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Abstract. This note provides a new perspective on Polchinski’s exact
renormalization group, by explaining how it gives rise, via the multiscale

Bakry-Émery criterion, to Lipschitz transport maps between Gaussian
free fields and interacting quantum and statistical field theories. Conse-
quently, many functional inequalities can be verified for the latter field
theories, going beyond the current known results.

1. Introduction

1.1. Summary

One of the fundamental tools in the study of quantum and statistical field
theories is the renormalization group in its various formulations. We are con-
cerned with an exact version of the renormalization group, due to Polchinski,
where a continuum of scales is used in the renormalization process [12,36].
Recently, Bauerschmidt & Bodineau [6,7] and Bauerschmidt & Dagallier [8,9]
have shown that the renormalization (semi)group of Polchinski is a valuable
tool in proving functional inequalities (Poincaré and log-Sobolev) for a number
of Euclidean quantum field theories and statistical field theories—the interest
in these inequalities stems from the fact that they imply fast relaxation to
equilibrium of the dynamics of the respective field theories. In particular, the
application of Polchinski’s equation to the study of functional inequalities is
facilitated by the so-called multiscale Bakry-Émery criteria. In this work, we
provide a new perspective on the subject by showing how one of the versions
of the multiscale Bakry-Émery criteria gives rise to Lipschitz transport maps
between Gaussian free fields and interacting Euclidean quantum, or statisti-
cal, (scalar) field theories. The Lipschitz properties of these transport maps
imply that many functional inequalities, which are known to hold for Gaussian
free fields, also hold (with constants depending on the Lipschitz constants of
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the transport maps) for any field theory where the multiscale Bakry-Émery
criterion can be verified. For example, for the two-dimensional massive con-
tinuum sine-Gordon model, we recover a log-Sobolev inequality (see [7]) and
prove many other functional inequalities which, until now, were not known
(e.g., Theorem 1.6, Theorem 1.7, and Theorem 1.8). Indeed, the advantage
of the transportation of measure approach is that, once a Lipschitz transport
map between a free field to an interacting field is constructed, the transfer
of functional inequalities between the fields becomes (almost) automatic, and
bypasses the need to provide a new proof for each functional inequality of
interest.

Organization

Section 1 introduces the objects of study in this note and describes the main
results. Section 2 contains the construction and Lipschitz properties of the
Langevin/Ornstein-Uhlenbeck transport map, on which our results are based.
Section 3 briefly sketches the connection between exact renormalization and a
different transport map, the Brownian transport map, as well as connections
to related works in the literature.

1.2. Models

Euclidean quantum, or statistical, field theories can be modeled as formal
probability measures on function spaces. Let us present the regularizations of
these models. Let d be the dimension and let LTd be the torus in R

d of side
length L > 0. We let Λε,L := LTd ∩ εZd with L being a multiple of ε; here L is
the infrared cutoff while ε is the ultraviolet cutoff. Our models will be defined
as probability measures νε,L on R

Λε,L . One of the challenges in constructing
such models is to show that the infrared and ultraviolet limits of νε,L, that is,
L ↑ ∞ and ε ↓ 0, are well-defined. In this work, we will not deal with this issue
and, instead, strive for estimates that are independent of L and ε. Let us now
specify the types of models we focus on. Given a mass m > 0 we let γε,L be
the Gaussian free field with covariance A−1

ε := ε−d(−Δε + m)−1, that is,

γε,L(dϕ) ∝ exp

⎡
⎣−εd

2

∑
x∈Λε,L

(ϕx(−Δε + m)ϕx)

⎤
⎦ dϕ = exp

[
−1

2
(ϕ,Aεϕ)

]
dϕ,

where dϕ is the Lebesgue measure on R
Λε,L , Δε is the discrete Laplacian, i.e.,

(Δεϕ)x = ε−2
∑

y∼x(ϕy − ϕx), and (·, ·) is the standard inner product with
| · | :=

√
(·, ·). The models νε,L take the form

νε,L(dϕ) = e−V ε,L
0 (ϕ)γε,L(dϕ),

for V ε,L
0 : RΛε,L → R (the meaning of the subscript on V ε,L

0 will become clear).
For example, the 2-dimensional massive sine-Gordon model is of the form,

V ε,L
0 (ϕ) ∝ −

∑
x∈Λε,L

2zε2−β/4π cos(
√

βϕx),

where z is the coupling constant and β is the inverse temperature [7].
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1.3. Transportation of Measure and Functional Inequalities

The idea at the base of our work is that the existence of a Lipschitz transport
map between some nice measure με,L and νε,L provides a systematic way to
transfer functional inequalities from με,L to νε,L [17]. Let us demonstrate, for-
mally, this idea with the Poincaré inequality, but emphasize that the strength
of the transport method is that it applies to many other functional inequal-
ities. Suppose that με,L is a measure on some measurable space (Ωε,L,Fε,L)
which satisfies the Poincaré inequality with constant aε,L: For any nice-enough
function F : Ωε,L → R,

Varμε,L [F ] ≤ aε,L

∫

Ωε,L

|DF |2dμε,L,

where DF is an appropriate notion of derivative and | · | is an appropriate
norm. Let T ε,L : Ωε,L → R

Λε,L be a map which pushes forward με,L to νε,L,
and is cε,L-Lipschitz in the sense that |DT ε,L| ≤ cε,L. Then, by the chain rule,
for any nice-enough function F : RΛε,L → R,

Varνε,L [F ] = Varμε,L [F ◦ T ε,L] ≤ aε,L

∫

Ωε,L

|D(F ◦ T ε,L)|2dμε,L

≤ aε,L(cε,L)2
∫

Ωε,L

|(∇F ) ◦ T ε,L|2dμε,L

= aε,L(cε,L)2
∫

R
Λε,L

|∇F |2dνε,L.

We conclude that νε,L satisfies a Poincaré inequality with constant aε,L

(cε,L)2. With the above computation in hand, it is clear that, in order to
prove functional inequalities for νε,L, we should find a measure με,L and a
cε,L-Lipschitz transport map T ε,L from με,L to νε,L, such that the constant
aε,L(cε,L)2 is well-behaved with respect to ε and L. This is exactly what we
accomplish in this work, by taking advantage of the known results about the
multiscale Bakry-Émery criteria proven by Bauerschmidt & Bodineau [6,7]
and Bauerschmidt & Dagallier [8,9]. For example, following [31,32], one could
deduce, for the two dimensional massive sine-Gordon model, Ψ-log-Sobolev
inequalities (which generalize the Poincaré and log-Sobolev inequalities), p-
Poincaré inequalities, isoperimetric comparisons (between γε,L and νε,L), and
eigenvalues comparisons (between the generators associated with γε,L and
νε,L), as well as other functional inequalities, with constants which are in-
dependent of the ultraviolet cutoff and, in certain regimes, of the infrared
cutoff—see Example 1.3.

1.4. The Langevin Transport Map

Consider a measure με,L on R
Λε,L with it associated Langevin dynamics

dΦt = ∇ log
(

dμε,L

dϕ

)
(Φt)dt +

√
2dBt, Φ0 ∼ νε,L, (1.1)

where (Bt)t≥0 is a standard Brownian motion in R
Λε,L . Let pt := Law(Φt)

to get a flow of probability measures interpolating between p0 = νε,L and
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p∞ = με,L. The flow (pt)t≥0 satisfies a continuity (Fokker-Planck) equation,

∂tpt(ϕ) = ∇ · (pt(ϕ)∇ut(ϕ)) ∀ϕ ∈ R
Λε,L , t ≥ 0,

where, for any t ≥ 0, ∇ut is the vector field driving the flow, obtained from
some function ut : R

Λε,L → R. Going from the Eulerian to the Lagrangian
perspective, the vector field ∇ut induces a diffeomorphism St : RΛε,L → R

Λε,L ,
which transports νε,L = p0 into pt, via the equation

∂tSt(ϕ) = −∇ut (St(ϕ)) , S0 = Id,

see [38, Theorem 5.34]. Setting Tt to be the inverse of St, and defining

T ε,L := lim
t↑∞

Tt,

we get the Langevin transport map between p∞ = με,L to p0 = νε,L.
In our setting, we take με,L = γε,L, the Gaussian free field. On a con-

ceptual level, this choice is motivated by viewing interacting field theories as
non-linear transformations of Gaussian free fields. On a technical level, the
choice of με,L = γε,L is beneficial for two reasons:

• Due to the special Gaussian structure, numerous functional inequalities
are known to hold for γε,L, with a constant aε,L which is independent of
both ε and L. This is a manifestation of the dimension-free nature of the
Gaussian.

• The vector field ∇ut can be explicitly computed as ∇ut(ϕ) = −∇ log Ut(
dνε,L

dγε,L

)
(ϕ), where (Ut)t≥0 is the Ornstein-Uhlenbeck semigroup asso-

ciated to the Ornstein-Uhlenbeck dynamics (1.1). When the multiscale
Bakry-Émery criterion can be verified, the vector field ∇ut can be con-
trolled and, hence, the transport map T ε,L can be shown to be Lipschitz.

Remark 1.1. The multiscale Bakry-Émery criteria are used in [6–9] to control
the Polchinski semigroup, and the proofs of the Poincaré and log-Sobolev in-
equalities for νε,L proceed in the same vein as the general Bakry-Émery theory
[2]. The Polchinski semigroup interpolates between a Dirac mass δ0 and νε,L,
corresponding to the continuum of scales used in the renormalization proce-
dure. However, this interpolation does not correspond to a transport map on
R

Λε,L (but see Sect. 3), since no transport map can exist between a Dirac mass
and a non-trivial model. In contrast, we work with the Ornstein-Uhlenbeck
semigroup where we blow up the Dirac mass by scaling it in such a way that
it becomes a Gaussian γε,L, and hence can be transported into νε,L. Indeed,
as mentioned above, the perspective we take in this work is that one way of
analyzing properties of various field theories is by viewing them as non-linear
transformations of Gaussian free fields. The renormalization flow induces a flow
of non-linear transformations (Tt), and if the non-linear transformations (i.e.,
the transport maps) are Lipschitz, then the field theories along the flow, and
in particular in the limit, do not differ by much from the free fields theories. In
principle, this perspective can conceivably be implemented without the regu-
larization of the infrared and ultraviolet cutoffs since the Ornstein-Uhlenbeck
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semigroup is well-defined in infinite dimensions [10]; but the situation in infi-
nite dimensions is more delicate and interesting [21].

Related Literature

In the context of functional inequalities, the idea of using the Langevin flow to
construct transport maps goes back to at least Otto & Villani [35]. The first to
show that the Langevin transport map enjoys Lipschitz properties were Kim
& Milman [25], and the work of Mikulincer and the author [32] substantially
extended the Lipschitz properties of this transport map. Both works used the
multiscale Bakry-Émery criterion, implicitly. Further Lipschitz properties of
the Langevin transport map can be found in the work of Klartag & Putter-
man [26] and Neeman [34]. While Cotler and Rezchikov [18] recently made
a connection between optimal transport and exact renormalization groups, it
was shown by Tanana [37] that, in general, the Langevin transport map is
not the same as the optimal transport map. Finally, a connection between
renormalization and Ornstein-Uhlenbeck semigroups is discussed by Faris in
[21].

1.5. The Polchinski Equation and Multiscale Bakry-Émery criteria

Let γε,L be the Gaussian measure on R
Λε,L with covariance matrix A−1

ε . Let
Qt := e−t Aε

2 , Ċt := Q2
t = e−tAε , and Ct :=

∫ t

0
Ċsds so C∞ :=

∫ ∞
0

Ċsds = A−1
ε .

With V0 := V ε,L
0 , let

Vt(ϕ) := − logECt
[e−V0(ϕ+ζ)], (1.2)

where the expectation ECt
stands for an expectation with respect to a centered

Gaussian measure on R
Λε,L with covariance Ct, taken over the variable ζ. The

function Vt satisfies the Polchinski equation [7, eq. (1.10)],

∂tVt =
1
2
ΔĊt

Vt − 1
2
(∇Vt)2Ċt

, (1.3)

with the notation, for a matrix M and a function F : RΛε,L → R,

(ϕ, φ)M :=
∑
ij

Mijϕiφj , (ϕ)2M := (ϕ,ϕ)M , ΔMF := (∇,∇)MF ;

the subscript M is omitted when M = Id.

Definition 1.2. A model νε,L is said to satisfy the multiscale Bakry-Émery
criterion if there exist real numbers λ̇t (possibly negative) such that, for any
t ≥ 0 and ϕ ∈ R

Λε,L ,

Qt∇2Vt(ϕ)Qt � λ̇t Id, where Qt = e−t Aε
2 .

1.6. Results

Our main result is that if a model satisfies the multiscale Bakry-Émery cri-
terion of Definition 1.2, then the Langevin transport map is Lipschitz. For
simplicity, we assume that νε,L is smooth, but this assumption can often be
removed by approximation, see [32].
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Main theorem. Suppose that a smooth model νε,L satisfies the multiscale Bakry-
Émery criterion. Then, the Langevin transport map T ε,L, which pushes forward
γε,L to νε,L, is exp

(
1
2

∫ ∞
0

λ̇tdt
)
-Lipschitz.

Once a Lipschitz transport map between γε,L to νε,L is constructed,
there are standard techniques of transferring functional inequalities from the
Gaussian γε,L to the model νε,L. This was demonstrated in Sect. 1.3 for the
Poincaré inequality, but many other functional inequalities can be transferred.
Let us mention a few of them (see [32] for some more). In the rest of this
section, νε,L is a measure satisfying the multiscale Bakry-Émery criterion,
cε,L := exp

(
1
2

∫ ∞
0

λ̇tds
)
, and |A−1

ε |op is the maximal eigenvalue of A−1
ε . The

constant cε,L|A−1
ε |op is the order of the constant appearing in the various func-

tional inequalities in this section.

Example 1.3 (The two-dimensional massive sine-Gordon model).
Since d = 2 we have

γε,L(dϕ) ∝ exp

⎡
⎣−1

2

∑
x∈Λε,L

(
ϕx(−Δ1 + ε2m)ϕx

)
⎤
⎦ dϕ = exp

[
−1

2
(ϕ,Aεϕ)

]
dϕ,

where (Δ1ϕ)x =
∑

y∼x(ϕy − ϕx), and where we note that

|A−1
ε |op ≤ 1

mε2
.

With

V ε,L
0 (ϕ) ∝ −

∑
x∈Λε,L

2zε2−β/4π cos(
√

βϕx),

the two-dimensional massive sine-Gordon model reads

νε,L(dϕ) = e−V ε,L
0 (ϕ)γε,L(dϕ).

By [7, Proposition 3.1], if β < 6π, then the multiscale Bakry-Émery criterion
of Definition 1.2 holds with

|λt| ≤ λ∗,

where λt :=
∫ t

0
λ̇sds and λ∗ = λ∗(β, z,m,L) is independent of ε. Moreover,

there exists δβ > 0 such that, if

Lm ≥ 1 and |z|m−2+β/4π ≤ δβ ,

then λ∗ = Oβ(|z|m−2+β/4π) uniformly in L. In other words, we get that cε,L :=
e

λ∗
2 is independent of ε and, in certain regimes, independent of L. Hence,

cε,L|A−1
ε |op ≤ e

λ∗
2

mε2
,

and the constant e
λ∗
2

mε2 will be the order of the constant appearing in the various
functional inequalities in this section. Since the continuum normalization of the
Dirichlet form is of order ε−2 [7, equation (1.17) and proof of Theorem 1.6],
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we get that the constant appearing in the functional inequalities is of order
e

λ∗
2

m , i.e., independent of ε, and in certain regimes, independent of L. For more
information on the convergence of the measures νε,L as ε ↓ 0 and L ↑ ∞, we
refer to [7] and references therein.

We start by establishing Ψ-Sobolev inequalities, which are generalizations
of the Poincaré and log-Sobolev inequalities.

Definition 1.4. Let I be a closed interval (possibly unbounded) and let Ψ :
I → R be a twice-differentiable function. We say that Ψ is a divergence if
each of the functions Ψ,Ψ′′,− 1

Ψ′′ is convex. Given a probability measure η on
R

Λε,L , and a function F : RΛε,L → I satisfying
∫

Fdη ∈ I, we define

EntΨη (F ) :=
∫

R
Λε,L

Ψ(F )dη − Ψ
(∫

R
Λε,L

F dη

)
.

Some classical examples of divergences are Ψ(x) = x2 with I = R

(Poincaré inequality), Ψ(x) = x log x with I = R≥0 (log-Sobolev inequality),
and Ψ(x) = xp with I = R≥0 and 1 < p < 2.

By [14, Corollary 9], the measure γε,L satisfies

EntΨγε,L(F ) ≤ |A−1
ε |op
2

∫

R
Λε,L

Ψ′′(F )|∇F |2dγε,L.

The transport method thus yields (cf. [31, proof of Theorem 5.3]):

Theorem 1.5 (Ψ-Sobolev inequalities). Let Ψ : I → R be a divergence and let
F : R

Λε,L → I be any continuously differentiable function satisfying
∫
R

Λε,L

F 2dνε,L ∈ I. Then,

EntΨνε,L(F ) ≤ cε,L |A−1
ε |op
2

∫

R
Λε,L

Ψ′′(F )|∇F |2dνε,L.

Next we describe the p-Poincaré inequalities which are a different gener-
alization of the Poincaré inequality. The measure γε,L satisfies (by a change of
variables x �→ Aεx in [1, Theorem 2.6]),∫

R
Λε,L

F pdγε,L ≤ αp|A−1
ε |p/2

op

∫

R
Λε,L

|∇F |pdγε,L,

where

αp :=

{
(p − 1)1/2 for p ∈ [2,∞)
π
2 for p ∈ [1, 2).

The transport method thus yields (cf. [31, Theorem 5.4]):

Theorem 1.6 (p-Poinacré inequalities). Let p ∈ [1,∞) and let F : RΛε,L → R

be any continuously differentiable function satisfying
∫
R

Λε,L Fdνε,L = 0 and
F,∇F ∈ Lp(γε,L). Then,∫

R
Λε,L

F pdνε,L ≤ cε,L αp|A−1
ε |p/2

op

∫

R
Λε,L

|∇F |pdνε,L.
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The next theorem also follows by the transport method but the argu-
ment is a bit different from the ones in the preceding results. We start by
recalling that the Gaussian isoperimetric inequality plays a crucial role in
high-dimensional probability, e.g., in the concentration of measure phenome-
non, [27,28]. By changing variables x �→ Aεx in [11, Theorem 3.1], the Gaussian
isoperimetric inequality can be stated as

γε,L (K + rB) ≥ Φ(a + r),

where K ⊂ R
Λε,L is any Borel set, B ⊂ R

Λε,L is the unit ball, r ≥ 0, Φ is the
cumulative distribution function of the standard one-dimensional Gaussian,
and a is such that γε,L(K) = Φ(a). The transport method thus yield (cf. [31,
Theorem 5.5]):

Theorem 1.7 (Isoperimetric comparison).

νε,L (K + rB) ≥ Φ
(
a +

r

cε,L

)
.

Finally, we turn to the issue of comparing the eigenvalues of the genera-
tors associated with γε,L and νε,L. The constant in the Poincaré inequality for
νε,L is the reciprocal of the first eigenvalue of the Langevin semigroup generator
L(νε,L) := Δ +

(
∇ log dνε,L

dϕ ,∇
)
, associated with νε,L. Assuming the eigenval-

ues of L(νε,L) are discrete, let λi(νε,L), λi(γε,L) be the eigenvalues of the gener-
ators L(νε,L),L(γε,L), respectively. By Theorem 1.5, λ1(γε,L) ≤ cε,Lλ1(νε,L).
A result of E. Milman [33, Theorem 1.7] shows that the transport method can
be used to compare all higher-order eigenvalues. The transport method thus
yields (cf. [32, Corollary 3]):

Theorem 1.8 (Eigenvalues comparisons). For every i ∈ Z+,

λi(γε,L) ≤ cε,L λi(νε,L).

Let us note, however, that in contrast to Theorems 1.5–1.7 which are
dimension-free in nature, Theorem 1.8 depends on the dimension; even the
discreteness and multiplicities of the eigenvalues are dimensional phenomena.

2. The Langevin Transport Map

Throughout this section we assume that νε,L is smooth (an assumption which
can often be removed, see [32]) and satisfies the multiscale Bakry-Émery crite-
rion of Definition 1.2. Let με,L = γε,L and let (Ut)t≥0 be the standard Ornstein-
Uhlenbeck semigroup associated to the Ornstein-Uhlenbeck dynamics (1.1),

dΦt = ∇ log
(

dγε,L

dϕ

)
(Φt)dt +

√
2dBt, Φ0 ∼ νε,L,

satisfying, for any test function F : RΛε,L → R,

∂tUtF (ϕ) = ΔUtF (ϕ) − (Aεϕ,∇UtF (ϕ)) . (2.1)
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The continuity (Fokker-Planck) equation for pt := Law(Φt) reads

∂tpt = ∇
(

pt∇ log
dpt

dγε,L

)
, p0 = νε,L,

and, using the equation (2.1), it can be checked that pt = (Ute
−V0)γε,L, where

we recall that e−V0 = dνε,L

dγε,L . Letting

ut(ϕ) := log Ute
−V0(ϕ),

we see that the vector field ∇ut drives the flow (pt)t≥0 via the continuity
equation.

In order to show how the multiscale Bakry-Émery criterion can be used
to control ∇ut, we will provide an explicit solution of (2.1). Recall first that
Qt := e−t Aε

2 , Ċt := Q2
t = e−tAε , and Ct :=

∫ t

0
Ċsds so C∞ :=

∫ ∞
0

Ċsds = A−1
ε .

Lemma 2.1 For any test function F : RΛε,L → R,

U t
2
F (ϕ) = ECt

[
F (e−t Aε

2 ϕ + ζ)
]

= ECt
[F (Qtϕ + ζ)] .

Proof By [21, equation (4.1)] (where we take, using the notation is [21], Q �→ Id
and A �→ Aε

2 ),

∂tECt
[F (Qtϕ + ζ)] =

1
2
ΔECt

[F (Qtϕ + ζ)] − 1
2

(Aεϕ,∇ECt
[F (Qtϕ + ζ)]) .

On the other hand, by (2.1),

∂t[U t
2
F (ϕ)] =

1
2
ΔU t

2
F (ϕ) − 1

2

(
Aεϕ,∇U t

2
F (ϕ)

)
,

so the result follows as U0F (ϕ) = F (ϕ) = EC0 [F (Q0ϕ + ζ)]. �

We can now show how the multiscale Bakry-Émery criterion can be used
to control ∇ut. By (1.2) and Lemma 2.1,

Vt(Qtϕ) = − logECt

[
e−V0(Qtϕ + ζ)

]
= − log U t

2
e−V0(ϕ) = −u t

2
(ϕ),

so, for any ϕ ∈ R
Λε,L and t ≥ 0,

∇u t
2
(ϕ) = −Qt∇Vt(Qtϕ) and ∇2u t

2
(ϕ) = −Qt∇2Vt(Qtϕ)Qt.

In particular, if νε,L satisfies the multiscale Bakry-Émery criterion, then, for
any ϕ ∈ R

Λε,L and t ≥ 0,

−∇2ut(ϕ) � λ̇2t Id . (2.2)

We now turn to the construction of the transport maps based on the
vector field ∇ut. Define the family of maps St : RΛε,L → R

Λε,L via the equation

∂tSt(ϕ) = −∇ut (St(ϕ)) , S0 = Id . (2.3)

Arguing as in [32, Sect. 2], and using (2.2), we get that Tt := S−1
t is a

diffeomorphism pushing forward pt to p0. Moreover, pt → γε,L weakly and
T ε,L := limt↑∞ Tt pushes forward γε,L = p∞ to νε,L = p0. In addition, if Tt
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is Lt-Lipschitz, then T ε,L is lim supt↑∞ Lt-Lipschitz, provided that the limit is
finite.

Theorem 2.2 Set λt :=
∫ t

0
λ̇sds for t ∈ [0,∞]. The transport map Tt, which

pushes forward γε,L to pt, is e
λ2t
2 -Lipschitz. In particular, the transport map

T ε,L, which pushes forward γε,L to νε,L, is e
λ∞
2 -Lipschitz.

Proof By (2.3), for any ϕ,w ∈ R
Λε,L , we have

∂t[∇St(ϕ)w] = −∇2ut(ϕ)[∇St(ϕ)w]. (2.4)

Our goal is to show that

|Tt(ψ) − Tt(ϕ)| ≤ e
λ2t
2 |ψ − ϕ| for all ψ,ϕ ∈ R

Λε,L , (2.5)

and our proof will follow the argument in [32]. In order to establish (2.5), it
suffices to show that, for any unit w ∈ R

Λε,L ,

|∇St(ϕ)w| ≥ e
λ2t
2 . (2.6)

Indeed, if (2.6) holds, then ∇St(ϕ)(∇St(ϕ))T ≥ exp(λ2t) Id so the inverse func-
tion theorem gives ∇Tt(ϕ)(∇Tt(ϕ))T ≤ exp(λ2t) Id. It follows that |∇Tt(ϕ)|op ≤
e

λ2t
2 , which is equivalent to (2.5).

In order to verify (2.6), we will make use of (2.4) and (2.2). Fix w ∈ R
Λε,L

and ϕ ∈ R
Λε,L , with |w| = 1, and define αw(s) := ∇Ss(ϕ)w. Then, by (2.4)

and (2.2),

∂s|αw(s)| =
1

|αw(s)|αw(s)T∂sαw(s) =
1

|αw(s)|w
T∇Ss(ϕ)T(−∇2us(ϕ))∇Ss(ϕ)w

≥ λ̇2sw
T∇Ss(ϕ)T∇Ss(ϕ)w = λ̇2s|∇Ss(ϕ)w| = λ̇2s|αw(s)|.

Since |αw(0)| = 1, we can deduce from Grönwall’s inequality that

∇St(ϕ)w = |αw(t)| ≥ exp
(∫ t

0

λ̇2sds

)
= e

λ2t
2 ,

which is (2.6). �

3. The Brownian Transport Map

In this section we briefly sketch another connection between the Polchinski’s
exact renormalization group and transportation of measures. Unlike the rest
of the paper where we took τ = ∞ and Ċt = e−tAε , in this section we allow
for arbitrary terminal time τ and positive semidefinite matrices (Ċt). This
freedom corresponds to the freedom in choice of cut-off functionals in the
renormalization flow, or alternatively, to a change of metric.

The way the different versions of the multiscale Bakry-Émery criteria are
used in [6–9] is the via the Polchinski semigroup, which we now present. Fix
τ ∈ [0,∞] and let [0, τ ] � t �→ Ċt be a bounded function taking values in the
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set of positive semidefinite matrices such that, with Ct :=
∫ t

0
Ċsds, we have

Cτ = A−1
ε . Consider the stochastic differential equation [7, equation (2.12)],

dΦ̃t = −Ċτ−t∇Vτ−t(Φ̃t)dt + Ċ
1/2
τ−tdBt, t ∈ [0, τ ], (3.1)

where (Bt) is a standard Brownian motion in R
Λε,L and (Vt) is defined by

(1.2). Denoting Φt := Φ̃τ−t, we set [7, equation (2.13)], for s ≤ t,

Ps,tF (ϕ) := E[F (Φs)|Φt = ϕ],

and this time-inhomogeneous semigroup (Ps,t) is the Polchinski semigroup.
The process (Φt) is an instance of the Schrödinger bridge [15,30], or the Föllmer
process [19,22,23], and is obtained by taking the martingale Mt :=

∫ t

0
Ċ

1/2
r dBr,

which satisfies Mτ ∼ γε,L, and conditioning it so that Mτ ∼ νε,L. The resulting
process (Φt) of this conditioning, which interpolates Φ0 ∼ δ0 to Φτ ∼ νε,L,
is an instance of Doob’s h-transform [13,24]. This process is also used in the
stochastic control approach to Euclidean quantum field theories developed by
Barashkov and Gubinelli [3–5].

In the context of functional inequalities, the process (Φt) was developed
independently by Eldan [20], from a different perspective called stochastic

localization, and by Lehec [29] who used the special case τ = 1 and Ċt =
Id. See also [16, section 2.4.2] and [31, Lemma 4.1] (treating the case τ =
1 and Ċt = Id). The work of Mikulincer and the author [31] gave a new
interpretation of the process (Φt) (in the case τ = 1 and Ċt = Id) as the
Brownian transport map which maps the Wiener measure on Wiener space into
νε,L. Further, by implicitly using one of the versions of multiscale Bakry-Émery
criteria, the work [31] deduces Lipschitz properties of the Brownian transport
map. In essence, the measure με,L from section 1.3 is taken to be the Wiener
measure (rather than γε,L) and the map T ε,L is taken to be the Brownian
transport map (rather than the Langevin/Ornstein-Uhlenbeck transport map).
The idea behind this approach is that we can use infinite-dimensional Gaussian
measures, e.g. the Wiener measure, since Gaussian measures satisfy functional
inequalities with constants that are independent of the dimension; in our case
this amounts to being independent of the infrared and ultraviolet cutoffs. We
leave for future work the extension of the Brownian transport maps for general
(Ċt) and the incorporation of the various multiscale Bakry-Émery criteria.
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