

1 Oxytocin receptor function regulates neural signatures of pair bonding and fidelity in the

2 nucleus accumbens

4 Kimberly L. P. Long¹, Nerissa E. G. Hoglen^{1,2}, Alex J. Keip^{1,2}, Robert M. Klinkel¹, DéJenaé L.
5 See¹, Joseph Maa³, Jenna C. Wong³, Michael Sherman¹, and Devanand S. Manoli^{1*}

6

7 ¹Department of Psychiatry and Behavioral Sciences, Center for Integrative Neuroscience, Weill
8 Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of
9 California, San Francisco; San Francisco, CA 95158, USA.

10 ²Neurosciences Graduate Program, University of California, San Francisco; San Francisco, CA
11 95158, USA.

12 ³Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley CA
13 94720, USA.

14

15 *To whom correspondence should be addressed: devanand.manoli@ucsf.edu

16 **Abstract**

17 The formation of enduring relationships dramatically influences future behavior, promoting
18 affiliation between familiar individuals. How such attachments are encoded to elicit and reinforce
19 specific social behaviors in distinct ethological contexts remains unknown. Signaling via the
20 oxytocin receptor (Oxtr) in the nucleus accumbens (NAc) facilitates social reward as well as pair
21 bond formation between mates in socially monogamous prairie voles¹⁻⁹. How Oxtr function
22 influences activity in the NAc during pair bonding to promote affiliative behavior with partners and
23 rejection of other potential mates has not been determined. Using longitudinal *in vivo* fiber
24 photometry in wild-type prairie voles and those lacking Oxtr, we demonstrate that Oxtr function
25 sex-specifically regulates pair bonding behaviors and associated activity in the NAc. Oxtr function
26 influences prosocial behavior in females in a state-dependent manner. Females lacking Oxtr
27 demonstrate reduced prosocial behaviors and lower activity in the NAc during initial
28 chemosensory investigation of novel males. Upon pair bonding, affiliative behavior with partners
29 and neural activity in the NAc during these interactions increase, but these changes do not require
30 Oxtr function. Conversely, males lacking Oxtr display increased prosocial investigation of novel
31 females. Using the altered patterns of behavior and activity in the NAc of males lacking Oxtr during
32 their first interactions with a female, we can predict their future preference for a partner or stranger
33 days later. These results demonstrate that Oxtr function sex-specifically influences the early
34 development of pair bonds by modulating prosociality and the neural processing of sensory cues
35 and social interactions with novel individuals, unmasking underlying sex differences in the neural
36 pathways regulating the formation of long-term relationships.

37 **Introduction**

38 Long-term attachments between individuals are one of the most intriguing forms of social
39 behavior and are central to human interactions, from parent-child bonds to enduring relationships
40 between mates^{10–12}. Despite the importance of attachment for the organization of complex social
41 structures across species^{13,14}, little is known about the neural mechanisms mediating these
42 behaviors. Seminal work in socially monogamous prairie voles revealed that oxytocin and the
43 oxytocin receptor (Oxtr) are key modulators of pair bonding, *i.e.*, the formation of selective and
44 enduring attachments between mates. Pair bonded animals demonstrate both a preference for a
45 bonded partner (partner preference) and active rejection of novel potential mates (strangers)¹⁵.
46 Exogenous oxytocin in the brain facilitates the formation of partner preference in both male and
47 female prairie voles^{16,17}, while pharmacological inhibition of Oxtr disrupts the display of partner
48 preference after mating¹⁸. Defining the neural circuits that govern pair bonding and determining
49 how they are regulated by Oxtr are key to understanding social attachment behaviors. We recently
50 demonstrated that, strikingly, prairie voles lacking Oxtr display partner preference¹⁹. However,
51 Oxtr mutants display delayed development of partner preference and increased prosocial
52 behavior towards strangers, suggesting that Oxtr influences the patterns of social interactions that
53 facilitate pair bonding and controls the rejection of strangers²⁰.

54 A key site of oxytocin action in the brain is the nucleus accumbens (NAc). The NAc has
55 long been implicated in the reinforcement of behaviors ranging from addiction to innate displays
56 associated with social interactions, including mating, aggression, and reciprocal interactions that
57 mediate enduring attachments between mates^{1,2,21–25}. The NAc integrates input from regions
58 including the prefrontal cortex, thalamus, and amygdala as well as dopaminergic input from the
59 ventral tegmental area to regulate diverse functions associated with reward- and survival-related
60 behaviors^{21,26–29}. Neuromodulatory signals -- including oxytocin from the paraventricular nucleus
61 of the hypothalamus and serotonin from the dorsal raphe -- are also integrated within the NAc to
62 influence prosocial behaviors and social reward^{3,4,30–33}. In parallel to the reinforcement of

63 rewarding stimuli, subregions of the NAc also appear to mediate responses to aversive stimuli,
64 suggesting that components of the mesocorticolimbic system may control prosocial as well as
65 agonistic interactions between individuals^{34,35}. Compared to closely related but promiscuous vole
66 species, prairie voles exhibit dramatically enriched oxytocin binding in the NAc^{5,36,37}, and
67 knockdown of Oxtr expression specifically within the NAc disrupts pair bonding⁶. Neuronal activity
68 in the NAc in prairie voles evolves as a pair bond develops, such that ensembles responding to
69 partner approach expand in size over time³⁸. However, it remains unclear how the NAc responds
70 to complex social interactions in the context of attachment and how such activity is modulated by
71 Oxtr signaling.

72 Here, we utilize *in vivo*, longitudinal fiber photometry to examine NAc calcium activity
73 across pair bond development in male and female, wild-type (WT) and Oxtr null (Oxtr^{1-/-}) prairie
74 voles. We demonstrate that the NAc responds to various types of social interaction and that Oxtr
75 signaling regulates both pair bonding behaviors and behavior-related NAc activity in a sex-specific
76 manner. Together, these results demonstrate that Oxtr regulates the development of pair bonds
77 by modulating prosociality and neural processing of sensory and social interactions with novel
78 individuals.

79 **Results**

80 **Oxtr regulates NAc neural responses of naïve females to novel males.**

81 Our recent findings open questions about the precise role of Oxtr function for the formation
82 of a pair bond¹⁹. To test the effects of Oxtr function on neural activity in the NAc during pair
83 bonding and attachment behaviors, we implemented fiber photometry in WT and Oxtr^{1/-} voles of
84 both sexes. We examined NAc activity associated with social interactions during and after the
85 course of pair bond formation (Fig. 1a). Specifically, these assays included introduction to a WT,
86 opposite sex mate (partner); a partner preference assay; mating following estrus induction; acute
87 separation from and reunification with the partner; and exposure to a novel, WT, sexually naïve,
88 opposite sex animal (stranger). Importantly, this sequence allows us to compare dyadic social
89 interactions with novel and familiar animals before and after bond formation²⁰.

90 We virally expressed the fluorescent calcium indicator GCaMP6m under the synapsin
91 promoter in the medial NAc core and shell and implanted an optic fiber over the site of injection
92 (Fig. 1b, Extended Data Fig. 1). We examined calcium activity within the NAc as WT or Oxtr^{1/-}
93 voles of either sex freely interacted with a stimulus animal and engaged in specific social
94 interactions, such as chemosensory investigation, affiliation, mating, aggression, and defensive
95 behaviors (Fig. 1c; Table 1). We then extracted z-scored GCaMP6m fluorescence traces
96 surrounding individual social bouts (social touch preceded by at least 2 seconds of no interaction,
97 Fig. 1d) and generated peri-event time histograms.

98 In mice and other rodents, including prairie voles, Oxtr signaling modulates prosocial
99 behavior^{4,7,17,32}. To interrogate the role of Oxtr during female prairie voles' initial interactions with
100 a mate, we examined patterns of behavior and activity in the NAc during the introduction of a
101 naïve female to a naïve WT male partner (introduction, Fig. 1e). Compared to WT females, Oxtr^{1/-}
102 females exhibited less investigative and affiliative social interaction with males, reflected in both
103 the total amount of time spent in social interactions and the number of social bouts initiated (Fig.
104 1f, Extended Data Fig. 2a). Chemosensory investigation (*i.e.*, sniffing), including anogenital sniffs

105 and sniffs directed to other parts of the body, comprised a large proportion of these social
106 interactions and frequently preceded other behaviors (Fig. 1g,h). Markov chain modeling of
107 female behavior revealed that $Oxtr^{1/-}$ females were also less likely than WT females to transition
108 from anogenital investigation to side-by-side contact, a highly prosocial and affiliative behavior
109 that increases with pair bonding (Fig. 1i, Extended Data Fig. 2b-d). Thus, loss of $Oxtr$ decreases
110 social and affiliative displays by females to a novel partner.

111 We next tested whether these changes in behavior in $Oxtr^{1/-}$ females were accompanied
112 by changes in neural activity within the NAc. Activity during initial social interactions with males
113 was decreased in $Oxtr^{1/-}$ females compared to WT females in a behavior-specific pattern. $Oxtr^{1/-}$
114 females exhibited decreased peak fluorescence and area under the curve (AUC) at the onset of
115 anogenital investigations of males (Fig. 1j-o). In contrast, activity associated with non-anogenital
116 sniffs or bouts initiated by side-by-side contact did not differ between WT and $Oxtr^{1/-}$ females (Fig
117 1j-l, Extended Data Fig. 2e-l). The specificity of this difference to chemosensory investigation
118 suggests that $Oxtr$ regulates neural processing of male chemosensory cues in naïve female
119 prairie voles³⁹⁻⁴² and that disruptions of these responses may contribute to changes in prosocial
120 behavior towards novel males.

121
122 **Oxtr modulates neural and behavioral responses to novel males in a state-dependent**
123 **manner in female prairie voles.**

124 After establishing a role for $Oxtr$ in regulating naïve female responses to novel males, we
125 examined the effects of $Oxtr$ on the response of bonded females to familiar (partner) and novel
126 (stranger) males. Pair bonding results in increased prosocial and affiliative (huddling) behavior
127 with partners and a dramatic switch to agonistic (rejection) behavior directed towards
128 strangers^{14,20}. We tested how changes in bonding state affect behavioral and neural responses
129 to a male partner by comparing female responses at an early stage of bonding to responses to
130 the same male after pair bond formation (Extended Data Fig. 3a, Day 0: Introduction vs. Day 4:

131 Reunion). Consistent with previous studies, WT females exhibited reduced anogenital
132 investigation of a partner during reunion compared to their first encounter (Extended Data Fig.
133 3b,c). Oxr^{1/-} females showed low levels of anogenital investigation regardless of bonding status,
134 and WT and Oxr^{1/-} females did not differ in levels of investigation of a partner following bonding.
135 Similarly, both WT and Oxr^{1/-} females spent more time in affiliative side-by-side contact with their
136 familiar partner during reunion compared to the same male during the introduction (Extended
137 Data Fig. 3d). Broadly, WT and Oxr^{1/-} females exhibited similar patterns of behavior and activity
138 in the NAc after bonding. Activity in the NAc of both WT and Oxr^{1/-} females was higher during
139 non-anogenital investigations of familiar partners at the time of reunion than of novel partners
140 during introduction (Extended Data Fig. 3e-g), suggesting that interactions with familiar partners
141 elicit greater activity in the NAc after bonding. Furthermore, WT and Oxr^{1/-} females did not differ
142 in levels of activity in the NAc during anogenital investigations of partners following bonding
143 (Extended Data 3h-q). This indicates that Oxr is not required for the changes in activity in the
144 NAc during the investigation of partners that result from pair bond formation.

145 We next examined the responses of females to a novel male before and after bonding
146 (Extended Data Fig 3a, Day 0: Introduction vs. Day 6: Stranger rejection). WT females exhibited
147 reduced anogenital investigation of a novel male following bonding (stranger), compared to when
148 they were first paired with a novel male (partner). In contrast, Oxr^{1/-} females showed consistently
149 low levels of chemosensory investigation over the course of pair bonding. Furthermore, WT and
150 Oxr^{1/-} females did not differ in their neural responses to stranger males after bonding. Thus, loss
151 of Oxr specifically affects activity in the NAc during females' interactions with novel males early
152 in bonding and is not required for bonding-associated changes in NAc activity during anogenital
153 investigation of a partner or a novel stranger.

154 Mating accelerates pair bond formation in prairie voles^{43,44}. To understand the effects of
155 Oxr on behavior and activity in the NAc during the early stages of bonding, we examined activity
156 in females during mating. Loss of Oxr did not affect females' mating or social behaviors with the

157 partner 48 hours after animals were first introduced to each other and after estrus was induced
158 and synchronized across pairs (Extended Data Fig. 4a-e). During mounting attempts, activity
159 within the NAc gradually decreased below baseline, and this decrease was greater during
160 successful mounting attempts in which the male was able to proceed to intromission compared
161 to attempts after which intromission did not occur (Extended Data Fig. 4f-k). Furthermore, activity
162 within the NAc during most interactions did not differ between WT and Oxtr^{1/-} females, except for
163 side-by-side contacts, during which Oxtr^{1/-} females showed higher levels of activity (Extended
164 Data Fig. 4l-w). These results suggest that Oxtr exerts more significant effects on activity in the
165 NAc of female voles at the earliest stages of bonding and that its effects are highly dependent on
166 the bonding state.

167 The selective preference for a partner over a stranger is a hallmark of pair bonding^{43,45}. A
168 few hours of cohabitation with a novel male are sufficient for female prairie voles to form a pair
169 bond, reflected in the display of partner preference, *i.e.* a preference to engage in social
170 interaction and side-by-side contact with their partner rather than a novel, potential mate^{20,45}. We
171 therefore tested whether the loss of Oxtr impacts partner preference at the earliest point at which
172 WT females display such behavior. We placed females in a 3-chamber arena six hours after initial
173 introductions and allowed them to choose between interacting with their partner or a male stranger
174 (Fig. 2a). We found that loss of Oxtr did not disrupt female displays of partner preference. All
175 females, regardless of genotype, interacted significantly more with their partner than with the
176 stranger (Fig. 2b; Extended Data Fig. 5a,b) and displayed a clear preference to engage in
177 affiliative side-by-side contact with their partner (Fig. 2c). Neural responses during interactions
178 with the partner were also similar between WT and Oxtr^{1/-} females (Fig. 2f-h). This contrasts with
179 the differences observed during females' first encounter with the same partner male, again
180 suggesting that Oxtr function is not required for bonding-associated changes in neural responses
181 to partners.

182 While we did not observe a difference in females' interactions with their partner between
183 WT and $\text{Oxtr}^{1/-}$ animals during tests of partner preference, we observed differences in both
184 behavioral and neural responses to stranger males in $\text{Oxtr}^{1/-}$ females. In contrast to WT females,
185 which all showed at least two bouts of side-by-side contact with strangers, $\text{Oxtr}^{1/-}$ females avoided
186 stranger males (Extended Data Fig. 5c). Furthermore, $\text{Oxtr}^{1/-}$ females were less likely to enter the
187 stranger male's chamber (Fig. 2d-e). Neural responses to stranger males reflected these different
188 behavioral response patterns in $\text{Oxtr}^{1/-}$ females. Both peak and AUC of calcium activity in the NAc
189 during interactions with the stranger male were significantly decreased in $\text{Oxtr}^{1/-}$ females when
190 compared to both their own interactions with partners as well as WT females' interactions with
191 strangers (Fig. 2f-h, Extended Data Fig. 5d-l). Entry into the partner chamber elicited greater total
192 activity (AUC) than entry into the stranger chamber, regardless of genotype (Fig. 2i); however,
193 $\text{Oxtr}^{1/-}$ females exhibited greater NAc activity upon leaving the stranger chamber than WT females
194 (Fig. 2j). Our findings suggest that Oxtr controls prosocial behavior and associated neural activity
195 in the NAc in a state-dependent manner in females. In naïve females, Oxtr function promotes
196 prosocial behavior towards novel males and associated increases in neural activity in the NAc.
197 Strikingly, however, increases in prosocial behavior, huddling behavior, and activity in the NAc
198 following pair bonding occur independent of Oxtr function.

199

200 **Oxtr regulates NAc neural signatures of partner preference in male prairie voles.**

201 Previous studies, including our own recent findings, suggest that Oxtr function differs
202 between the sexes and that loss of Oxtr impacts females and males in different ways^{20,46}. We
203 therefore examined NAc neural signatures of pair bonding in male prairie voles to determine if the
204 influence of Oxtr function on pair bonding behavior and associated neural activity in the NAc also
205 differs between sexes. We first tested the effects of Oxtr on NAc activity prior to bond formation
206 during naïve males' first encounter with a WT female. We found that, while $\text{Oxtr}^{1/-}$ males show
207 increased prosocial behavior during early interactions with a female partner, they show no

208 differences in activity in the NAc associated with these behaviors. During the first introduction to
209 a naïve female partner, $\text{Oxtr}^{1/-}$ males displayed increased social investigation of females when
210 compared to WT males, contrary to patterns we observed in $\text{Oxtr}^{1/-}$ females (Fig. 3a,b, Extended
211 Data Fig. 6a-d). Moreover, $\text{Oxtr}^{1/-}$ males engaged in significantly less agonistic behavior (strikes)
212 towards females than WT males, with no mutant males displaying strikes towards females
213 (Extended Data Fig. 6e-h). In contrast to females, we found no differences in activity in the NAc
214 between WT and $\text{Oxtr}^{1/-}$ males during social bouts or specific social interactions, including both
215 anogenital and non-anogenital investigation (Fig. 3c-e, Extended Data Fig. 6i-q). Similarly, we
216 found no differences between WT and $\text{Oxtr}^{1/-}$ males in behavior or NAc activity during mating
217 (Extended Data Fig. 6r-dd). In naïve male prairie voles, Oxtr function thus appears to reduce
218 prosocial investigation of novel females and facilitates agonistic displays but does not appear to
219 modulate NAc activity under these conditions.

220 We next examined the effects of Oxtr loss on neural activity in the NAc associated with
221 pair bond formation in males. Compared to females, male prairie voles require longer periods of
222 cohabitation and mating before they display robust preference for partners^{20,45}. We therefore
223 examined partner preference in males five days after introduction to WT females, a period of
224 cohabitation that is sufficient for partner preference formation in WT males²⁰ (Fig. 3f). In contrast
225 to our observations in females, loss of Oxtr disrupted the display of partner preference in males
226 even after 5 days of cohabitation (Fig. 3g,h). The difference in preference between populations of
227 WT versus $\text{Oxtr}^{1/-}$ males was due to a subgroup of mutant males that strongly preferred interacting
228 with a stranger female over their partner (Fig. 3i-j, Extended Data Fig. 7a,b). Approximately one
229 half (5 out of 9) of $\text{Oxtr}^{1/-}$ males preferred to engage in side-by-side contact with the partner (index
230 score >0.5 , “partner-preferring”), while 3 out of 9 spent little time with the partner in favor of the
231 stranger (index score <-0.5 , “stranger-preferring,” Fig. 3h). We then analyzed activity in the NAc
232 to determine whether these behaviorally defined subpopulations of $\text{Oxtr}^{1/-}$ males also differed in
233 their neural responses in the NAc during social interactions. All males showed increased activity

234 in the NAc upon entering the partner's chamber versus that of the stranger and, inversely,
235 increased activity when exiting strangers' versus partners' chambers (Extended Data Fig. 7c-f).
236 Thus, approach towards partners (or departure from strangers) increases NAc activity in male
237 prairie voles independent of Oxtr function, consistent with prior work³⁸. However, activity differed
238 between subgroups during direct social interactions. Both WT and partner-preferring Oxtr^{1/-} males
239 showed significantly higher levels of activity during social interactions with partners when
240 compared to interactions with strangers (Fig. 3k-m, Extended Data Fig. 7g-p). Moreover, partner-
241 preferring Oxtr^{1/-} males showed higher levels of activity in the NAc during social interactions with
242 partners compared to WT males (Fig. 3m). In contrast, stranger-preferring Oxtr^{1/-} males showed
243 lower levels of activity during interactions with partners when compared to partner-preferring
244 Oxtr^{1/-} males, and no differences in activity in the NAc when comparing interactions with partners
245 or strangers. Thus, with the formation of partner preference in males, increased activity in the NAc
246 during interactions with partners versus strangers occurs independent of Oxtr function but is
247 further increased in the absence of Oxtr. In contrast, loss of Oxtr unmasks a population of males
248 that fail to display partner preference and show no difference in NAc activity during interactions
249 with partners versus strangers.

250 Given the intriguing difference in partner preference and activity in the NAc between
251 subpopulations of Oxtr^{1/-} males, we next tested whether this relationship is evident in WT males.
252 Despite robust preference for partners over strangers and higher levels of activity associated with
253 partner versus stranger interactions as a population, individual WT males showed large variation
254 in the difference between partner- and stranger-associated activity in the NAc, which did not
255 correlate with the amount of social interaction displayed with either female (Fig. 3n-p).

256 In contrast, Oxtr^{1/-} males that displayed a preference for their partner tended to have a
257 larger difference in partner- versus stranger-associated activity in the NAc when compared to
258 mutant males that displayed a preference for strangers ($p=0.064$ for peak and $p=0.077$ for AUC,
259 Fig. 3n). The difference between levels of activity in the NAc of Oxtr^{1/-} males in response to

260 partners or strangers strongly predicted the amount of social interaction displayed towards either
261 female. $Oxtr^{1/-}$ males with less neural difference between partner and stranger interactions
262 displayed a stronger preference for stranger females (Fig. 4o-p). These observations suggest that
263 $Oxtr$ function increases pair bonding-related behaviors in some males, including display of a
264 partner preference as well as associated neural activity in the NAc, but is not necessary for the
265 demonstration of partner preference or associated activity in others. $Oxtr$ may therefore function
266 during pair bond formation in males to reinforce both prosocial behaviors and increases in activity
267 in the NAc with partners or, alternatively, to suppress prosocial behavior during interactions with
268 strangers.

269

270 **$Oxtr$ regulates behavioral and neural trajectories of pair bonding in male prairie voles.**

271 Loss of $Oxtr$ reveals distinct populations of males that strongly prefer either a partner or
272 stranger. We therefore analyzed the behavior of these populations at different stages of pair
273 bonding to determine if the trajectories of social behaviors or patterns of activity in the NAc differed
274 between these groups or between WT and $Oxtr^{1/-}$ males. We found that changes in behavior and
275 NAc activity during pair bond formation in males can occur independent of $Oxtr$ function. We
276 compared chemosensory investigation (anogenital and non-anogenital) between the first
277 encounter with female partners (introduction) and either reunion with these partners or encounters
278 with novel strangers during stranger rejection and found no differences between WT and $Oxtr^{1/-}$
279 males (Extended Data Fig. 8a-d). All males displayed increased side-by-side contact with the
280 familiar partner upon reunion compared to the naïve partner during the introduction. Notably,
281 stranger-preferring $Oxtr^{1/-}$ males did not display higher levels of agonistic behavior towards their
282 partners (Extended Data Fig. 8e-h). Regardless of $Oxtr$ function, activity in the NAc was greater
283 during non-anogenital sniffs of female partners upon reunion compared to the introduction
284 (Extended Data Fig. 8i-n). This suggests that, as with females, cohabitation enhances specific
285 partner-associated activity in the NAc in males independent of $Oxtr$ function.

286 Given the emergence of distinct populations of $\text{Oxtr}^{1/-}$ males that strongly prefer partners
287 or strangers, we tested whether these populations might be distinguishable at the initial stages of
288 pair bonding. We examined male behavior and neural activity during the first interactions with a
289 partner to determine if patterns of behavior or activity in the NAc could predict the future
290 preference for partners or strangers (Fig. 4a). Naïve $\text{Oxtr}^{1/-}$ males engage in more prosocial
291 interactions when first introduced to a female (Fig. 4b). We found no difference in the total amount
292 of social behaviors when we compared partner- versus stranger-preferring $\text{Oxtr}^{1/-}$ males (Fig. 4b,
293 Extended Data Fig. 8o-q). However, examining the specific patterns of behavior during social
294 interactions revealed significant differences between these populations. Stranger-preferring $\text{Oxtr}^{1/-}$
295 males tended to spend more of their interaction time engaged in highly affiliative side-by-side
296 contact compared to partner-preferring $\text{Oxtr}^{1/-}$ males, who spent more time engaged in anogenital
297 investigation (Fig. 4c, Extended Data Fig. 8p). Moreover, the amount of time $\text{Oxtr}^{1/-}$ males
298 engaged in anogenital investigation and side-by-side contact during initial interactions with a
299 partner significantly correlated, in opposing directions, with levels of partner- and stranger-
300 directed side-by-side contact when given a choice between either female (Fig. 4d, Extended Data
301 Fig. 8r,s). Thus, behavior exhibited by $\text{Oxtr}^{1/-}$ males during the first 30 minutes of interaction with
302 a female can predict patterns of partner preference 5 days later (Fig. 4e, Extended Data Fig. 8t-
303 x), indicating that the two subpopulations are immediately identifiable based on their behavior.

304 Stranger-preferring $\text{Oxtr}^{1/-}$ males differ from partner-preferring $\text{Oxtr}^{1/-}$ and WT males in
305 both their amount of anogenital investigation and side-by-side contact (Fig. 4c). We examined
306 whether these behavioral differences were associated with differences in activity in the NAc during
307 social interactions. During the earliest interactions with a partner, activity in the NAc associated
308 with anogenital investigation was greater in $\text{Oxtr}^{1/-}$ males that went on to prefer strangers
309 compared to those that went on to prefer partners (Fig. 4i-k). In contrast, activity in the NAc
310 associated with non-anogenital investigation was similar across all males. Consistent with our
311 behavioral observations, the mean neural activity following an anogenital sniff during initial

312 interactions with a female strongly correlated with affiliative behavior displayed towards partners
313 and strangers five days later in individual $Oxtr^{1/-}$, but not WT, males. (Fig. 4l-m). Neural activity in
314 the NAc of $Oxtr^{1/-}$ males was strongly inversely correlated between early and late interactions
315 with the same female. Specifically, partner-preferring $Oxtr^{1/-}$ males showed lower levels of activity
316 following anogenital investigations during the introduction and higher levels of activity during
317 social interactions with partners 5 days later. In contrast, stranger-preferring $Oxtr^{1/-}$ males
318 displayed the opposite pattern of activity (Fig. 4n). We observed no correlation between early and
319 future partner-related activity in WT males (Fig. 4n,o). Thus, in the absence of Oxr function, early
320 anogenital investigation of novel females and associated neural activity in the NAc may rapidly
321 influence how males bond during cohabitation and even predict future preference.

322 We observed that stranger-preferring $Oxtr^{1/-}$ males spent significantly more time in side-
323 by-side contact and longer bouts of this contact with partner females during initial interactions
324 than both WT males and partner-preferring $Oxtr^{1/-}$ males (Fig. 4p,q). We analyzed the dynamics
325 of and relationship between prosocial side-by-side contact, activity within the NAc, and future
326 preference for partners or strangers. In rodents, social interactions are typically initiated by
327 chemosensory investigations that inform animals of each other's identity (e.g., species, sex,
328 health, reproductive status, etc.)^{47,48}. Consistent with this observation, the majority (73.8%) of
329 side-by-side events during introductions occurred following sniff investigations. Therefore, we
330 examined NAc calcium activity at the transition from sniffs to bouts of side-by-side contact. As
331 with anogenital investigations alone, the transition from such sniffs to side-by-side contact during
332 initial interactions was associated with higher peak activity in the NAc in future stranger-preferring
333 $Oxtr^{1/-}$ males (Fig. 4r-t). Similarly, mean NAc neural responses at the onset of such transitions
334 were strongly correlated with patterns of preference for partners or strangers 5 days later in $Oxtr^{1/-}$,
335 but not WT, males (Extended Data Fig. 8y-bb). The dynamics of chemoinvestigation and
336 prosocial behaviors and the associated neural activity in the NAc during the first interactions of
337 $Oxtr^{1/-}$ males with a novel female can therefore predict future preference for and neural responses

338 to partners and strangers. In the absence of Oxtr, higher levels of activity in the NAc following
339 anogenital investigations correlate with increased prosocial behavior during males' initial
340 interactions with a partner female, but a preference for a stranger female in the future. In contrast,
341 lower levels of NAc activity upon introduction correlate with increased chemoinvestigation and
342 fewer initial prosocial behaviors, but a robust later preference for these females. Thus, from the
343 first interaction between a male vole and his female partner, Oxtr function modulates neural
344 responses to chemosensory information towards a common pair bonded outcome. Loss of Oxtr
345 unmasks a population of males that show a robust stranger preference, even after prolonged
346 cohabitation with a partner. These findings suggest that Oxtr function works to stabilize a range
347 of sensory responses and social behaviors towards common and less-varied patterns of
348 interactions to promote social monogamy in male prairie voles.

349 **Discussion**

350 Adult attachments are comprised of nuanced and finely tuned behaviors under complex
351 neural and hormonal control. To examine neural activity associated with the formation of long-
352 term social attachments, we implemented fiber photometry in the NAc, a key node in the circuitry
353 that mediates pair bonding in socially monogamous prairie voles, and examined activity in this
354 region across pair bond formation and related attachment behaviors. We compared activity
355 between wild-type animals and those lacking Oxtr in both males and females. We found that
356 activity in the NAc during interactions with partners diverges from that with strangers over the
357 course of pair bonding. Loss of Oxtr has opposing effects on specific pair bond-related social
358 behaviors and associated NAc activity between males and females. Strikingly, in Oxtr^{1/-} males,
359 behavior and activity in the NAc during the first interactions with potential mates strongly predicts
360 future preference for partners or strangers 5 days later. Critically, these interrogations would not
361 have been possible without the integration of *in vivo* calcium recordings, molecular genetics, and
362 ethological approaches^{49,50}.

363 Sex differences within the NAc may arise from intrinsic properties of neurons within this
364 region to influence activity within the NAc in sex-specific ways⁵¹⁻⁶⁶. We recently demonstrated
365 that loss of Oxtr unmasks sex differences in gene expression in the NAc that are not found in
366 wild-type animals²⁰. Thus, the absence of Oxtr signaling during development may also contribute
367 to the differences we observed in patterns of activity in the NAc between male and female Oxtr¹⁻
368 voles⁵¹⁻⁵⁷. Alternatively, or in combination, such sex differences in the NAc may arise from Oxtr-
369 regulated inputs to this region that differ between males and females^{3,4,58-61,67-69}. Consistent with
370 this model, circuits that differ between the sexes influence the function of less dimorphic brain
371 regions to generate sex-typical neural activity and behavior across species⁷⁰⁻⁷². Our observations
372 that loss of Oxtr has different, and even opposing, effects on prosocial behaviors and activity in

373 the NAc between males and females may reflect that Oxtr signaling and other neuromodulatory
374 pathways facilitating pair bonding evolved in prairie voles to act on ancestral, sexually dimorphic
375 neural circuits^{13,73,74}. Such neuromodulation may thus influence these pathways in prairie voles
376 and other monogamous species to generate more monomorphic and synchronized reciprocal
377 patterns of behavior to promote long-term attachment between mates^{20,75–83}.

378 In the absence of Oxtr function, we find that a population of naïve males already contains
379 two distinct classes. These populations are distinguished by whether a male shows a robust
380 preference for his “partner” or a novel “stranger” following days of cohabitation with the partner.
381 Notably, whether an Oxtr^{1/2} male will ultimately prefer the partner female can be predicted by
382 social behavior and neural activity during his first interactions with that female “partner.” The
383 underlying biology of these two populations remains unknown; however, stranger-preferring
384 males may constitute a genetically distinct population that is less responsive to Oxtr-independent
385 pathways that influence males’ propensity for pair bond formation^{84–86}. Alternatively, the distinct
386 prosocial behavior displayed by stranger-preferring males may impact females’ reciprocal social
387 behavior in such a way that males prefer not to continue interacting when given a choice²⁰. The
388 predictive relationship between initial social interactions and the fidelity of future bonds in the
389 absence of Oxtr suggests that Oxtr signaling functions to reinforce attachment between mates or
390 even to override other pathways controlling social behaviors in animals with a lower propensity
391 for pair bond formation^{81–83}. By decorrelating variation in behavior and neural activity during initial
392 social interactions between partners from the social and neural mechanisms that mediate pair
393 bonding between them, Oxtr may have evolved to reduce promiscuity amongst male prairie voles,
394 decrease sexual dimorphism in behavior, and reinforce behaviors that facilitate enduring
395 attachments between mates.

396 By observing a wide range of social interactions across pair bonding, we investigated how
397 modulatory mechanisms that have evolved to facilitate pair bonding influence both the behavior
398 and neural activity that underlie long-term social attachments^{19,20,72}. The effects of Oxtr signaling
399 vary across time and sex, supporting a model in which other neuromodulatory pathways intersect
400 with Oxtr function during bonding and attachment to influence prosocial and agonistic behaviors
401 in a state-dependent manner. Extending these circuit and behavioral investigations to other brain
402 regions will enable us to determine how Oxtr and other signaling systems influence the activity of
403 specific neural populations to control distinct modules of attachment, shedding light on the
404 evolutionary processes driving social monogamy and the complex patterns of reciprocal
405 interactions that constitute enduring relationships.

406 **Figure and Table Legends**

407 **Figure 1: Loss of Oxt in naive females disrupts NAc neural responses to novel males.**

408 **a**, Timeline of assays. **b**, Injection and fiber targeting in the medial NAc (scale bar, 50um). **c**,
409 Photometry setup to image GCaMP6m during dyadic interactions in freely-moving prairie voles.
410 **d**, Example GCaMP6m trace at the start of the introduction, with behavior events overlaid
411 (anogenital [AG] sniff, orange; non-AG sniff, yellow). Behavior events separated by less than 2
412 seconds were considered part of a single social bout. **e**, Introduction procedure. A wild-type (WT)
413 or Oxt^{1/2} female was placed into a clean cage, and a WT male was then introduced. **f**, Total
414 percent of assay time engaged in (left), number of (middle), and median duration of (right) social
415 bouts exhibited by females (for all plots, WT n=8, Oxt^{1/2} n=9 voles). **g**, Mean breakdown of social
416 contact by the percentage of contact time engaged in AG sniffing, non-AG sniffing, and side-by-
417 side contact. **h**, Percentages of social bouts initiated with non-AG sniff, AG sniff, or side-by-side
418 contact. **i**, Left, schematic of Markov modeling of behavior, focusing on transitions from one social
419 behavior to another. Right, heat maps of transition probabilities. **j**, Mean peri-event time histogram
420 (PETH) of z-scored GCaMP6m ΔF/F by genotype aligned to the onset of non-AG sniffs (WT
421 n=391 traces; Oxt^{1/2} n=272 traces). At the base of the plot is an adjusted boxplot of the durations
422 of the initiating non-AG sniff. **k**, Swarm plot of peak z-scored ΔF/F values following non-AG sniffs.
423 **l**, Area under the curve (AUC) values from z-scored ΔF/F traces following non-AG sniffs. **m**, Mean
424 PETH by genotype aligned to AG sniffs. The red line indicates time points at which mean z-scored
425 ΔF/F differ between WT and Oxt^{1/2} females (WT n=268 traces; Oxt^{1/2} n=161 traces). **n**, Peak z-
426 scored ΔF/F values. **o**, AUC values from z-scored ΔF/F traces. Detailed statistics are presented
427 in Extended Data File 1. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. ac, anterior commissure;
428 AG, anogenital; WT, wild-type; AUC, area under the curve.

429

430 **Figure 2: Loss of Oxt disrupts female neural and behavioral responses to stranger
431 males.**

432 **a**, Timeline and schematic of the introduction and partner preference test (PPT) for females. **b**,
433 Percent of assay time spent engaged in social bouts with either the partner (purple) or the stranger
434 (gray) (for all plots, WT n=8, Oxtr^{1/-} n=10 voles). **c**, Side-by-side contact preference index scores.
435 Preference index scores of 1 indicate exclusive side-by-side contact with the partner, and -1 with
436 the stranger. **d**, Number of entries to the partner or stranger chambers. **e**, Chamber entry
437 preference index scores. **f**, Mean PETH of z-scored GCaMP6m $\Delta F/F$ by stimulus animal aligned
438 to the onset of social bouts (WT_{Partner} n=539 traces; WT_{Stranger} n=444 traces; Oxtr^{1/-}_{Partner} n=732
439 traces; Oxtr^{1/-}_{Stranger} n=304 traces). At the base of the plot is an adjusted boxplot of the durations
440 of the initiating behavior. The red line indicates time points at which mean z-scored $\Delta F/F$ differs
441 between partner and stranger-related activity in Oxtr^{1/-} females. **g**, Swarm plot of peak z-scored
442 $\Delta F/F$ values. **h**, AUC values from z-scored $\Delta F/F$ traces. **i**, Left, mean $\Delta F/F$ PETH aligned to entries
443 to either the partner chamber or stranger chamber (WT_{Partner} n=184 traces; WT_{Stranger} n=182 traces;
444 Oxtr^{1/-}_{Partner} n=160 traces; Oxtr^{1/-}_{Stranger} n=115 traces). **j**, Peak z-scored $\Delta F/F$ values. **k**, AUC
445 values from z-scored $\Delta F/F$ traces. **l**, Left, mean $\Delta F/F$ PETH aligned to exits from either the partner
446 chamber or stranger chamber (WT_{Partner} n=187 traces; WT_{Stranger} n=195 traces; Oxtr^{1/-}_{Partner} n=150
447 traces; Oxtr^{1/-}_{Stranger} n=121 traces). **m**, Peak z-scored $\Delta F/F$ values. **n**, AUC values from z-scored
448 $\Delta F/F$ traces. Detailed statistics are presented in Extended Data File 1. *p<0.05, **p<0.01,
449 ***p<0.001, ****p<0.0001. WT, wild-type; PETH, peri-event time histogram; AUC, area under the
450 curve.

451

452 **Figure 3: Oxtr regulates NAc neural signatures of partner preference in male prairie
453 voles.**

454 **a**, Introduction of a WT or Oxtr^{1/-} male to a WT female partner. **b**, Total percent of assay time
455 engaged in (left), number of (middle), and median duration of (right) social bouts exhibited by
456 males (WT n=11, Oxtr^{1/-} n=9). **c**, Mean $\Delta F/F$ PETH by genotype aligned to the onset of social
457 bouts (WT n=750 traces from 11 animals; Oxtr^{1/-} n=865 traces from 9 animals). At the base of

458 the plot is an adjusted boxplot of the durations of the initiating behavior. **d**, Peak z-scored $\Delta F/F$
459 values. **e**, AUC values from z-scored $\Delta F/F$ traces. **f**, Schematic of the PPT, conducted on day 5
460 in males. **g**, Percent of assay time spent engaged in social bouts with either the partner (purple)
461 or stranger (gray) (WT n=10, Oxr^{1/-} n=9). **h**, Left, social interaction preference index scores.
462 Right, side-by-side contact preference index scores. Preference for partner or stranger was
463 determined by whether side-by-side preference index scores were greater than 0.5 (partner-
464 preferring, PPref) or less than -0.5 (stranger-preferring, SPref). For all following plots, WT n=10,
465 Oxr^{1/-} PPref n=5, Oxr^{1/-} SPref n=3 voles. **i**, Example behavior rasters from a WT, Oxr^{1/-} PPref,
466 and Oxr^{1/-} SPref male. **j**, Mean (+/- s.e.m.) cumulative duration plots of social interaction with
467 either the partner or stranger across the 3-hour assay. **k**, Mean $\Delta F/F$ PETH aligned to social bouts
468 with either the partner or stranger. The red line indicates time points at which mean z-scored $\Delta F/F$
469 differ between partner- and stranger-related activity (WT_{Partner} n=932 traces and WT_{Stranger} n=1193
470 traces; Oxr^{1/-} PPref_{Partner} n=296 traces and PPref_{Stranger} n=500 traces; Oxr^{1/-} SPref_{Partner} n=111
471 traces and SPref_{Stranger} n=821 traces). **l**, Peak $\Delta F/F$ values. **m**, AUC values. **n**, Per animal
472 difference (partner - stranger) between partner-elicited and stranger-elicited peak $\Delta F/F$ (left) and
473 AUC (right). **o**, Correlations of partner-stranger AUC difference and percent of time spent in social
474 interactions with the partner. **p**, Correlations of partner-stranger AUC difference and percent of
475 time spent in social interactions with the stranger. Detailed statistics are present in Extended Data
476 File 1. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. PPT, partner preference test; WT, wild-type;
477 PPref, partner-preferring; SPref, stranger-preferring; AUC, area under the curve; norm., Box Cox
478 normalized.

479

480 **Figure 4: Oxr regulates behavioral and neural trajectories of pair bonding in male prairie
481 voles.**

482 **a**, Examination of behavior and neural activity from Day 0 (introduction) in relation to metrics from
483 Day 5 (PPT). **b**, Percent of time engaged in social interaction with a newly partnered female during

484 the introduction, plotting only animals from which data were successfully collected during both
485 introduction and PPT. Individual animals are colored according to PPT behavior profile (for all
486 plots, WT n=10, Oxtr^{1/-} PPref n=3, Oxtr^{1/-} SPref n=3). **c**, Mean breakdown of social interaction
487 during the introduction by type of social touch. **d**, Heat maps of Pearson correlations between
488 introduction behavior (% of contact time) and PPT partner or stranger side-by-side contact (% of
489 assay time). **e**, Linear regression of introduction behavior to PPT behavior. X-axis: Percent of
490 social touch during the introduction spent AG sniffing (left) or in side-by-side contact (right). Y-
491 axis: Percent of PPT time spent in side-by-side contact with the partner. **f**, Mean NAc $\Delta F/F$ PETH
492 aligned to non-AG sniffs during the introduction (WT n=338 traces; Oxtr^{1/-} PPref n=138 traces;
493 Oxtr^{1/-} SPref n=123 traces). At the base of the plot is an adjusted boxplot of the durations of the
494 initiating behavior. **g**, Peak z-scored $\Delta F/F$ values. **h**, AUC values from z-scored $\Delta F/F$ traces. **i**,
495 Mean $\Delta F/F$ PETH aligned to AG sniffs during the introduction (WT n=187 traces; Oxtr^{1/-} PPref
496 n=129 traces; Oxtr^{1/-} SPref n=42 traces). **j**, Peak z-scored $\Delta F/F$ values. **k**, AUC values from z-
497 scored $\Delta F/F$ traces. **l-o**, Linear regressions comparing AG sniff-related NAc activity and PPT
498 behavior or neural data. X-axis: normalized (norm.) AUC at the onset of AG sniff bouts during the
499 introduction, averaged by animal. Y-axis: PPT side-by-side contact (l-m) or PPT normalized AUC
500 surrounding social bouts, averaged by animal (n-o). **p**, Left, percent of introduction time spent in
501 side-by-side contact. Right, number of side-by-side contact events during the introduction. **q**,
502 Cumulative distribution functions (CDF) for side-by-side contact bout durations per animal. Dotted
503 lines show the mean (+/- s.e.m.) of the 95th percentile values from each group. **r**, Mean PETH
504 aligned to transitions from sniffing to side-by-side contact, centered at the onset of the sniff (no
505 filtering for behavior in the 2 seconds prior to sniff onset; WT n=97 traces; Oxtr^{1/-} PPref n=98
506 traces, Oxtr^{1/-} SPref n=82 traces). **s**, Peak z-scored $\Delta F/F$ values. **t**, AUC values from z-scored
507 $\Delta F/F$ traces. Detailed statistics are presented in Extended Data File 1. *p<0.05, **p<0.01,
508 ***p<0.001, ****p<0.0001. WT, wild-type; PPref, Oxtr^{1/-} partner-preferring; SPref, Oxtr^{1/-} stranger-

509 preferring; AG, anogenital; PPT, partner preference test; AUC, area under the curve; norm., Box
510 Cox normalized; CDF, cumulative distribution function.

511

512 **Table 1: All behaviors scored during dyadic interactions and their definitions.**

513 **Methods**

514 Animals

515 All animal care and procedures were approved by the University of California, San
516 Francisco, Institutional Animal Care and Use Committee. A total of 76 adult (55-78 days at the
517 start of behavior assays), sexually naive prairie voles (*Microtus ochrogaster*) were used in this
518 study. Of these, 31 animals were rejected for experiments or analyses due to death, poor signal
519 quality, head cap loss, ataxia, excessive aggression towards the partner, mistargeting of the fiber,
520 or incorrect genotyping. We used both male and female voles, with sex determined by the
521 presence or absence of testes at weaning. Voles were bred in our laboratory from a population
522 that originated from systematic outbreeding of a wild-caught stock captured near Champagne, IL,
523 and housed at our facilities at the University of California, San Francisco. Oxr^{1/-} voles were
524 derived from a line that we previously generated¹⁹, and wild-type (WT) voles were obtained from
525 the same outcrossing background line. Breeding voles were maintained in large, plastic cages
526 (10½" W x 19" L x 8" H, Ancare, R20 Rat/Guinea Pig caging) on Paperchip bedding (Shepherd
527 Specialty Papers). Weaned voles were maintained at our breeding facility in clear plastic cages
528 (45 x 25 x 15 cm, Innovive, Innocage IVC Rat Caging) on Paperchip bedding until they were
529 transferred to our lab housing facility, at which point they were transferred to Sani-Chips woodchip
530 bedding (P.J. Murphy - Forest Products Corp.). Voles were weaned at 21-25 days into group-
531 housed cages, with 2-6 total same-sex siblings or similarly aged weanlings in a cage. Group-
532 housed cages were given 2 cotton nestlets and a large PVC elbow tube. Voles had *ad libitum*
533 access to food and water. When animals were paired, voles were housed in 30.80 x 30.80 x 18.72
534 cm cages (Thoren, Maxi-Miser Model #4) on Sani-Chips bedding and provided with 2 cotton
535 nestlets and 2 small plastic tubes. All animals were kept on a 14:10 light-dark cycle.

536

537 Genotyping

538 At the time of weaning, we collected a small tail sample from each animal and digested
539 the tissue in lysis buffer with proteinase K (Sigma-Aldrich, St. Louis, MO). We conducted a
540 polymerase chain reaction for the *Oxtr* gene using the following primers: Forward
541 ACTGGAGCTTCGAGTTGGAC; Reverse ATGCCACCAC TTGCAAGTA. The resulting product
542 was digested using *Xcm*I enzyme (New England Biolabs, Ipswich, MA) and run on a 2% agarose
543 gel. A second tail sample was collected after an animal concluded all assays, and genotyping was
544 repeated for confirmation. Animals whose post-experiment samples did not match the original
545 genotyping were excluded from all analyses.

546

547 Surgery

548 Voles aged P29-55 were anesthetized with isoflurane and administered bupivacaine
549 subcutaneously at the incision site. Using a stereotaxic frame (Kopf Instruments, Tujunga, CA), a
550 craniotomy was made +1.7 mm anterior and +1.2 mm lateral relative to bregma, and a 33-gauge
551 cannula was lowered to -5.1 mm relative to bregma. We injected a 5:1 mixture of AAV8-Syn-
552 GCaMP6m-WPRE (1×10^{13} GC/mL, Vigene Biosciences, Inc., Rockville, MD) and AAV8-CAG-
553 tdTomato (5×10^{12} GC/mL, Dr. Ed Boyden Lab, UNC Vector Core). We infused 0.7-1 μ L of virus
554 at a rate of 0.1 μ L/min via an automated injection system (Genie Touch, Kent Scientific
555 Corporation, Torrington, CT). The cannula was left in place for ten minutes to allow for viral
556 diffusion, then was slowly removed to minimize viral infection along the needle tract. Following
557 viral injection, 2 microscrews were implanted into the skull to provide additional stability for the
558 dental cement. A fiber optic cannula (400 μ m-diameter silica core, 0.48 NA, 6.5 mm length with
559 flat tip) with metal ferrule (1.25 mm base dimension, Doric Lenses, Inc., Québec, Canada) was
560 implanted 0.05 mm above the injection site and secured to the skull with Metabond acrylic cement.
561 Additionally, we created a well with which to hold a silicone elastomer that would provide extra
562 stability for the fiber optic patch cable: A small hole was drilled into the cap of a microcentrifuge
563 tube. The cap was placed upside down over the implant with the fiber ferrule protruding through

564 the hole. The cap was secured to the Metabond with Ortho-Jet acrylic resin. Animals received
565 postoperative buprenorphine and recovered for two to three weeks prior to testing. After three
566 weeks, we checked each animal's signal quality; animals with fluctuations in the 488 nm channel
567 <5% of baseline (*i.e.*, the signal output while the animals were still) and/or insufficient signal output
568 in the 581 nm channel (<10% of background fluorescence) were excluded from further study.

569

570 Fiber Photometry

571 Photometry experiments were conducted with an RZ5P Base Processor and Synapse
572 software (Tucker-Davis Technologies, Alachua, FL). The RZ5P modulated a two-channel LED
573 driver (Doric Lenses) controlling two connectorized LEDs (465 nm and 560 nm, Doric Lenses).
574 The LEDs were coupled to a two-color filter cube system (5 port Fluorescence Mini Cube, Doric
575 Lenses) allowing transmission of 465-480 nm light and 555-570 nm light for excitation of GCaMP
576 and tdTomato, respectively, and capture of 500-540 nm and 580-680 nm light for monitoring brain
577 fluorescence. Light was transmitted to a 1x1 fiber-optic rotary joint (Doric Lenses), which coupled
578 to a patch cable (400 μ m-diameter silica core, 0.48 NA, with 1.1 mm hytrel protective jacket, Doric
579 Lenses) connected to the animal's fiber optic cannula with a bronze or zirconia mating sleeve.
580 Emission was filtered by the mini cube and captured by two 2151 Femtowatt Photoreceivers
581 (Newport Corporation, Irvine, CA). The RZ5P recorded raw broadband photoreceiver traces. A
582 USB camera was mounted above the cage and recorded behavior at 20 frames per second. Both
583 photometry and camera recordings were controlled by the Tucker-Davis Technologies Synapse
584 software, with camera frames and photometry samplings time stamped for later synchronization.

585

586 Behavior

587 Photometry procedures and habituation: All procedures were carried out during the light
588 cycle. Introductions occurred between 08H00 and 12H00, and all other assays occurred between
589 12H00 and 20H00. To habituate animals to fiber tethering prior to testing, implanted voles were

590 connected to a patch cable, placed in a clean cage, and given 30 minutes to habituate to fiber
591 tethering at least 24 hours before social behavior tests began. On the day of an assay, voles were
592 transferred from the housing room to the procedure room at least half an hour prior to testing.
593 Voles were briefly restrained by the experimenter, and a patch cable was connected to the fiber
594 optic implant. The cable was additionally secured to the cannula via a silicone elastomer (Ecoflex,
595 Smooth-On, Macungie, PA). During all assays, all tubes, food hoppers, and water bottles were
596 removed from the cage. An experimenter remained in the room away from the cage to monitor
597 signal quality, fiber tangling or damage, and aggression. If tangling of the fiber occurred, or if voles
598 chewed the fiber, the experimenter intervened to untangle the fiber or discourage the mischievous
599 vole with a loud snap of the fingers. We terminated an assay a) if excessive chewing continued,
600 b) if the fiber was irreparably damaged, or c) if 3 bouts of highly aggressive tussling occurred.

601 Introductions: After attaching the patch cable, the vole was placed in a clean cage and
602 given at least 5 minutes to habituate to fiber placement. An age-matched, opposite-sex prairie
603 vole was then introduced to the cage, and behavior was recorded for 30 minutes.

604 Mating: 24 hours after the introduction, a clear, plastic barrier with 1 cm-diameter holes
605 was placed into the cage to separate the male and female. Each side was given one plastic tube
606 and half of the nest. The following day, the implanted animal was connected to a patch cable and
607 given at least 5 minutes to habituate to fiber placement. The barrier was then removed, and
608 behavior was recorded for 30 minutes.

609 Partner preference test (PPT): A PPT was conducted 6 hours after pairing for females, or
610 3 days after mating for males. For females, animals were disconnected from the photometry
611 system after the conclusion of the 30-minute introduction, and the cage was assembled and
612 placed in the housing room until the 6 hours had elapsed. The PPT consists of a 3 chamber arena
613 with an open top and 10 x 32in walls. Dividers extended 2in into the arena on either side to
614 separate the apparatus into 3 equal-sized chambers. The partner and an age-matched, opposite-
615 sex stranger are tethered on either end of the arena, and the subject is given free access to all

616 chambers for 3 hours. To begin the assay, the implanted animal was connected to a patch cable,
617 placed in the blocked-off center of the apparatus, and given at least 5 minutes to habituate to fiber
618 tethering. The central barriers were then removed, and recordings lasted 3 hours. The placement
619 of the partner and stranger relative to the orientation of the room were varied randomly by vole.

620 Separation and reunification: The implanted vole was connected to the patch cable and
621 given at least 5 minutes to habituate to fiber placement. The partner vole was then removed from
622 the home cage and placed in a separate, clean cage out of sight of the experimental vole. After
623 one hour of separation, the partner was returned to the home cage, and behavior was recorded
624 for 30 minutes.

625 Stranger rejection: The implanted vole was connected to a patch cable and given at least
626 5 minutes to habituate to fiber placement. The partner vole was then removed from the home
627 cage and placed in a separate, clean cage out of sight of the experimental vole. After one hour of
628 separation, a novel, age-matched, opposite-sex vole was placed in the home cage, and behavior
629 was recorded for 20 minutes.

630

631 Behavioral data analysis

632 Behavior scoring: Behavior was hand-scored frame by frame with the open-source
633 software Boris⁸⁷. Behaviors scored and their criteria are detailed in Table 1. The TDT photometry
634 software recorded time stamps of each acquired behavior video frame as well as time stamps of
635 neural data, allowing for synchronization of the two data streams. Scoring was conducted by
636 independent observers blind to genotype and partner location.

637 For each animal, we quantified the number, total duration as percentage of the assay
638 duration, and mean or median bout duration in seconds of each behavior and of social bouts. As
639 described in Table 1, a social bout was defined as a sequence of behaviors initiated by non-AG
640 sniffing, AG sniffing, or side-by-side contact, in which each behavior within the sequence was
641 separated by less than 2 seconds of no interaction. For the PPT, chamber entries and exits were

642 scored when the animal placed more than half of its body into an adjacent chamber. The start of
643 an assay was defined as the moment when the stimulus animal was placed in the cage (having
644 all 4 paws on the floor of the cage) or when the barriers dividing animals were fully removed from
645 the cage (reaching the top edge of the cage or arena).

646

Behavior	Description/Criteria
Non-anogenital (non-AG) sniff	Social touch in which the snout of the implanted animal makes contact with face or flank, but not the anogenital zone (see below) of the stimulus animal.
Anogenital (AG) sniff	Social touch in which the snout of the implanted animal makes contact with the anogenital region (closest to the tail and the surrounding hindquarters, excluding the spine and back).
Side-by-side contact	Social touch in which more than 50% of the implanted animal's flank is in contact with the stimulus animal.
Social bout	A sequence of non-AG sniffing, AG sniffing, and/or side-by-side contact separated by less than 2 seconds of no interaction.
Mounting	A male vole approaches from behind and places its forequarters on the hindquarters of a female vole. The start of a mount was defined as the moment the male grasps the female's flank with its forepaws. A mount was scored for a female vole when she received mounting from a male. (Female mounting was extremely rare; we observed one instance out of all females in this study.)

Intromission	Pelvic thrusting of a male while in the mounting position. Intromission was scored for a female when a female received intromission.
Strike	A lunge, bite, or kick by the experimental vole directed towards the stimulus animal.
Defensive strike	A lunge or strike by the experimental vole following the receipt of aggression or social touch from a stimulus animal.
Tussle	A highly aggressive rolling fight in which both voles are biting and/or wrestling.
Aggression receipt	The receipt of a strike or defensive strike by the experimental vole from a stimulus vole.
Defensive rear	A defensive posture in which both forepaws are raised off the ground while oriented towards the stimulus vole.

647 **Table 1: All behaviors scored during dyadic interactions and their definitions.**

648

649 Photometry Analysis

650 We illuminated each channel at sinusoidally-varying intensity using different modulation
651 frequencies to improve signal to noise ratio with a lock-in amplifier system offline¹. This system,
652 coded in custom MATLAB software (version R2022b), involved performing a fast Fourier
653 transform on the data from each channel to analyze the frequency domain between 100 and 500
654 Hz. The magnitudes (complex modulus) of the frequency-domain data streams were averaged
655 across a band around the modulation frequency corresponding to each channel. We performed
656 this calculation at each time point; this method identified deviations from the modulation frequency

657 that reflect biological signal. We then low-pass IIR filtered this transformed data at 100 Hz to
658 eliminate fluctuations due to technical noise.

659 The fluorescence data from both streams were trimmed to eliminate technical noise at the
660 beginning of the recording. To estimate fluctuations in the GCaMP channel that are also present
661 in the control channel and therefore due to noise across the system, we estimated a robust linear
662 regression fitting the data from our control channel (tdTomato) to the GCaMP channel and found
663 the value at each time point. We then calculated the difference between the GCaMP data and the
664 fitted control fluorescence at each time point and normalized this difference by the fitted control
665 fluorescence to result in our final $\Delta F/F$ value at each time point.

666 We extracted a photometry $\Delta F/F$ trace surrounding each behavioral timestamp of interest.
667 For social bouts or individual behavior timestamps, we extracted photometry data from -2 to 5
668 seconds relative to each timestamp. Timestamps of behaviors occurring during periods of
669 experimenter intervention were excluded from analyses. For each $\Delta F/F$ trace, we Z scored the
670 trace to the mean and standard deviation of the $\Delta F/F$ values immediately prior to the timestamp
671 (-2 to 0 seconds for social bouts). This method was chosen, in part, because we observed that
672 NAc activity decreased below baseline during prolonged periods of quiet restfulness (Extended
673 Data Fig. 9a-e). In addition, across all assays, we observed a notable increase in calcium signal
674 that often preceded the introduction of the stimulus animal or removal of barriers, which may
675 reflect a novelty, arousal, or fear response^{88,89} (Extended Data Fig. 9f-m). This signal decayed to
676 pre-assay levels within roughly 100 seconds (Extended Data Fig. 9g). As a result, Z scores could
677 potentially be biased depending on the behavior of the animal across the long recording period
678 (e.g., if the animal huddled with the stimulus animal for long periods of time) or during the pre-
679 assay period (e.g. if the animal sat quietly vs. exploring the arena). For social touch behaviors,
680 we excluded bouts in which social behavior (such as a strike) occurred within the 2s prior to the
681 timestamp of interest. For strikes and chamber transitions, we excluded timestamps in which a
682 strike or chamber transition occurred within the 2s baseline period.

683 To quantify calcium activity traces, we calculated peak $\Delta F/F$ and area under the curve
684 (AUC) of each trace from 0 to 2 seconds after each timestamp. AUC was calculated using
685 Matlab's "trapz" function. To confirm that fluctuations and differences we observed in our $\Delta F/F$
686 traces were not due to motion artifacts, we used the same trace extraction and z scoring method
687 on the tdTomato control fluorescence. This demonstrated there was little effect of motion at the
688 onset of behaviors such as sniffs or even behaviors that entail a great deal of movement, such as
689 attacks (Extended Data Fig. 9n-q).

690

691 Perfusions, Histology, and Verification of Fiber Placement

692 Animals were deeply anesthetized with ketamine/xylazine and transcardially perfused with
693 1X phosphate-buffered saline (PBS) followed by cold 4% paraformaldehyde (PFA) in PBS. Brains
694 were extracted, post-fixed in PFA overnight at 4°C, and incubated in 30% sucrose solution at 4°C
695 until sucrose diffused completely through the brain. Brains were then embedded in Tissue-Tek
696 Optimal Cutting Temperature Compound (Sakura Finetek USA, Torrance, CA), frozen solid at -
697 80°C, cryosectioned at 50 μ M coronally, and treated with 300 nM DAPI solution (Life
698 Technologies, Carlsbad, CA) in PBS for 10 minutes to visualize nuclei. Sections were mounted
699 on glass slides and coverslipped with Aqua-Mount Mounting Medium (Thermo Scientific).

700 Brain sections were imaged with a 4X objective on a Nikon Eclipse 90i motorized upright
701 epifluorescent microscope and digital camera (Nikon, Minato City, Tokyo, Japan) as well as a 10X
702 objective on a Zeiss LSM 700 confocal microscope with Zen 2010 software (Zeiss Microscopy).
703 Fiber tip locations were assessed by comparing anatomical location of the fiber tract to the
704 Paxinos and Franklin mouse brain atlas (4th edition)⁹⁰. Animals were excluded from behavioral
705 and photometry analyses if the fiber tip was outside of the nucleus accumbens or outside the
706 range of 1.10 - 1.78 mm relative to Bregma (of the mouse atlas).

707

708 Statistics

709 Details of all statistical tests used and their results are reported in Extended Data File 1.
710 Sample sizes were determined by our previous work investigating pair-bonding behaviors in Oxtr¹⁻
711 /- prairie voles²⁰ and increased by ~20% to account for animals lost to surgery failure or photometry
712 exclusion. Alpha was set to 0.05 for all comparisons. Trends were considered when p<0.07.

713 *Behavior data:* Statistics and plotting of behavioral data were performed in Prism (version
714 9.4 for MacOS). In each assay, the metric used to determine outlier status was total social
715 interaction. Animals that were 3 scaled median absolute deviations (MAD) away from the median
716 were deemed outliers and were removed before proceeding. Details on outliers are provided in
717 Extended Data File 1. We assessed normality of residuals by the D'Agostino-Pearson omnibus
718 (K2) test. For continuous and normally distributed measures, we conducted a Student's t-test,
719 ANOVA, two-way ANOVA, or two-way repeated measures ANOVA with Sidak-corrected post hoc
720 comparisons. A Welch's corrected t test was used when distributions failed an F test for equality
721 of variances. For distributions that were not normally distributed, we first applied a log transform
722 and retested for normality. Parametric tests were then run on the normalized data. For
723 distributions that could not be log transformed, we used the non-parametric Mann Whitney test.
724 We plotted the data in raw form when feasible. For count data, we used a generalized linear model
725 with a generalized Poisson distribution and a Sidak correction for multiple comparisons to
726 compare between groups. Transformations conducted on each data set prior to statistical testing
727 can be found in Extended Data File 1. For proportion data, we used a binomial test to compare
728 genotypes or groups. To characterize the relationship between behavior at 2 time points (e.g., the
729 introduction and the PPT), we used Pearson correlation or linear regression. To compare behavior
730 across male preference categories (i.e., wild-type, partner preferring Oxtr^{1/-}, and stranger-
731 preferring Oxtr^{1/-}), we used a permutation test on the F statistic. For the permutation test, group
732 labels were randomly shuffled, and the statistic was calculated. This was repeated 10,000 times
733 to construct a null distribution, and the p value was calculated as the percentage of the null
734 distribution that was equal to or more extreme than the observed statistic. Post hoc pairwise

735 comparisons were conducted with additional permutation tests with a Sidak correction for multiple
736 comparisons.

737 For the PPT, preference indices were calculated for total percent of PPT time spent in
738 either social interaction (“Social preference index”) or in side-by-side contact (“Side-by-side
739 preference index”). Preference indices were calculated by taking the percent time spent with the
740 partner, subtracting the time spent with the stranger, and normalizing by total time spent with
741 either partner or stranger. Preference index values were compared across genotypes by
742 performing a permutation test, as described above, on the Earth Mover’s Distance between the
743 two distributions.

744 *Markov chains:* We performed discrete-time Markov chain analyses on behavioral
745 sequences from the introduction assay. We included only “no interaction,” “non-AG sniff,” “AG
746 sniff,” and “side-by-side contact” due to the fact that all other behavioral events were rare
747 (transition probabilities less than 0.005). Markov chain transition probability matrices were
748 calculated for each animal in Matlab, and probabilities for each transition were averaged across
749 sex and genotype. For each transition, we compared transition probabilities across genotypes or
750 groups by conducting permutation tests, as described above, on the Student’s t statistic or F
751 statistic and applying a Sidak correction for multiple comparisons.

752 *Adjusted boxplots:* When plotting neural data surrounding behavioral events with duration
753 (e.g., AG sniff events), we included boxplots of those initiating behavior durations. Because
754 duration distributions were heavily right skewed, we used an adjusted boxplot for skewed
755 distributions⁹¹. Briefly, the medcouple (MC, a measure of skewness) is calculated for each
756 distribution of duration values. The MC is then incorporated in the determination of the whisker
757 boundaries, such that when $MC \geq 0$, whisker boundaries are defined as $[Q_1 - 1.5e^{-4 MC} IQR; Q_3$
758 $+ 1.5e^{3 MC} IQR]$ and when $MC < 0$, boundaries are $[Q_1 - 1.5e^{-3 MC} IQR; Q_3 + 1.5e^{4 MC} IQR]$, where
759 Q_1 is the first quartile, Q_3 is the third quartile, and IQR is the interquartile range ($Q_3 - Q_1$). Outlier
760 values are marked with a plus symbol. The adjusted boxplot was implemented with an adapted

761 version of the function “adjusted_boxplot” written by Brian C. Coe (2024, MATLAB Central File
762 Exchange, <https://www.mathworks.com/matlabcentral/fileexchange/72110>
763 -adjusted_boxplot).

764 *Probability PETHs*: To examine the probability of the occurrence of different behaviors
765 surrounding timestamps of interest, we constructed peri-event time histograms (PETHs) of
766 probability (e.g., Extended Data Figure 3c,d). For each timestamp and each time point along the
767 PETH, a given behavior was marked as occurring (1) or not occurring (0). We then averaged by
768 group across each time point.

769 *Photometry data*: All calculations and statistics for photometry data were performed in
770 Matlab. For z-scored $\Delta F/F$ trace statistics (peak and AUC), we first removed outlier values. The
771 criterion for removal was when both peak and AUC values for a given trace were 3 scaled MAD
772 away from the median of the pooled data from all comparison groups. The majority of peak $\Delta F/F$
773 and AUC distributions were non-normally distributed as determined by the Jarque-Bera test; thus,
774 for all comparisons, we pooled data from all groups and applied a Box-Cox transformation prior
775 to testing. We then tested for main effects and interactions between independent variables (e.g.,
776 genotype, stimulus animal, etc.) via a linear mixed effects (LME) model in which vole ID was
777 included as a random effect to account for clustering within animals. The resulting model was run
778 through an ANOVA, and we report the F statistics and p values. Multiple comparisons were
779 conducted by pairwise LME models with a Sidak correction applied to the resulting p values. In
780 addition, we compared z-scored $\Delta F/F$ values at each time point along the PETH. At each point,
781 we Box-Cox transformed the pooled z-scored $\Delta F/F$ values. We then conducted an LME with vole
782 ID included as a random effect, as described above. This was repeated for every time point and
783 every pairwise comparison of, for example, genotype by stimulus animal. We then applied a
784 Benjamini-Yekutieli correction on the resulting p values for *all* pairwise comparisons between
785 groups.

786 To obtain mean neural responses by individual animal, we calculated the mean of the Box-
787 Cox transformed values of the neural data. We used the transformed values to relate neural data
788 to behavior or other neural metrics by individual animal via Pearson correlation or linear
789 regression.

790 To test whether NAc calcium activity changed as an animal engaged in prolonged rest
791 (Extended Data Figure 1a-e), we calculated median raw $\Delta F/F$ and AUC for each trace from -30s
792 to 0s (pre) and 0s to 30s (post). We Box-Cox transformed all values and conducted an LME with
793 time (pre vs. post) as the independent variable and both vole ID and trace number as random
794 effects. We next calculated the change in $\Delta F/F$ (post – pre) for each trace and averaged by
795 individual animal. We then used a two-tailed, one sample t test to determine whether the change
796 in $\Delta F/F$ was significantly different from 0 $\Delta F/F$. To test how activity changed at the start of an
797 assay, we constructed PETHs for every animal and every assay from -10s to 180s surrounding
798 assay start (Extended Data Figure 1f,g). We calculated the mean raw $\Delta F/F$ value from -10s to 0s
799 to be 0.0237. At each time point along the PETH, we Box-Cox transformed all values including
800 the constant of 0.0237 and conducted an LME with vole ID as a random effect to compare whether
801 $\Delta F/F$ was significantly different from the transformed constant. We applied a Benjamini-Yekutieili
802 correction to the resulting set of p values.

803 *Plotting:* Bar plots show mean +/- s.e.m. with individual animals overlaid. Neural data is
804 plotted as mean +/- s.e.m. Swarm plots of behavior data show individual animals with median
805 overlaid. Swarm plots of neural data show individual PETH values (peak or AUC) with median
806 overlaid. Dotted lines on plots of linear regressions show the 95% confidence interval.

807

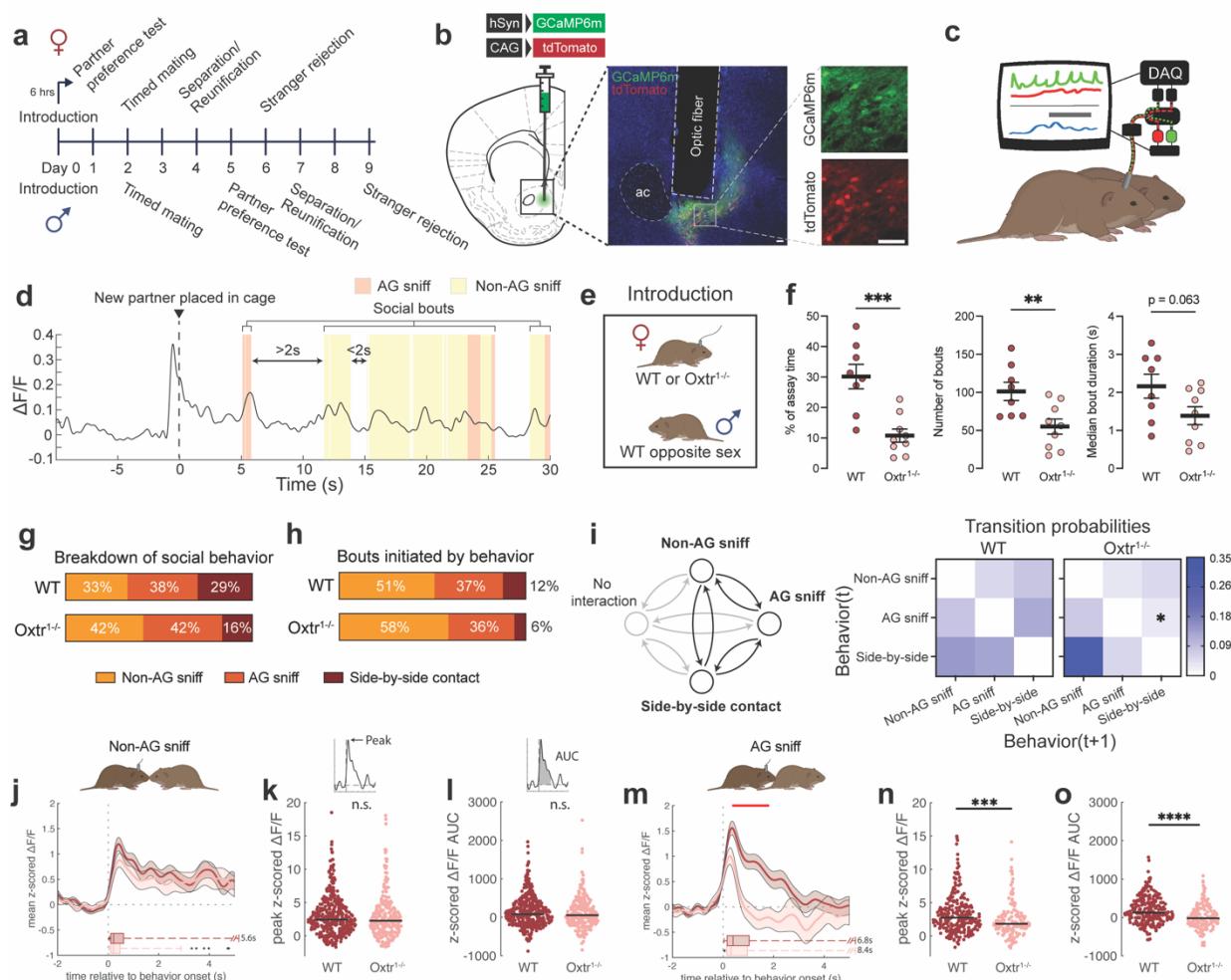
808 **Conflict of Interest and Disclosures:** All authors declare no conflicts of interest.

809

810 **Acknowledgements:** We would like to thank Charles Frye for assistance with statistics. We also
811 thank Kevin Bender and the members of the Manoli Lab for thoughtful comments on the

812 manuscript. **Funding:** This research was supported by the National Institute of Health BRAIN
813 Initiative grant 1K99MH135061-01 (K.L.P.L.), National Institutes of Health grant R01MH123513
814 (D.S.M.), National Science Foundation grant 1556974 (D.S.M.), Burroughs Wellcome Fund
815 1015667 (D.S.M.), and Whitehall Foundation grant 2018-08-83 (D.S.M.). **Author contributions:**
816 D.M., K.L., and N.H. devised experiments. K.L., N.H., R.K., D.S., J.W., and J.M. performed
817 experiments. K.L., N.H., and A.K. performed analyses. D.M. directed the project. K.L., D.M., and
818 N.H. wrote the manuscript. **Data and materials availability:** All data associated with this study
819 are available upon request.

820

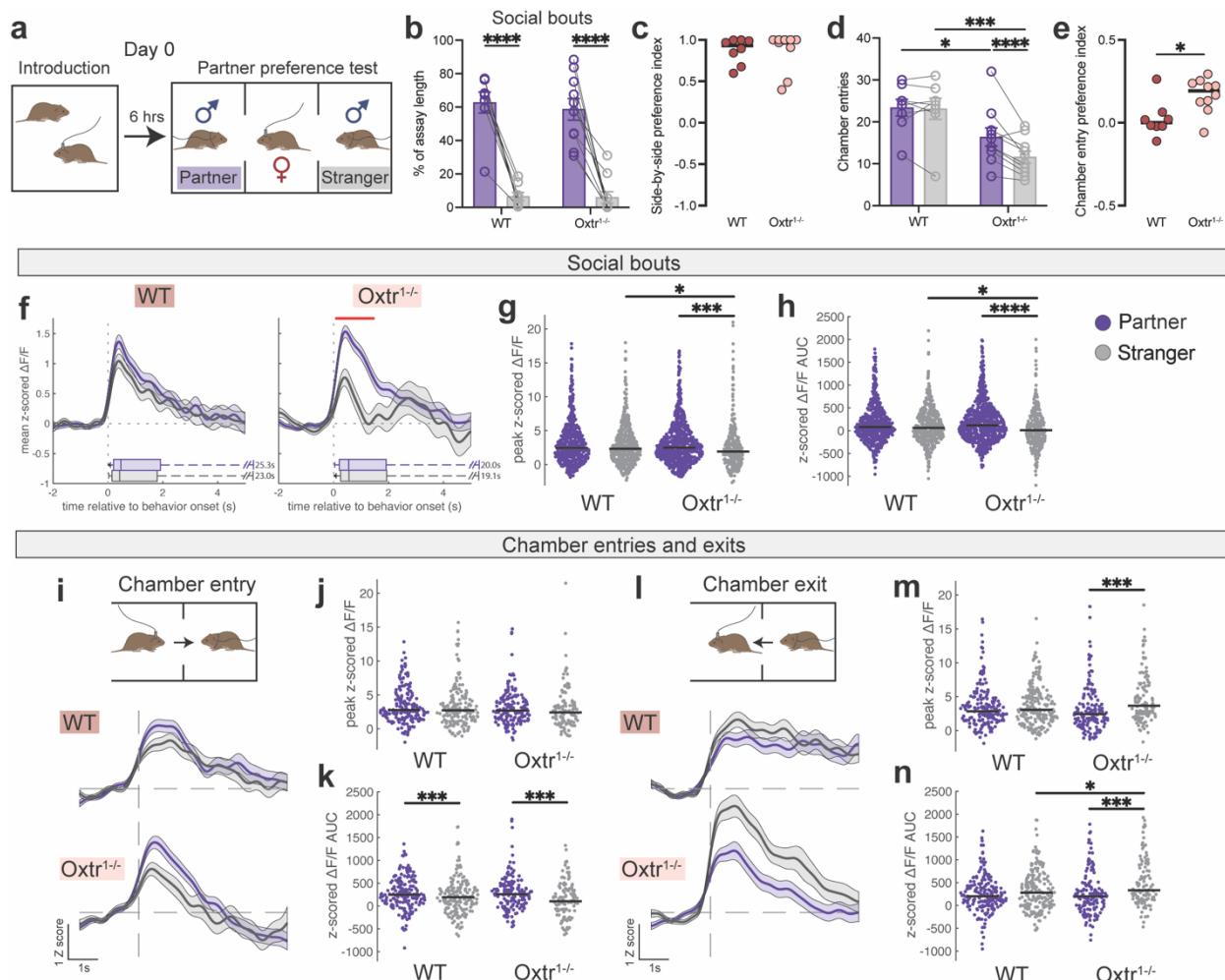

821 **Extended Data Materials**

822 Extended Data Fig. 1: Fiber locations in the prairie vole nucleus accumbens.
823 Extended Data Fig. 2: Additional data from female introductions.
824 Extended Data Fig. 3: Cross-assay analyses in females.
825 Extended Data Fig. 4: Additional data from female timed mating assays.
826 Extended Data Fig. 5: Additional data from female partner preference tests.
827 Extended Data Fig. 6: Additional data from male introduction and timed mating assays.
828 Extended Data Fig. 7: Additional data from male PPT.
829 Extended Data Fig. 8: Additional data related to Figure 4.
830 Extended Data Fig. 9: Dynamics of NAc calcium activity during periods of rest and at assay start.

831

832 **Extended Data File 1: Statistics**

833 **Figures**

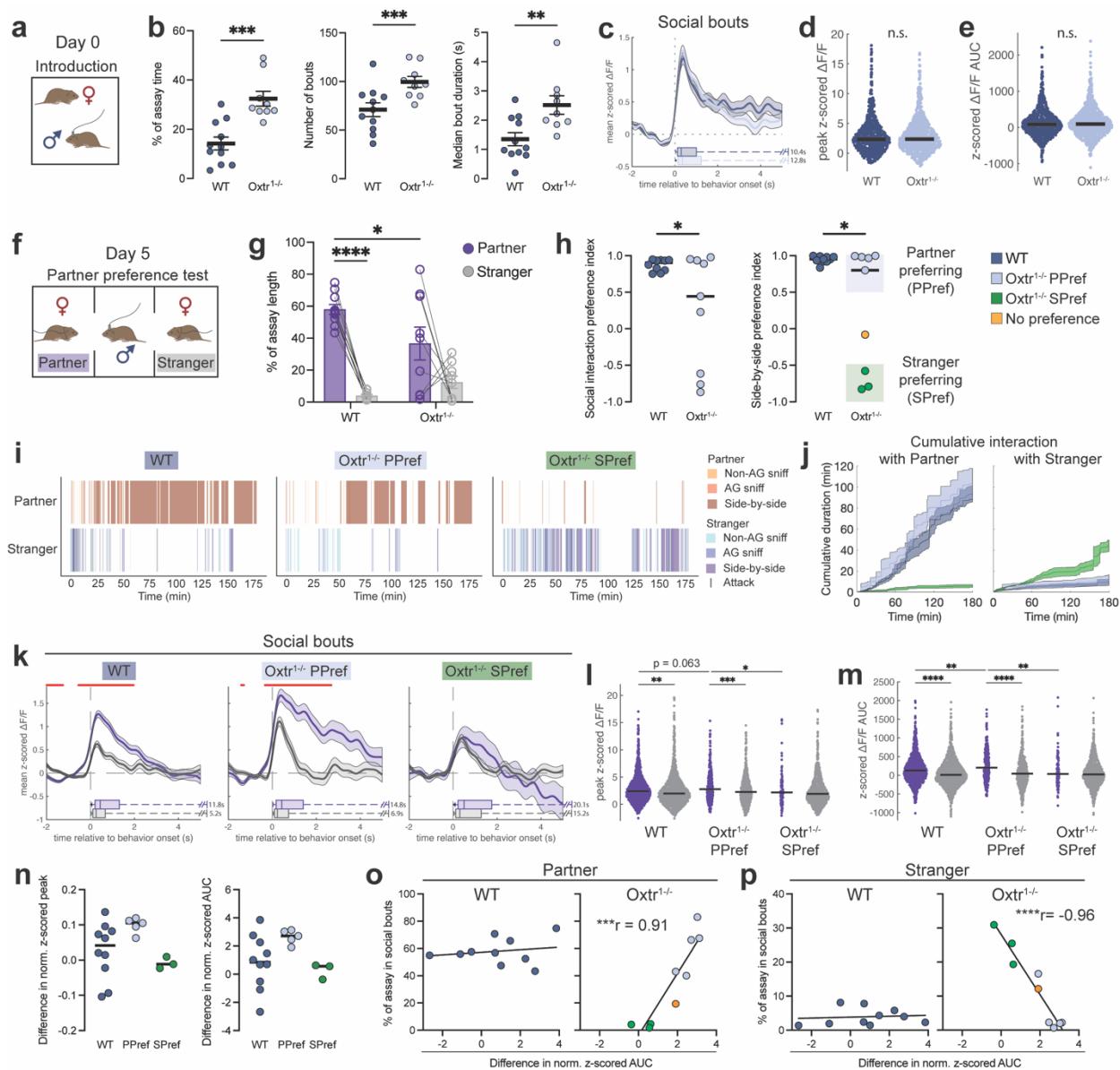


834

835 **Figure 1: Loss of Oxtr in naive females disrupts NAc neural responses to novel males.**

836 **a**, Timeline of assays. **b**, Injection and fiber targeting in the medial NAc (scale bar, 50 μ m). **c**,
 837 Photometry setup to image GCaMP6m during dyadic interactions in freely-moving prairie voles.
 838 **d**, Example GCaMP6m trace at the start of the introduction, with behavior events overlaid
 839 (anogenital [AG] sniff, orange; non-AG sniff, yellow). Behavior events separated by less than 2
 840 seconds were considered part of a single social bout. **e**, Introduction procedure. A wild-type (WT)
 841 or Oxtr^{1/2} female was placed into a clean cage, and a WT male was then introduced. **f**, Total
 842 percent of assay time engaged in (left), number of (middle), and median duration of (right) social
 843 bouts exhibited by females (for all plots, WT n=8, Oxtr^{1/2} n=9 voles). **g**, Mean breakdown of social

844 contact by the percentage of contact time engaged in AG sniffing, non-AG sniffing, and side-by-
845 side contact. **h**, Percentages of social bouts initiated with non-AG sniff, AG sniff, or side-by-side
846 contact. **i**, Left, schematic of Markov modeling of behavior, focusing on transitions from one social
847 behavior to another. Right, heat maps of transition probabilities. **j**, Mean peri-event time histogram
848 (PETH) of z-scored GCaMP6m $\Delta F/F$ by genotype aligned to the onset of non-AG sniffs (WT
849 n=391 traces; Oxtr^{1/2} n=272 traces). At the base of the plot is an adjusted boxplot of the durations
850 of the initiating non-AG sniff. **k**, Swarm plot of peak z-scored $\Delta F/F$ values following non-AG sniffs.
851 **l**, Area under the curve (AUC) values from z-scored $\Delta F/F$ traces following non-AG sniffs. **m**, Mean
852 PETH by genotype aligned to AG sniffs. The red line indicates time points at which mean z-scored
853 $\Delta F/F$ differ between WT and Oxtr^{1/2} females (WT n=268 traces; Oxtr^{1/2} n=161 traces). **n**, Peak z-
854 scored $\Delta F/F$ values. **o**, AUC values from z-scored $\Delta F/F$ traces. Detailed statistics are presented
855 in Extended Data File 1. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. ac, anterior commissure;
856 AG, anogenital; WT, wild-type; AUC, area under the curve.

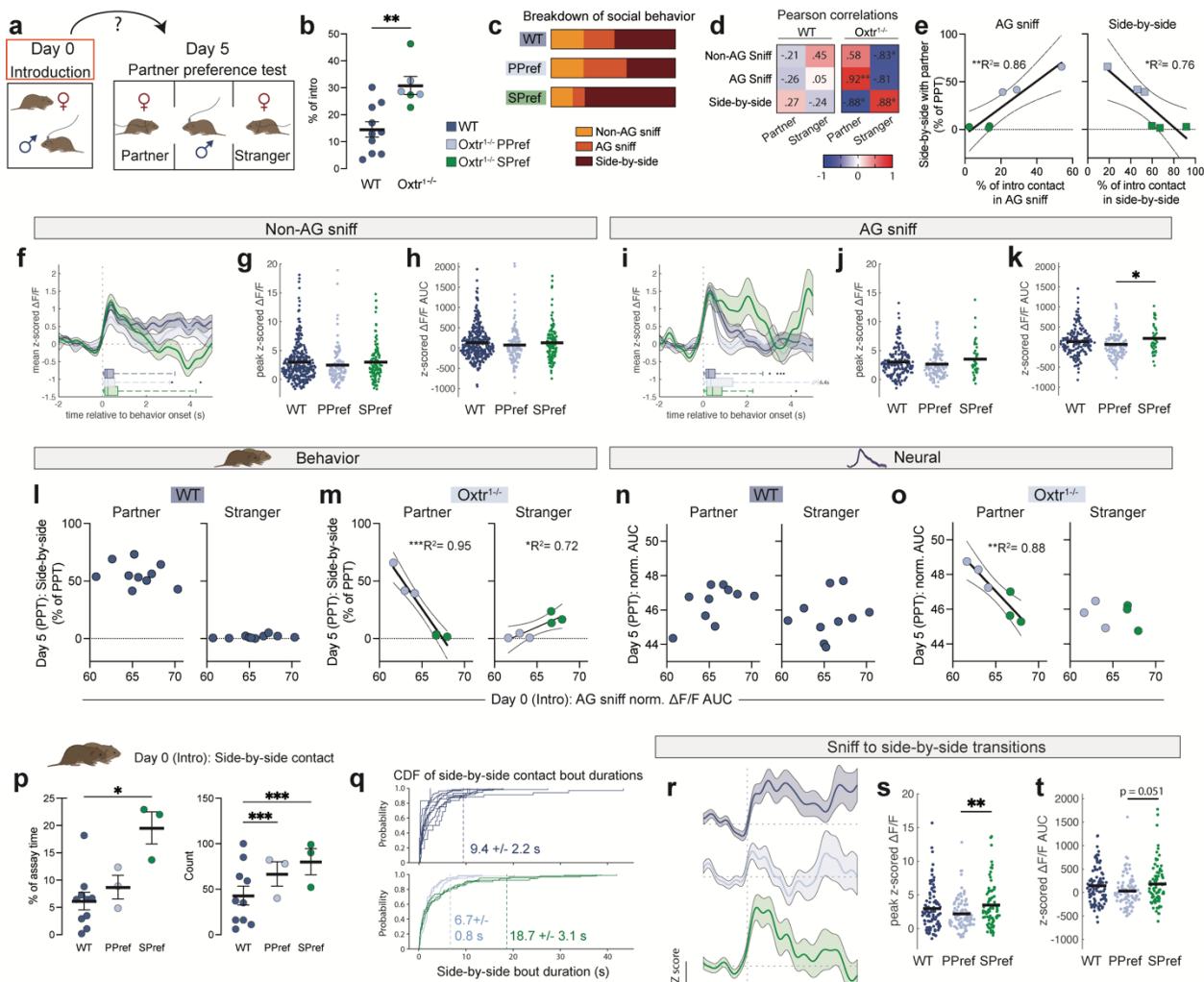


857

858 **Figure 2: Loss of Oxtr disrupts female neural and behavioral responses to stranger
859 males.**

860 **a**, Timeline and schematic of the introduction and partner preference test (PPT) for females. **b**,
861 Percent of assay time spent engaged in social bouts with either the partner (purple) or the stranger
862 (gray) (for all plots, WT n=8, Oxtr^{1-/-} n=10 voles). **c**, Side-by-side contact preference index scores.
863 Preference index scores of 1 indicate exclusive side-by-side contact with the partner, and -1 with
864 the stranger. **d**, Number of entries to the partner or stranger chambers. **e**, Chamber entry
865 preference index scores. **f**, Mean PETH of z-scored GCaMP6m $\Delta F/F$ by stimulus animal aligned
866 to the onset of social bouts (WT_{Partner} n=539 traces; WT_{Stranger} n=444 traces; Oxtr^{1-/-}_{Partner} n=732
867 traces; Oxtr^{1-/-}_{Stranger} n=304 traces). At the base of the plot is an adjusted boxplot of the durations

868 of the initiating behavior. The red line indicates time points at which mean z-scored $\Delta F/F$ differs
869 between partner and stranger-related activity in $Oxtr^{1/-}$ females. **g**, Swarm plot of peak z-scored
870 $\Delta F/F$ values. **h**, AUC values from z-scored $\Delta F/F$ traces. **i**, Left, mean $\Delta F/F$ PETH aligned to entries
871 to either the partner chamber or stranger chamber ($WT_{Partner}$ n=184 traces; $WT_{Stranger}$ n=182 traces;
872 $Oxtr^{1/-}_{Partner}$ n=160 traces; $Oxtr^{1/-}_{Stranger}$ n=115 traces). **j**, Peak z-scored $\Delta F/F$ values. **k**, AUC
873 values from z-scored $\Delta F/F$ traces. **l**, Left, mean $\Delta F/F$ PETH aligned to exits from either the partner
874 chamber or stranger chamber ($WT_{Partner}$ n=187 traces; $WT_{Stranger}$ n=195 traces; $Oxtr^{1/-}_{Partner}$ n=150
875 traces; $Oxtr^{1/-}_{Stranger}$ n=121 traces). **m**, Peak z-scored $\Delta F/F$ values. **n**, AUC values from z-scored
876 $\Delta F/F$ traces. Detailed statistics are presented in Extended Data File 1. *p<0.05, **p<0.01,
877 ***p<0.001, ****p<0.0001. WT, wild-type; PETH, peri-event time histogram; AUC, area under the
878 curve.



879

880 **Figure 3: Oxtr regulates NAc neural signatures of partner preference in male prairie
881 voles.**

882 **a**, Introduction of a WT or Oxtr^{-/-} male to a WT female partner. **b**, Total percent of assay time
883 engaged in (left), number of (middle), and median duration of (right) social bouts exhibited by
884 males (WT n=11, Oxtr^{-/-} n=9). **c**, Mean $\Delta F/F$ PETH by genotype aligned to the onset of social
885 bouts (WT n=750 traces from 11 animals; Oxtr^{-/-} n=865 traces from 9 animals). At the base of
886 the plot is an adjusted boxplot of the durations of the initiating behavior. **d**, Peak z-scored $\Delta F/F$

887 values. **e**, AUC values from z-scored $\Delta F/F$ traces. **f**, Schematic of the PPT, conducted on day 5
888 in males. **g**, Percent of assay time spent engaged in social bouts with either the partner (purple)
889 or stranger (gray) (WT n=10, Oxr^{1/−} n=9). **h**, Left, social interaction preference index scores.
890 Right, side-by-side contact preference index scores. Preference for partner or stranger was
891 determined by whether side-by-side preference index scores were greater than 0.5 (partner-
892 preferring, PPref) or less than -0.5 (stranger-preferring, SPref). For all following plots, WT n=10,
893 Oxr^{1/−} PPref n=5, Oxr^{1/−} SPref n=3 voles. **i**, Example behavior rasters from a WT, Oxr^{1/−} PPref,
894 and Oxr^{1/−} SPref male. **j**, Mean (+/− s.e.m.) cumulative duration plots of social interaction with
895 either the partner or stranger across the 3-hour assay. **k**, Mean $\Delta F/F$ PETH aligned to social bouts
896 with either the partner or stranger. The red line indicates time points at which mean z-scored $\Delta F/F$
897 differ between partner- and stranger-related activity (WT_{Partner} n=932 traces and WT_{Stranger} n=1193
898 traces; Oxr^{1/−} PPref_{Partner} n=296 traces and PPref_{Stranger} n=500 traces; Oxr^{1/−} SPref_{Partner} n=111
899 traces and SPref_{Stranger} n=821 traces). **l**, Peak $\Delta F/F$ values. **m**, AUC values. **n**, Per animal
900 difference (partner - stranger) between partner-elicited and stranger-elicited peak $\Delta F/F$ (left) and
901 AUC (right). **o**, Correlations of partner-stranger AUC difference and percent of time spent in social
902 interactions with the partner. **p**, Correlations of partner-stranger AUC difference and percent of
903 time spent in social interactions with the stranger. Detailed statistics are present in Extended Data
904 File 1. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. PPT, partner preference test; WT, wild-type;
905 PPref, partner-preferring; SPref, stranger-preferring; AUC, area under the curve; norm., Box Cox
906 normalized.

907

908 **Figure 4: Oxtr regulates behavioral and neural trajectories of pair bonding in male prairie**
909 **voles.**

910 **a**, Examination of behavior and neural activity from Day 0 (introduction) in relation to metrics from
911 Day 5 (PPT). **b**, Percent of time engaged in social interaction with a newly partnered female during
912 the introduction, plotting only animals from which data were successfully collected during both
913 introduction and PPT. Individual animals are colored according to PPT behavior profile (for all
914 plots, WT n=10, Oxtr^{1/-} PPref n=3, Oxtr^{1/-} SPref n=3). **c**, Mean breakdown of social interaction
915 during the introduction by type of social touch. **d**, Heat maps of Pearson correlations between
916 introduction behavior (% of contact time) and PPT partner or stranger side-by-side contact (% of
917 assay time). **e**, Linear regression of introduction behavior to PPT behavior. X-axis: Percent of

918 social touch during the introduction spent AG sniffing (left) or in side-by-side contact (right). Y-
919 axis: Percent of PPT time spent in side-by-side contact with the partner. **f**, Mean NAc $\Delta F/F$ PETH
920 aligned to non-AG sniffs during the introduction (WT n=338 traces; Oxr^{1/-} PPref n=138 traces;
921 Oxr^{1/-} SPref n=123 traces). At the base of the plot is an adjusted boxplot of the durations of the
922 initiating behavior. **g**, Peak z-scored $\Delta F/F$ values. **h**, AUC values from z-scored $\Delta F/F$ traces. **i**,
923 Mean $\Delta F/F$ PETH aligned to AG sniffs during the introduction (WT n=187 traces; Oxr^{1/-} PPref
924 n=129 traces; Oxr^{1/-} SPref n=42 traces). **j**, Peak z-scored $\Delta F/F$ values. **k**, AUC values from z-
925 scored $\Delta F/F$ traces. **l-o**, Linear regressions comparing AG sniff-related NAc activity and PPT
926 behavior or neural data. X-axis: normalized (norm.) AUC at the onset of AG sniff bouts during the
927 introduction, averaged by animal. Y-axis: PPT side-by-side contact (l-m) or PPT normalized AUC
928 surrounding social bouts, averaged by animal (n-o). **p**, Left, percent of introduction time spent in
929 side-by-side contact. Right, number of side-by-side contact events during the introduction. **q**,
930 Cumulative distribution functions (CDF) for side-by-side contact bout durations per animal. Dotted
931 lines show the mean (+/- s.e.m.) of the 95th percentile values from each group. **r**, Mean PETH
932 aligned to transitions from sniffing to side-by-side contact, centered at the onset of the sniff (no
933 filtering for behavior in the 2 seconds prior to sniff onset; WT n=97 traces; Oxr^{1/-} PPref n=98
934 traces, Oxr^{1/-} SPref n=82 traces). **s**, Peak z-scored $\Delta F/F$ values. **t**, AUC values from z-scored
935 $\Delta F/F$ traces. Detailed statistics are presented in Extended Data File 1. *p<0.05, **p<0.01,
936 ***p<0.001, ****p<0.0001. WT, wild-type; PPref, Oxr^{1/-} partner-preferring; SPref, Oxr^{1/-} stranger-
937 preferring; AG, anogenital; PPT, partner preference test; AUC, area under the curve; norm., Box
938 Cox normalized; CDF, cumulative distribution function.

939 **References**

940

941

942 1. Gunaydin, L. A. *et al.* Natural Neural Projection Dynamics Underlying Social Behavior. *Cell*
943 **157**, 1535–1551 (2014).

944 2. Liu, Y. & Wang, Z. X. Nucleus accumbens oxytocin and dopamine interact to regulate pair
945 bond formation in female prairie voles. *Neuroscience* **121**, 537–544 (2003).

946 3. Ross, H. E. *et al.* Characterization of the Oxytocin System Regulating Affiliative Behavior in
947 Female Prairie Voles. *Neuroscience* **162**, 892–903 (2009).

948 4. Dölen, G., Darvishzadeh, A., Huang, K. W. & Malenka, R. C. Social reward requires
949 coordinated activity of nucleus accumbens oxytocin and serotonin. *Nature* **501**, 179–184
950 (2013).

951 5. Insel, T. R. & Shapiro, L. E. Oxytocin receptor distribution reflects social organization in
952 monogamous and polygamous voles. *PNAS* **89**, 5981–5985 (1992).

953 6. Keebaugh, A. C., Barrett, C. E., Laprairie, J. L., Jenkins, J. J. & Young, L. J. RNAi
954 knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and
955 parental care in monogamous female prairie voles. *Social Neuroscience* **10**, 561–570
956 (2015).

957 7. Williams, A. V. *et al.* Social approach and social vigilance are differentially regulated by
958 oxytocin receptors in the nucleus accumbens. *Neuropsychopharmacol.* **45**, 1423–1430
959 (2020).

960 8. Ross, H. E. *et al.* Variation in Oxytocin Receptor Density in the Nucleus Accumbens Has
961 Differential Effects on Affiliative Behaviors in Monogamous and Polygamous Voles. *J.*
962 *Neurosci.* **29**, 1312–1318 (2009).

963 9. Choe, K. Y. *et al.* Oxytocin normalizes altered circuit connectivity for social rescue of the
964 Cntnap2 knockout mouse. *Neuron* **110**, 795-808.e6 (2022).

965 10. Feldman, R. The Neurobiology of Human Attachments. *Trends in Cognitive Sciences* **21**,
966 80–99 (2017).

967 11. Ebstein, R. P., Israel, S., Chew, S. H., Zhong, S. & Knafo, A. Genetics of human social
968 behavior. *Neuron* **65**, 831–844 (2010).

969 12. Bowlby, J. Attachment and loss: Retrospect and prospect. *American Journal of*
970 *Orthopsychiatry* **52**, 664–678 (1982).

971 13. De Vries, G. J. Minireview: Sex differences in adult and developing brains: compensation,
972 compensation, compensation. *Endocrinology* **145**, 1063–1068 (2004).

973 14. Getz, L. L., Carter, C. S. & Gavish, L. The mating system of the prairie vole, *Microtus*
974 *ochrogaster*: Field and laboratory evidence for pair-bonding. *Behav Ecol Sociobiol* **8**, 189–
975 194 (1981).

976 15. Aragona, B. J. & Wang, Z. The Prairie Vole (*Microtus ochrogaster*): An Animal Model for
977 Behavioral Neuroendocrine Research on Pair Bonding. *ILAR J* **45**, 35–45 (2004).

978 16. Cho, M. M., DeVries, A. C., Williams, J. R. & Carter, C. S. The effects of oxytocin and
979 vasopressin on partner preferences in male and female prairie voles (*Microtus ochrogaster*).
980 *Behavioral Neuroscience* **113**, 1071–1079 (1999).

981 17. Williams, J. R., Insel, T. R., Harbaugh, C. R. & Carter, C. S. Oxytocin administered centrally
982 facilitates formation of a partner preference in female prairie voles (*Microtus ochrogaster*). *J.*
983 *Neuroendocrinol.* **6**, 247–250 (1994).

984 18. Insel, T. R. & Hulihan, T. J. A gender-specific mechanism for pair bonding: oxytocin and
985 partner preference formation in monogamous voles. *Behav. Neurosci.* **109**, 782–789 (1995).

986 19. Berendzen, K. M. *et al.* Oxytocin receptor is not required for social attachment in prairie
987 voles. *Neuron* S0896-6273(22)01084–4 (2022) doi:10.1016/j.neuron.2022.12.011.

988 20. Sharma, R. *et al.* Oxytocin receptor controls distinct components of pair bonding and
989 development in prairie voles. *In preparation.*

990 21. Floresco, S. B. The Nucleus Accumbens: An Interface Between Cognition, Emotion, and

991 Action. *Annual Review of Psychology* **66**, 25–52 (2015).

992 22. Di Chiara, G. Nucleus accumbens shell and core dopamine: differential role in behavior and

993 addiction. *Behavioural Brain Research* **137**, 75–114 (2002).

994 23. Meisel, R. L., Camp, D. M. & Robinson, T. E. A microdialysis study of ventral striatal

995 dopamine during sexual behavior in female Syrian hamsters. *Behavioural Brain Research*

996 **55**, 151–157 (1993).

997 24. Damsma, G., Pfaus, J. G., Wenkstern, D., Phillips, A. G. & Fibiger, H. C. Sexual behavior

998 increases dopamine transmission in the nucleus accumbens and striatum of male rats:

999 Comparison with novelty and locomotion. *Behavioral Neuroscience* **106**, 181–191 (1992).

1000 25. Golden, S. A. *et al.* Nucleus Accumbens Drd1-Expressing Neurons Control Aggression Self-

1001 Administration and Aggression Seeking in Mice. *J. Neurosci.* **39**, 2482–2496 (2019).

1002 26. Montaron, M. F., Deniau, J. M., Menetrey, A., Glowinski, J. & Thierry, A. M. Prefrontal cortex

1003 inputs of the nucleus accumbens-nigro-thalamic circuit. *Neuroscience* **71**, 371–382 (1996).

1004 27. Zhu, Y., Wienecke, C. F. R., Nachtrab, G. & Chen, X. A thalamic input to the nucleus

1005 accumbens mediates opiate dependence. *Nature* **530**, 219–222 (2016).

1006 28. Stuber, G. D. *et al.* Excitatory transmission from the amygdala to nucleus accumbens

1007 facilitates reward seeking. *Nature* **475**, 377–380 (2011).

1008 29. Simon, H., Le Moal, M. & Calas, A. Efferents and afferents of the ventral tegmental-A10

1009 region studied after local injection of [3H]leucine and horseradish peroxidase. *Brain*

1010 *Research* **178**, 17–40 (1979).

1011 30. Beery, A. K., Lopez, S. A., Blandino, K. L., Lee, N. S. & Bourdon, N. S. Social selectivity and

1012 social motivation in voles. *eLife* **10**, e72684 (2021).

1013 31. Heifets, B. D. *et al.* Distinct neural mechanisms for the prosocial and rewarding properties of

1014 MDMA. *Science Translational Medicine* **11**, eaaw6435 (2019).

1015 32. Nardou, R. *et al.* Oxytocin-dependent reopening of a social reward learning critical period

1016 with MDMA. *Nature* **569**, 116–120 (2019).

1017 33. Nardou, R. *et al.* Psychedelics reopen the social reward learning critical period. *Nature* **618**,
1018 790–798 (2023).

1019 34. de Jong, J. W. *et al.* A Neural Circuit Mechanism for Encoding Aversive Stimuli in the
1020 Mesolimbic Dopamine System. *Neuron* **101**, 133–151.e7 (2019).

1021 35. Salamone, J. D. The involvement of nucleus accumbens dopamine in appetitive and
1022 aversive motivation. *Behavioural Brain Research* **61**, 117–133 (1994).

1023 36. Hammock, E. A. D. & Young, L. J. Oxytocin, vasopressin and pair bonding: implications for
1024 autism. *Philosophical Transactions of the Royal Society B: Biological Sciences* **361**, 2187–
1025 2198 (2006).

1026 37. Ross, H. E. & Young, L. J. Oxytocin and the Neural Mechanisms Regulating Social
1027 Cognition and Affiliative Behavior. *Front Neuroendocrinol* **30**, 534–547 (2009).

1028 38. Scribner, J. L. *et al.* A neuronal signature for monogamous reunion. *Proceedings of the
1029 National Academy of Sciences* **117**, 11076–11084 (2020).

1030 39. Samuelsen, C. L. & Meredith, M. Oxytocin antagonist disrupts male mouse medial
1031 amygdala response to chemical-communication signals. *Neuroscience* **180**, 96–104 (2011).

1032 40. Oettl, L.-L. *et al.* Oxytocin Enhances Social Recognition by Modulating Cortical Control of
1033 Early Olfactory Processing. *Neuron* **90**, 609–621 (2016).

1034 41. Yu, G.-Z. *et al.* The action of oxytocin originating in the hypothalamic paraventricular
1035 nucleus on mitral and granule cells in the rat main olfactory bulb. *Neuroscience* **72**, 1073–
1036 1082 (1996).

1037 42. Fang, L.-Y., Quan, R.-D. & Kaba, H. Oxytocin facilitates the induction of long-term
1038 potentiation in the accessory olfactory bulb. *Neuroscience Letters* **438**, 133–137 (2008).

1039 43. Williams, J. R., Catania, K. C. & Carter, C. S. Development of partner preferences in female
1040 prairie voles (*Microtus ochrogaster*): the role of social and sexual experience. *Horm Behav*
1041 **26**, 339–349 (1992).

1042 44. Amadei, E. A. *et al.* Dynamic corticostriatal activity biases social bonding in monogamous

1043 female prairie voles. *Nature* **546**, 297–301 (2017).

1044 45. DeVries, A. C. & Carter, C. S. Sex differences in temporal parameters of partner preference
1045 in prairie voles (*Microtus ochrogaster*). *Can. J. Zool.* **77**, 885–889 (1999).

1046 46. Caldwell, H. K. Oxytocin and sex differences in behavior. *Current Opinion in Behavioral
1047 Sciences* **23**, 13–20 (2018).

1048 47. Stowers, L., Holy, T. E., Meister, M., Dulac, C. & Koentges, G. Loss of Sex Discrimination
1049 and Male-Male Aggression in Mice Deficient for TRP2. *Science* **295**, 1493–1500 (2002).

1050 48. Lin, D. Y., Zhang, S.-Z., Block, E. & Katz, L. C. Encoding social signals in the mouse main
1051 olfactory bulb. *Nature* **434**, 470–477 (2005).

1052 49. Jourjine, N. & Hoekstra, H. E. Expanding evolutionary neuroscience: insights from
1053 comparing variation in behavior. *Neuron* **109**, 1084–1099 (2021).

1054 50. Dennis, E. J. *et al.* Systems Neuroscience of Natural Behaviors in Rodents. *J. Neurosci.* **41**,
1055 911–919 (2021).

1056 51. Almey, A., Milner, T. A. & Brake, W. G. Estrogen receptors observed at extranuclear
1057 neuronal sites and in glia in the nucleus accumbens core and shell of the female rat:
1058 Evidence for localization to catecholaminergic and GABAergic neurons. *Journal of
1059 Comparative Neurology* **530**, 2056–2072 (2022).

1060 52. Hodes, G. E. *et al.* Sex Differences in Nucleus Accumbens Transcriptome Profiles
1061 Associated with Susceptibility versus Resilience to Subchronic Variable Stress. *J. Neurosci.*
1062 **35**, 16362–16376 (2015).

1063 53. Proaño, S. B., Morris, H. J., Kunz, L. M., Dorris, D. M. & Meitzen, J. Estrous cycle-induced
1064 sex differences in medium spiny neuron excitatory synaptic transmission and intrinsic
1065 excitability in adult rat nucleus accumbens core. *Journal of Neurophysiology* **120**, 1356–
1066 1373 (2018).

1067 54. Chen, R. *et al.* Decoding molecular and cellular heterogeneity of mouse nucleus
1068 accumbens. *Nat Neurosci* **24**, 1757–1771 (2021).

1069 55. Zandt, M. V., Flanagan, D. & Pittenger, C. Sex differences in the distribution and density of
1070 regulatory interneurons in the striatum. 2024.02.29.582798 Preprint at
1071 <https://doi.org/10.1101/2024.02.29.582798> (2024).

1072 56. Parise, E. M. *et al.* Sex-Specific Regulation of Stress Susceptibility by the Astrocytic Gene
1073 Htra1. 2024.04.12.588724 Preprint at <https://doi.org/10.1101/2024.04.12.588724> (2024).

1074 57. Olson, K., Ingebretson, A. E., Vogiatzoglou, E., Mermelstein, P. G. & Lemos, J. C.
1075 Cholinergic interneurons in the nucleus accumbens are a site of cellular convergence for
1076 corticotropin release factor and estrogen regulation. 2024.04.13.589360 Preprint at
1077 <https://doi.org/10.1101/2024.04.13.589360> (2024).

1078 58. Simerly, R. B., Swanson, L. W. & Gorski, R. A. Demonstration of a sexual dimorphism in the
1079 distribution of serotonin-immunoreactive fibers in the medial preoptic nucleus of the rat.
1080 *Journal of Comparative Neurology* **225**, 151–166 (1984).

1081 59. Alves, S. E., Lopez, V., McEwen, B. S. & Weiland, N. G. Differential colocalization of
1082 estrogen receptor β (ER β) with oxytocin and vasopressin in the paraventricular and
1083 supraoptic nuclei of the female rat brain: An immunocytochemical study. *Proceedings of the
1084 National Academy of Sciences* **95**, 3281–3286 (1998).

1085 60. Knouse, M. C., Deutschmann, A. U., Nenov, M. N., Wimmer, M. E. & Briand, L. A. Sex
1086 differences in pre- and post-synaptic glutamate signaling in the nucleus accumbens core.
1087 *Biol Sex Differ* **14**, 52 (2023).

1088 61. Forlano, P. M. & Woolley, C. S. Quantitative analysis of pre- and postsynaptic sex
1089 differences in the nucleus accumbens. *Journal of Comparative Neurology* **518**, 1330–1348
1090 (2010).

1091 62. Johnson, C. S., Chapp, A. D., Lind, E. B., Thomas, M. J. & Mermelstein, P. G. Sex
1092 differences in mouse infralimbic cortex projections to the nucleus accumbens shell. *Biol Sex
1093 Differ* **14**, 87 (2023).

1094 63. Williams, E. S. *et al.* Androgen-Dependent Excitability of Mouse Ventral Hippocampal

1095 Afferents to Nucleus Accumbens Underlies Sex-Specific Susceptibility to Stress. *Biological*
1096 *Psychiatry* **87**, 492–501 (2020).

1097 64. Yoest, K. E., Cummings, J. A. & Becker, J. B. Oestradiol influences on dopamine release
1098 from the nucleus accumbens shell: sex differences and the role of selective oestradiol
1099 receptor subtypes. *British Journal of Pharmacology* **176**, 4136–4148 (2019).

1100 65. Gonzalez, I. L. *et al.* Sex Differences in Dopamine Release in Nucleus Accumbens and
1101 Dorsal Striatum Determined by Chronic Fast Scan Cyclic Voltammetry: Effects of social
1102 housing and repeated stimulation. 2023.08.14.553278 Preprint at
1103 <https://doi.org/10.1101/2023.08.14.553278> (2024).

1104 66. Wissman, A. M., May, R. M. & Woolley, C. S. Ultrastructural analysis of sex differences in
1105 nucleus accumbens synaptic connectivity. *Brain Struct Funct* **217**, 181–190 (2012).

1106 67. Peris, J. *et al.* Oxytocin receptors are expressed on dopamine and glutamate neurons in the
1107 mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic
1108 targets. *Journal of Comparative Neurology* **525**, 1094–1108 (2017).

1109 68. Nakajima, M., Görlich, A. & Heintz, N. Oxytocin modulates female sociosexual behavior
1110 through a specific class of prefrontal cortical interneurons. *Cell* **159**, 295–305 (2014).

1111 69. Huber, D., Veinante, P. & Stoop, R. Vasopressin and Oxytocin Excite Distinct Neuronal
1112 Populations in the Central Amygdala. *Science* **308**, 245–248 (2005).

1113 70. Manoli, D. S. & State, M. W. Autism Spectrum Disorder Genetics and the Search for
1114 Pathological Mechanisms. *AJP* **178**, 30–38 (2021).

1115 71. Manoli, D. S., Meissner, G. W. & Baker, B. S. Blueprints for behavior: genetic specification
1116 of neural circuitry for innate behaviors. *Trends in Neurosciences* **29**, 444–451 (2006).

1117 72. Berendzen, K. M. & Manoli, D. S. Rethinking the Architecture of Attachment: New Insights
1118 into the Role for Oxytocin Signaling. *Affec Sci* **3**, 734–748 (2022).

1119 73. de Vries, G. J. & Södersten, P. Sex differences in the brain: The relation between structure
1120 and function. *Hormones and Behavior* **55**, 589–596 (2009).

1121 74. Bales, K. L. & Carter, C. S. Sex differences and developmental effects of oxytocin on
1122 aggression and social behavior in prairie voles (*Microtus ochrogaster*). *Hormones and*
1123 *Behavior* **44**, 178–184 (2003).

1124 75. Carter, C. S., DeVries, A. C. & Getz, L. L. Physiological substrates of mammalian
1125 monogamy: the prairie vole model. *Neurosci Biobehav Rev* **19**, 303–314 (1995).

1126 76. Johnson, Z. V., Walum, H., Xiao, Y., Riefkohl, P. C. & Young, L. J. Oxytocin receptors
1127 modulate a social salience neural network in male prairie voles. *Horm Behav* **87**, 16–24
1128 (2017).

1129 77. Anacker, A. M. J. & Beery, A. K. Life in groups: the roles of oxytocin in mammalian sociality.
1130 *Front Behav Neurosci* **7**, 185 (2013).

1131 78. Huxley, J. S. 33. The Courtship - habits * of the Great Crested Grebe (*Podiceps cristatus*);
1132 with an addition to the Theory of Sexual Selection. *Proceedings of the Zoological Society of*
1133 *London* **84**, 491–562 (1914).

1134 79. Huxley, J. S. Courtship Activities in the Red-throated Diver (*Colymbus stellatus* Pontopp.);
1135 together with a discussion of the Evolution of Courtship in Birds. *Zoological Journal of the*
1136 *Linnean Society* **35**, 253–292 (1923).

1137 80. Kleiman, D. G. Monogamy in mammals. *Q Rev Biol* **52**, 39–69 (1977).

1138 81. Jiang, Y. & Platt, M. L. Oxytocin and vasopressin flatten dominance hierarchy and enhance
1139 behavioral synchrony in part via anterior cingulate cortex. *Sci Rep* **8**, 8201 (2018).

1140 82. Shimon-Raz, O. et al. Attachment Reminders Trigger Widespread Synchrony across
1141 Multiple Brains. *J. Neurosci.* **43**, 7213–7225 (2023).

1142 83. Spengler, F. B. et al. Kinetics and Dose Dependency of Intranasal Oxytocin Effects on
1143 Amygdala Reactivity. *Biological Psychiatry* **82**, 885–894 (2017).

1144 84. Okhovat, M., Berrio, A., Wallace, G., Ophir, A. G. & Phelps, S. M. Sexual fidelity trade-offs
1145 promote regulatory variation in the prairie vole brain. *Science* **350**, 1371–1374 (2015).

1146 85. King, L. B., Walum, H., Inoue, K., Eyrich, N. W. & Young, L. J. Variation in the Oxytocin

1147 Receptor Gene Predicts Brain Region–Specific Expression and Social Attachment.

1148 *Biological Psychiatry* **80**, 160–169 (2016).

1149 86. Hammock, E. A. D. & Young, L. J. Microsatellite Instability Generates Diversity in Brain and

1150 Sociobehavioral Traits. *Science* **308**, 1630–1634 (2005).

1151 87. Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for

1152 video/audio coding and live observations. *Methods in Ecology and Evolution* **7**, 1325–1330

1153 (2016).

1154 88. Robinson, D. L., Heien, M. L. A. V. & Wightman, R. M. Frequency of Dopamine

1155 Concentration Transients Increases in Dorsal and Ventral Striatum of Male Rats during

1156 Introduction of Conspecifics. *J. Neurosci.* **22**, 10477–10486 (2002).

1157 89. Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in primate

1158 dopamine neurons. *Journal of Neurophysiology* **72**, 1024–1027 (1994).

1159 90. Paxinos, G. & Franklin, K. B. J. *Paxinos and Franklin's the Mouse Brain in Stereotaxic*

1160 *Coordinates - National Institutes of Health*. (Amsterdam; Boston, Elsevier Academic Press,

1161 2012).

1162 91. Hubert, M. & Vandervieren, E. An adjusted boxplot for skewed distributions. *Computational*

1163 *Statistics & Data Analysis* **52**, 5186–5201 (2008).