫ ∞

1
r0

rm−1e−bαr dr

= 1

rm
0

+ cαm

bm
α

∫ ∞
bα
r0

rm−1e−r dr = 1

rm
0

+ cαm(m − 1)!
bm
α

e
− bα

r0

m−1∑
j=0

(bα) j

r j
0 j !

where we used the incomplete Gamma function identity
∫∞

x rm−1e−r dr = (m −
1)!e−x ∑m−1

j=0
x j

j ! when m is a positive integer. Using

1

j ! ≤ 1, b j
α ≤ bm

α + 1, and
1

r j
0

≤ 1

rm
0

(as r0 ∈ [0, 1])

we have
∑m−1

j=0
(bα) j

r j
0 j ! ≤ m bm

α +1
rm
0

and hence

Eγ

[
1

τm

]
≤ 1

rm
0

[
1 +

(
1

bm
α

+ 1

)
m!cαme

− bα
r0

]
.

��
In light of Lemma 4.4, our goal is to prove that 1

τ
has a sub-exponential tail,

which requires a better understanding of the stopping time τ . To simplify notation let
Kt := Cov(pXt ,1−t ) and recall the representation (3.2),

∇v(t, Xt ) = 1

(1 − t)2
Kt − 1

1 − t
Idd .

Hence,

λmax(∇v(t, Xt )) = λmax(Kt )

(1 − t)2
− 1

1 − t

and

τ = r0 ∧ inf

{
r ∈ [0, 1] : λmax(Kr )

(1 − r)2
− 1

1 − r
≥ α

}
.

The quantity λmax(Kr ) is difficult to control so we use the moment method and instead

control �r := Tr[K q
r ], while noting that λmax(Kr ) ≤ �

1
q
r for any q ≥ 0. The process

123



D. Mikulincer, Y. Shenfeld

(�t )t∈[0,1] satisfies a stochastic differential equation

d�t = ut d Bt + δt dt

for some vector-valued process (ut )t∈[0,1] and a real-valued process (δt )t∈[0,1]. These
processes can be derived using Itô’s formula and the stochastic differential equation
satisfied by (Kt )t∈[0,1] (which itself can be derived using Itô’s formula). Next, we use
the argument in [18] to control the processes (ut ) and (δt ).

Lemma 4.5 Suppose Ckls ≤ adk for k ≥ 0 and let q := � 1
k � + 1. Then, there exists a

universal constant c > 0 such that, for any r ∈ [0, 1
2

]
, we have, a.s.,

|ur | ≤ cq�
1+ 1

2q
r ,

δr ≤ ca2q2(log d)d2k− 1
q �

1+ 1
q

r .

Proof The statement of the lemma is essentially [18, Lemma 6], up to time-change.
To make the connection with [18] we recall that, by Lemma 4.1,

dpr (x) = pr (x)

〈
x − ar

1 − r
, d Br

〉
,

where ar := ∫
zdpr (z), and that �r = Tr

[
(Cov(pr ))

q
]
. On the other hand, the

arguments of [18] use the measure-valued process [18, Equation (13)]:

d p̃r (x) = p̃r (x)〈x − ãr , d Br 〉, p̃0 = p (4.4)

with ãr := ∫
Rd zd p̃r (z). The connection between (pr ) and ( p̃r ) is via a time change:

set s(r) := 1
1−r − 1 and note that

d p̃s(r)(x) = √s′(r) p̃s(r)(x)〈x − ãs(r), d Br 〉 = p̃s(r)

1 − r
〈x − ãs(r), d Br 〉.

Since the Eq. (4.4) has a unique strong solution [18, Lemma 3], it follows that pr =
p̃s(r) a.s. if the same driving Brownian motion is used. In particular, with �̃r :=
Tr
[
(Cov( p̃r ))

q
]
, we have �r = �̃s(r). By [18, Lemma 6],

d�̃r = ũr d Br + δ̃r dr

for some vector-valued process (ũr )r∈[0,1] and a real-valued process (δ̃r )r∈[0,1] which
satisfy

|ũr | ≤ 16q�̃
1+ 1

2q
r ,

δ̃r ≤ 64a2q2(log d)d2k− 1
q �̃

1+ 1
q

r .
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Hence, as

d�r = d�̃s(r) = √s′(r)ũs(r)d Br + s′(r)δ̃s(r)dr ,

we get ur = √
s′(r)ũs(r) and δr = s′(r)δ̃s(r) a.s. The proof is complete by noting that

s′(r) and
√

s′(r) are uniformly bounded on
[
0, 1

2

]
. ��

Extending the analysis of [18], we can use Lemma 4.5 to show that 1
τ
has a sub-

exponential tail.

Lemma 4.6 Suppose Ckls ≤ adk for k ≥ 0 and let q := � 1
k � + 1. There exists a

universal constant c such that, with α = 2d
1
q , we have

Pγ

[
1

τ
≥ r

]
≤ cαe−bαr ∀r ∈

[
1

r0
,∞
]
,

with

cα = exp

(
2a2q(log d)d2k− 1

q

c

)
and bα = 1

2c2d
1
q

.

Proof For s ≤ r0 we have,

Pγ [τ ≤ s] = Pγ

[
sup

r∈[0,s]
λmax(∇v(r , Xr )) ≥ α

]
≤ Pγ

[
sup

r∈[0,s]
λmax(Kr ) ≥ 2α

]

where the last inequality uses that r0 ≤ 1
2 and that α > 2. Recalling that λmax(Kr ) ≤

�
1
q
r we get,

Pγ [τ ≤ s] ≤ Pγ

[
sup

r∈[0,s]
�r ≥ (2α)q

]
= Pγ

[
sup

r∈[0,s]
�r ≥ (2α)q

]

where (�r ) is the stopped process given by

�r := 1r<θ�r + 1r≥θ (2α)q with θ := inf{r : �r ≥ (2α)q}.

Let η(x) = −x− 1
2q and note that η is monotonically increasing on (0,∞) so

Pγ [τ ≤ s] ≤ Pγ

[
sup

r∈[0,s]
η(�r ) ≥ η((2α)q)

]
= Pγ

[
sup

r∈[0,s]
η(�r ) ≥ − 1√

2α

]
.
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Moreover, since η(�r ) = − 1√
2α

for r ≥ θ , we have

Pγ [τ ≤ s] ≤ Pγ

[
sup

r∈[0,min(θ,s)]
η(�r ) ≥ − 1√

2α

]
. (4.5)

Applying Itô’s formula to η(�r ), and using Lemma 4.5 as well as �r = �r for r ≤ θ ,
we get, for r ≤ θ ,

dη(�r ) = 1

2q�
1+ 1

2q
r

d�r − 1

2

1

2q

(
1

2q
+ 1

)
1

�
1
2q +2
r

d[�]r ≤ 1

2q�
1+ 1

2q
r

d�r

= 1

2q�
1+ 1

2q
r

ur d Br + 1

2q�
1+ 1

2q
r

δr dr

≤ 1

2q�
1+ 1

2q
r

ur d Br + 1

2
ca2q(log d)d2k− 1

q �
1
2q
r dr

= 1

2q�
1+ 1

2q
r

ur d Br + 1

2
ca2q(log d)d2k− 1

q �
1
2q
r dr .

Define the martingale Ms := ∫ s
0

1

2q�
1+ 1

2q
r

ur d Br and note that, since p is isotropic, we

have η(�0) = η(�0) = η(d) = −d− 1
2q . Hence,

η(�s) ≤ −d− 1
2q + Ms +

∫ s

0

1

2
ca2q(log d)d2k− 1

q �
1
2q
r dr ≤ −d− 1

2q + Ms

+1

2
sca2q(log d)d2k− 1

q
√
2
√
α,

where the last inequality holds by the definition of (�r ). Plugging this estimate into
(4.5) yields

Pγ [τ ≤ s] ≤ Pγ

[
sup

r∈[0,min(θ,s)]
Mr ≥ − 1√

2α
+ d− 1

2q −
√
2

2
sca2q(log d)d2k− 1

q
√
α

]
.

By the Dubins-Schwarz theorem we have Ms = Z[M]s with (Zs) a standard Brownian
motion in R, and by Lemma 4.5,

[Ms] =
∫ s

0

1

4q2�
2+ 2

2q
r

|ur |2dr ≤ c2

4
s.
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Hence,

Pγ

[
sup

r∈[0,min(θ,s)]
Mr ≥ − 1√

2α
+ d− 1

2q −
√
2

2
sca2q(log d)d2k− 1

q
√
α

]

= Pγ

[
sup

r∈[0,min(θ,s)]
Z[M]r ≥ − 1√

2α
+ d− 1

2q −
√
2

2
sca2q(log d)d2k− 1

q
√
α

]

≤ Pγ

⎡
⎣ sup

r∈[0, c2
4 min(θ,s)]

Zr ≥ − 1√
2α

+ d− 1
2q −

√
2

2
sa2q(log d)d2k− 1

q
√
α

⎤
⎦

≤ Pγ

⎡
⎣ sup

r∈[0, c2
4 s]

Zr ≥ − 1√
2α

+ d− 1
2q −

√
2

2
sca2q(log d)d2k− 1

q
√
α

⎤
⎦ .

Applying Doob’s maximal inequality for Brownian motion we get

Pγ

⎡
⎣ sup

r∈[0, c2
4 s]

Zr ≥ − 1√
2α

+ d− 1
2q −

√
2

2
sca2q(log d)d2k− 1

q
√
α

⎤
⎦

≤ exp

⎛
⎜⎝−2

[
− 1√

2α
+ d− 1

2q −
√
2
2 sca2q(log d)d2k− 1

q
√
α
]2

c2s

⎞
⎟⎠ .

Now let α := 2d
1
q so that

[
− 1√

2α
+ d− 1

2q −
√
2

2
sa2q(log d)d2k− 1

q
√
α

]2
=
[

1

2d
1
2q

− sca2q(log d)d2k− 1
2q

]2

= 1

4d
1
q

− sca2q(log d)d2k− 1
q + s2c2a4q2(log d)2d4k− 1

q .

Omitting the (positive) last term above we get

Pγ

⎡
⎣ sup

r∈[0, c2
4 s]

Zr ≥ − 1√
2α

+ d− 1
2q −

√
2

2
sca2q(log d)d2k− 1

q
√
α

⎤
⎦

≤ exp

(
− 1

2c2sd
1
q

)
exp

(
2a2q(log d)d2k− 1

q

c

)
.

��
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We now complete the proof of the theorem. By Lemma 4.4 and Lemma 4.6,

Eγ

[
1

τm

]
≤ 1

rm
0

⎡
⎣1 +

(
1

bm
α

+ 1

)
m!m exp

⎛
⎝2a2q(log d)d

2k− 1
q

c

⎞
⎠ exp

⎛
⎝− 1

2c2d
1
q r0

⎞
⎠
⎤
⎦ .

We will choose r0 ∈ [0, t
2

]
such that the two exponentials cancel each other. Setting

r0 = t

4qca2(log d)d2k

we get

Eγ

[
1

τm

]
≤
(
4qca2(log d)d2k

t

)m [
1 +

(
1

bm
α

+ 1

)
m!m

]
.

By [38, Theorem 1.2], we may take k = log log d
log d , and hence, q = � 1

k � + 1 =
c′ log d

log log d for some c′. By increasing c′, we may assume that 2k = 2
q−1 . Hence,

using 1
bm
α

+ 1 ≤ 2
bm
α

= 2m+1c2md
m
q and

[
1 +

(
1

bm
α

+ 1
)

m!m
]

≤ 2
(

1
bm
α

+ 1
)

m!m ≤
2m+2c2mm!md

m
q , we get

Eγ

[
1

τm

]
≤
(
4qca2(log d)d2k

t

)m

2m+2c2mm!md
m
q

≤ 1

tm
(32)mc3ma2mm!m[q(log d)d

2
q−1+ 1

q ]m

≤ 1

tm
(32)mc3ma2mm!m[(log d)qd

4
q−1 ]m .

We have

qm = (c′)m
(

log d

log log d

)m

≤ (c′)m(log d)m,

d
4m

q−1 = d4mk = (log d)4m,

so

Eγ

[
1

τm

]
≤ m!m[16c3a2]m (log d)6m

tm
,

for some constant a > 0. By (4.3),

Eγ

[
|DXt |2m

L(H ,Rd )

]
≤ e2mαr0(2m)!2m[32c3a2]2m(log d)12m

= exp

(
2m

2d
1
q t

4qca2(log d)d
2

q−1

)
(2m)!2m[32c3a2]2m(log d)12m
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≤ exp

(
m

1

cqa2(log d)

)
(2m)!2m[32c3a2]2m(log d)12m

≤ ec′′m(2m)!2m[32c3a2]2m(log d)12m,

wherewe used that d
1
q − 2

q−1 < 1, and that exp
(

m 1
cqa2(log d)

)
≤ ec′′m for some constant

c′′, as d → ∞. Taking

ζ := [32c3a2ec′′ ]2,

and using 2m(2m)! ≤ (2m + 1)!, completes the proof. ��

5 Functional inequalities

The contraction properties provided by Theorem 3.1 and Theorem 4.2 allow us to
prove functional inequalities for measures in Euclidean spaces. The main goal of
this section is to demonstrate the power of the contraction machinery developed in
this paper, rather than be exhaustive, so we focus only on a number of functional
inequalities. As a consequence of the almost-sure contraction of Theorem 3.1, we will
prove 
-Sobolev inequalities (Theorem 5.3), q-Poincaré inequalities (Theorem 5.4),
and isoperimetric inequalities (Theorem 5.5). As a consequence of the contraction in
expectation of Theorem 4.2, we will construct Stein kernels and prove central limit
theorems (Theorem 1.6 and Corollary 1.7).

We start with almost-sure contractions; the next lemma describes the behavior of
derivatives under such contractions.

Lemma 5.1 Let ϒ : � → R
d be an almost-sure contraction with constant C and let

η : Rd → R be a continuously differentiable Lipschitz function. Then,

D(η ◦ ϒ) = (Dϒ)∗∇η(ϒ) γ -a.e.

where (Dϒ)∗ : Rd → H is the adjoint of Dϒ . Further,

|D(η ◦ ϒ)|H ≤ C |∇η(ϒ)| γ -a.e.

Proof To compute D(η ◦ϒ) we note that, by duality, it can be viewed as the operator
D(η ◦ϒ) : H → R acting on h ∈ H byD(η ◦ϒ)[h] = 〈D(η ◦ϒ), h〉H . By the chain
rule [59, Proposition 1.2.3],

〈D(η ◦ ϒ), h〉H =
∫ 1

0
(∇η(ϒ))∗ Dtϒ ḣt dt = 〈∇η(ϒ),Dϒ[h]〉

= 〈(Dϒ)∗∇η(ϒ), h〉H

so D(η ◦ ϒ) = (Dϒ)∗∇η(ϒ). Next, using

D(η ◦ ϒ) = (Dϒ)∗∇η(ϒ) γ -a.e.,
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the bound |(Dϒ)∗|L(Rd ,H) = |Dϒ |L(H ,Rd ) ≤ C (Lemma 2.3) implies

|D(η ◦ ϒ)|H ≤ C |∇η(ϒ)| γ -a.e.

��
With Lemma 5.1 in hand we can now start the proofs of the functional inequalities

which follow from Theorem 3.1. We begin with the 
-Sobolev inequalities [14].

Definition 5.2 Let I be a closed interval (possibly unbounded) and let
 : I → R be
a twice-differentiable function. We say that 
 is a divergence if each of the functions

,
 ′′,− 1


 ′′ is convex. Given a probability measure ν onRd and a function η : Rd →
I, such that

∫
η dν ∈ I, we define

Ent
ν (η) :=
∫
Rd


(η)dν − 


(∫
Rd

η dν

)
.

Some classical examples of divergences are
 : R → Rwith
(x) = x2 (Poincaré
inequality) and 
 : R≥0 → R with 
(x) = x log x (log-Sobolev inequality).

Theorem 5.3 (
-Sobolev inequalities) Let 
 : I → R be a divergence.

(1) Let p be a κ-log-concave measure with S := diam(supp(p)) and let η : Rn → I
be any continuously differentiable Lipschitz function such that

∫
η2 dp ∈ I.

• If κS2 ≥ 1 then

Ent
p (η) ≤ 1

2κ

∫
Rd


 ′′(η)|∇η|2dp.

• If κS2 < 1 then

Ent
p (η) ≤ e1−κS2 + 1

4
S2
∫
Rd


 ′′(η)|∇η|2dp.

(2) Fix a probability measure ν on R
d supported on a ball of radius R and let p :=

γ
a,�
d �ν where γ a,�

d is a the Gaussian measure on R
d with mean a and covariance

�. Set λmin := λmin(�) and λmax := λmax(�). Then, for any η : Rn → I, a
continuously differentiable Lipschitz function such that

∫
η2 dp ∈ I, we have

Ent
p (η) ≤ λminλmax

2R2

(
e
2 R2
λmin − 1

)∫
Rd


 ′′(η)|∇η|2dp.

Proof (1) We will use the fact [14, Theorem 4.2] that
-Sobolev inequalities hold for
the Wiener measure γ :

Ent
γ (F) ≤ 1

2
Eγ

[

 ′′(F)|DF |2H

]
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for any F : � → I which is L2-integrable with respect to γ . Let (Xt )t∈[0,1] be the
Föllmer process associated to p, so that X1 ∼ p, and suppose that X1 : � → R

d

is an almost-sure contraction with constant C . Given η let F(ω) := (η ◦ X1)(ω).
Then, by Lemma 5.1 and [59, Proposition 1.2.4],

Ent
p (η) = Ent
γ (F) ≤ 1

2
Eγ

[

 ′′(F)|DF |2H

]
≤ C2

2
Eγ

[

 ′′(η ◦ X1)|∇η(X1)|2

]

= C2

2

∫
Rd


 ′′(η)|∇η|2dp.

The proof is complete by Theorem 3.1.
(2) Let Y ∼ ν, let ν̃ be the law �−1/2Y , and define p̃ := γd�ν̃. Set λmin := λmin(�)

and λmax := λmax(�). The argument of part (1) gives,

Ent
p̃ (η) ≤ e2λ
−1
minR2 − 1

2λ−1
minR2

∫
Rd


 ′′(η)|∇η|2d p̃.

Let p = γ
a,�
d �ν and let X̃ ∼ p̃ so that �1/2 X̃ + a ∼ p. Given η let η̃ :=

η(�1/2x + a) so that

Ent
p (η) = Ent
p̃ (η̃) ≤ e2λ
−1
minR2 − 1

2λ−1
minR2

∫
Rd


 ′′(η̃)|∇η̃|2d p̃.

Since ∇η̃(x) = �1/2∇η(�1/2x +a)we have |∇η̃(x)|2 ≤ λmax|∇η(�1/2x +a)|2
so

Ent
p (η) ≤ λminλmax

2R2

(
e
2 R2
λmin − 1

)∫
Rd


 ′′(η)|∇η|2dp.

��
Theorem 5.4 (q-Poincaré inequalities) Let q ∈ [1,∞) and set cq := 1q∈[1,2) π2 +
1q∈[2,∞)

√
q − 1. Letη : Rn → Rbe any continuously differentiable Lipschitz function

such that
∫
η dp = 0 and η ∈ Lq(γd).

(1) Let p be a κ-log-concave measure with S := diam(supp(p)).

• If κS2 ≥ 1 then

Ep[ηq ] ≤ 1

κq/2 cq
qEp[|∇η|q ].

• If κS2 < 1 then

Ep[ηq ] ≤
(

e1−κS2 + 1

2

)q/2

Sqcq
qEp[|∇η|q ].
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(2) Fix a probability measure ν on R
d supported on a ball of radius R and let p :=

γ
a,�
d �ν where γ a,�

d is a the Gaussian measure on R
d with mean a and covariance

�. Then, with λmin := λmin(�) and λmax := λmax(�), we have

Ep[ηq ] ≤ cq
q

1

2q/2

(λminλmax)
q/2

Rq
(e

2 R2
λmin − 1)q/2Ep[|∇η|q ].

Proof (1) We will use the fact [1, Theorem 2.6] (see [58, Proposition 3.1(3)] for an
earlier result) that the q-Poincaré inequality holds for the Wiener measure γ : For
q ∈ [1,∞) and F ∈ D

1,q with Eγ [F] = 0, we have

Eγ [Fq ] ≤ cq
qEγ [|DF |qH ].

Let (Xt )t∈[0,1] be the Föllmer process associated to p, so that X1 ∼ p, and
suppose that X1 : � → R

d is an almost-sure contraction with constant C . Given
η let F(ω) := (η ◦ X1)(ω). Then, by Lemma 5.1 and [59, Proposition 1.2.4],

Ep[ηq ] = Eγ [Fq ] ≤ cq
qEγ [|DF |qH ] ≤ Cqcq

qEγ [|∇η(X1)|q ] = Cqcq
qEp[|∇η|q ].

The proof is complete by Theorem 3.1.
(2) Let Y ∼ ν, let ν̃ be the law �−1/2Y , and define p̃ := γd�ν̃. Set λmin := λmin(�)

and λmax := λmax(�). The argument of part (1) gives,

E p̃[ηq ] ≤
(

e2λ
−1
minR2 − 1

2λ−1
minR2

)q/2

cq
qE p̃[|∇η|q ].

Let p = γ
a,�
d �ν and let X̃ ∼ p̃ so that �1/2 X̃ + a ∼ p. Given η let η̃ :=

η(�1/2x + a) so that

Ep[ηq ] = E p̃[η̃q ] ≤
(

e2λ
−1
minR2 − 1

2λ−1
minR2

)q/2

cq
qE p̃[|∇η̃|q ].

Since ∇η̃(x) = �1/2∇η(�1/2x +a)we have |∇η̃(x)|q ≤ λ
q/2
max|∇η(�1/2x +a)|q

so

Ep[ηq ] ≤ cq
q

1

2q/2

(λminλmax)
q/2

Rq
(e

2 R2
λmin − 1)q/2Ep[|∇η|q ].

��

Theorem 5.5 (Isoperimetric inequalities)Let�be the cumulative distribution function
of γ1 and let Bd ⊂ R

d be the unit ball.
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(1) Let p be a κ-log-concave measure with S := diam(supp(p)) and let

C :=

⎧⎪⎨
⎪⎩

1√
κ

if κS2 ≥ 1(
e1−κS2+1

2

)1/2
S if κS2 < 1.

Then, for any Borel set A ⊂ R
d and r ≥ 0,

p[A + r Bd ] ≥ �
(
�−1(p[A]) + r

C

)
.

(2) Fix a probability measure ν on R
d supported on a ball of radius R and let p :=

γ
a,�
d �ν where γ a,�

d is a the Gaussian measure on R
d with mean a and covariance

�. Set λmin := λmin(�), λmax := λmax(�), and

C := (λminλmax)
1/2 (e

2R2
λmin − 1)1/2√

2R
.

Then,

p[A + r Bd ] ≥ �
(
�−1(p[A]) + r

C

)
.

Proof (1) Let BH1 be the unit ball in H1. We will use the fact [45, Theorem 4.3] that
the Wiener measure γ satisfies the isoperimetric inequality:

γ [K + r BH1] ≥ �(�−1(γ (K )) + r)

for any Borel measurable set K ⊂ � and r ≥ 0; see the discussion following [45,
Theorem 4.3] for measurability issues.
Let (Xt )t∈[0,1] be the Föllmer process associated to p so that X1 ∼ p. Suppose
that X1 : � → R

d is an almost-sure contraction with constant C , so in particular,

|X1(ω + h) − X1(ω)| ≤ C |h|H1 ∀h ∈ H1, γ -a.e.

Let M ⊂ R
d be a Borel measurable set. We will show that

X−1
1 (M) + r

C
BH1 ⊂ X−1

1 (M + r Bd). (5.1)

Then, by the isoperimetric inequality for γ and (5.1),

p[M + r Bd ] = γ [X−1
1 (M + r Bd)] ≥ γ

[
X−1
1 (M) + r

C
BH1

]

≥ �
(
�−1

(
γ [X−1

1 (M)]
)

+ r

C

)
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= �
(
�−1(p[M]) + r

C

)
.

The proof is then complete by Theorem 3.1.
In order to prove (5.1) it suffices to show that

X1

(
X−1
1 (M) + r

C
BH1

)
⊂ M + r Bd ,

or, in other words, that ω ∈ X−1
1 (M) + r

C BH1 ⇒ X1(ω) ∈ M + r Bd . Fix

ω ∈ X−1
1 (M) + r

C BH1 so that ω = θ + r
C h for some θ ∈ X−1

1 (M) and h ∈ H1

with |h|H1 = 1. Then X1(ω − r
C h) ∈ M and, as X is an almost-sure contraction

with a constant C ,
∣∣X1

(
ω − r

C h
)− X1(ω)

∣∣ ≤ r so X1(ω) ∈ M +r Bd as desired.
(2) Let Y ∼ ν, let ν̃ be the law �−1/2Y , and define p̃ := γd�ν̃. Set λmin := λmin(�)

and λmax := λmax(�). The argument of part (1) gives, for any Borel set M ⊂ R
d

and r ≥ 0,

p̃[M + r Bd ] ≥ �
(
�−1( p̃[M]) + r

C

)

with C :=
(

e2λ
−1
minR2−1

2λ−1
minR2

)1/2
. Let p = γ

a,�
d �ν and let X̃ ∼ p̃ so that�1/2 X̃ + a ∼

p. Then, for any Borel set M ⊂ R
d and r ≥ 0,

p[M + r Bd ] = p̃[�−1/2(M − a) + �−1/2r Bd ] ≥ p̃[�−1/2(M − a) + λ−1/2
max r Bd ].

Hence,

p[M + r Bd ] ≥ �

(
�−1

(
p̃
[
�−1/2(M − a)

])
+ rλ−1/2

max

C

)
.

The proof is complete by noting that p̃
[
�−1/2(M − a)

] = p[M].
��

Stein kernels

We now turn to the applications of the contraction in expectation, as in Theo-
rem 4.2. Specifically, we shall prove Theorem 1.6, from which Corollary 1.7 follows,
as explained in the introduction. We first establish the connection between the
Brownian transport map and Stein kernels. Given Malliavin differentiable functions
F,G : � → R

k we denote

(DF, DG)H :=
∫ 1

0
Dt F(Dt G)∗dt .
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Note that, as outlined in Sect. 2, for every fixed t ∈ [0, 1], Dt F is a k × d matrix, and
so (DF, DG)H takes values in the space of k × k matrices. The construction of the
Stein kernel relies on the Ornstein-Uhlenbeck operatorL, as defined, as in [57, section
2.8.2]. To define the operator, let δ stand for the adjoint of the Malliavin derivative D,
also called the Skorokhod integral. For our purposes we shall only use δ on matrix-
valued paths DF and DG, where F and G are as above. In this case, δ acts on the
rows of DG, and δDG takes values in Rk . Formally, the adjoint property of δ is given
by

E
[
(DF, DG)H

] = −E [〈F, δDG〉] ,

where the inner product on the right hand side is the Euclidean one in Rk .
We can now define the Ornstein-Uhlenbeck operator as L := −δD. By construc-

tion, if G : � → R
k , then LG : � → R

k as well. A useful property of L is that it
is invertible on the subspace of functions G, satisfying Eγ [G] = 0, and we denote
the pseudo-inverse by L−1; see [57, section 2.8.2] for more details, and in particular
[57, Proposition 2.8.11]. Now, given a Malliavin differentiable function F : � → R

k

such that, Eγ [F] = 0, we define the k × k matrix-valued map

τ(x) := Eγ

[
(−DL−1F, DF)H |F = x

]
.

Above, the expressionEγ [·|F = x] is the expectation of the regular conditional prob-
ability on the fibers of themap F−1(x), which is well-defined for almost every x ∈ R

k ,
with respect to the law of F , [35].

Lemma 5.6 Let F : � → R
k be Malliavin differentiable and satisfy Eγ [F] = 0.

Then, the map τ is a Stein kernel for F∗γ .

Proof The proof follows the argument in [53, Lemma 1]. Let η : R
k → R

k be a
continuously differentiable and Lipschitz function and let Y ∼ F∗γ . We need to show
that

E[〈∇η(Y ), τ (Y )〉HS] = E[〈η(Y ),Y 〉]

where 〈·, ·〉HS is the Hilbert-Schmidt inner product. We recall that L = −δD where δ
is the adjoint to the Malliavin derivative D. Compute,

E[〈∇η(Y ), τ (Y )〉HS] = E[〈∇η(Y ),Eγ
[
(−DL−1F, DF)H |F = Y

]
〉HS]

= Eγ [〈∇η(F), (−DL−1F, DF)H 〉HS]
= Eγ [Tr[(−DL−1F, D(η ◦ F), )H ]] (chain rule)

= Eγ [〈η ◦ F,−δDL−1F〉] (δis adjoint toD)

= Eγ [〈η ◦ F,LL−1F〉] (L = −δD)

= Eγ [〈η ◦ F, F〉] (when Eγ [F] = 0)
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= E[〈η(Y ),Y 〉].

��
Theorem 1.6 (Stein kernels) Let p be an isotropic log-concave measure on R

d with
compact support. Let χ : Rd → R

k be a continuously differentiable function with
bounded partial derivatives such that Ep[χ ] = 0 and Ep[|∇χ |8op] < ∞. Then, the

pushforward measure q := χ∗ p on R
k admits a Stein kernel τq satisfying

Eq [|τq |2HS] ≤ ad(log d)24
√
Ep[|∇χ |8op],

for some universal constant a > 0.

Remark 5.7 As will become evident from the proof of Theorem 1.6, the result holds
provided that χ ◦ X1 is a Malliavin differentiable random vector where (Xt ) is the
Föllmer process associated to p. By [59, Proposition 1.2.3], this condition holds if χ
is a continuously differentiable function with bounded partial derivatives.

Proof Let F = χ ◦ X1 and let τ be the Stein kernel constructed above so that τq := τ

is a Stein kernel of q. Let (Pt ) be the Ornstein-Uhlenbeck semigroup on the Wiener
space8 and recall that it is a contraction [57, Proposition 2.8.6]. By [57, Proposition
2.9.3],

Eq [|τq |2HS] = Eγ [|(DF, DL−1F)H |2HS] = Eγ

[∣∣∣∣
∫ ∞

0
e−s(DF,Ps(DF))H ds

∣∣∣∣
2

HS

]

≤ sup
s∈[0,∞)

Eγ

[
|(DF,Ps(DF))H |2HS

]
.

Using (Ps(DF))r = Ps(Dr F), we get

sup
s∈[0,∞)

Eγ

[
|(DF,Ps(DF))H |2HS

]
= sup

s∈[0,∞)

Eγ

[∣∣∣∣
∫ 1

0
(Dr F)∗(Ps(Dr F))dr

∣∣∣∣
2

HS

]

≤ sup
s∈[0,∞)

Eγ

[∫ 1

0
|(Dr F)∗(Ps(Dr F))|2HSdr

]

≤ min{k, d} sup
s∈[0,∞)

Eγ

[∫ 1

0
|Dr F |2op|Ps(Dr F)|2opdr

]

≤ d Eγ

[∫ 1

0
|Dr F |2op|Dr F |2opdr

]
≤ d sup

r∈[0,1]
Eγ [|Dr F |4op]

= d sup
r∈[0,1]

Eγ [|∇χ(X1)(Dr X1)|4op]

8 We will write Ps (DF) for the operator acting coordinate-wise on the matrix-valued function DF , and
similarly, we write Ps (Dr F) for the operator acting coordinate-wise on the random matrix Dr F .
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≤ d
√
Eγ [|∇χ(X1)|8op] sup

r∈[0,1]

√
Eγ [|Dr X1|8op].

It remains to show that supr∈[0,1]
√
Eγ [|Dr X1|8op] ≤ a(log d)24 for some universal

constant a > 0. The latter will follow from Theorem 4.2 as soon as we show that,
γ -a.e.,

|Dr X1|op ≤ |DX1|L(H ,Rd ) ∀r ∈ [0, 1].

Indeed, fix ω ∈ � and r ∈ [0, 1]. Choose a unit vector w ∈ R
d such that

|Dr X1|op = |Dr X1w|. Let (ḣε,r )ε>0 ⊂ L2([0, 1]) be an approximation to the identity:∫ 1
0 |ḣε,rs |2ds = 1 and for every continuousη ∈ L2([0, 1]), limε→0

∫ 1
0 η(s)ḣ

ε,r
s = η(r).

Define ḣε,r ,ws := ḣε,rs w for s ∈ [0, 1] and note that |ḣε,r ,w|H = 1 so |DX1[ḣε,r ,w]| ≤
|DX1|L(H ,Rd ). By the definition of DX1, and since s �→ Ds X1 is continuous (since
it satisfies a differential equation) γ -a.e., we have

lim
ε→0

DX1[ḣε,r ,w] = Dr X1w.

It follows that |Dr X1w| = limε→0 |DX1[ḣε,r ,w]| ≤ |DX1|L(H ,Rd ). This completes
the proof. ��

6 Cameron–Martin contractions

The notion of contractionwe considered up until nowwas the appropriate onewhen the
target measures were measures on Rd . If, however, we are interested in transportation
between measures on the Wiener space itself, then we need a stronger notion of
contraction.

Definition 6.1 A measurable map T : � → � is a Cameron-Martin transport map if
T (ω) = ω + ξ(ω) for some measurable map ξ : � → H1; we write ξ(ω) = ∫ ·

0 ξ̇ (ω)

for some measurable map ξ̇ : � → H . We set (Tt )t∈[0,1] := (Wt ◦ T )t∈[0,1]. A
Cameron-Martin transport map T : � → � is a Cameron-Martin contraction with
constant C if, γ -a.e.,

|T (ω + h) − T (ω)|H1 ≤ C |h|H1 ∀ h ∈ H1.

Claim Let T : � → � be a Cameron-Martin contraction with constant C . Then, for
any t ∈ [0, 1], Tt : � → R

d is an almost-sure contraction with constant C .

Proof Let T : � → � be a Cameron-Martin contraction with constant C . Fix h ∈
H1, ω ∈ �, and define q ∈ H1 by qt = Tt (ω + h)− Tt (ω) for t ∈ [0, 1]; note that q
is indeed an element of H1 since T is a Cameron-Martin transport map. Since

sup
t∈[0,1]

|qt | = sup
t∈[0,1]

∣∣∣∣
∫ t

0
q̇sds

∣∣∣∣ ,
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it follows from Jensen’s inequality that

sup
t∈[0,1]

|Tt (ω + h) − Tt (ω)|2 = sup
t∈[0,1]

∣∣∣∣
∫ t

0
q̇sds

∣∣∣∣
2

≤ sup
t∈[0,1]

t
∫ t

0
|q̇s |2ds

≤
∫ 1

0
|q̇s |2ds = |T (ω + h) − T (ω)|2H1 .

��
We see that a Cameron-Martin contraction is a stronger notion than an almost-sure

contraction. Given a measureμ on�, a Cameron-Martin contraction between γ andμ
would transfer functional inequalities from γ to μ where the functions are allowed to
depend on the entire path {ωt }t∈[0,1]. For the rest of the paper, we focus on the question
of whether either the causal optimal transport map or the optimal transport map is a
Cameron-Martin contraction when the target measure enjoys convexity properties.
The notion of convexity we use is compatible with the Cameron-Martin space [30]:

Definition 6.2 A measurable map V : � → R ∪ {∞} is Cameron-Martin convex if,
for any h, g ∈ H1 and α ∈ [0, 1], it holds that

V (ω + αh + (1 − α)g) ≥ αV (ω + h) + (1 − α)V (ω + g) γ -a.e.

Remark 6.3 An important example of a Cameron-Martin convex function V on � is
V (ω) = η(ω1) with η : Rd → R a convex function.

The precise question we consider is the following: Suppose μ is a probability
measure on � of the form dμ(ω) = e−V (ω)dγ (ω), where V : � → R is a Cameron-
Martin convex function. Let A, O : � → � be the causal optimal transport map
and optimal transport map from γ to μ, respectively. Is it true that either A or O is a
Cameron-Martin contraction with any constant C?

In order to answer this question our first task is to construct a suitable notion of
derivative for Cameron-Martin transport maps T : � → � so that, in analogy with
Lemma 2.3, we can establish a correspondence between being a Cameron-Martin
contraction and having a bounded derivative. The Malliavin derivative was defined
for real-valued functions F : � → R but it can be defined for H -valued functions
ξ̇ : � → H as well [59, p. 31]. We start with the class SH of H -valued smooth
random variables: ξ̇ ∈ SH if ξ̇ = ∑m

i=1 Fi ḣi where Fi ∈ S (the class of smooth
random variables, cf. Sect. 2), ḣi ∈ H for i ∈ [m] for some m ∈ Z+. For ξ̇ ∈ SH we
define

H ⊗ H � Dξ̇ :=
m∑

i=1

DFi ⊗ ḣi

and let D1,p(H) be the completion of SH under the norm

‖ξ̇‖1,p,H = (Eγ [|ξ̇ |p
H

]+ Eγ

[|Dξ̇ |p
H⊗H

]) 1
p .
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Since Dξ̇ ∈ H ⊗ H we may also view it as a linear operator Dξ̇ : H → H and we
denote its operator norm by |Dξ̇ |L(H).

Definition 6.4 Let T : � → � be a measurable map of the form T (ω) = ω + ξ(ω)

where ξ̇ ∈ D
1,p(H) for some p ≥ 1. For any ω ∈ � we define DT (ω) : H → H by

DT (ω)[ḣ] = ḣ + Dξ̇ (ω)[ḣ], ∀ ḣ ∈ H .

The operator norm of DT (ω) : H → H , with ω ∈ � fixed, is denoted by
|DT (ω)|L(H).

For the purpose of this work, we focus on measures μ on � of the form dμ(ω) :=
f (ω1)dγ (ω). In addition, comparing the following lemma to Lemma 2.3, we see
that it provides only one direction of the correspondence between Cameron-Martin
contractions and bounded derivatives. A more general theory could be developed, at
least in principle, but our goal in this work is to highlight key differences between
causal optimal transport and optimal transport on the Wiener space, to which end the
following suffices.

Lemma 6.5 Let μ be a measure on � of the form dμ(ω) := f (ω1)dγ (ω) and let
T : � → � be a transport map from γ to μ of the form T (ω) = ω + ξ(ω) where
ξ := ∫ ·

0 ξ̇ for some ξ̇ ∈ D
1,p(H). If T is a Cameron-Martin contraction with constant

C then |DT |L(H) ≤ C γ -a.e.

Proof We first note that the Malliavin differentiability of ξ , as well as [10, Theorem
5.7.2], imply that, γ -a.e., for any h, g ∈ H1,

lim
ε↓0

1

ε
〈T (ω + εh) − T (ω), g〉H1 = lim

ε↓0
1

ε
〈εh + ξ(ω + εh) − ξ(ω), g〉H1

= 〈[Id� + Dξ̇ (ω)][ḣ], ġ〉H

= 〈DT (ω)[ḣ], ġ〉H . (6.1)

Suppose now that T is a Cameron-Martin contraction with constant C so that, for a
fixed h ∈ H1, and any ε > 0,

sup
g∈H1,|g|H1=1

1

ε
〈T (ω + εh) − T (ω), g〉H1 = 1

ε
|T (ω + εh) − T (ω)|H1 ≤ C |h|H1 .

Taking ε ↓ 0 and using (6.1) shows that

sup
ġ∈H ,|ġ|H =1

〈DT (ω)[ḣ], ġ〉H = |DT (ω)[ḣ]|H ≤ C

so it follows that

sup
ḣ∈H ,|ḣ|H =1

|DT (ω)[ḣ]|H = |DT (ω)|L(H) ≤ C .

��
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7 Causal optimal transport

In this section we answer in the negative, for causal optimal transport maps, the
question raised in Sect. 6, thus proving the second part of Theorem 1.8. In particular,
we will construct a strictly log-concave function f : Rd → R such that the causal
optimal transport map from γ to dμ(ω) := f (ω1)dγ (ω) is not a Cameron-Martin
contraction, with any constant C . This indeed provides a negative answer in light of
Remark 6.3. Our concrete example is the case where f dγd is the measure of a one-
dimensional Gaussian random variable conditioned on being positive. More precisely,
fix a constant σ > 0 and let f : R → R be given by

f (x) = 1[0,+∞)(x)e− x2
2σ

∫
R
1[0,+∞)(y)e− y2

2σ dγ1(y)
.

The measure f (x)dγ1(x) is the measure onR of a centered Gaussian, whose variance
is smaller than one, conditioned on being positive. We define a measure μ on � by
setting

dμ(ω) := f (ω1)dγ (ω)

and note that f is strictly log-concave for all σ > 0, and that f is log-concave
as σ → ∞. To simplify computations we will take σ ≥ 1. Finally, note that the
assumptions of Proposition 3.10 hold in this case (κ ≥ 0).

Remark 7.1 Given dμ(ω) = f (ω1)dγ (ω) let p be the measure on R given by p :=
f dγ1 and let γ a,σ

1 be the Gaussian measure on R with mean a and variance σ . The
natural examples for testing whether the causal optimal transport map A, between γ to
μ, is a Cameron-Martin contraction are p = γ

a,1
1 , for some a ∈ R, and p = γ

0,σ
1 , for

some σ > 0. We can expect these examples to show that A is not a Cameron-Martin
contraction since they saturate the bounds in Lemma 3.4: When p = γ

a,1
1 we have

∇v(t, x) = 0 (saturation of Lemma 3.4(2) under the assumption κ ≥ 1) and when
p = γ

0,σ
1 we have that, in the limit σ ↓ 0, ∇v(t, x) = − 1

1−t (saturation of (3.3)).
Since in these cases |∇v| is the largest, we can expect that A will not be a Cameron-
Martin contraction since its derivative will blow up. However, explicit calculation
shows that A is in fact a Cameron-Martin contraction for p = γ

a,1
1 and p = γ

0,σ
1 .

Hence, we require the construction of a more sophisticated example which we obtain
by considering Gaussians conditioned on being positive.

In order to prove that A is not aCameron-Martin contractionwewill useLemma6.5.
Wewill show that with the example above, with positive probability, the derivative can
be arbitrary large so that A cannot be a Cameron-Martin contraction with any constant
C .

As mentioned already, the map A is nothing but the Föllmer process X [44]. This
allows for the following convenient representation of the derivative of A.
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Lemma 7.2 Let A be the causal optimal transport map from γ to μ and let X be the
solution of (2.1). Fix 0 < ε < 1. For any ḣ ∈ H,

(D A[ḣ])t = ∂t 〈DXt , ḣ〉H ∀ t ∈ [0, 1 − ε].

In addition,

|D A[ḣ]|2H ≥
∫ 1−ε

0

(
ḣt + ∇v(t, Xt )

∫ t

0
e
∫ t

s ∇v(r ,Xr )dr ḣsds

)2
dt .

Proof We have A = Id� + ξ where ξ̇t (ω) = v(t, Xt (ω)) with the drift v as in (2.1).
To show that

(D A[ḣ])t = ∂t 〈DXt , ḣ〉H ∀ t ∈ [0, 1 − ε]

we start by noting that Proposition 3.10 gives

DXt = 1[0,t] +
∫ t

0
∇v(s, Xs)DXsds,

so

∂t 〈DXt , ḣ〉H = ḣt + ∇v(t, Xt )〈DXt , ḣ〉H ∀t ∈ [0, 1]. (7.1)

Hence, our goal is to show that

(D A[ḣ])t = ḣt + ∇v(t, Xt )〈DXt , ḣ〉H ∀ t ∈ [0, 1 − ε].

To establish the above identity it suffices to show that

〈Dv[ḣ], ġ〉H =
∫ 1

0
∇v(t, Xt )〈DXt , ḣ〉H ġt dt

for every h, g ∈ H1 with ġt = 0 for all t ∈ [1 − ε, 1]. This indeed holds since, for
such g and h,

〈Dv[ḣ], ġ〉H = lim
δ↓0

1

δ
〈ξ(ω + δh) − ξ(ω), g〉H1

=
∫ 1

0
lim
δ↓0

v(t, Xt (ω + δh)) − v(t, Xt (ω))

δ
ġt dt

=
∫ 1

0
∇v(t, Xt )〈DXt , ḣ〉H ġt dt

where in the second equality the integral and the limit were exchanged by the use of
the dominated convergence theorem and as v is Lipschitz on [0, 1 − ε] (Eq. (3.3) and
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Lemma 3.4), while the third equality holds by the chain rule which can be applied as
v is Lipschitz [59, Proposition 1.2.4].

The proof of the second part of the lemma follows by noting that the solution to
the ordinary differential Eq. (7.1), with initial condition 0 at t = 0, is

〈DXt , ḣ〉H =
∫ t

0
e
∫ t

s ∇v(r ,Xr )dr ḣsds.

��
The next theorem is the main result of this section, showing that, with posi-

tive probability, |D A|L(H) can be arbitrarily large, thus proving the second part of
Theorem 1.8.

Theorem 7.3 Let � ∈ H1 be given by �(t) = t for t ∈ [0, 1]. There exists a constant
c > 0 such that, for any 0 < ε < c, there exists a measurable set Eε ⊂ � satisfying

γ [Eε] > 0

and

γ [|D A[�̇]|H > c log(1/ε) | Eε] = 1.

The upshot of Theorem 7.3 is that there exists a unit norm ḣ ∈ H , specifically
h = �, such that, for any b > 0, the event {|D A[ḣ]|H > b} has positive probability
(possibly depending on b). Since

|D A|L(H) = sup
ḣ∈H :|ḣ|=1

|D A[ḣ]|H

we conclude that A cannot be a Cameron-Martin contraction, with any constant C .
Next we describe the idea behind the proof of Theorem 7.3. Fix 0 < ε < 1. By

Lemma 7.2, and as ∇v(t, Xt ) = ∂2xx log P1−t f (Xt ), we have

|D A[ḣ]|2H ≥
∫ 1−ε

0

(
ḣt + ∂2xx log P1−t f (Xt )

∫ t

0
e
∫ t

s ∂
2
xx log P1−r f (Xr )dr ḣsds

)2
dt .

(7.2)

The idea of the proof is to construct a function ηε : [0, 1 − ε] → R and a constant
b > 0, such that

∂2xx log P1−t f (ηε(t)) ≈ − b

1 − t
∀ t ∈ [ε, 1 − ε].

If we choose h = �, and substitute ηε(t) for Xt in (7.2), then a computation shows
that |D A[ḣ]|H is large. The final step is to show that, with positive probability,

∂2xx log P1−t f (Xt ) ≈ ∂2xx log P1−t f (ηε(t)) ∀ t ∈ [ε, 1 − ε].
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This implies that, with positive probability, we canmake |D A[ḣ]|H arbitrary large.We
now proceed to make this idea precise. We start with the construction of the function
ηε .

Lemma 7.4 For every 0 < ε < 1 there exists an absolutely continuous function
ηε : [0, 1 − ε] → R, with ηε(0) = 0, such that

−1

2

1

1 − t
− 1

1 − t + σ
≤ ∂2xx log P1−t f (ηε(t)) ≤ −1

8

1

1 − t
∀t ∈ [ε, 1 − ε].

Furthermore, for any ε > 0 and ηε as above, there exists δ(ε) > 0 such that, if
η̃ : [0, 1] → R satisfies

sup
t∈[ε,1−ε]

|η̃(t) − ηε(t)| < δ(ε),

then

−1

2

1

1 − t
− 1

1 − t + σ
≤ ∂2xx log P1−t f (η̃(t)) ≤ −1

8

1

1 − t
∀t ∈ [ε, 1 − ε]

as well.

Proof Fix 0 < ε < 1 and let Z := ∫
R
1[0,+∞)(y)e− y2

2σ dγ1(y) so that f (x) =
Z−11[0,+∞)(x)e− x2

2σ . Let ϕ be the density of the standard Gaussian measure on R

and let �(x) := ∫ x
−∞ ϕ(y)dy be its cumulative distribution function. Making the

change of variables y �→ y−x√
t
we get

Pt f (x) = 1

Z

∫
R

1[0,+∞)(x + √
t y)e− (x+√

t y)2

2σ
e− y2

2√
2π

dy = 1

Z
√

t
√
2π

∫ ∞
0

e− y2

2σ e− (y−x)2

2t dy.

Since

y2

σ
+ (y − x)2

t
=
(
1

σ
+ 1

t

)
y2 − 2

xy

t
+ x2

t
= t + σ

tσ

[
y − σ

t + σ
x

]2
+
[
1

t
− σ

t(t + σ)

]
x2

= t + σ

σ t

[
y − σ

t + σ
x

]2
+ x2

t + σ
,

we have

1√
t Z

√
2π

∫ ∞

0
e− y2

2σ e− (y−x)2

2t dy =
√

σ
t+σ
Z

e− 1
2

x2
t+σ
∫ ∞

0

exp

[
− 1

2 σ t
t+σ

[
y − σ

t+σ x
]2]

√
2π σ t

t+σ
dy.
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The cumulative distribution function of a Gaussian with mean σ
t+σ x and variance σ t

t+σ

is y �→ �

(
y− σ

t+σ x√
σ t

t+σ

)
so,

∫ ∞

0

exp

[
− 1

2 σ t
t+σ

[
y − σ

t+σ x
]2]

√
2π σ t

t+σ
dy = 1 − �

⎛
⎝− σ

t+σ x√
σ t

t+σ

⎞
⎠ = 1 − �

(
−
√

σ

t(t + σ)
x

)
.

Since �(−y) = 1 − �(y) we conclude that

Pt f (x) =
√

σ
t+σ
Z

e− 1
2

x2
t+σ �

(√
σ

t(t + σ)
x

)
∀t ∈ [0, 1].

Let σt :=
√

σ
(1−t)(1−t+σ) and let m(x) := ϕ(−x)

�(−x) be the inverse Mills ration, where ϕ

is the density of the standard Gaussian on R. Then, for t ∈ [0, 1],

∂x log P1−t f (x) = σt
ϕ(σt x)

�(σt x)
− x

1 − t + σ
= σt m(−σt x) − x

1 − t + σ
,

and using the readily verified relation

m′(x) = m2(x) + xm(x),

we get

∂2xx log P1−t f (x) = −σ 2
t m′(−σt x) − 1

1 − t + σ
= −σ 2

t [m2(−σt x) − σt xm(−σt x)]

− 1

1 − t + σ
.

Set ηε(t) := −σ−1
t c for t ∈ [ε, 1 − ε] with c a constant to be determined shortly,

and continue ηε to [0, ε] in such a way that ηε is absolutely continuous with derivative
in L2([0, 1 − ε]), and ηε(0) = 0. Then,

∂2xx log P1−t f (ηε(t)) = −σ 2
t [m2(c) + cm(c)] − 1

1 − t + σ
∀ t ∈ [ε, 1 − ε].

Sincem2(0)+0m(0) = 2
π
> 1

2 , and as limx→−∞[m2(x)+xm(x)] = 0, the continuity
of m implies that there exists c < 0 such that m2(c) + cm(c) = 1

3 . With this choice
of c we have 1

4 < m2(c) + cm(c) < 1
2 so

−σ 2
t

2
− 1

1 − t + σ
≤ ∂2xx log P1−t f (ηε(t)) ≤ −σ 2

t

4
− 1

1 − t + σ
∀ t ∈ [ε, 1 − ε].

123



The Brownian transport map

Whenever σ ≥ 1,

1

2

1

1 − t
≤ σ 2

t = σ

(1 − t)(1 − t + σ)
≤ 1

1 − t

so

−1

2

1

1 − t
− 1

1 − t + σ
≤ ∂2xx log P1−t f (ηε(t)) ≤ −1

8

1

1 − t
− 1

1 − t + σ
.

Since − 1
1−t+σ ≤ 0 we get

−1

2

1

1 − t
− 1

1 − t + σ
≤ ∂2xx log P1−t f (ηε(t)) ≤ −1

8

1

1 − t
.

This completes the proof of the first part of the lemma.
For the second part of the lemma, given ε and ηε as above, use the continuity of

m, and that m2(c) + cm(c) = 1
3 , to choose δ′ > 0 such that |c′ − (−c)| < δ′ ⇒

1
4 < m2(−c′) − c′m(−c′) < 1

2 . Now let δ(ε) := δ′
σ1−ε and let η̃ : [0, 1] → R be any

function such that supt∈[ε,1−ε] |ηε(t) − η̃(t)| < δ(ε). Then,

|σt η̃(t) − (−c)| = |σt η̃(t) − σtηε(t)| ≤ |σ1−ε η̃(t) − σ1−εηε(t)| < δ′ ∀ t ∈ [ε, 1 − ε]

so 1
4 < m2(−σt η̃(t)) − (−σt η̃(t))m(−σt η̃(t)) <

1
2 . It follows, as above, that

−σ 2
t

2
− 1

1 − t + σ
≤ ∂2xx log P1−t f (η̃(t)) ≤ −σ 2

t

4
− 1

1 − t + σ
∀ t ∈ [ε, 1 − ε],

and we continue as above to complete the proof. ��

Next we show that if we take h = �, and substitute for X in (7.2) a function η̃which
is close to the function ηε constructed in Lemma 7.4, then |D A[ḣ]|H is large.

Lemma 7.5 There exists a constant c > 0with the following properties. Fix 0 < ε < c
and let ηε and δ := δ(ε) be as in Lemma 7.4. Let η̃ : [0, 1] → R be any function such
that supt∈[ε,1−ε] |η̃(t) − ηε(t)| < δ. Then,

∫ 1−ε

0

(
1 + ∂2xx log P1−t f (η̃(t))

∫ t

0
e
∫ t

s ∂
2
xx log P1−r f (η̃(r))dr ds

)2
dt ≥ c log(1/ε).

Proof By Eq. (3.3) and Lemma 3.4(2) (with κ = 1),

− 1

1 − t
≤ ∂2xx log P1−t f (x) ≤ 0
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so, for s ≤ ε,

∫ ε

s
∂2xx log P1−r f (η̃(r))dr ≥

∫ ε

0
∂2xx log P1−r f (η̃(r))dr ≥

∫ ε

0
− 1

1 − r
dr = log(1 − ε).

It follows that, for ε < t ,

∫ t

0
e
∫ t

s ∂
2
xx log P1−r f (η̃(r))dr ds

≥
∫ t

ε

e
∫ t

s ∂
2
xx log P1−r f (η̃(r))dr ds + (1 − ε)

∫ ε

0
e
∫ t
ε ∂

2
xx log P1−r f (η̃(r))dr ds

≥ 1

2

∫ t

ε

e
∫ t

s ∂
2
xx log P1−r f (η̃(r))dr ds + 1

2

∫ ε

0
e
∫ t
ε ∂

2
xx log P1−r f (η̃(r))dr ds

= 1

2

∫ t

0
e
∫ t
ε∨s ∂

2
xx log P1−r f (η̃(r))dr ds.

Using the lower bound of Lemma 7.4 we get,

∫ t

0
e
∫ t

s ∂
2
xx log P1−r f (η̃(r))dr ds ≥ 1

2

∫ t

0
e
∫ t
ε∨s

[
− 1

2
1

1−r − 1
1−r+σ

]
dr

ds ∀t ∈ [ε, 1 − ε],

and using the upper bound of Lemma 7.4 we conclude that, for t ∈ [ε, 1 − ε],

∂2xx log P1−t f (η̃(t))
∫ t

0
e
∫ t

s ∂
2
xx log P1−r f (η̃(r))dr ds ≤ − 1

16

1

1 − t

∫ t

0
e
∫ t
ε∨s

[
− 1

2
1

1−r − 1
1−r+σ

]
dr

ds

≤ − 1

16

1

1 − t

∫ t

0
e
∫ t

s

[
− 1

2
1

1−r − 1
1−r+σ

]
dr

ds = − 1

16

1

1 − t

{∫ t

0

[√
1 − t√
1 − s

+ 1 − t + σ

1 − s + σ

]
ds

}

= 1

8

√
1 − t − 1√
1 − t

+ 1

16

1 − t + σ

1 − t
log

(
1 + σ − t

1 + σ

)
≤ 1

8

√
1 − t − 1√
1 − t

,

since the second term is nonpositive. In particular, letting t0 := 80
81 , we get

1 + ∂2xx log P1−t f (η̃(t))
∫ t

0
e
∫ t

s ∂
2
xx log P1−r f (η̃(r))dr ds ≤ 0 ∀t ∈ [t0, 1 − ε].

It follows that

∫ 1−ε

0

(
1 + ∂2xx log P1−t f (η̃(t))

∫ t

0
e
∫ t

s ∂
2
xx log P1−r f (η̃(r))dr ds

)2
dt

≥
∫ 1−ε

t0

(
1 + ∂2xx log P1−t f (η̃(t))

∫ t

0
e
∫ t

s ∂
2
xx log P1−r f (η̃(r))dr ds

)2
dt

≥
∫ 1−ε

t0

(
1 − 1

8

1 − √
1 − t√

1 − t

)2

dt ≥ 1

2

1

64

∫ 1−ε

t0

1

1 − t
dt − 1

4

∫ 1−ε

t0

1√
1 − t

dt
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≥ 1

128
log(1/ε) + 1

128
log(1/81) − 1

18
,

which completes the proof. ��

It remains to show that, with positive probability, X is close to ηε .

Lemma 7.6 Fix 0 < ε < c, with c as in Lemma 7.5, and let δ := δ(ε) be as in
Lemma 7.4. Then, the set

Eε,δ :=
{
η̃ ∈ � : η̃(0) = 0 and sup

t∈[ε,1−ε]
|η̃(t) − ηε(t)| < δ

}
⊂ �

is measurable and has positive probability.

Proof The measurability of Eε,δ follows as the sigma-algebra F is generated by the
Borel sets of � with respect to the uniform norm. To show that Eε,δ has positive
probability it will be useful to note that the Föllmer process X is a mixture of Brownian
bridges in the following sense. Let (�̃, F̃ , P̃) be any probability space which supports
a Brownian motion B̃ = (B̃t )t∈[0,1] and a random vector Y ∼ p, independent of B̃.
Define the process Z by Zt := B̃t − t(B̃1 −Y ) for t ∈ [0, 1] so, conditioned on Y , Z is
a Brownian bridge starting at 0 and terminating at Y . Given a set B ∈ F we have [33],

γ [X ∈ B] = P̃[{ω̃ ∈ �̃ : Z(ω̃) ∈ B}].

Since

P̃[{ω̃ ∈ �̃ : Z(ω̃) ∈ B}] = E[P̃[{ω̃ ∈ �̃ : Z(ω̃) ∈ B}|Y ]],

it will suffice to show that, for any b ∈ R and Zb
t := B̃t − t(B̃1 − b), we have

P̃[{ω̃ ∈ �̃ : Zb(ω̃) ∈ Eε,δ}] > 0.

This is equivalent to the following statement: Fix b ∈ R and let ηε be as in Lemma 7.4.
Then, for any ε ∈ (0, 1) and δ > 0,

P̃

[
sup

t∈[ε,1−ε]
|Zb

t − ηε(t)| < δ

]
> 0. (7.3)

To prove (7.3) define the function h : [0, 1] → R by

ht =
{
ηε(t), t ∈ [0, 1 − ε]
b−ηε(1−ε)

ε
t + ηε(1−ε)−(1−ε)b

ε
, t ∈ (1 − ε, 1],
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and note that the construction of ηε ensures that h ∈ H1. Then, for any δ > 0,

P̃

[
sup

t∈[0,1]
|B̃t − ht | < δ

2

]
> 0,

because H1 is dense in C0([0, 1]). It follows that

P̃

[
sup

t∈[0,1−ε]
|Zb

t − ηε(t)| < δ

]
≥ P̃

[
sup

t∈[0,1−ε]
|B̃t − ηε(t)| < δ

2
, |B̃1 − b| < δ

2

]

= P̃

[
sup

t∈[0,1−ε]
|B̃t − ht | ≤ δ

2
, |B̃1 − h1| < δ

2

]
≥ P̃

[
sup

t∈[0,1]
|B̃t − ht | < δ

2

]
> 0.

��
We can now complete the proof of Theorem 7.3 by combining the above lemmas.

Proof (of Theorem 7.3) Fix 0 < ε < c and let ηε and δ := δ(ε) be as in Lemma 7.4.
Let Eε := Eε,δ be as in Lemma 7.6 so γ [Eε] > 0. Conditioned on Eε , Lemma 7.5
implies that there exists c > 0 such that

|D A|[�̇]|H ≥
∫ 1−ε

0

(
1 + ∂2xx log P1−t f (Xt )

∫ t

0
e
∫ t

s ∂
2
xx log P1−r f (Xr )dr ds

)2
dt

≥ c log(1/ε),

where the first inequality holds by (7.2). It follows that

γ [|D A[�̇]|H > c log(1/ε) | Eε] = 1.

��

8 Optimal transport

The fundamental results of optimal transport on theWiener space are due to Feyel and
Üstünel [31]. One of their results, pertaining to our setting, is the following analogue
of a theorem of Brenier in Euclidean spaces [63, Theorem 2.12].

Theorem 8.1 ([31, Theorem 4.1]) Letμ be a measure on� defined by dμ
dγ (ω) = F(ω),

where F : � → R is a positive function γ -a.e., such that W2(γ, μ) < ∞. Then,
there exists a unique (up to a constant) convex map φ : � → R, such that μ is the
pushforward of γ under ∇φ ∈ H1, where (∇φ(ω))t = ∫ t

0 Dsφ(ω)ds with Dφ being

the Malliavin derivative of φ, and Eγ

[
|ω − ∇φ(ω)|2

H1

]
= W 2

2 (γ, μ).

The main result in this section, Theorem 8.2, establishes a Cameron-Martin con-
traction for φ in the case where F(ω) = f (ω1) is (κ − 1)-log-concave for κ ≥ 0;
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informally, μ is κ-log-concave for κ ≥ 0. This proves the first part of Theorem 1.8.
Our motivation is primarily to show that there are settings where the optimal transport
map is a Cameron-Martin contraction, contrary to the causal optimal transport map
(second part of Theorem 1.8 via Theorem 7.3).

Theorem 8.2 Let μ be a probability measure on � given by dμ(ω) = f (ω1)dγ (ω)
where f : Rd → R is (κ − 1)-log-concave for some κ ≥ 0. Suppose, in addition, that
the optimal transport map in R

d from γd to p := f γd is twice-differentiable9. Then,
the optimal transport map in � from γ to μ is a Cameron-Martin contraction with

constant max
{

1√
κ
, 1
}

.

Recall that in the Euclidean setting, if p = f dγd with f : Rd → R (κ − 1)-log-
concave for some κ ≥ 0, then the optimal transport map is a contraction with constant
1√
κ
[41, Theorem 2.2]. However, the fact that the analogous result of Theorem 8.2

gives the constant max
{

1√
κ
, 1
}
is no coincidence. If the constant of the Cameron-

Martin contraction of the optimal transport map on the Wiener space was in fact 1√
κ
,

then, arguing as in Sect. 5, we would conclude that the measure μ on � given by
dμ(ω) = f (ω1)dγ (ω) satisfies a Poincaré inequality with constant 1

κ
. But as argued

in [42, Remark 2.7], we expect that if μ is equivalent to γ then its Poincaré constant
must be greater or equal to 1. Hence, we may expect Theorem 8.2 to be the optimal
result.10 (Wenote that the question of the contraction properties of the optimal transport
map on Wiener space was addressed in [32, §6].)

Proof We start by explicitly computing the optimal transport map O . Define the mea-
sure p onRd by dp

dγd
(x) := f (x) and letφd : Rd → R be the convex function such that

∇φd is the optimal transport map from γd to p. Define ξ̇ ∈ H by ξ̇t := ∇φd(ω1)−ω1,
for all t ∈ [0, 1], and let O ′ : � → � be given by O ′(ω)t := ωt + ξt (where
ξt := ∫ t

0 ξ̇sds) for t ∈ [0, 1]. We claim that O = O ′. Indeed, by the unique-
ness part of Theorem 8.1, and as O ′ is convex (according to Definition 6.2 and
Remark 6.3), it suffices to show that the pushforward of γ by O ′ is μ, and that

W 2
2 (γ, μ) = Eγ

[
|ω − O ′(ω)|2

H1

]
. The fact that μ is the pushforward of γ by O ′

follows by construction: Let Zb be a Brownian bridge on [0, 1] starting at 0 and ter-
minating at b ∈ R

d . Then, for any η : � → R measurable continuous and bounded,
we have

Eγ [η(O ′(ω))] = Eγ [Eγ [η(O ′(ω))]|ω1]
=
∫
Rd

E[η(Z∇φd (x))]dγd(x) = EY ∼p[E[η(ZY )]]

9 See [21, Theorem 1] for conditions under which such regularity holds.
10 If we allow μ to be singular with respect to γ then we can in fact get a Poincaré constant smaller than
1 [30, Theorem 6.1] The prototypical example is when μ is the measure of the process σW where W is a
Brownian motion and σ '= 1. Then μ is singular with respect to γ and μ satisfies the conditions of [30,
Theorem 6.1]. In this sense, the Wiener space is fundamentally different than the Euclidean space where
the measure of any (non-zero) multiple of the standard Gaussian is equivalent to γd .
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= Eμ[η(ω)].

To see that O ′ is in fact the actual optimal transport map we compute

Eγ

[
|ω − O ′(ω)|2H1

]
= Eγ

[
|ξ |2H1

]
= Eγ

[∫ 1

0
|ω1 − ∇φd(ω1)|2dt

]

= W 2
2 (γd , p) ≤ W 2

2 (γ, μ),

which shows that O ′ = O . Next we show that O is a Cameron-Martin contraction.
Fix h ∈ H1 and compute

|O(ω + h) − O(ω)|2H1 =
∫ 1

0
|ḣt + ξ̇t (ω + h) − ξ̇t (ω)|2dt

=
∫ 1

0
|∇φd(ω1 + h1) − ∇φd(ω1) + ḣt − h1|2dt .

Since

∇φd(ω1 + h1) − ∇φd(ω1) =
[∫ 1

0
∇2φd(ω1 + rh1)dr

]
h1,

we may write

|O(ω + h) − O(ω)|2H1 =
∫ 1

0

∣∣∣∣
[∫ 1

0
∇2φd(ω1 + rh1)dr − Idd

]
h1 + ḣt

∣∣∣∣
2

dt

=:
∫ 1

0

∣∣Mh1 + ḣt
∣∣2 dt

=
∫ 1

0

{
|Mh1|2 + 2〈Mh1, ḣt 〉 + |ḣt |2

}
dt

= |Mh1|2 + 2〈Mh1, h1〉 + |h|2H1 .

Since p is κ-log-concave, we have 0 � ∇2φd � 1√
κ
Idd [41, Theorem 2.2], and hence,

−Idd � M �
(

1√
κ

− 1
)
Idd . There are now two cases: κ ≥ 1 and κ < 1. Suppose

κ ≥ 1. We claim that |Mh1|2 + 2〈Mh1, h1〉 ≤ 0. Indeed, the latter is equivalent to
|[M + Idd ]h1|2 ≤ |h1|2, which is true since 0 � M + Idd � 1√

κ
Idd � Idd . This shows

that

κ ≥ 1 �⇒ |O(ω + h) − O(ω)|H1 ≤ |h|H1 ∀h ∈ H1.

Suppose now that κ < 1. We claim that |Mh1|2 + 2〈Mh1, h1〉 ≤ ( 1
κ

− 1
) |h|2

H1 .

Indeed, since |[M + Idd ]h1|2 ≤ 1
κ

|h1|2, we get |Mh1|2 + 2〈Mh1, h1〉 ≤
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( 1
κ

− 1
) |h1|2 ≤ ( 1

κ
− 1
) |h|2

H1 where we used |h1|2 ≤ |h|2
H1 by the Cauchy-Schwarz

inequality. This shows that

κ < 1 �⇒ |O(ω + h) − O(ω)|H1 ≤ 1√
κ

|h|H1 ∀h ∈ H1.

��
Remark 8.3 The example of a one-dimensional Gaussian conditioned on being posi-
tive, constructed in Sect. 7, does not exactly satisfy the assumptions of Theorem 8.2
since the second-derivative of the transport map between γ1 and the conditioned
Gaussian p = f γ1 does not exist at every point in R. Nonetheless, the statement
of Theorem 8.2 still holds true in this case. In the example of Sect. 7, the optimal
transport map is explicit, ∇φ1 = F−1

p ◦ Fγ1 , where Fp and Fγ1 are the cumulative
distribution functions of p and γ1, respectively. Computing the derivatives of this map
we see that φ1 is twice-differentiable everywhere. Hence, the proof of Theorem 8.2
still goes through since ∇2φ1 must exists everywhere on the line ω1 + rh1.

Remark 8.4 The proof of Theorem8.2 shows that the optimal transportmap O between
γ and μ(dω) = f (ω1)γ (dω) is essentially the optimal transport map in R

d between
γd and f γd . This explains why we cannot use the optimal transport map on Wiener
space instead of the Brownian transport map, since the desired contraction properties
for the optimal transport maps in Rd are still unknown.

Remark 8.5 Inspection of the proof of Theorem 8.2 reveals that if θ : R
d → R

d

is a contraction of γd onto a target measure p, then one can construct a Cameron-
Martin contraction � : � → � of γ onto dμ(ω) := p(ω1)dγ (ω). Indeed, define
�t (ω) := ωt + tθ(ω1) − tω1, for t ∈ [0, 1], and repeat the computation in the proof
of Theorem 8.2. Note that, in general, � will not be the optimal transport map on the
Wiener space, unless θ is the optimal transport map on the Euclidean space.
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