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1. Introduction
1.1. Log-concave sequences

Finite sequences of numbers {a;}?_; often serve as a powerful way to encode properties
of algebraic, geometric, and combinatorial objects: a; can stand for the ith coefficient
of a Schur polynomial, the dimension of the ith cohomology group of a toric variety,
or the number of i-elements independent sets of a matroid, etc. The properties and
interrelations of the elements of the sequence {a;}?; provide valuable information about
the underlying mathematical objects. Here we focus on log-concavity relations:

a? >a;_1a;41 foralli=2,...,n—1,

which are tied to notions of positivity and unimodality [2,3,20,21,15,1]. The question
that motivates our work is the following: Suppose a log-concave sequence {a;}? ;, whose
elements stand for some algebraic/geometric/combinatorial properties of a mathematical
object, satisfies

a? =a;_1a;41 for some fized index j.

What can we deduce about the underlying object? This question of identifying the ez-
tremals of the sequence {a;}"_; is fundamental for a number of reasons. At the very basic
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a; —e: flat
: strictly log-concave

%

Fig. 1.1. The extremals of this log-concave sequence (cf. (1.2)) are such that a? = aj_ja;11 = aj_1 =
a; = ajy1, corresponding to the flat parts of the sequence. The width of each of the flat parts can be
characterized as well. This precise description of the shape of the sequence cannot be obtained from the
log-concavity property alone.

level, the structure of the extremals is a basic property of the sequence which we ought
to understand. More concretely, information about the extremals can provide informa-
tion about the shape of the sequence which cannot be inferred from the log-concavity
property alone: see Fig. 1.1. Additionally, if one wishes to improve on the log-concavity
property by having a? — a;_1a,41 > d; for some non-trivial d; > 0, then usually un-
derstanding the extremals of {a;}, and hence the vanishing of d;, is a necessary first
step. From a different perspective, there are interesting questions related to combinato-
rial interpretations and computational complexity of the difference a? — a;_ja;;1, where
characterizing the vanishing condition a? = a;_1a;41 is a basic question [13,14,6].

Establishing that a given sequence, which arises in an algebraic/geometric/combina-
torial setting, is log-concave is a difficult problem, with many remaining open questions.
In recent years, major advances were achieved on the fronts of proving log-concavity
relations for various important sequences in combinatorics [11,12,5]. These approaches
rely on building “dictionaries” between combinatorial and geometric-algebraic objects,
and then using (or taking inspiration from) already-known log-concavity relations in the
geometric-algebraic settings. What is missing, however, are the analogous dictionaries
between the extremals arising in the combinatorial and geometric-algebraic settings. In
this work, we take a step towards bridging this gap by focusing on the correspondence
between combinatorics and convexr geometry due to R. Stanley in the context of partially
ordered sets. We will build such a dictionary and, as a consequence, completely charac-
terize the extremal structures arising in Stanley’s inequalities [18]. The question of the
characterization of these extremals was already raised by Stanley, but even conjectures
on these extremals were lacking. As we will see, this is for a good reason since, surpris-
ingly, the extremal structures of our combinatorial sequences will display the richness
and subtle nature of their geometric counterparts.

1.2. Stanley’s inequalities
Let @ = {y1, ., Yn—k} U{z1,..., 21} be a partially ordered set (poset) of n elements
with a fixed chain x1 < -+ < xj of length k. The set of linear extensions of « is the set

of bijections of & into [n] := {1,...,n} which are order-preserving:

N = {bijections 0 : @ — [n] : w < z = o(w) < o(z) YV w,z € a}.
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Fig. 1.2. Every linear extension sends z; to i¢; whenever j # £. But x, is sent to one of the locations
ig — 1, ig, ig + 1, depending on whether the linear extension is in N_, N—, Ny, respectively.

We are interested in linear extensions which send the elements in the chain z; < - -+ < x,
into fized locations. Fix 1 < i; < +-- < i, < n and fix £ € [k] such that i, +1 < iy <
ig41 — 1. For o € {— =4}, let

No:={oceN:o(x;)=1i; Vje[k]\{¢{} and o(x¢) =i¢+ 1o},

where 1o 1= 14, is 4+} — 1{o is —}- In words, whenever j # ¢, x; is placed at i;, and when
j =4, x, is placed at one of the locations in {iy — 1,4s,4¢ + 1}, depending on the sign of
o€ {—,=,+}; see Fig. 1.2.

In [18, Theorem 3.2], Stanley showed that

A IA] (L1)

thus resolving a conjecture of Chung, Fishburn and Graham [10]. To see the relation to
log-concave sequences consider the case k = 1 and set

a; =|{c e N:o(x1)=1i}|, i€ n] (1.2)

Then, (1.1) amounts to the statement that the sequence {a;} is log-concave. For the
general case k > 1, (1.1) is a log-concavity statement about multi-index sequences.

The goal of this work is to provide a complete characterization of the equality cases
of (1.1) for any k. That is, we will answer the following question: If

IVCI? = V[V, (1.3)
what can we deduce about the poset a?
To gain some intuition for the extremals of Stanley’s inequalities (1.1) let us start with
a trivial observation: If {yi,...,yn—x} are all incomparable to x,, then IN_| = |NZ| =
V.|, which yields equality in (1.1). In the same vein, consider the following example
which is slightly less trivial.

Example 1.1. Suppose the poset & satisfies

{z€ea:z<zpand z L xy1}U{z€a:z>apand z } xp11} = 2. (1.4)
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Then, given any o € er{—,:,+}N07 we can permute (some of) the locations of the ele-
ments {o =1 (ig—1), 0~ (iy), o~ 1(ig+1)} without violating any constraints. For example,
given o € Ny, the elements o~ (iy—1), 0~ (i;) must be incomparable to zy = o~ (iy+1)
since, as iy—1 + 1 < iy < ig41 — 1, the converse would violate (1.4). Hence, we can ex-
change the locations of {o7(iy — 1), o= 1(ig + 1)} or {o7 (i), o7 1(i¢g + 1)}. It follows
that

IN=| = IN_| = NG, (1.5)
which in particular implies (1.3).

The mechanism (1.4) is wasteful since it is global in nature. It controls all the elements
between x,_1 and xyy1, even though we are concerned only with the elements which are
close to zy in the sense that they are located in i, — 1, iy, i¢ + 1. Instead, we expect (1.3)
to hold as soon as the mechanism (1.4) occurs only on a local scale. To make this idea
precise we make the following definition regarding elements that are close to x,.

Definition 1.2. Fix ¢ € [k] such that i;1 +1 < i < idg11 — 1, and given o € {—,=,+},
fix o € N,. The companions of o = 071 (iy + 1o) are o~ (i;) for i; € {ig — 1,ip,%0 +
13\ {ie + 1o}, where 1, := 144 i 43 — 1go is —}- The companion lower in ranking is the
lower companion and the companion higher in ranking is the upper companion.

For example, with o being —, the companions of 2, = o~ !(iy — 1) are 0~ 1(i;) and
o~ 1(ig +1). The lower companion is o~!(i¢) and the upper companion is o~ (ip + 1).

1.8. The extremals of Stanley’s inequalities

The characterization of the extremals of Stanley’s inequalities will be in terms of the
companions of z, as defined in Definition 1.2. On a finer resolution, there are two distinct
classes of posets which in turn have different types of extremals. The two classes of posets
will be called supercritical and critical, a terminology which will become clear later. The
precise definitions are deferred to Definition 2.11, but for now, we will simply note that a
supercritical poset is always critical, but the converse is false. (There are further classes
which reduce to the supercritical and critical classes. They will be handled in Section 6,
see also Theorem 1.6.)

Theorem 1.3. (Supercritical extremals of Stanley’s inequalities)
Suppose the poset & is supercritical. The following are equivalent:

(1) INZP = [NZ||V4 .
(i) IN-| = IN=| = [Ny
iti) For every linear extension in N_UN_UN ., both companions of x, are incomparable
+
to xy.
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T3 Y2
a = Y3 T2 Ya
1 Y1
N_ = {Y12122Y3ya®3y2, Y1T102YaY3T3Y2, Y1T1T2Y2Y3T3Ya, Y1T1T2Y3Y2T3Y4},

N::{y1m1933r294<733927 Y1T1YaT2Y3T3Y2, Y1T1Y3T2Y2T3Y4, y4m1y1mzysmsy2},

N+:{y1:1r1y4ysrzar3yz, YIT1Y3YaT2T3Y2,  Y4T1Y1Y3T2T3Y2, YaT1Y3Y1TaTaya} .

Fig. 1.3. Top: Hasse diagram (arrows point from smaller to larger elements) of poset in Example 1.4. Bottom:
Collections of linear extensions of poset in Example 1.4.

Theorem 1.3 provides a number of insights into the extremals of (1.3). Part (ii) of
the theorem (which held in (1.5)) is non-trivial, and even surprising, since it puts heavy
constraints on the ways in which |[NZ|? = [N_||NV,| can occur. A priori, we could have
a geometric progression where |[N_| = ab~!, |N=| = ab®, |N.| = ab®t!, for some
a,b,c > 0, which would yield the equality

WCJ2 = a2 = (ab*~")(ab™") = N[N

Theorem 1.3(ii) excludes this possibility. On the other hand, despite the information
provided by (ii), it sheds no light on the mechanism which yield equality in (1.1). In con-
trast, Theorem 1.3(iii) provides the mechanism behind the extremals: The companions

of 24, under any linear extension in | J N, must be incomparable to z,. Hence,

oL —,=,
the positions of x, and both of its com;e);nionz}can be swapped, which leads to part (ii).
Note that (iii) is a local condition which controls only the immediate companions of x,
unlike (1.4). The power of Theorem 1.3 lies in the statement that this mechanism is the
only mechanism behind the extremals of Stanley’s inequalities for supercritical posets.
The characterization of Theorem 1.3 is very clean and one might hope that it applies

to every poset. This hope is quickly shattered:
Example 1.4. Let & = {y1, Y2, y3, Y4, T1, T2, x5} with the relations
T < T2 <x3, Y1<wT2, T2<Y2, T1<Y3<T3.

Set £ =2, and i1 = 2, is = 4, i3 = 6. One can check that |[N_| = [NZ| = [Ny| =4
so that Theorem 1.3(ii) holds. On the other hand, Theorem 1.3(iii) is false since yi,y2
are comparable to x5 but can appear as companions of xs under linear extensions in
N_UN_UN,. See Fig. 1.3.
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Our next result goes beyond Theorem 1.3 and characterizes the extremals of critical
posets.

Theorem 1.5. (Critical extremals of Stanley’s inequalities)
Suppose the poset a is critical. The following are equivalent:

(1) INZ* = [NZ ||V .
(i) IN-| = |N=| = [NL].
(iii) For every linear extension in N_ UN— U N, at least one companion of xy is
incomparable to xy. In addition, there exist nonnegative numbers N1, No such that:
o For any fized o € {—,=,+},

[{o € Ns : only the lower companion of xy is incomparable to x,}|

=N; = |[{o € N : only the upper companion of z, is incomparable to xy}|.

o |{o € N, : both companions of ¢ are incomparable to xy}| = No V o € {—,
=, +}.

Let us compare and contrast Theorem 1.3 and Theorem 1.5. The conclusion in part
(ii) that the equality (1.3) necessitates |N_| = |[N=| = |[N| remains true for supercrit-
ical and critical posets. But the mechanisms, i.e., part (iii), for this phenomenon are
different. Clearly, Theorem 1.3(iii) is a stronger condition since it trivially implies the
condition in Theorem 1.5(iii). For critical posets, the conclusion that only 0 comparable
companions are allowed (namely Theorem 1.3(iii)) is relaxed into the statement that 0
or 1 comparable companions are allowed. But in order to get |N_| = |N=| = |N,|, there
must be a balance between those linear extensions with 1 comparable companion, which
is the content of the second part of Theorem 1.5(iii).

Our formulation of Theorem 1.3 and Theorem 1.5 mirrors the analogous distinction
in convex geometry between supercritical and critical (cf. Theorem 1.10). However, our
proofs provide us with a stronger statement which encompass both Theorem 1.3 and
Theorem 1.5.

Theorem 1.6. (Extremals of Stanley’s inequalities) Suppose a is a poset such that
INZ| > 0. Then, the following hold:

e The conclusions of Theorem 1.5 remain true. In addition, given any o € N, for any
o € {—,=,+}, where one of the companions is comparable to x;, we have that the
lower and upper companions are incomparable to each other.

o If & is supercritical then the conclusions of Theorem 1.3 remain true.

Theorem 1.6 improves upon Theorem 1.3 and Theorem 1.5 by showing that the conclu-
sions of Theorem 1.5 hold even under the assumption |[N=| > 0. In addition, Theorem 1.6
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provides further information on the structure of the linear extensions. The only case not
covered by Theorem 1.6 is when |N=| = 0, which is in fact trivial and will be character-
ized later (Theorem 5.3).

Remark 1.7. (Poset characterization) There is a way to reformulate Theorem 1.3(iii) so
that the characterization of the extremals is given in terms of conditions on the poset
itself rather than on the set of its linear extensions:

Vy<aze: Ts(y) €{0,....k+1} sty <z

and [{z € a1y <z < xg(y)}| > dsy) — ies (16)
Vy>axe: 3r(y) €{0,...,k+ 1} sty > .

and {z € a: .y < 2 < Y| >0 —irgy);

see Proposition 7.5. Here, xg (res. xx41) is the added element with the property that it
is smaller (res. bigger) than any other element in &. The formulation (1.6) can be useful
in practice since, given a standard description of a poset, (1.6) is easier to check. On the
other hand, the formulation of Theorem 1.3(iii) is more compatible with our dictionary,
which is more natural to formulate in terms of conditions on the linear extensions of the
poset. In the first version of this manuscript we wrote that “It is an interesting problem
to find an analogue of (1.6) for critical posets.” However, since the first version of our
work was made public, Chan and Pak [6, Theorem 1.3] proved a remarkable result on
the computational complexity of the characterization of Stanley’s inequalities, which in
particular implies that a poset characterization of Stanley’s inequalities of the form (1.6)
would contradict fundamental conjectures in computational complexity [6, §3.5].

Remark 1.8. (k = 1) The characterization of the extremals of Stanley’s inequalities when
k = 1 was done in [17, §15]. It turns out that, when k& = 1, the poset must be super-
critical and the characterization of [17, §15] in this case is the same as Theorem 1.3 and
Remark 1.7. While our proofs take much inspiration from the work [17], the new phe-
nomena of critical posets necessitated the development of many new ideas (see Fig. 1.4).
For example, the dictionary constructed in [17, §15] was in terms of the poset itself (as in
Remark 1.7), rather than its linear extensions. But when progressing to critical posets,
the approach of [17, §15] no longer works (especially in light of [6, Theorem 1.3]), while
our dictionary, which is in terms of a linear extensions description, is suitable for these
more subtle and rich extremals.

Let us also mention that, when k = 1, Chan and Pak, using their combinatorial atlas
method [4], provided a linear-algebraic proof of Stanley’s inequalities and characterized
their extremals, thus avoiding any use of convex geometry; see also the proof for width
two posets by Chan, Pak, and Panova [8]. However, their approach does not currently
extend to the case k > 1.
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Remark 1.9. (k = 2) Using our techniques, Chan and Pak [6, Lemma 9.1] showed that,
in fact, the conclusion of Theorem 1.3 remains true whenever k = 2. Per Remark 1.8,
the same holds true for £ = 1. It follows that Example 1.4, where the conclusion of
Theorem 1.3 is no longer valid, is sharp in terms of k.

1.4. Dictionaries between convex geometry and combinatorics

Stanley’s proof of (1.1) relies on a remarkable correspondence that he found between
mixed volumes of certain convex polytopes and linear extensions counts. Once this cor-
respondence is established, the inequality (1.1) follows from a deep log-concavity result
in convex geometry: The Alexandrov-Fenchel inequality. We will start this section by
reviewing Stanley’s proof of the inequality (1.1), and then move to the discussion of its
extremals.

1.4.1. The Alexandrov-Fenchel inequality

We start with some preliminaries from convex geometry; our standard reference is
[16]. Given convex bodies (non-empty compact convex sets) C,C’ C R"~* and scalars
A, N >0, we define their sum as

ANC+NC ={dx+Ny:zeCyel}.

The volume of a sum of convex bodies behaves as a polynomial: Given a positive integer
p, convex bodies C1,...,C), C R™ %, and scalars \j, ..., Ap > 0, we have

Vol (A1C1 + - + ApCyp) = > Vakl(Chrr o Ch DN N

1<j1,csn—k<p

where the coefficients V,,_;(C}
objects generalize the notions of volume, surface area, mean width, etc. The Alezandrov-

-5 Cj, ) are called mized volumes. These geometric

Fenchel inequality [16, §7.3] states that sequences of mixed volumes are log-concave: For
any convex bodies C1,...,Cp_ C R*7F,

Voo (C1,02,C3, ..., Cpg)? > Vi (C1,C1,Cs, ..., Cr )V (C2, C2, C3, ..., Cr ).

(1.7)
Stanley’s proof of (1.1) relies on the identification of the poset @ with polytopes
Ko, ..., K. We defer the explicit construction of these polytopes for later (Section 2),
and for now denote by K a certain collection of these polytopes containing n — k — 2 of
them. The key point is the identities

‘N—| = (n - k)!vn—k(Ké7K€7’C)7

V=] = (n = k)i (K1, Ko, K), (1.8)
‘N+| = (n - k)!Vn,k(K(,th,hIC).



10 Z.Y. Ma, Y. Shenfeld / Advances in Mathematics 436 (2024) 109404

With the representation (1.8) in hand, the inequality (1.1) is equivalent to
Vo i (Ke1, Ko, K)? > Vi (Ko, Ko, KV (K1, K1, K), (1.9)

which follows immediately from (1.7).
Stanely’s proof of (1.1) is the only proof currently known. Hence, a natural route
towards the characterization of the extremals of Stanley’s inequalities would require:

¢ Characterization of the extremals of the Alexandrov-Fenchel inequality.
¢ Dictionary between the extremals of the Alexandrov-Fenchel inequality and the ex-
tremals of Stanley’s inequalities.

For arbitrary convex bodies, the characterization of the extremals of (1.7) is a long-
standing open problem [16, §7.6]. But when the bodies are polytopes, this problem was
recently solved by the second-named author and Van Handel [17]. Thus, the work [17]
takes care of the first item and our work here is dedicated to the second item.

To build intuition regarding the correspondence between the extremal structures of
posets and polytopes, let us revisit Example 1.1. As will be evident (see (2.3)), the
identity (1.4) holds if, and only if, Ky_1 = K,. In this case it is clear that equality will
be attained in (1.9). But as we saw in Theorem 1.3 and Theorem 1.5, equality can be
attained in Stanley’s inequalities under much weaker conditions than those captured by
Example 1.1. It follows that equality holds in (1.9) under conditions which are much
weaker than Ky, = K. The characterization of these conditions is the topic of the next
section.

1.4.2. The extremals of the Alexandrov-Fenchel inequality for convez polytopes

The terminology of supercritical and critical posets comes in fact from the analogous
terminology in the characterization of the extremals of the Alexandrov-Fenchel inequality
for convex polytopes as introduced in [17]—-the precise definitions of supercriticality and
criticality is deferred to Definition 2.5. In the sequel, B C R"~* always stands for the unit
ball, and the notions of (B, K)-extreme normal directions and K-degenerate pairs, which
will be used in the subsequent theorem, will be given in Definition 2.4 and Definition 2.7,
respectively.

Theorem 1.10. (Extremals of the Alexandrov-Fenchel inequality for convex polytopes,

[17])
o Suppose K is supercritical. Then,
Vi (Ke—1, K¢, K)? = V(K Ko, K)Vo— i (K1, Ko—1, K),

if, and only if, up to dilation and translation, the supporting hyperplanes of Kp_1
and K, agree in all (B, K)-extreme normal directions.
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Geometry Dictionary Combinatorics
Criticality of polytopes Section 5 Criticality of posets
(Definition 2.5) (Proposition 5.7) (Definition 2.11)
Projection Section 6 Splitting

([16, Theorem 5.3.1])

(Remark 6.1)

(Definition 6.2)

Criticality of splitting pairs

Mixing of splitting pairs

(Definition 7.6) Section 7 (Fig. 7.1)
Maximal collection of polytopes Section 7 Maximal splitting pair
([17, section 9.1]) (Proposition 7.8) (Definition 7.7)
Extreme normal directions Section 8 First- and second-neighbors
Translation and dilation Sections 9-10 Chains of poset
Critical subspace . Critical subposet
Section 10

(Equation (10.1))

(Equation (10.1))

Fig. 1.4. Dictionary between geometry of polytopes and combinatorics of posets.

e Suppose K is critical. Then,
Vi (K1, Ko, K)? = Voo (K¢, Ko, )V (K1, Ko—1,K),

if, and only if, there exist 0 < d < oo K-degenerate pairs (P, Q1), ..., (P, Qq), such
that, up to dilation and translation, the supporting hyperplanes of Ky_1 + Z?Zl Q;

and Ky + 2?21 P; agree in all (B, K)-extreme normal directions.

The complicated structure of the (B, K)-extreme normal directions (see Fig. 2.1) is
what gives rise to the richness of the extremals. If the supporting hyperplanes of K;_; and
K, agree in every direction on the sphere S™~*~1 then, up to dilation and translation,
K1 and K are identical. This is an example where a global mechanism (supporting
hyperplanes of K,_1, K, agree everywhere) gives rise to equality in (1.7). Theorem 1.10
provides a local mechanism for equality in (1.7) (supporting hyperplanes of K,_1, Ky
agree only in very few directions), and furthermore, establishes that this local mechanism
is the only mechanism for the extremal structures of the Alexandrov-Fenchel inequality.

1.4.8. Dictionary for extremals

A priori, it is not at all clear that the complications and richness of the extremals
of (1.7) would also arise in our very specific family of polytopes. Indeed, in the case
k = 1, only the supercritical extremals appear. Remarkably, not only does this com-
plexity arise, but we can provide a clean and intuitive characterization of the extremals
arising in Stanley’s inequalities for critical posets. At the core of our work is a pow-
erful dictionary which translates between the extremal properties of convex polytopes
and partially ordered sets. We discover new extreme normal directions, and in addition,
introduce numerous new key ideas: closure, splitting pairs, mizing, critical subposet, to
name just a few. It will be best to introduce these ideas at the appropriate places in
the paper; Section 4 will contain a brief outline of our proof. We refer to Fig. 1.4 for
a quick summary of the main components in our dictionary, and recommend that the
reader revisit this table from time to time.
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1.5. Organization of paper

We start in Section 2 by reviewing the connection between partially ordered sets and
convex geometry. In Section 3 we develop a number of tools (decompositions, closure)
that are used throughout the paper and also prove the sufficiency parts of Theorem 1.3
and Theorem 1.5. Section 4 provides a brief outline of the proofs of the main results.
Section 5 sets the first building block of our dictionary by showing the equivalences
between notions of criticality for posets and polytopes. Section 6 introduces the idea of
splitting and characterizes the extremals of the subcritical posets. Section 7 introduces
the idea of mizring which is at the heart of our proofs and applies it to splitting pairs.
In Section 8 we add to our dictionary the combinatorial characterization of the extreme
normal directions. We complete the proof of Theorem 1.3 in Section 9 and the proofs
of Theorem 1.5 and Theorem 1.6 in Section 10. At the end of the paper we include a
Notation Appendix for the convenience of the reader.

2. Preliminaries

In this section we review some basics about posets and convex geometry, as well
as introduce the notation we use throughout the paper. We review the connection be-
tween posets and mixed volumes, and state the characterization of the extremals of
the Alexandrov-Fenchel inequality for (convex) polytopes. In addition, we provide the
criticality definitions for polytopes and posets.

We use the notation <, <,=,>,>,~ to describe the relations in a poset, where ~
stands for the comparability relation,' and by £, &£, #, %, #,» to describe their nega-
tions. Given integers p < g we write

[p.ql :=={p,p+1,...,qa—1,q}. (2.1)
Fix positive integers k,n, with k¥ < n, and consider the poset &, of size n,
a={Y1,- s Yn—ksT1, -, Tk},
where 1 < z9 < --- < xj is a chain. Let
a={y, -, Yn—k}
be the induced poset of size n — k obtained from a by removing the chain. To simplify
the notation we add two elements zg,zr+1 to a with the property that xg is smaller

than any element in & while x is bigger than any element in a. Note that this allows
us to consider the case k = 0.

! Note that ~ is not a transitive property.
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Let NV be the set of all linear extensions of &, that is,
N = {bijections 0 : @ = [n] : w < z = o(w) < o(z) Vw,z € a},

with the convention that o(z9) = 0 and o(xk41) =n + 1 for any o € N. Fix £ € [k] :=
{1,...,k} and fix i; < iy < --- < i} € [n], with the property i,—1+1 < iy < ip41—1, and
let ig := 0, 441 := n+1. We define the following sets of linear extensions, N_, N_, A, C
N,

N_={ceN: o) =i¢—1 and o(zy) =1, ¥V m € [E]\{{}},
N_

_:={ceN:o(x) =1 and o(x,) =1,V me[E\{{}},
Ny={oeN:o(x)=ig+1 and o(z,)=in ¥V me [k\{{}},

so Stanley’s inequalities read
INCI? > V[V (2.2)
2.1. Posets and polytopes

Fundamental to our approach towards the extremals of (2.2) is the connection, due
to Stanley [18], between posets and convex polytopes. We start with the definition of an
order polytope: Given B C a we let RP := {t e R"* :¢; = 0 for y; ¢ B} and define the
order polytope Og C RP C R~ by

Op:={te RA . t; €[0,1] Vy; € B, and t, < t, if yu < Yo YYu, Yo € B}

The order polytope encodes important properties of the poset, e.g., the volume of O,
is proportional to the number of linear extensions of « [19, Corollary 4.2]. Let us recall
some basic facts about order polytopes, which will require the following poset notions.
A mazimal (res. minimal) element y € « is such that there exists no z € «, different
than y, satisfying y < z (res. z < y). Given a set 3 C a we define 81 (res. 3*) to be the
set of maximal (res. minimal) elements of 3. Given a relation x € {<, <, =,>, >, ~, &

EsF 2 Fyoet and y € B we let
Bey ={z € B:2zxy},

and, similarly, given relations *,x € {<, <, =,>,>,~, & &£, #, %, #,~}, and y,y' € S,
we write

By oy :={2€B:z*yand zxy'}.

An element z € 8 coversy € Bif z € ,Biy. We say that § is an upper set (res. lower set)
if sy C B (res. acy C B), for every y € 5.
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The next result provides information about the face structure of order polytopes based
on the poset notions just introduced.

Lemma 2.1. ([19, §1]) For any 8 C a we have dim Og = |B|. The (|8| — 1)-dimensional
faces of Og are precisely the following subsets of Og:

(i) Og N {t; =0} fory; € B*.
(ii) Og N {tj =1} for Y; € BT.
(iii) Og N {ty =t} for yu,y, € B such that y, covers y, in [.

Hyperplane sections of order polytopes will play a crucial role for us: Given i € [0, k],
define the polytopes in R* %,

K, :={t€Oy:t;=0ify; <w;, t; =11if y; > x;41, forall y; € a}. (2.3)

While we defined the polytopes {K;} as hyperplane sections of order polytopes, they are
in fact nothing but translations of certain order polytopes. To see this relation we start
with the next lemma whose proof is a matter of checking the definitions. In the sequel,

given f C a let 1g := Zyjeﬂ ej, with {e;},cp denoting the standard basis of R”.

Lemma 2.2. Let 3,3 C « be disjoint sets where 3 is an upper set and 3’ is a lower set.
Then,

Oa\(ﬁuﬁ’) + 1ﬂ = {t S Oa : tj =0 ifyj S ﬂ/ and tj =1 ifyj S B},
where we view RO\BYE) qg ¢ subset of R® = Rk,

We can now write {K;};co,x] as translates of order polytopes. For i € [0, k] define

ﬂi = Ol\(06<3;i U O¢>aci+1)7 (24)

with the convention that 5; = @ if i < 0 or ¢ > k; for S C [0, k] set Ss := U;esf;. The
interpretation of f3; is as the set of elements which can potentially be ordered between
x; and x;41. Then, applying Lemma 2.2, with the disjoint upper and lower sets 8 =
Qszpps B = <y, shows that

K; =0g, +1 for i € [0, k]. (2.5)

X>zi4q

As an example of g, which will be useful later, the following result handles the set
S :=1[0,r]U[s, k]

Lemma 2.3. For any r < s,

ﬁ[[O,rﬂU[[s,k:]] = a\a>wr+1,<$5 = ﬂr U Bs U A<p,iq U Q>q -
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Proof. The second identity is clear so we focus on the first identity. Let jo := —1, 0 <
J1 < <Jp <k, jpt1 : =k + 1. We claim that

p

(a<ay, Uasa,,,.) = U A>2jq41,<Tjig ) (2:6)
1 q=0

DL

q

C:Lety € ﬂf;:l(oz<¢jq Ua>qu+1) so that, for each g € [1, p]}, either y < x;, ory > x;_11.
Let ¢’ be the largest ¢ such that y > x;_ 1. Then, y is not bigger than T gy +1 which

' C e g
means that y < Ty BS Y € Ocay o Uasa; 1 (this is trivially true if ¢’ = p).
Hence, y € ), 41,<5 0y

D:Lety e Oy 1,<as, ) for some ¢ € [0, p]. Then, for any ¢’ < g, y > zj,+1 and,
q
+1
for any ¢’ > ¢, y < z;_,. Hence, y € ﬂi:o(o‘@jq Uz, 1) = ﬂgzl(a@jq Uasa, o)
We now to turn to the proof of the lemma. Let jo := —1,j,41 = k + 1, and

{1, dpt =10,...,7,s,...,k}. We have

p P
Bloruls.k] = U Bj, = U <a\ (a<qu U a>qu+1)> = a\ ﬂ (a<1jq U a>zjq+1)
q=1

q=1 q=1
p
AN ST
(2.6) \ g ZTig+1<Tj(g11)
q:
Whenever Jq ?é T, Jq + 1 = Jq+1, SO a>qu+17<'rf(q+1) = . It follows that

/4

g=0 O>2j,11,<2; 4y = O>ari,<wes which completes the proof. O

2.2. Posets and mized volumes

The connection between the polytopes {K;}icpo,x) and [N_|, IN=|,|Ny|, which leads
to Stanley’s proof of (2.2), goes through the notion of mixed volumes; we refer to [16] as
the standard reference for the theory of convex bodies. Given convex bodies (nonempty
compact convex sets) C,C’ C R"7* and scalars A\, \’ > 0, we define their sum as

ANC+NC ={dx+Ny:zeC,yeC}.

The volume of a sum of convex bodies behaves as a polynomial: Given convex bodies
Ci,...,Cpy CR"* and scalars A, ..., A, > 0, we have [16, Theorem 5.1.7],

Vol (A1Cy + -+ + ApCy) = Yo Vak(Chi G DA N

J1ydn—k€[1,p]

The coefficients V,,_(Cj,, ..., Cj, . ), which are nonnegative, symmetric, and multilin-
ear in their arguments, are called mized volumes. Stanley’s proof of (2.2) relies on the
following identification of |N_|,|N=|, |Ny| with mixed volumes [18, Theorem 3.2]. For
m € [0, k] let
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Then,

|N_| = (n — k)!v,L_k(ICo,’Cl,...,Kg_l,...,Kg_l, K@,...,Kg ,]Cg+1,...,’€k),

de—l—ig_1—1  igy1—(ig—1)—1

|N:| = (n - ]{i)!Vn_k(Ko,Kl, . .,Kg_l, [N ,Kg_l,Kg, .. .,Kg,’Cg+1, PPN ,]Ck),

ig—ig—1—1 ipr1—tie—1
|N+| = (n— ]{i)!vn_k(/co,,cl,...,Kg_l,...,Kg_l, Kg,...,Kg ,Kg+1,...,Kk).

fe+l—ip_1—1  dgqp1—(ig+1)—1

To shorten the notation, let

K:= (ICO7IC17"'7Kf717"'7K@717KZ7"'7KZ7’C5+17"‘7’Ck)7

ip—tp_1—2 Gpp1—ip—2

to get

|N_| = (n — k)!Vn_k(Kg,Kg,K),
IV=| = (n = k)Vy g (K1, K¢, K), (2.7)
|N+| = (n - k)!Vn,k(Kgfl,Ke,hK:).

With the representation (2.7) in hand, we get that the inequality (2.2) is equivalent to
Vo i (Ke1, Ko, K)? > Vo (Koo, Ko1, )V (K, K, K).

The latter inequality follows immediately from the Alexandrov-Fenchel inequality [16,
Theorem 7.3.1]: For any convex bodies C,...,C,_; C R"™ % we have

Vi (C1,C2,Cs, ... ,Cro)? > Vo (C1,C1, Cs, ..., Cp )V (Ca, C2, Cs, . .., Cr o).

(AF)
This completes Stanley’s proof of (2.2). Since our goal in this paper is to understand the
equality cases of (2.2), the above discussion naturally leads to the investigation of the
equality cases of the Alexandrov-Fenchel inequality itself.

2.3. The extremals of the Alexandrov-Fenchel inequality for convex polytopes

We start with the support function associated to a convex body: Given a convex body
C C R * we define he : S -1 5 R by

he(u) := sup(u, z), for ue S F-1L
zeC
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The support function evaluated at u gives the distance to the origin of the hyperplane
orthogonal to u supporting C'. The support function respects the summation of convex
bodies in the sense that

hac+nc = Mhe + Nher,

for any convex bodies C,C’ C R™"* and scalars A\, \ > 0. The function hc completely
describes C' in the sense that two convex bodies are the same if their support functions
are identical. That is, C' = C' if ho(u) = he(u) for every u € S"F~1. Since mixed
volumes are invariant under translations, and scale proportionally with dilations, it is
clear that equality holds in (AF) whenever there exist a > 0 and v € R"~* such that
hey (1) = hacy1v(u) for every u € S~ =1 However, the difficulty in characterizing the
extremals of the Alexandrov-Fenchel inequality stems from the fact that equality can be
attained in (AF) even if ho, and hac,.v agree on a very small subset of S"~#~1. The
complete characterization of the extremals of (AF) has been open for decades. But in the
case of polytopes, which is the setting relevant to Stanley’s inequalities, the problem was
completely settled in [17]. In order to present the results of [17] we need some definitions.
In the sequel, B C R™* always stands for the unit ball. Given a polytope C C R**
and u € S" k1 we write

F(Cu):={zeC:(uzx)=hc(u)},
for the face of C' in the direction u. We recall [16, Theorem 1.7.2] that
F(C+C',u)=F(C,u) + F(C'",u), (2.8)
for any convex bodies C,C’ and u € S"~F~1,

Definition 2.4. Let C := (Cs,...,C,_x) be a nonempty collection of polytopes in R"~¥.
A vector u € S"7*~1is a (B, C)-extreme normal direction if, for any C' C C,

dim (Z F(C, u)) > ||

cec’

One example of (B, C)-extreme normal directions can be found in Fig. 2.1. The defi-
nition of (B, C)-extreme normal directions plays a crucial role in the characterization of
the extremals of the Alexandrov-Fenchel inequality for convex polytopes. For example,
it follows from [17] that if Cy,...,C,_j are full-dimensional polytopes in R"~*_ then,
equality holds in (AF) if, and only if, there exist a > 0 and v € R"~* such that

he, (1) = heoy4v(u)  for every (B, C)-extreme normal directions u.

In the setting of Stanley’s inequalities, the full-dimensionality assumption does not
hold so we need the full power of the results of [17]. This requires a few definitions.
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Fig. 2.1. Extreme normal directions associated to the cube. The vectors vp,vp € S? are the unit normals
of the facets F, F’, and the line er,F is the shortest geodesic between the nodes vp, vp/. The (Ball, Cube)-
extreme normal directions comprises of the nodes and arcs in this embedded graph on the sphere S2.

Definition 2.5. Let C be a nonempty collection of polytopes in R™~*.

o The collection C is subcritical if, for any collection €’ C C, dim (X cer C) = [C']. A
collection C' C C is sharp-subcritical if dim (3o C) = [C'].

¢ The collection C is critical if, for any nonempty collection C' C C, dim (Zcec' C) >
IC’| + 1. A collection C’' C C is sharp-critical if dim (3o C) = |C'] + 1.

e The collection C is supercritical if, for any nonempty collection C’ C C, dim (ZCGC, C)
> |C'| +2.

The origin of the above definition is the following lemma, which characterizes the
conditions under which mixed volumes are positive [16, Theorem 5.1.8].

Lemma 2.6. (Positivity of mixed volumes) Let Ci,...,C,_ be convex bodies in R"~k,
Then, Vp_r(Cy,...,Ch_k) > 0 if, and only if,

dim (Z C) >|C'|  for every collection C' C {Ci}icpin—x]-

cec’

For example, if the collection of polytopes C := (Cs,...,Cp_g) in (AF) is not subcrit-
ical, then Lemma 2.6 shows that equality holds in (AF) for trivial reasons: both sides
of the inequality are zero. If C is subcritical with a sharp-subcritical collection, then the
equality cases of (AF) can be reduced to the equality cases of the Alexandrov-Fenchel
inequality in a lower dimension; we refer to [17] for details. The difficult equality cases
of (AF) are the supercritical and, to a much larger degree, the critical collections. The
following definition is needed for the characterization of the critical extremals of (AF).

Definition 2.7. Let C = (C3,...,C,_1) be a collection of polytopes in R"~* and let
(P, Q) be a pair of convex bodies in R"*. The pair (P, Q) is a C-degenerate pair if P is
not a translate of @,

ank(P» ch) = 07 and ank(P» Bvc) - ank(Q; B,C)

Theorem 2.8. ([17, Theorem 2.13, Corollary 2.16]) Let C1,...,Cph_k be polytopes in
R"* and let C := (Cs,...,Cp_p).
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o Suppose C is supercritical. Then, equality holds in (AF) if, and only if, there exist
a>0 and v € R"* such that

he, (0) = hacy4v(u)  for all (B, C)-extreme normal directions u.

o Suppose C is critical. Then, equality holds in (AF) if, and only if, there exist a >
0, vEeR"* and a number 0 < d < oo of C-degenerate pairs (Py,Q1), ..., (P, Qa),
such that

hclJrE?:l (W) = ha62+v+2?:1 p, () for all (B,C)-extreme normal directions u.

2.8.1. The extremals of Stanley’s inequalities

The crux of our work lies in understanding how to apply Theorem 2.8 in our set-
ting in order to get a combinatorial characterization of the equality cases of (2.2). For
convenience and future reference, let us explicitly write Theorem 2.8 in our setting.

Theorem 2.9.

o Suppose K is supercritical. Then, |IN=|? = IN_||Ny| holds, if, and only if, there exist
a>0 and v € R" % such that

hi,_,(0) = hog,+v(0) for all (B, K)-extreme normal directions u.

o Suppose K is critical. Then, INZ|*> = |N_||N4| holds, if, and only if, there exist a >
0, veER"™* and a number 0 < d < oo of K-degenerate pairs (P1,Q1), ..., (P, Q4),
such that

hi, 1451 @, (W) = hog,vixi_, p,(0)  for all (B,K)-extreme normal directions u.
- Ji= j=1

Our proof proceeds by induction on k. The base case k = 0 is trivial as equality in
(2.2) cannot occur because |N_| = |[Ny| = 0 while [N=| = |N|. Hence, Theorem 1.3 and
Theorem 1.5 hold trivially when k& = 0. From here on we assume that & > 1 and that
equality holds in (2.2):

WL = IV |
= Vo 1 (K1, K,K)? = Vi (Ko—1, Ko—1, )V 1 (Ko, Ko, K).

Assumption 2.10. Theorem 1.3 and Theorem 1.5 hold true for k& — 1.

We conclude this section by introducing the notions of criticality for posets. The
relations between the criticality notions of Definition 2.5 and the following Definition 2.11
is given in Section 5.
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Definition 2.11. Let & = {y1,...,Yn—r} U {21,..., 21} be a poset, with a fixed chain
1 < - <axp,and fix 1 <i; < -+ <i <nsuchthat ip—1 +1 < ip < igy1 — 1 for some
fixed ¢ € [k]. Suppose that [N=| > 0.

o The poset & is supercritical if, for any integer p > 1 and jo := -1 < j; < -+ < jp <

k41 =: jpy1, such that 5, 11 —i;, — 1 —1; cqs_1¢ are positive for any g € [p], we
have

p
Z 1{jq+1<j(q+1)}|&>Ijq+1,<Ij(q+l)| < |{q € [p] :jq € {ﬂ - 176}}| -2

q=0
P
+ Z 1{jq+1<j(q+1)}(ij(q+1) - ijq+1 - 1>'
q=0
o The poset & is critical if, for any integer p > 1 and jo = -1 < j1 < -+ < jp <
k41 =: jpy1, such that 5, 11 —i;, — 1 —1; cqr_1,¢y are positive for any ¢ € [p], we
have
P
Z 1{jq+1<j(q+1)}|d>l’jq+1,<$]‘(q+1) | < |{q € [p} : jq € {f - 178}}| -1
q=0

p
+ Z 1{jq+1<j(q+l)}(zj(Q+1) — Y+l — 1)'
q=0

To get some intuition for Definition 2.11 note that when |N_-| > 0 we have
|G,y <as| Sis —ipp1 —1 Vr<s.

Hence, criticality is captured in Definition 2.11 by checking the tightness of the above
bound. (Equivalent and more transparent definitions of (super)criticality of posets are
given in [7, §10.7].)

Finally, let us remark that the case k = 1 is always supercritical, where we use that

IN_|, IN=|, INy| are positive, as [N=| > 0 and [N=|? = [Ny |IN_|.
3. Linear extensions

In this section we introduce a number of ideas and tools that will simplify the proofs
of our main results. Section 3.1 presents decompositions of N_, N_, N'... Section 3.2 uses
the above decompositions to prove the sufficiency part of Theorem 1.3 and Theorem 10.1
(Proposition 3.2), and introduces conditions which are equivalent to Theorem 1.3 and
Theorem 10.1 (Lemma 3.3). Finally, Section 3.3 introduces the technical tool of closure
where relations are added to the poset & based on linear extensions.
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3.1. Decompositions of linear extensions

Fix o € {—,=,4} and %, * € {», ~}. Recall Definition 1.2 and let

Ny (%, %) := {0 € N5 : lower companion % x, and upper companion * g}.

It is clear that we have the disjoint decompositions,

V] = IV (o, )| 4+ INZ (6, ) [+ IV ()| 4+ [NV ()
=] = IN= (%, )] 4 IN= (¢, )| 4 [IN= ()| + IN=(~, ), (3.1)
W] = N4 (e, )] 4 NG (2, ) 4 NG ()| + NG (~, ).

The next result shows that, regardless of whether equality holds in (2.2), certain relations
between terms in (3.1) always hold.

Lemma 3.1. For any poset & the following hold:

(1) IN= (2, )] = IN=(%, )| = [N (%, )|
(i) [N= (=, ~)| = [N=(=, ~)|.
(iii) IN=(~, =) = [Ny (~, =)
(i) IN=(~, =) < IN_(%,~)].
(v) N4 (o, )| < NG (s )
Proof. (i) We show |N_(w»,»)| = |N=(»,=)|; the argument for |[N_(»,=) =

N4 (¢, )| is analogous. Let m;, ,;, : [n] = [n] be the permutation that swaps
the positions of i,—; and i,. We claim that defining m;, , ;,(0) = 7, ,,, © 0,
for 0 € N_(w,), yields a bijection m;, ,;, @ N_(%,%) — N=(»,=). That
Tiy 1,ig N (¢, %)) C N=(w, ») follows from the fact that x, is incomparable
to the element placed in iy so their positions can be swapped. Hence, to conclude
that m;,_, ;, is a bijection it suffices to show that m;,_, ;, is invertible and that its
inverse 771-7:17” satisfies wi;ihie (N= (%, %)) C N_(=, ). The inverse Wi;ihu exists
since 7" =i, i, That m;,_, i, (N=(%, %)) C N_(=,) is clear.

Analogous argument to (i).

Analogous argument to (i).

Let 7, 4,41 : [n] — [n] be the permutation that swaps the positions of 7, and
ig+1. We claim that defining 7, ;, , (o) := 7, 4,,, 0 0, for 0 € N_(~, =), yields an
injection 7, i,,, : N_(~, =) = N_(%,~). Indeed, fix 0 € N_(~, =), so o(x¢) =
ig—1,and let vy, := 0~ 1(iy), y, := 01 (ig+1) so that, by the definition of N_(~, <),
Ty < Yy and y, » xy. We cannot have y, < y, since that would imply z, < y,, < ¥y
contradicting y, = 2. Since y, = 0 (i¢), y» = 0 (ig+1), we cannot have y, < y,,
so we must have y,, » y,. It follows that swapping the positions of y,, and y, in ¢
yields the linear extension 7, 4, (0) € N_(»,~).
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(v) Analogous argument to (iv). O

3.2. Sufficiency

The decompositions given in Section 3.1 help us prove the sufficiency of the conditions
of Theorem 1.3(iii) and Theorem 1.5(iii).

Proposition 3.2. (Sufficient conditions)

(a) Theorem 1.53(ii) = Theorem 1.3(i) and Theorem 1.5(ii) = Theorem 1.5(1).
(b) Theorem 1.5(iit) => Theorem 1.5(ii).
(¢) Theorem 1.3(iii) = Theorem 1.5(iii) => Theorem 1.3(ii).

Proof. (a) Immediate.
(b) The conditions in Theorem 1.5(iii) read

W=~ M) = IN=(~, )] = [Ny~ ~)[ =0,
W= (o, )| = IN=(~, )| = Ny,

IW=(, ~)] = IN=(~, %) = Ny,

Wi (o, )] = NG (~, )| = N,

W= (o, )| = [N=(o%, )| = [Ny (¢, )] = No.

Hence, (3.1) reads

IN_| = N3 + Ny + Ny + 0 =Ny + 2Ny,
IN=| = Ny + N; +N; + 0 = Ny + 2Ny,
Ny | =N+ Nj +Nj +0 =Ny + 2Ny,

which is the statement in Theorem 1.5(ii).
(c¢) The first implication is immediate and the second implication follows from (b). O

In order to prove Theorem 1.3 and Theorem 1.5 it remains to show that Theorem 1.3(i)
= Theorem 1.3(iii) and Theorem 1.5(i) = Theorem 1.5(iii). To this end, the following
conditions will suffice.
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Lemma 3.3.

(a) The conditions in Theorem 1.3(iii) hold if, and only if,
IN= (o, ~) = IN=(~, %) = IN=(~,~)[ = 0.
(b) Suppose IN=|*> = IN_||Ny|. The conditions in Theorem 1.5(iii) hold if, and only if,
V= (~, ~)| = Ny (~, ~)] = 0.

Proof. We start with proof of (a). The “only if” part is clear. To prove the “if” part,
assume that

W= (%, ) = IN=(~, %) = IN=(~,~)] =0,
which by (3.1) implies
INZ| = [N (e, )]
On the other hand, Lemma 3.1(i) yields
N = [N- (o, 9)| = [N= (o, )| = NG (6, ),
so (3.1) reads

IWC[ = N+ INC (6, ~)| + INZ (v, )|+ INZ ()
IN=| =N,
Wil = N+ [Ny (o, )| 4 IV ()| A+ NG~ )

Stanley’s inequality (2.2),
IWZJ? > VIV,

implies that all the terms other than N’ must vanish, which completes the proof.
We now prove (b). The ‘only if” part is clear. To prove the “if” part, assume that

N~ ™) = Ny (~,~)] = 0.
Using Lemma 3.1(i-iii), set

N’ = |N_(w, )| = IN=(%, )| = [N (e, )],
N¢Iz = |N*("°7N)| = |N:(°°7N)‘7
Ny i= [N=(~, %) = [Ny (~, )],
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so (3.1) reads

IW_| = N+ N, + [N_(~, )],
INZ| = N'+ Ng + Ny + [N=(~, ~)],
Wil =N+ Ny + [Ny (=, ~)].

By Lemma 3.1(iv-v),

INZ(~, %) < N and [Ny (%, ~)]| < N

SO
IN_| = N"4+ N! + |[N_(~,»)| < N+ 2N/,
IN=| = N+ N; + Ny + [No(~,~)| = N+ Ny + Ny,
Vil = N+ Ny + [Ny (¢, ~)| < N'+ 2N,

Hence,

(N +2No)(N' +2N;) = (N' + N + Np)? — (N — Np)? < (N + Ny + Np)?
< INZI? = NIV | < (N +2N) (N + 2N)).

It follows that all of the above inequalities are in fact equalities. In particular,

IN=(~,~)[ =0, (32)
N! = Nj, (3:3)
IN=(~, »)| = Ng, (34)
N+ (2, ~)| = Ny (3.5)

The identity (3.2), together with the assumption |N_(~,~)| = [N (~,~)| = 0, implies
that every linear extension in A, for any o € {—,=,+}, has either 0 or 1 comparable
companions to z,. It remains to show that there exist nonnegative numbers Ny, Ny such
that

IN=(~, ) = IN=(~, )| = NG (v, )| = INZ (4, )| = IN= (0, ) = [N (0, ) = Ny,
V= (2, )] = [N= (%, )| = [N (¢, %) = N

The first part follows since

V- ()| = NG = INC (%, ) = IN= (e, )| = Ny o= [N=(~, )]

Lemma 3.1(ii) (3.3)

=y W] = IV ()] =N,

Lemma 3.1(iii)
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and the second part follows by Lemma 3.1(1). O

We conclude the section with a corollary of the above lemmas, which will be needed
for the proof of Theorem 1.6. (Note that the assumption in the following result that &
is critical can be relaxed to [N=| > 0, cf. Section 10.)

Corollary 3.4. Let & be a critical poset such that IN=|? = |N_||N.|, and assume that
Theorem 1.3 and Theorem 1.5 hold true. Fizo € {—,=,+} and 0 € N, (~, »)UN,(m, ~).
Then, the upper and lower companions are incomparable to each other.

Proof. We start by establishing the claim in the case where o is equal to —. Fix 0 €
N_(~, ). If the upper and lower companions are comparable to each other, then, by
transitivity, ¢ € N_(~,~), which is a contradiction. On the other hand, the proof of
Lemma 3.3 shows that |[N_(»,~)| = IN_(~, =)|. Hence, the map m;, ;,+1 : N_(~, =) —
N_(»,~) defined in the proof of Lemma 3.1(iv) is a bijection. It follows that the upper
and lower companions in any o € N_(«,~) cannot be comparable to each other, or
else they will also be comparable to each other in m;, ;,41(0) € N_(~, ), which is a
contradiction.

Analogous argument works when o is equal to +. In the case when o is equal to =,
N_(~, =), so we can argue as above to conclude that the upper and lower companions
are incomparable. O

3.3. Closure

Since we are interested in the extremals of (2.2), it is beneficial to add relations to &
which are compatible with N_, N_, N\, while leaving these sets invariant.

Definition 3.5. Denote by Cl(a) (the closure of &) the poset with the same elements as
a and with the partial order on Cl(&) given by

w <z ifandonlyif o(w)<o(z)VoeN_UNZUNMN;.
Let
N = {bijections o : Cl(a) — [n] : w < z = o(w) < o(2) V w, z € Cl(a)},
with the analogous N (x, ) for o € {—, =, +} and %, * € {x, ~}.

We first need to check that Definition 3.5 is well-defined. Indeed, if z1, 29, 23 € Cl(a)
are such that z; < 29 and 25 < z3 in Cl(@), then, by definition, o(z1) < o(z2) and
o(z2) < o(z3) for every o € Ui - 1y Ns, 80 0(z1) < 0(22) < o(z3). It follows that
z1 < 23 in Cl(&)
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N l .7 N_ = {y1z12292y3, y17172Y3y2}
N 4
\J L~/
T T
N= = {y1z1y202ys, y121Ysz2y2}
Y1 Y2 Y3 Y1
Ny = {y1z1y2y32, y1T1Y3y2T2}
a Cl(a)

Fig. 3.1. Hasse diagram (arrows point from smaller to larger elements) of posets in Example 3.7, together
with their (identical) sets of linear extensions, showing that new relations can occur under the closure
operation.

Let us now show that the relations in Cl(@) are compatible with the relations in &.
Lemma 3.6. If z1 < z2 in & then z1 < zo in Cl&). If z1 » z9 in Cl(&) then z1 » z9 in a.

Proof. If 21 < 23 in @, then o(21) < 0(22) for every 0 € U,e(— = 4y No, 80 21 < z2 in
Cl(&). The contrapositive of this statement is that if z; = z5 in Cl(@) then z; = 23 in
a. O

While the closure operation is compatible with the relations in &, it can introduce
new relations as the following example demonstrates.

Example 3.7. Let @ = {z1,%2,91,%2,Y3}, so k = 2 and n = 5, and suppose that the
only relations are x7 < z9 and y; < 1. Let i3 = 2,i5 = 4 and | = 2, and note that
w1+l =i1+1=3<4=4iy =4 <5=(n+1)—1 =iy, — 1. Let us show
that, in Cl(@), 1 < y2 and x7 < ys, relations which do not hold in @. Indeed, take
any 0 € N_UN_UN, and note that o(z1) = i; = 2 so, since y; < z1, we must have
o(y1) = 1. Thus, o(y2),0(y3) > 2, and hence, in Cl(@), x1 < y2 and 1 < y3. See Fig. 3.1.

The next result shows that our basic objects of interest remain more-or-less invariant
under the closure operation. To simplify the notation, let (i) (res. (ii)) stand for the con-
ditions in Theorem 1.3(i) and Theorem 1.5(i) (res. Theorem 1.3(ii) and Theorem 1.5(ii)),
and let (iligyperis) (res. (iiict)) stand for the conditions in Theorem 1.3(iii) (res. Theo-
rem 1.5(iii)). We use an upper script “cl” for the corresponding notation when Cl(&),
rather than a, is used.

Proposition 3.8. The set Cl(a) is a poset satisfying

(a) N =N, for every o € {—,=,+}.

(b) () <= (i),

(c) (i) <= (i),

(d) (it pers) = (itisuperit) and (iiilh;,) = (licrit).

crit
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Proof. Cl(a@) is indeed a poset since irreflexivity is immediate and transitivity was
checked after Definition 3.5.

(a) We show that N'¢! = N_; the proof that N = N_ and N¢! = N/, is analogous. We
start by observing that since Lemma 3.6 yields “w < z in & implies w < z in Cl(a@)”,
it follows that “o € N implies ¢ € N_". Conversely, let o € N_ so it suffices to
show that o € N°!. The latter holds since if w < z in Cl(@), then it must be, by the
definition of Cl(a), that o(w) < o(z), and hence o € N

(b) Follows trivially from (a).

Follows trivially from (a).

(d) We show that

—
o
~

NE (e, V)] = INZ (v, )] = INE(~, )| = 0
= IN=(%~)] = INV=(~, %) = N=(~,~)[ =0, (3.6)

which proves (iiighpcrit) = (ilisuperit) by Lemma 3.3(a). To establish (3.6) we show
INZ(=,~)| = 0; the proof of [N=(~, )| = 0 and |[N=(~,~)| = 0 is analogous.
Suppose |N_(»,~)| > 0 so there exists 0 € N_ such that o(zy) = i and 2 <
o7 1(ig+ 1) in a. By (a), o0 € N, and by Lemma 3.6, 7, < o~ !(i; + 1) in Cl(a). It
follows that o € N (=, ~) U N (~, ~), which is a contradiction.

Next we show

W (v, M) = NS (v, ) =0 = INZ(v, )] = INg (v, ~) = 0. (3.7)

Since (iii¢;,) == (i¢};,) by Proposition 3.2(a-b), and since (i) <= (i) by part (a),
the proof will be complete by Lemma 3.3(b).

To establish (3.7) we show that |N§!(~,~)| = 0 = |[Nj(~,~)| = 0; the proof
of N (~,~)| =0 = N_(~,~)| = 0 is analogous. Indeed, if [Ny (~,~)| > 0 then
there exists ¢ € N, such that o(x;) = iy + 1 and o= 1(iy — 1),071(iy) are both
smaller than z, in @. By (a), 0 € N¢, and by Lemma 3.6, o1 (i, — 1),0 (i)
are both smaller than z, in Cl(a). It follows that o € N¢(~,~). In other words,
N4 (~,~)] > 0= [N (~,~)| > 0, which is the contrapositive of what we want to

show. 0O
4. Proof outline

In this section we outline the proof of the characterization of the extremals of Stanley’s
inequalities. The first step is to understand how we use the closure procedure. We have
the following equivalences:

(i = (iii") = Gy = {1
Thms. 9.1, 10.1 + Lem. 3.3 Prop. 3.2(b-c) trivial

ﬁ Prop. 3.8(b) U« Prop. 3.8(d) @ Prop. 3.8(c) :H: Prop. 3.8(b)
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(1) (111) Prop. 3.2(b-c) (ll) trivial (1)

The only implication that has not been proven thus far is (i!) == (iii'), which will
follow from Theorem 9.1, Theorem 10.1, and Lemma 3.3. Hence, from here on we may
assume:

Assumption 4.1.
a = Cl(a).

Note that Remark 1.7, which is proven in Proposition 7.5, does not require Assump-
tion 4.1. The first extremals we need to characterize are those arising in the trivial case
INZ| = 0, which we dispose of in Theorem 5.3. Assuming that |[N=| > 0, the characteri-
zation of (1.3) is divided to three types of classes, subcritical, supercritical, and critical.
By subcritical we mean that C is subcritical. The supercritical and critical settings were
defined in Definition 2.5 and Definition 2.11.

The characterization of the subcritical extremals relies on the splitting mechanism
(Definition 6.2 and Proposition 6.4). The idea is that if K is truly subcritical, rather than
critical, we can reduce the problem to the extremals of a poset with a shorter chain {z;}.
Arguing by induction, we then characterize the subcritical extremals (Theorem 6.6).

For the supercritical extremals, the starting point is Theorem 2.9 which yields that
INZ|? = IN_||NV4]| holds, if, and only if, there exist @ > 0 and v € R"~* such that

hr, ,(0) = hex,+v(u) for all (B, K)-extreme normal directions u. (4.1)

The identity (4.1) constitutes a system of equations (one equation for each u) and the
goal is to interpret these equations as combinatorial constraints on the poset a. Hence,
the first important step is to find enough (B, K)—extreme normal directions which can be
described combinatorially. This is achieved in Section 8 (Proposition 8.2(a-d)) by using
the mizing phenomenon (Section 7.2). Once these directions are found in Section 8,
Section 9 is dedicated to plugging these directions back into (4.1) and analyzing the
outcomes. The second important step is to show that the scalar a and the vector v in
(4.1) satisfy @ = 1 and v; = 0 for certain j’s. The identity (4.1) then further simplifies
and provides the bulk of the desired characterization of the extremals (Theorem 9.1).
We explain in Section 9 how to control a and v.

The starting point for the critical extremals is again Theorem 2.9, but now we need to
use its second part which states that |N_|* = [N_||NV,| holds, if, and only if, there exist
a>0,veR" and a number 0 < d < oo of K-degenerate pairs (P, Q1),- .., (P, Qa),
such that

Py, voya @, (W) =hgp,iyyya  p(u) forall (B, K)-extreme normal directions u.
- j=1"J j=1"11J
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The presence of the degenerate pairs causes great difficulties (which are not just technical
since, as we saw, new extremals do indeed arise for critical posets). The first key idea
to resolve these problems is to find a sub-poset of & on which we have more-or-less
a supercritical behavior. From a geometric standpoint, this corresponds to finding a
subspace E-+ such that

h’K[,—l (u) = haKe+V(u)

for all (B, K)-extreme normal directions u which are contained in E+. (4.2)

The identification of E+ and its properties relies on the mixing properties of the mazimal
splitting pair (Section 7.10). Even after identifying E+ we face the problem that (4.2)
provides less constraints than (4.1) due to the restriction to the subspace E+. Hence,
we cannot derive enough combinatorial constraints on &. The solution is to find even
more (B, K)-extreme normal directions which were not needed for supercritical posets
(Proposition 8.2(e-h)). With these new directions in hand, Section 10 proceeds roughly
as Section 9 to show that @ = 1 and v; = 0 for certain j’s. This description is an
oversimplification since the situation is in fact much more delicate. It is precisely this
delicacy which leads to the new extremals for critical posets.

5. Notions of criticality

In this section we start building our dictionary between convex geometry and combina-
torics. The first building block is a correspondence between geometric and combinatorial
notions of criticality, which will be used throughout this work. Section 5.1 starts with
the easiest correspondence (Lemma 5.1), which connects the linear spans of polytopes in
K with subsets of a. Consequently, we characterize the trivial extremals which appear
when |[N_| = 0 (Theorem 5.3). Section 5.2 is dedicated to the equivalences between geo-
metric and combinatorial notions of criticality (Proposition 5.7), and their consequences
on sharp-subcritical and sharp-critical collections (Lemmas 5.10, 5.11).

5.1. The trivial extremals

We start with some notation. Given a convex body C' let aff(C) stand for the affine
hull of C, and let Lin(C) stand for the vector space obtained by the translation of aff(C')
to the origin, i.e., Lin(C') := aff (C')—cg = span(C'—c¢p), for any ¢o € C'. Given a collection
C of convex bodies, it is immediate to see that

Lin (Z C’) = span ((Lin(Cy), ..., Lin(Cjc))). (5.1)
cecC

The following lemma relates the combinatorics of subsets of a to the linear spans of the
polytopes in {K;}.
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Lemma 5.1. Let jo := —1 < j1 < -+ < jp < k+1=:jp41 and set
K:l = (Kj17'"7Kj17"'7ij7"'aij)7
K1 Kp
where K1, ..., kp are positive integers. Then,
Lin < Z K) = ]Rﬁ{h »»»»» ir}
KeK!

and, consequently,

P
dim < Z K) =n—k— Z |0‘>1’jq+1»<r.7‘(q+1) |

KeKk! q=0

that

(5 1)

KeK’!

U 8,
1

p
U a\(a<l’jq U a>:vjq+1)
q=1

P
Oz\ m (a<qu U a>zjq+1) .
q=1

The proof is complete by (2.6), and by noting that the sets {oz>qu+17<wj( o }qefo,p] are
q
disjoint. 0O

As a first application of Lemma 5.1, we dispose of the trivial extremals. Before doing
so, we present the following definition which will be used throughout the paper.

Definition 5.2. A pair (r, s) is splitting if 0 <r+1<s<k+1and (r+1,s) # (0,k+1).
A splitting pair (r, s) is an £-splitting pair if r +1 < £ < s.

Theorem 5.3. (Trivial extremals) We have |IN=| = 0 if, and only if, there exists a splitting
pair (r,s) such that

|6‘>w7-+1,<:rs > is - 7;T+1 -1

Proof. <—: Suppose there exists a splitting pair (r, s) such that

|6‘>xr+1,<fcs| > s — ipy1 — L.

Every o € N— must satisfy o(z) € [ip41 + 1,35 — 1] for every z € ass,,, <a,. Since
|lirs1 4+ 1ds = 1]| = (is = 1) = (Gpy1 + 1) + 1 =iy —ipy1 — 1 < |@sy, ., <o, |, We see that
no such o can exist.
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= If [N=| = 0 then, by (2.7) and Lemma 2.6, there exist 0 < j; < ---

31

< Jp <K,

and positive integers 1,. .., kp, with kg < i; 41 —i;, — 1 for g € [p], such that, with

K'=(Kjysoo o Kjyeo Ky Kj) © (Kom1, Ko, K),

we have
dim ( > K) < K.
Kek!
Let jo := —1, jp4+1 := k + 1 and use Lemma 5.1 to get

p

KeK! q=0

On the other hand,

P P P
|K:/| = ZK) < leq+1 1] :’I’L—k—’b.ijrl +ij0+1 +k+ 1+Z(qu+l _
q=1 q=1 q=1
p+1 p
= Z%q thﬂ +Jp+1 —Jo— (p+1)
g=1 q=0
P P
= ZZ](q+1) + Z%ﬁ-l + Jpr1 —Jo— (p+1)
q=0
p
=n—k- Z(iﬂkwl) — 4,41 = Jg+1 + Jg + 1)
q=0
It follows that
P P
Z(ij(tﬁ»l) - ijq"rl - jq+l + jq + 1) < Z |a>1jq+17<wj(q+1) .
g=0 q=0
Since
‘a>f’“’jq+1’<“”f<q+1>| = LG+1<iein) |O‘>qu+h<xj<q+1> k

ij, — 1)

(5.2)

ij(q-%—l) - ijq+1 —Jg+1 tig t1= 1{jq+1<j<q+1)} (ij(q+1) - iqurl - j(q+1) + g+ 1)a

the inequality (5.2) is equivalent to
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P P
§ :1{jq+1<j(q+1>}(zj(q+1> —ij+1 —Jgr1 +ig+1) < § :1{jq+1<j(q+1>}‘O‘>qu+1x<’ﬂj<q+1) :
g=0 q=0

Using
Ljet1<icern) |a>90.7‘q+1»<1j<q+1) \O‘>Ijq+11<fﬂj<q+1) | = Jq+1) —Ja = 2,

we get that (5.2) is equivalent to
P P
D a1 Ui = G+ = 1) < D Lpti<gogyn 1@y, <oy, ) |

q=0 q=0

Hence, there must exist a pair (jq + 1,7(g+1)), With jg +1 < j(g41), such that

|Oé>qu+1,<a:j(q+1)| > Vjigrry — Yig+l — 1.

Since (jg +1,7(g+1)) # (0,k + 1), because j; +1 =0 = g = 050 jig41) = j1 < Jp <
Jp+1 = k + 1, we conclude that there exists a splitting pair (r, s) such that

@,y <an| > s —ipp1 — 1. O

Remark 5.4. Theorem 5.3 is the same as the result of Chan, Pak, and Panova in [9,
Theorem 1.12], where it was proved using purely combinatorial arguments.

In light of Theorem 5.3 we assume from here on that |N-| > 0. Note that |N=| > 0
implies, by (2.7) and Lemma 2.6, that K is subcritical. To summarize:

Assumption 5.5.
INC)? = IN_|INV4|, |N=|>0, and K is subcritical.

Remark 5.6. For future reference, we note that under Assumption 5.5, & cannot be totally
ordered. Indeed, if & is totally ordered, then at least two elements in {|N_|, |N_|, IN.|}
are zero. But since |[NZ|? = |N_||N, [, that would imply that |[NZ| = 0.
5.2. Equivalences of criticality notions

The next result is at the base of the correspondence between criticality notions in our
geometric and combinatorial settings, namely, the equivalence between Definition 2.5

and Definition 2.11.

Proposition 5.7. Fiz a nonnegative integer c. The following are equivalent.
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(1) For any integer p > 1 and jo :== —1 < j1 < --- < jp < k+1 =: joq1 such that
Q41 — 15, — 1 =15 cqe—1,0y are positive for any q € [p], it holds that with any

’C/ = (Kj17...,Kjl,...,ij,...,ij) QK:7

K1 Kp
where kg < i, 41 — 45, — 1 —1; cro_1,0 are positive integers, we have
dim ( > K) > K| +e.
KeK'!

(2) For any integer p > 1, jo == =1 < j1 < -+ < jp, < k+ 1 =: j,41 such that
ij,41 — 15, — 1 — 15 cqe—1,¢y are positive for any q € [p], it holds that

q

p
Z 1{jq+1<j(q+1)} |&>$jq+17<xj(q+1)| < |{q € [p} :jq € {e - 176}}| —cC
q=0

+ E :1{jq+1<j(q+1>} (,Lj(q+l) g1 — 1)'
q=0

The proof of Proposition 5.7 follows the logic of the proof of Theorem 5.3, but it is more
complicated since we now work with collections K’ C K, rather than X' C (K,_1, K¢, K).
This leads to the presence of the term lj(q+1):g + 1j,+1=¢ in the proof below.

Proof of Proposition 5.7. Fix

K= (Kjla-"7Kj17"'7ij""’ij) CcK,

where p > 1, jo :i= -1 < j1 < <jp <k+1=:jp1,and 0 < kg <'ij 41 — 45, — 1 —
1j,e{¢—1,0y- By Lemma 5.1,

p

KeK! q=0

On the other hand, using ¢ ¢ {0,k + 1}, and arguing as in the proof of Theorem 5.3,

P
|ICI‘ - ZK/ S Z qu+1 -1- 1jq€{2_1v£})
q=1 q=1
P
=n—k-— Z Ujigery — bigt1 = Jg+1 H g+ 1+ L =0+ 1jq+1:4) :

q=0
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Hence, given ¢, we have that
dim < Z K) < K| +e¢,
KeK’
if and only if
P

p
Z ‘a>x"q+1’<$1<q+1) [ > —c+ Z (Zj<q+1> —Ajg+1 — g1 H g H 14 =0+ 1jq+1:15) :
q=0 q=0

(5.3)
Conversely, if (5.3) holds, then we may take K’ to be such that r, = i, 11 —4;, — 1 —
1, eqe—1,0y for every g, to get |[K'| = n —k — gzo(ij(q+1> — G, 41 — Jg+1 + Jg + 1+

L, s1=¢ + 1j,41=¢). We may then conclude that dim (3 e K) < |K'| + c. Hence, we
get

dim ( > K) > |K'+c = (5.4),

KeK’

where

p

p
E : ‘O‘>r.¢q+1-,<rj(q+1) | < —c+ E : (ijgany = tgt1 = Jgr1 +Jg + 1+ Ly =0 + 1j,41=0) -
q=0 q=0

(5.4)
Since
p
D W=t + Ligsa=e) = {a € [p) : jg € {£ = 1,61},
q=0
and
|O‘>qu+1»<1j(q+1) | = 1{jq+1<j(q+l)} ‘Oé>qu+17<mj<q+1) |a

Ggrry — G+l — Ja+1 H I+ 1 =15 11<5i00) Ggpny — Big+1 — J(g+1) +Jq + 1),
the inequality (5.4) is equivalent to
p

: : 1{jq+1<j(q+1)} |a>zjq+1;<xj(q+1) |
q=0

p
<Hgelpl:jge{l—1L}} —c+ Z Ljat1<iisn} (s = Gig+1 = Jar1 +Jg + 1),
q=0
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=H{qelpl:joe{t-10}~c

+ Z l{jq+1<j<q+1)} (ij<q+1) =41 — 1= Jg+1) +Jg + 2) .
q=0

Using
Lot 1<iqen) |@>Ijq+1’<wj(q+1> \O‘>$J‘q+1,<%‘<q+1) | =Jg+1) —Ja — 2,
we find that (5.4) is equivalent to

D Mt 1<ignt 050,y ) | SHa € )Gy € (0= 1,03} —c
q=0

+ Z 1{jq+1<j(q+1)} (ij(q+1> —ljg+1 — 1). o
q=0

In contrast to Proposition 5.7, the next lemma, which treats the opposite inequality
of Proposition 5.7, holds for a fized K'.

Lemma 5.8. Fiz an integer p > 1 and jo :== =1 < j1 < -+ < jp < k+1 =t jp41 such
that i, 41 —1ij, — 1 — 15 cqe—1,¢y are positive for any q € [p]. Let

K:’ = (Kj17"'7Kj17""ij""5ij) CIC,

K1 Kp

where kq are integers such that 0 < kg <ij, 41 — 15, —1—

L, eqe—1,ey for all q € [p], be
such that

dim ( Z K) < |K'| + ¢

KeK!

Then,

Z 1{jq+1<j(q+1)} |6‘>Ijq+17<ﬂﬁj(q+l)| > |{q € [p] :jq € {é - 176}}| —cC
q=0

+ Z Lg+1<itern} (Zj(q+1> — dj+1 — 1).
q=0

Proof. We proceed as in the proof of Proposition 5.7 and use

P p
|,Cl| == Zﬁq S Z Z]q+1 1 - 1jq€{£_17€}) )
q=1 q=1
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to reason about a fixed collection K'. O

As a consequence of Lemma 5.8, we get the following combinatorial information about
sharp collections.

Lemma 5.9. Fiz c > 0, an integer p > 1, and jo := -1 < j1 < - <jp < k+1=:jp11
such that ij,4+1 —ij, — 1 —1; cro—1,0 are positive for any q € [p]. Suppose there exist

’C/ = (Kj17~-~7Kj17~--7ija-~-aij) QIC,

K1 Kp

where kg are integers such that 0 < kg <'ij, 11 —14j, —1—1; ee—1,¢y forallq € [p], such
that

dim < > K) =[K'| +e.

KeKk’

Then,

Haelpl:jge {10} <e
Proof. The assumption dim () ;¢ K) = [K'| 4 ¢ implies dim (3 o K) < |K/| + ¢,

so by Lemma 5.8,

p
Y L1 <ieent @5y ey, | 2 Ha €[] 1 dg € {0 - 1,0} — ¢
q=0

p
+ § :l{jq+1<j<q+1)} (Zj(q+1> — Vgl — 1).

q=0
(5.5)
On the other hand, since |[N=| > 0, we have
Ljor1<iian} |O7>””J‘q+1’<"”f(q+1> | < Let1<iarn} Wiggan = Gg+1 = 1) (5.6)
(because [[ij,+1 + 1,45, — 1 < 45,00y = %j,+1 — 1), 50
p p
Z 1{jq+1<j<q+1)} |d>qu+1,<$j(q+1>| < Z 1{jq+1<j<q+1)} (ij(q+1) - iqurl - 1)- (5-7)
q=0 q=0

Combining (5.5) and (5.7) we get

{gelpl:jge{t-1.0}<c O
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We are now ready to characterize the sharp-(sub)critical collections. We start with
the sharp-subcritical collections.

Lemma 5.10. (Sharp-subcritical collections) Fix an integer p > 1, and jo := —1 < j1 <

c < Jp < k+1=tjpi1 such that ij, 1 —ij, —1—1; cp1,y are positive for any q € [p].
Suppose that

K= (Kj17'"7Kj17"'7ij""’K

K1 Kp

where kg are integers such that 0 < kg <'ij,41 — 45, — 1 — 15 cre—1,¢y for all g € [p], is
sharp-subcritical. Then,

v q € [p] : jq ¢ {‘g - ]"g} and ]‘{jq+1<j(q+1)} ‘&>Ijq+17<zj((1+1)|
= Lot 1<iigen} Giggrny = 4g+1 = 1)-

Proof. Take ¢ =0 in Lemma 5.9 to get

{aelpl:jg e {1,033 =0. (5-8)

Since dim (ZKE,C, K) < |K'|, and K is subcritical, applying Lemma 5.8 and Proposi-
tion 5.7, with ¢ = 0, yields

p

P
§ :1{jq+1<j<q+1)} |O‘>qu+1,<Ij(q+1)| = E :1{jq+1<j<q+1)} (Zj(q+1) g1 — 1)-
q=0 q=0

By (5.6), it follows that, for every 0 < j, < k+1,

Ljot1<ican? |O‘>ng+17<rj<q+1)| = L+1<iin) (Ggen) = Ug+1 —1). O

We now turn to the sharp-critical collections. The assumption made in the following
lemma does not follow automatically from the fact that K is sharp-critical. Rather, we
will be able to make this assumption only after Section 6, and the motivation behind
this assumption can be found in Theorem 6.6. The proof, however, is similar in spirit to
the rest of this section so it is included here.

Lemma 5.11. (Sharp-critical collections) Suppose |0>q, ., <z,| < is — irg1 — 2 for every
splitting pair (r,s). Fiz an integer p > 1, and jo := —1 < j1 <--- < jp < k+1=:jpt1

such that ij 41 — 15, — 1 — 15 c(e—1,¢) are positive for any q € [p]. Then, every

IC/ = (Kj17'"7Kj17"'7KjP7'."K
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where kq are integers such that 0 < kg < ij 41 —i5, — 1 — 1 cqo—1,0y for all q € [p],
satisfying

dim(Z K) = |K'| +1,

KeK’

must be of the form
K= (Ko, K1y, Ko, Ky Koy Ko i1, -, Kie),
where (r,8) is an {-splitting pair satisfying
|z, <o | = s = Irg1 — 2.

Proof. First note that (j, + 1,5(44+1)) # (0,k + 1) because j, +1 = 0 = ¢ = 0 so
Jg+1) = J1 < Jp < Jp+1 = k + 1. The assumption |0, <o, | < s — ir41 — 2 for every
splitting pair (r, s) implies that

P

p
z :l{jq+1<j(q+1)}|a>wiq+1’<zj(q+1) | < z: l{jq+1<j(q+1)} (Zj(qul) Y1 T 2)
q=0 q=0

P
= |{q € [p] : jq +1< j(q+1)}| + Z 1{jq+1<j(q+1)}<ij(q+1) - iqurl - 1)
q=0

On the other hand, since dim (ZKEK’ K) < |K'| + 1, applying Lemma 5.8 with ¢ = 1
yields

D
Y G t1<iiiny 10, e, | 2 Ha € 0] g € {0 = 1,03} =1
q=0 )
+ ZO Ljet1<iigint Gy — Gig+1 — 1)-
p
(5.9)
We conclude that
{aepl:jge {10} H+H{a€p:jg+1<jgn} <1 (5.10)
Since

Heelpl:dg +1<i@in}l =0 = {j,.-.dp} ={L.... K},

we get
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Hgelpl:dg+1<jgsn}l =0 = HKaelpl:joe{lf-1,0} =2
Hence, (5.10) can hold if, and only if,
Heelpl:jge{t-1,03}=0 and [ge€lp]:js+1<ijgn} =1
It follows that
K= Ko, Kiyoo o\ Kooty Ky Ky Ksg1y -+, Kie),

where (r, s) is an ¢-splitting pair. Finally, plugging in [{¢q € [p] : jq € {¢—1,¢}}| = 0 into
(5.9), and using that (r,s) is the only pair (jg, jq+1)) satisfying j, +1 < jg41), yields

> 1+ iy — i1 — 1] = iy — dpyp1 — 2.

|a>1r+1,<ws

On the other hand, by assumption, |Gy, <z, | <45 —ir41 — 2, 50 we conclude

|d>oﬂr+1,<acS =is— 41— 2. O

Remark 5.12. In the proof of Lemma 5.11 we only used the condition dim (ZKG,C, K) <
|K'| + 1, so the reader might wonder why we assume that K’ is sharp-critical. By As-
sumption 5.5, the only other possibility would be for K’ to be sharp-subcritical, but this
is impossible by Lemma 5.10 and the assumption |z, <z,

<'is —ip41 — 2 for every
splitting pair (r, s).

6. Splitting and the subcritical extremals

In this section we introduce the splitting mechanism for posets, which is connected
to a reduction to lower dimensional extremals. Consequently, we characterize the sub-
critical extremals (Theorem 6.6). To motivate the splitting mechanism recall that, by
Lemma 5.10, we know that every sharp-subcritical collection

K

jp""’

IC/ = (Kj17"'7Kj17"'

)

must satisfy

v qe [P] : jq ¢ {‘€ - 1a€} and 1{jq+1<j(q+1)} |&>Ijq+1,<1j(q+1)|
= 1{jq+1<j<q+1)} (ij(q+1) - Z‘jq-ﬁ-l - 1)'

Fix an index j, such that j, ¢ {¢ —1,¢} and j, + 1 < j(g41), so that

‘Oé>qu+1,<a;j(q+1)| = 1jgrry — g+l — 1.
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Since |[ij,+1 + 1,45, — U = %0y — 4j,+1 — 1, We must have

_ bijection . .
azqu+1)§xj(q+1) [[qu+l’lj(q+1)]]

under any linear extension. This means that the poset @ can be split by factoring out
the poset Q> 41,5250, 40,1 5O that we are left with a poset with a shorter chain. We will
show that |NZ|? = [N_|| V.| implies that equality holds in Stanley’s inequalities also for
the poset with the shorter chain. We may then resort to our induction hypothesis that
the extremals in the case where the chain size is < k were already characterized.

Remark 6.1. The splitting mechanism described in this section can be viewed as a com-
binatorial equivalence of the projection formula for mixed volumes [16, Theorem 5.3.1].
This is another building block of our dictionary between geometry and combinatorics.

We now proceed to formalize the above splitting mechanism.

Definition 6.2. The split of &, based on a splitting pair (r, s), is given by defining posets
5[1, 5[2 as

Q= a2$r+17§1’s and ag = (6[\071) U {.’E},

where the relations for = are defined via z x z, for x € {<,>} and 2z € a\ay, if, and only

if, there exists w € ay such that w * 2.2

Let (7, s) be a splitting pair satisfying ¢ ¢ {r + 1, s}. We will define the analogues of
N_,N_, N associated with the posets a;,a@s. This requires distinguishing between two
cases: (1) z¢ € {Zr42,...,25—1} and (2) ap € {x1,..., 2.} U{Ts41,...,2}; note that
20 & {2,411, 25} by assumption.® For = 1,2 let

N = {bijections o : @, = [|a,|] : w < z = o(w) < o(z) Vw, z € &},

and, given o € {—,=,+}, let 1o := 1o is 43 — lfois —}-
Case (1). For o € {—,=,+} set

NEi={oeNo(x;)=1dj —irs1 + Lj—ilo for j € [r+1, 5]},
N2 :={oceN?:o(x;)=1ij for j € [0,7], o(z) = irt1,
and o(x;) =i; — (Is —ipy1) for j € [s+ 1,k + 1]}

2 The new element x should be thought of as a compression of &; into one element, namely z. The relations
for x are consistent since we cannot have w; < z < wg for wy, w2 € &1,z € @\&1 because this would imply
that z, < z < =5, and hence z € &3, which is a contradiction.

3 We use the convention {z4,...,2z.} = & when z < a; e.g., {®1,...,Z,_2} = & when r = 0.
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note that the definition of A2 is independent of o.
Case (2). For o € {—,=,+} set

Ny i={oeN:o(x;)=1ij —ip41 for j € [r+1,s]},
and

No2 = {0 € N2 : O(Ij) = ij + l{j:Z}lo for ] € [[07TH7 O’(I) = ir-l-la
and o(x;) = 4; — (Is — dpy1) + Lj=elo for j € [s+ 1,k +1]};

note that the definition of A} is independent of o.
Before exploiting the splitting mechanism we start with a quick observation.

Lemma 6.3. For every splitting pair (r,s),
|&>x7‘+17<$s| <is— Z'7"+1 -1- 1r+1=€ — Ls=¢. (6~1)

Proof. The converse of Theorem 5.3 yields

[@>a, <o | i —ipp1 — 1 for every splitting pair (r, s).

Hence, it suffices to consider the case where either r+1 = /¢ or s = £. Suppose r+1 = /;
the case s = ¢ is proven analogously. Then, every ¢ € N, (which must exist since
INZ| > 0= [Ny| > 0as INZ|? = |N_||Ny|) satisfies o (211) = ipq1 + 1 and o(z5) = is.
Hence, given z € >4, ,,<x,, the number of available spots for o(2) is |[i,41+2,is—1]| =
(7:3—1)—(i,«+1+2)—|—1=is—i7-+1 —-2. O

Proposition 6.4. Fiz a splitting pair (r,s) satisfying £ & {r + 1, s}, and let a1, ay be the
split based on (r,s). One of the following must occur:

(i) INL|> = INZ||INL] for every v € {1,2}.

(Zi) |O_é>$r+1,<$s| S /I:S - ir—i—l - 2

Proof. We will prove the proposition under the assumption that case (1) occurs; the proof
for case (2) is analogous. Note that under case (1) we trivially have |N2|? = N2 ||NZ|
since N2 is independent of o.

It suffices to show that if (ii) is false then (i) is true. This will be proven by showing
that if (ii) is false, then, for any o € {—,=,+},

ol = INGIINVGY, (6.2)

where we recall that N2 is independent of o. Plugging (6.2) into |[N=|? = |N_|N, | gives
IVL2INVZ2 = [N2]|INVL||NVZ]2. Canceling |N2| on both sides (JNVZ| > 0 since [N=| > 0)
gives (i).
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We now turn to prove (6.2) under the assumption that (ii) is false. By (6.1), (ii) being

false is equivalent to |¥sz, ., <o, | = s —irp1 — 1, i€, |a1] = 5 — i1 + 1. We will prove
(6.2) by constructing a bijection b : Ny — N1 x N2 foro € {—,=,+}. Fixo € {—,=,+}
and define a map b via b = (by, bo), with by : Ny — N2, by : No — N2, where we set,
for each o € N,

For z€ ai: bi(o)(z) =0(2) —iry1,

o(2) if o(2) € [0,irsr — 1,
Forzeas: by(o)(z) =1 i,y if 2 =z,

o(z) = (is —ir+1) f 0(2) € [is + 1,n+1].

We will first check that, given o € N, bi(0) € NI and ba(0) € N2. We will then
construct a map b’ : N} x N2 — N, and show that bo b’ = b’ o b = Id, completing the
proof. That by(c) € N and by(0) € N2 follows from the definitions of N2, N2 and the
fact that 0 € M. The map b’ : N} x N2 — N is defined by taking o, € N¢, for 1 = 1,2,
and setting, for z € a,

o2(2) if z € &y and o2(2) € [0,4,41 — 1]
V(o1,02)(2) =< 01(2) +ips1 if z€ea

o2(2) + (is —ir41) if 2 € @2 and 02(2) € [ir41 + 1,|@2|]

To see that V' (c1,02) € N, we first need to check that given z < w we have
V' (o1,02)(w) < b(01,02)(2). If w,z € a1 or w,z € ag, this follows from o; € N,
for « = 1,2, so it remains to check w € &, z € as and w € ag, z € ay; we check the first
case and the second case is analogous. Suppose that w € &1 and z € ao. Then, we must
have o2(z) € [0, 4,41 — 1] since, by the definition of z, w > z = z > z and o2(x) = i,41.
Hence, b/(01,02)(w) = o1(w) + 41 > 02(2) = V' (01,02)(z). Now that we know that
b' (01, 02) respects the relations of @, in order to show that &' (o1, 02) € Ny, it remains to
check that b'(o1,02)(z;) = i; + 1=¢1, for all 1 < j < k. This follows immediately from
the definitions of N} for ¢ € {1,2} and o € {—,=,+}. Finally, that bo b’ =V ob =1d
follows from the construction of b and ¥'. O

The next result provides a geometric characterization under which the case in Propo-
sition 6.4(i) occurs.

Lemma 6.5. Let K’ C K be a sharp subcritical collection. Then, there exists a splitting pair
(r,s) satisfying £ ¢ {r + 1,s}, with a corresponding split &y, e, such that K., K, € K'
and INL|* = [N“||NL]| for every . € {1,2}.

Proof. By Lemma 5.10,

K'=(Kj,....K;,),
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where jo i= —1, 0 < ji < -+ < jp <k, Jpr1 = k41, kg <ije1 —ij, — 1 — 1 cpoo1.0)s
and p € [n — k — 2|, must satisfy

v q € [p] : jq ¢ {é - 176} a‘nd 1{jq+1<j(q+1)} |O_[>:qu+1,<xj(q+1)|
= 1{jq+1<j(q+1)} [ij<q+1) - ijq"l'l - 1]'

Note that, for any 0 < ¢ < p, (jg +1,5(g+1)) # (0,k + 1). Indeed, for the latter to occur
we need to have p = 1 and ¢ = 0, but then (jo + 1,jo+1)) = (0,7,) # (0,k + 1) as
Jp < k+ 1. We now show that there exists 0 < ¢’ < p such that (j, + 1,7(g+41)) is a
splitting pair. Indeed, if not, then j, +1 = j441) for every 0 < g < p so we get j; =
0,j2 = 1,...,jp41 = k+1 which contradicts j, ¢ {£—1,¢}. Setting r := jy/, 5 := j(g41)s
we get a splitting pair (r, s) such that K,, Ky € K' and &>, ,<z,| = ts —ir41 — 1. By
Proposition 6.4, we must have [N-|* = |[N“||N] for every . € {1,2}. O

Using Lemma 6.5, the characterization of the subcritical extremals of Stanley’s in-
equalities now follows.

Theorem 6.6. (Subcritical extremals)

Suppose that IC has a sharp-subcritical collection. Then there exists a splitting pair
(r,s) such that the associated posets split a1, qs satisfies INL|* = |NL||INL| for every
L€ {1,2}.

Our induction hypothesis Assumption 2.10 is that Theorem 1.3 and Theorem 1.5 hold
for k — 1. Hence, without loss of generality we may assume from now on that

For all splits aq,ds :  |NL|2 #£ NY VY| Ve {1,2}. (6.3)

By Theorem 6.6, the assumption (6.3) implies that I is critical. Further, by Proposi-
tion 6.4,

<is—ir41 — 2 for every splitting pair (r,s) satisfying £ ¢ {r + 1, s},

| Oz, p <,
so using in addition Lemma 6.3, we get
|Ose, 1 ,<a.| <is —irp1 — 2 for every splitting pair (7, s).
Putting everything together we assume from now on:

Assumption 6.7. The collection /X is critical and

|@>0, 1 <a.| <is —iry1  for every splitting pair (7, s).
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7. Mixing

Under the current assumptions, we know that @ cannot be totally ordered (Re-
mark 5.6). In this section, we develop the notion of mizing which takes advantage of
the fact that @ must have some incomparable elements. The level of mixing will depend
on the criticality notions developed in Section 5, which will be further developed in
the current section. We begin with Section 7.1 which characterizes the locations where
elements of the poset can be placed. We then introduce in Section 7.2 the notions of
criticality and maximality for splitting pairs. Finally, Section 7.3 provides information
on the mixing properties of splitting pairs.

7.1. Range

A fixed element y € « can only be placed in a limited number of locations under any
linear extension. For example, if « is totally ordered, there would be only one such loca-
tion. We start by defining a few quantities associated to y which will provide information
on the possible placements of y under linear extensions.

Definition 7.1. Given y € « let imax(y) be the maximum index such that y > x; ()
and let imin(y) be the minimum index such that y < z; . (). Set

lo(y) == max (if 40>z, <yl) and wo(y) == min (i —[@>y<a,]),
Tglmax(y) szzmin(y)
where
i =i+ 1j=¢1o,
and let
Minin (Y) = Inin o(y) and mp..(y) = max o(y).

Note that ¢ is the location where z; is placed under every linear extension in No.
Hence, for any choice of 7 < imax(y) (res. 8 > imin(y)), y must be placed at a location
at least as large (res. small) as P + |Qsa, <y (Tes. @2 — |A>y <a,])-

Definition 7.1 immediately implies the following relations between [, (res. u,) for
o€ {—,=+}

Lemma 7.2. Fiz y € a. Then,
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(iv) If imin(y) > £, then u_(y) = u=(y) = us(y).

The next result provides necessary and sufficient conditions for an element of the
poset to be placed at a specific location under linear extensions.

Lemma 7.3. Fizy € o, o € {—,=,+}, and i € [n]. There exists o € N, with o(y) =i if,
and only if, i € [lo(y), uo(y)] and i # i3, for any m € [k].

Proof. —>: Fix o € N, such that o(y) = i. Since y # x,, for all m € [k] it follows
that @ # 49,. We now show i < uo(y); the argument for ¢ > I,(y) is analogous. Given
any s > imin(y), every element z € &s, <, must satisfy ¢ = o(y) < o(z) < o(zs).
Hence, o(z) can take on only o(xs) —i—1 possible values, which means that |Gy <z, | <
o(zs) —i— 1. In other words, i < o(zs) — |A>y,<a. . The latter holds
for any s > imin(y) which shows ¢ < ue(y).

o _
=1 — |O‘2y,<ws

<=: The assumption i # i3, for any m € [k] implies that we can choose m € [k] such
that ip, <i <5, ;. Consider the poset & := & with the relabeling
af =xj for j € [I,m], w3, =y, «j=u;_forjec[m+2k+1],
iy =15 for j € [I,m], i,y =1, ;=i forje[m+2,k+1].

To complete the proof it suffices to show that there exists a linear extension o’ of &’
satisfying o’(2;) = i’; for all j € [1,k + 1]. By Theorem 5.3, it suffices to show that

|6/>I£‘+17<1,g\ <iy—ip—1 forall0<r+1<s<k+1. (7.1)

When r +1 # m+ 1,s # m + 1, (7.1) holds by the assumption |[No| > 0 for all
o € {—,=,+} and Theorem 5.3. The case r+1 = m+1 = s is impossible since r+1 < s.
It remains to check the casesr+1=m+1,s#m+landr+1#m+1,s=m+ 1.
We verify (7.1) in the case s = m + 1; the proof for the case r + 1 = m + 1 is analogous.
When s = m + 1, (7.1) is equivalent to

|6‘>w7-+1,<y| = |5‘/>a;;+1,<w; < Z/s - Zb/rJrl —l=i- i;erl - L (7.2)

When r+1 < inax(y), (7.2) holds since, by assumption, i —iy; —1 > lo(y) —ip; — 1, so
(7.2) holds by the definition of I(y). When imax(y) <r+1<s=m+1, @sz, <y =D
because if there exists z,11 < z < y, that would imply x,;1 < y, which contradicts the
maximality of imax(y). Hence, (7.2) is equivalent to 0 <4 —4p,; — 1, which holds since
ip, 1 < iy, <1, where the last inequality holds by the definition of m. 0O

Lemma 7.3 immediately implies:

Corollary 7.4. Fizy € o and o € {—,=,+}. Then,

lo(y) < Mpin(y)  and My, (y) < uo(y).
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A second corollary of Lemma 7.3 is the proof of Remark 1.7. Note that Assumption 4.1
is not needed for the following result.

Proposition 7.5. The condition in Theorem 1.3(ii) is equivalent to

Vy <zp Is(y) € [0,k +1] s.t. y < zy(y) and |Qsy <z, | > s(y) — ie
and

Vy>ae Ir(y) € [0,k +1] s.t. y > zpy) and |asz, )<yl > e = irgy).-

Proof. By Lemma 3.3(a), the conditions in Theorem 1.3(iii) are equivalent to: o~ (i, —
1) = xp and 071 (ip + 1) = 2y Vo € N=. We start by showing that
Vy <axp Is(y) € [0,k 4+ 1] s.t. y < 2450y and |asy, <o

s > Ts(y) — e

—

o Nig—1) ez Vo e N_;

The equivalence Vy > ¢ 37(y) € [0, k+1] s.t. y > 2p(y) and |sz, () <yl > Te—ip) <=
o7 (ig +1) = zy Vo € N is analogous.

Indeed, the statement o~1(iy — 1) = 2y Vo € N_ is equivalent to the statement that
for all y < zy, there exists no ¢ € N= such that o(y) = i, — 1. We will show that the
latter is equivalent to u—(y) < iy — 1, which completes the proof. To see this equivalence,
note that if u—(y) < ig — 1, then Lemma 7.3 implies that exists no ¢ € N_ such that
o(y) = ig — 1. Conversely, suppose there exists no ¢ € N such that o(y) = iy — 1, so,
by Lemma 7.3, iy — 1 # [I=(y),u=(y)]. Note that, by Lemma 7.3, u—(y) < iy — 1 as
y < x¢. Hence, the possibility of i, — 1 < I-(y) < u—(y) cannot occur, which means that
i —1# [l=(y),u=(y)] = u=(y) <i¢—1, as claimed. O

7.2. Introduction to mizing

When @& is totally ordered we have, for any splitting pair (r, s),

bijection [[

O>a,41,<a, ir g1, s]

under any linear extension o € J -t} N,. But under the current assumptions, & is

° )
not totally ordered (Remark 5.6),e\ilhich means that a certain amount of mizing must
occurs; see Definition 7.9 for a precise statement. In Section 7.3 we will show that there is
at least one mixed element (Lemma 7.10) for any splitting pair (r, s). When the splitting
pair is in addition an f-splitting pair we characterize the exact number of mixed element,

which depends on the criticality level of the pair:
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Definition 7.6. An ¢-splitting pair (r, s) is supercritical if K' := (Ko, ..., Kr,Ks,...,Kg)
satisfies dim (3 o K) > [K'| + 2, and is sharp-critical if dim (3o K) = |K'| 4 1.

We show in Section 7.3 how the above notion of criticality is related to the number
of mixed elements (Lemma 7.13). The sharp-critical ¢-splitting pairs give rise to the
following unique pair which will play an important role in the characterization of the
extremals of the critical posets.

Definition 7.7. Let (r,, s,), be the sharp-critical £-splitting pairs, where we assume that
at least one such pair exists. The mazimal splitting pair (Fmax, Smin) 1S given by rmax 1=
max, r, and Sy, := min, s,. Associated to the maximal splitting pair are

Kuax = Koy oy Ky K

) Tmax ?

. aICk)a

Smin? * *

(7.3)

Bmax = Bﬂovrmaxﬂuﬂsminfk]]’ and a\ﬂmax = a>$1‘max+1a<ﬂi5mm’

where the last identity follows from Lemma 2.3.

The notion of the maximal splitting pair in Definition 7.7 is tied to the notion of max-
imal sharp-critical collections introduced [17, section 9.1], as part of the characterization
of the extremals of the Alexandrov-Fenchel inequality for critical polytopes. In partic-
ular, a sharp-critical collection K/ C K is mazimal if, for any K’ C K" C K, we have
dim (ZKGK” K) > |K"|+2. In other words, any addition of polytopes to K’ destroys its
sharp-critical nature. The next result explains the connection between these two notions
of maximality.

Proposition 7.8. Suppose there exists a sharp-critical collection. Then, Kuyax is the only
mazimal sharp-critical collection.

Proof. We start by recalling that all sharp-critical maximal collections of K must be
disjoint [17, Lemma 9.2]. By assumption there exists a sharp-critical collection K’ so
let IC. be the (necessarily unique) maximal sharp-critical collection containing ’. On
the other hand, Lemma 5.11 shows that any two sharp-critical collections of I have a
non-trivial intersection. It follows that K, is the only maximal sharp-critical collection
in IC. Next we show that

K. = {union of all sharp-critical collections} = Kax,

where the second identity follows from Lemma 5.11, which completes the proof. In-
deed, clearly, K, C |J{sharp-critical collection} since K, is a sharp-critical collection. If
(J{sharp-critical collection} a strictly greater than ., i.e., it contains a polytope K not
in K, then there exists a sharp-critical collection K" such that K € K”. Let K, be the
(necessarily unique) maximal sharp-critical collection containing K. Then K. # K, (as
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splitting pair
> 1 mixed element(s)
(Lemma 7.10)
supercritical ¢-splitting pair sharp-critical ¢-splitting pair
> 2 mixed elements exactly 1 mixed element
(Corollary 7.14) (Lemma 7.13)

exactly 1 mixed element, yZ ;,

sharp-critical maximal splitting pair
(Corollary 7.15)

Fig. 7.1. A summary of the mixing results from Section 7.3.

K € K. but K ¢ K,), which contradicts the fact K, is the only maximal sharp-critical
collection. O

We conclude the section by introducing notation that will be used throughout the
paper. Let

lijs 1541]° == [i5, 501 = [ + Lj=elosdj41 + Ljt1=e1o]. (7.4)

We use this notation when constants are added as well, for example, [i;+1,4;41 —1]° :=
[i5 + 1,45, —1].

7.8. Mixing properties of splitting pairs

In this section we analyze the mixing properties of splitting pairs—see Fig. 7.1 for a
summary. We start by making the definition of a mixed element precise (recall (2.4)):

Definition 7.9. Fix a splitting pair (r,s) and 0 € N, for o € {—,=,+}. An element
y° € By U By is a mized element if o(y”) € [ir+1,is]\{irs1s---,1s}

Our first result in this section is on the existence of mixed elements.

Lemma 7.10. Fiz a splitting pair (r,s) and o € N=. There exists a mized element y° €
Br U Bs such that o(y?) € [ir41, s\ {irt1,---,0s}-
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< is — 441 by Assumption 6.7, which is equivalent to
s e, 1<, | <t —irg1 — (s — (r+ 1)) — 1. Fix 0 € N_. If there exists no y” € 3, U f;
with o(y7) € [ir4+1, s \{ér+1,---,%s}, then, by Lemma 2.3,

Proof. Recall that |a>4, | <a.

= |O‘\(ﬂr U ﬂs U a<acr+1 U O‘>xs)| Z |Hir+1ais]]\{ir+1a ) Z§}|

=ts—tpp1+1—(s—(r+1)+1)=is—ipp1 — (s— (r+1)),

|a>$r+1 ,<Ts

which is a contradiction. 0O
Corollary 7.11. For every 0 < j <k, i; +1 <ij41.

Proof. If £k = 1 then the corollary holds by the assumption i, < ipy; — 1. Otherwise,
note that (r,s) = (j — 1,4+ 1) is a splitting pair. Fix 0 € N— and note that Lemma 7.10
implies that there exists y” ¢ a>q; <o;,, With o(y?) € [ij,i;41]. The first condition
gives y7 ¢ {zj,zj41}, so o(y?) ¢ {ij,ij41}. We conclude that [i; + 1,i;41 — 1] =
lij,3541] \ {j,%41} is nonempty. O

Next we move to the mixing properties of ¢-splitting pairs. This requires the following
simple result.

Lemma 7.12.

o Fizj e [0,k]. For every o € N=, [i;+1,ij41 —1] C 0(B;) and, for every S C [0, k],
Ujesliy + 14541 — 1] € o(Bs)-

o Fizje[0,k]\{¢—1,¢} ando € {—,+}. For everyo € Ny, [i;+1,ij41—1]° C o(5;)
and, for every S C [0, k[\{€ — 1,0}, U;cslt; + 14541 — 1]° € 0(Bs).

Proof. « Fix 0 € N=. We will show that o(y) € [i; + 1,441 — 1] = y € B, which
implies [i; + 1,441 — 1] € o(B;); the statement about S follows by taking unions. If
o(y) € [i; +1,4j41 — 1], then clearly y € c and o(x;) = 4; < 0(y) < tj41 = o(Tj41).
Hence, neither y < x; nor y > ;41 can occur. It follows that y € 3;.

o The proof is the same as for the first part where we use that j ¢ {{—1,¢} = o(x;) =
ij and o(xj11) =4j41. O

We now show how the mixing properties of ¢-splitting pairs are related to their criti-
cality properties.

Lemma 7.13. Fiz an (-splitting pair (r,s), let
K o= (Kos o s Kors Koo K1),

and set
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¢:=dim ( > K) — K.

KeK!

Then, for any fized o € Ny, foro € {—,=,+}, there are exactly c distinct mized elements
y¢177 s 7yg € 6ruU Bs satisfying J(y(lr)v s ,U(yg> € [[iT+17 is]]\{i?”rlv s 7is}'

Proof. By Lemma 5.1,

|B10.r1uLs.k] | = dim < > K) and  |K'| = | Ujeqo,rugs.c] [95 + 1,350 — 1]
Kek

On the other hand, applying Lemma 7.12 to S := [0,7] U [s, k] yields Ujcqo,,jugs,ryli; +
Lyijy1 — 1] € o(Bpo,rqups,ky). Hence, there are exactly c distinct elements {yf }ic(q
satisfying v € Blorquis.ep and o(yf) & Ujeporus.kli; + 14541 — 1. Now recall
that Bpo,qugs,k] = Br U Bs U @cq,y; U sy, (Lemma 2.3), and note that o(yf) ¢
Ujeo,7]uls,k] [[ij + 125401 — 1] implies that yl € BrUBs. O

Corollary 7.14. Let (r,s) be a supercritical {-splitting pair. Then, for any o € N, for
o € {—,=,+}, there are ¢ > 2 distinct mized elements yy,...,y? € B, U B, satisfying

oY)y oY) € lirg1sts]\{frt1,---s0s)-

Note that Corollary 7.14 is an improvement on Lemma 7.10 in the setting of super-
critical £-splitting pairs, as it guarantees the existence of two distinct mixed elements
rather than one. In addition, because Corollary 7.14 specializes to ¢-splitting pairs it can
handle N, for any o € {—, =, +}, while Lemma 7.10 applies only to N_.

We conclude this section by specializing to the setting where the ¢-splitting pair is
maximal. Since the maximal splitting pair is sharp-critical, Lemma 7.13 immediately
gives that we have exactly one mixed element.

Corollary 7.15. Fiz o € {—,=,+} and 0 € N,. There exists a unique mized element y7,;,
satisfying Yo i € Broue Y s 008 0(YZri1) € [irut1s fsmin Mirmant 15 -5 fsn ;-

8. The extreme normal directions

Once Assumption 6.7 is set in place, we are ready, in principle, to apply Theorem 2.8.
However, Theorem 2.8 characterizes the extremals geometrically in terms of the (B, K)-
extreme normal directions so a combinatorial interpretation of these vectors is needed.
The goal of this section is to characterize, combinatorially, a sufficient number of the
(B, K)-extreme normal directions so that Theorem 2.8 can be applied.

We recall that {e;} e[, is the standard basis of R"™~* and, for u,v € [n— k| distinct,
we let ey, = % and oy, = e“j;". We also recall the definition (2.4):

Bi = a\(ace, Uasg,, ).
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The next result characterizes certain faces of the polytopes {K;}.
Lemma 8.1. Fiz i € [0,k]. We have,

(i) Fory; & B;, Lin(F(K;,+e;)) = R, and for y,, vy, ¢ Bi, Lin(F(K;, tey,)) = R
(ii) Fory; € B;, Lin(F(K;, —e;)) = RF\*<v and Lin(F(K;, e;)) = R?\*2v; |
(iii) For yu,y, € Bi such that y, covers y, in a, Lin(F(K;, eyu)) = REMywv} g

span(0oyy)-
Proof. We start by recalling (2.5):

K;=0g +1 for i € [0, k]

X>zi4q

so that
Lin(F(K;,u)) = Lin(F(Os,,u)) Yue $* 7+,

(i) Let u € {=£e;} so, since ho, (1) = 0 as y; ¢ B, we get that Lin(F(K;,u)) =
Op, N {t; = 0} = Og,, where the last equality holds as y; ¢ 3;. Similarly, let
u € {£eyy} so, since ho, (1) = 0 as yu,yy ¢ Bi, we get that Lin(F(K;,u)) =
Op, N {ty, = t,} = Og,, where the last equality holds as y,,y, ¢ 5;. The proof is
complete as dim Og, = |3;| (Lemma 2.1).

(ii) Since ho,, (—e;) = 0, we get Lin(F(K;, —e;)) = Og, N {t; =0} = Oﬁi\agyj where
the last equality holds as y; € ;. Analogously, since ho, (ej) =1 (because y; € B;),
we get Lin(F'(Kj,ej)) = Og, N{t; =1} = Og\as, -

(iii) Since y,, < y, we have ho,, (ewr) = 0,50 Lin(F(K:i',Jem,)) = Og,N{t, = t,}. Since y,
covers yy, it follows from Lemma 2.1(iii) that dim(Lin(F(K;, e))) = |8;] — 1. On
the other hand, since Lin(F (K;, €yy)) L €y, we have Lin(F(K;, ey,)) C RPinel, =
RAMYw 90} Gspan(oy, ). The proof is complete since dim (R \¥w 90} Gspan(0y,,)) =
1Bil—1. O

The following proposition, which is the main result of this section, characterizes
combinatorially some of the (B,K)-extreme normal directions. We remark that the
(B, K)-extreme normal directions given in Proposition 8.2(e—h) will be used only for
the characterization of the extremals of sharp-critical posets.

Proposition 8.2. The following vectors are (B, K)-extreme normal directions:

(a) For each fited 0 < m < {: —e; for any j such that y; € oy, and there exists
o € N= satisfying o(y;) = im + 1.

(b) For each fized ¢ < m < k+1: e; for any j such that y; € a<y,, and there exists
o € N= satisfying o(y;) = im — 1.
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(c) ey, for any u,v such that y, < y, and there exists o € N— satisfying o(y,) +1 =
o(yw).

(d) euy for any u,v such that y, < y, and there exists o € N— satisfying o(y,) =i — 1
and o(y,) =i¢ + 1.

(e) For each fized rmax +1 < m < {—1: —e; for any j such that y; € as,,, and there
exists o € N= satisfying o(y;) = im + 2.

(f) For each fized £ +1 < m < spmin: €; for any j such that y; € ac,,, and there exists
o € N satisfying o(y;) = im — 2.

(9) —e; for any j such that y; € sy, , and there exists o € Ny satisfying o(y;) =
to—1 + 2.

(h) e; for any j such thaty; € a<s,., and there exists o € N_ satisfying o(y;) = ie41—2.

Note that parts (a—b), which suffice for the supercritical posets, provide information
about nearest neighbors of x,,, while parts (e—f), which are needed for the critical posets,
provide information about second-nearest neighbors of x,,.

Proof. (of Proposition 8.2) By Definition 2.4, we need to show that, whenever u is one
of the vectors in the proposition, we have, for any collection X' C K,

dim ( > F(K, u)> > K.
KeK’

Let jo : =-1<0< 1 < - <Jp Lk<k+1=:jpp1 and Ky,...,Kp, with 0 < kg <

Q41 — 15, — 1 =15 cqe—1,0}, for jq € [0, k], and set

IC/ = (Kjl,...,Kjl,...,K

jp"'

"ij)’

K1 Kp

J = {jla-~-7jp}~

For notational simplicity we set

Ij = IIZ] + 1,ij+1 - ].]] fOI‘j S [[0, k]], IS = questq for S C [[O,kﬂ, (81)
for example,

I[[rJrl,s]] = [[iTJrla is]]\{iT+17 sy Zs}
Note that
17| = Lecies — Lees > K|,

because 0 < kg <ij,41 — 45, — 1 —1; eqe—1,¢y and since I;, =45, 41 — 15, — L.

q q
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(a) Fix 0 < m < ¢ and consider o € N= such that o(y;) = 4,, + 1 where j is such that
Yj € O>g,, . Let

- {@g if y; & 5j,
’ Bi\a<y, ify;€p;,

and vy := Uj, 7 By Lemma 8.1(i-ii),

Lin(F(K;, ,—e;)) = R%a  forall j, € J,

q?

so, by (5.1),

Lin (F ( > K, —ej>> =R".
KeK'!

It follows that

(35 ) =,

KeK’

so it remains to show that |y;| > |K'|. Since |I;| —1s—1e5 — lecs > |K'|, it will suffice
to show that

Ivsl > 1] — Le—ies — lees,

which requires the following claim.

Claim 8.3.

(i)
(i)

For j, # m, I;, C o(v;,)-
For j, = m, L \{im + 1} C 0(vim)-

Proof. (i) We need to consider the cases y; ¢ 3;, and y; € 3;,. If y; ¢ 3;, then the

result holds by Lemma 7.12. Suppose y; € 3;,. Then, we must have m < jg;
otherwise, j, < m (by assumption j, # m) so zj 1 < x,, < y;, but this
implies y; ¢ $3;,, which is a contradiction. Now let y be any element such
that o(y) € I;,, which by Lemma 7.12, implies that y € j3;, . Since o(y) >
ij, +1>im+1=0(y;), we can conclude that, in fact, y € 3;, \a<y, =;,. To
summarize, o(y) € I;, = y € v;,, which shows I; C o(v;,).

We need to consider the cases y; ¢ B, and y; € B,,. Suppose y; ¢ Bm. By
Corollary 7.11, iy, +1 < ipmy1 80 0(Y;) = im + 1 € I, T 0(By,), where we used
Lemma 7.12. This contradicts y; ¢ By, so we are left to consider y; € 3,,. Let
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y be any element such that o(y) € In,\{im + 1} = [im + 2,4m+1 — 1]. Then,
Y € Bm\a<y, since, by Lemma 7.12, y € 3, but we also have o(y) > iy, +2 >
im + 1 = 0(y;). To summarize, o(y) € L,,\{im + 1} = y € B \a<y,;, which
shows Iy, \{im + 1} Co(ym). O

In order to use Claim 8.3 in the proof of |v;| > |I;| —1s—1ec5 — loc s, we distinguish
between two cases: m ¢ J and m € J. If m ¢ J, then taking a union over j, € J in
Claim 8.3 gives Iy C o(vy), so |vs| > 15| > 1] — le—1es — Locs, as desired.

Suppose then that m € J. Taking a union over j, € J in Claim 8.3 gives I;\{é,, +
1} C o(vys). Hence, if £ € J, we have |y;| > |I;] — 1 > |I7] — 1y—1c7 — Llees, which
completes the proof. It remains to consider the case m € J and ¢ ¢ J:

Choose the largest 0 < b < p such that j, < £, so jp < £ < jp+1, and, in particular,
(Jbs jb+1) is an L-splitting pair. By Lemma 7.10, there exists y” € 3;, U 5;,+1 such
that o(y”) € Ifj,41,5,.,—1]- Since m = j, < £ for some 0 < ¢ < p, and since b is
the largest element in [0, p] such that j, < ¢, we have ¢ < b, and hence m < j. It
follows that o (y;) = im+1 < ij,41+1 < 0(y?), and, in particular, y” ¢ a<,,. Hence,
Y7 € (Bi,\a<y, )U(Bjyi \a<y;) € 75, Ujura € 7550 L\{im+1HU{a(y7)} € o (v1).
Finally, o(y”) ¢ 1y because J and [j, +1, jo+1 — 1] do not intersect, which completes
the proof since it implies that |v;| > [(I;\{im +1}H)U{c@®?)}| > [I;|-1+1=|1;]| >
L7l = 1e—1e — Lees-

The proof is analogous to part (a).
Fix u, v such that there exist y, < y, with 0 € N_ satisfying o(y,)+ 1 = o(y,). For
Jq € J, let

B, if Yu, Yo & By,
BiMyuyo} i Yus yo € By,
Bi\ozy, iy € B,y ¢ B,
B, \a<y, if yu & Bijys Yo € By,

We start by describing the faces of {Kj;, };,cs in the directions {eyy}.

Claim 8.4. For every j, € J,

Lin(F(Kj,, eu)) = {R?q Bepan(on) If yu,yv.e oo
R%q otherwise.
Proof. There are four cases to consider:
* Yu,Yo € B, The claim follows from Lemma 8.1(iii).
* Yu, Yo & Bj,: The claim follows from Lemma 8.1(i).
e Yu € Bj,,yv & Bj,» We will show that Lin(F (K}, ,eu,)) = Lin(F(Kj,,e.)), and
the claim will then follow from Lemma 8.1(ii). Indeed, the assumption y, ¢ 3;,
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implies that y, € Qcg; U sy oo But y, ¢ Qca;, because, otherwise, y, <
Yu < Tj,, which contradicts the assumption y, € 3;,. Hence, y, > x; 41 so, by
the definition (2.3) of Kj,, t, = 1 for any ¢t € O,. Since sup;, cpo,1jtu = 1 (as
Yu € Bj, = y £ x;,), it follows that hg; (ews) = sup, cjo ] tu\gv =0, and hence

Lin(F(K;,, ) = K;, N {tu = t,} = K;, N {t, = 1} = Lin(F(K;, , e,)),

as needed.
e Yu & Bj,>yv € Bj,: The argument is analogous to the previous case: y, € f;, and
Yv ¢ ﬂjq- d

Next we prove the analogue of Claim 8.3.

Claim 8.5. Choose m € [0,k + 1] such that i, < 0(yu) < 0(ys) < tm1-

(1)
(i)

For j, #m, I;, C 0(7jq).
For j, = m, Lu,\{0(yu), ()} € o(ym)-

Proof. We need to consider the four cases (1) yu,% € Bj,5 (2) Yu, Yo & Bi,> (3)
Yu € ﬁquyv ¢ ij and (4) Yu ¢ ﬁjqayv € 6]}1-

(i)

Case (1): For any y such that o(y) € I;,, we have y € $3; , by Lemma 7.12,
and y & {yu,Yv}, since o(yu),0(yy) € L, and L, N1;, = & as m # j,. Hence,
Y € Bj, \{¥u, Yo} = 74,, s0 we conclude I;, C a(v;,)-

Case (2): Since v;, = f3;,, Lemma 7.12 implies I;, C o(v;,).

Case (3): For any y such that o(y) € I;,, we have y € §;_, by Lemma 7.12.
On the other hand, the proof of Claim 8.4 showed that y, > w; 1, so the
assumption on m implies that j, < m, which means that o(y) < ij,4+1 < iy <
0(yu). In particular, y ¢ a>,, so we conclude that y € 3; \a>y, = v,. It
follows that I;, C o(v;,)-

Case (4) is analogous to case (3).

Case (1): For any y € L,\{o(yu),0(y»)}, Lemma 7.12 implies that y €
B \{Yu> Yo} = Vi, which implies that L, \{c(yu), o(y0)} € o (m).

Case (2): Since 7, = B, Lemma 7.12 implies I,\{o(yu), 0(y»)} C o(Vm)-

Case (3): As shown in part (i) case (3), we must have j, < m so this case
cannot occur.

Case (4) is analogous to case (3). O

Choose m € [0,k + 1] such that i, < 0(yy) < 0(Y») < im+1. To complete the
proof we distinguish between two cases: m ¢ J and m € J. Suppose m ¢ J. By (5.1)
and Claim 8.4, R? C Lin (Y jex F(K, €w)), so dim (3 i F(K, eun)) = |7l
On the other hand, by Claim 8.5 and as m ¢ J, |vs| > |L;|. We conclude
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dim ( > F(K, €uu)> > Ly > L] = Le—1es — Lees > K],
KeKk’

which completes the proof.

Suppose that m € J. By the definition of m, o(y,), o (y,) € In, so Lemma 7.12 im-
plies that ¥y, ¥, € B By Claim 8.4, it follows that F'(K,,, €y,) = R?™ @ span(oy,).
On the other hand, for any j, € .J, by the definition of v; , we have y.,y, & 7vj,-
Hence, R4 Nspan(o,,) = {0} for all j, € J, and in particular, R’ Nspan(o,,) = {0}.
It follows from (5.1) that

Lin < Z F(K, ew)> =R7 @ span(oyy),

KeK’!

and

dim ( Yy F(K, euv)> = |y + 1.

KeK’

We now consider separately the cases £ € J and £ ¢ J. Suppose £ € J. By Claim 8.5,
[yl = s =2 s0

Vsl +1> 1 —1> 1] —1— 115 > K],

which completes the proof. It remains to consider the case m € J and ¢ ¢ J:

Choose the largest b € [0, p] such that j, < ¢, so j, < £ < jpt1, and, in particular,
(jv» Jv4+1) is an f-splitting pair. By Lemma 7.10, there exists y” € 3;, U B;,,, with
a(y?) € Iy 41,5, —17- We will show that

yg € Y U Yivg1- (82)

Assume for now that (8.2) holds. Then, (I;\{o(y.),o(y»)}) U{o(y?)} C o(ys). On
the other hand, arguing as in part (a) for the case m € J,£ ¢ J, we have o(y?) ¢ 1.
Hence, |v;|+1 > [I;],s0 dim (3 i F(K, €u0)) = 17| = 17| =1m1es—1ees > |K'],
which completes the proof.

It remains to prove (8.2). We will show y” € f;, = y° € v;,, and the argument
for 4y € Bj,., = y” € vj,,, is analogous. Since y” € f3;, U f;,,,, (8.2) will follow.
Suppose then that y” € 3;, so our task is to show that y” € ;,. There are two
cases to consider: j, > m and jp+1 < m; we will consider the case j, > m and the
argument for the case jp+1 < m is analogous.

Let us start by showing that 7;, cannot be equal to 3;, \a>,, . Indeed, the latter
occurs only if y, € B;,,4, ¢ Bj,, in which case, either y, < xj;, or y, > xj,41.
If y, < xj,, then y, < y, < x;, which contradicts y, € B, . If y, > x;, 11, then
o(zj,+1) < 0(Y») < imt1 = 0(Tm41), which contradicts m < j,. We conclude that
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Yia € 1Bjys Biy \MWus Yo}, Bj, \@<y, }, and since y7 € f;,, it suffices to show that y ¢
{Yu, o} and y7 ¢ a<,,. To see that y” ¢ {yu,y,}, note that o(y?) € I, +1,5,,,-1]
while o (yu), 0 (ys) € Inm. Since m < i, Ij,41,5500—1] N Im = @ 50 y7 & {yu, o} To
see that y” ¢ a<,,, note that, since m < jy, 0(Yu) < tmy1 < 4,41 < o(y’), where
the last inequality holds as o (y”) € Ifj, 11,5, -1]-

Fix u,v such that there exist y, < y, with ¢ € N_ satisfying o(y,) = i, — 1 and
o(yv) = i¢ + 1. For j, € J we let ;. be as in part (c). We start by showing that
Claim 8.4 holds here as well.

Claim 8.6. For every j, € J,

LiIl(F(qu’ euv)) - {R’Y]:q ? Span(ouv) ! - yv.e ﬁjq’

R4 otherwise.
Proof. The proof is the same as the proof of Claim 8.4, but we need to check that,
when yu, Yy € Bj,, Yo covers y, in a. The latter must be true since, otherwise, there
exists z € o such that y, < 2 < Yy, 80 iy — 1 = 0(yu) < 0(2) < 0(yy) = 4¢ + 1. This
implies z = x4, which contradicts z € . 0O

Next we prove the analogue of Claim 8.5.

Claim 8.7.

(i) For jg & {€—1,0},1;, € o(v;,)-
(i) For jg =€ —1, Lr—1\{ir — 1} C o(ye-1).
(iii) For jq =/, I@\{i@ + 1} - O'(’)/g).

Proof. We need to consider the four cases (1) yu,ys € Bj,5 (2) Yur Yo & Bi,, (3)
Yu € quvyv ¢ 5]}1’ and (4) Yu ¢ ﬁquyv S qu~

(i) Case (1): For any y such that o(y) € I, we have y ¢ {yu,y.} since
o(yu),0(yo) ¢ 1, (because j, ¢ {¢ — 1,(}). Hence, by Lemma 7.12, y €
Bj, MY, Yo} = 74, 80 we conclude I, C o(v;, ).

Case (2): By Lemma 7.12, I;, C B;, =, so I;, C o(v;,)-

Case (3): We start by showing that j, < ¢. Indeed, suppose for contradiction
that j, > ¢. Since y, ¢ Bj,, we have that either y, < x;, or y, >z 11 > Tei1.
We cannot have y, > x; 41 > 411, since o(y,) = ig + 1 < igp1 = o(ze41).
Hence, we must have y,, < y, < x;,, which contradicts y,, € §;,. We conclude
that j, < ¢. The assumption j, ¢ {¢ — 1,¢} implies that in fact j, < ¢ — 1.
Hence, for any y such that o(y) € I;,, we have y € B, \a>y, = 7;,, because
o(y) <ijo41 <ie—1 <ig—1=o0(y,). It follows that I;, C o(v;,)-

Case (4) is analogous to case (3).
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(ii) Case (1): For any y such that o(y) € I,_1\{i¢ — 1}, we have y & {yu, yu} s0, by
Lemma 7.12, Tr_1\{i¢ — 1} C o(ve—1)-
Case (2): By Lemma 7.12, I,y C 0(B¢—1) = o(ve-1) s0 Ii—1 € o(ve-1).
Case (3): For any y such that o(y) € Ip_1\{i¢—1}, we have y € Sr_1\a>,, =
~e—1, because, by the definition of Iy_1\{i,—1}, 0(y) < i¢—1 = o(y,,). It follows
that 1471\{7;4 — 1} C o(ye—1)-
Case (4) is analogous to case (3).
(iii) The argument is analogous to (ii). O

By (5.1) and Claim 8.6, R?7 C Lin (3 e F(K, €uw)), 50 dim (3 e F(K, un))
> |vs|. By Claim 8.7, using the fact that {I;, }; e (e—1,e},Le—1,1¢ are disjoint, we
have

vl = Z (L, | = Lj,=e—1 — Lj—e] = |1s] — Li—1eg — Loes > K],
ja€d

which completes the proof.
Fix rmax +1 < m < £ — 1 and consider 0 € N= such that o(y;) = iy, + 2 where
Jj is such that y; € as,,,. By Corollary 7.11, o(y;) = im + 2 < imy1 = 0(Tmt1),
and since o(y;) # 0(Tm+1) (88 Yj # Tmt1), we get that o(y;) =im +2 < iy +3 <
0(Zm+41) = im1. It follows that i, +1 < dpp1 — 1, 50 0(y;) € L.

For j, € J, let 7;, be as in part (a), and note that an analogous argument yield

dim ( Z F(K, 6j)> = |l

KeK’

and

Claim 8.8.

(i) For jq #m, 1;, Co(v;,)-
(if) For jo = m, Ly\{im + 1,im + 2} C o(vm)-

In order to complete the proof we distinguish between two cases: m ¢ J and
m € J. The proof of the case m ¢ J is the same as in part (a). Suppose that m € J
and consider the following cases:

e ¢ —1,¢ € J: The proof is complete since |[K'| < |Ij] — 1i—1eg — loes = |1s] — 2,

and since Claim 8.8 yields |y| > 1] — 2.

e {—1€ Jand{ ¢ J:Since £ ¢ J, there is an index j;, such that j, = ¢ — 1 and

Jb+1 > ¢, and note that (jp, jp+1) is a splitting pair. Note that since m < £—1, and

m € J, we must have m < jp. By Lemma 7.10, there exists y7 € 3, U 8,41 such

that o(y?) € Ifj,41,5y..—1]- Suppose y° € (3j,; the proof for the case y” € 3;,11 is
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analogous. Since o/(y7) > ij,41 > ims1 > 0(y;), we get y7 € B, \a<y, €75 C 7
Hence,

I \{im + 1,im +2}) U{o(y?)} C o(v).

Since o (y”) € Ifj,+1,5y4,—1], We have o(y?) ¢ 1; (because j, = ¢ —1 and £ ¢ J so
the indices {jp + 1,...,Jp+1 — 1} = [Jo + 1, jo+1 — 1] are not in J), so we get that
vl = Lyl = 1= L] = L—1es — Lees = [K'].

e {—1¢ Jand £ € J: The proof is analogous to the case { —1 € J and ¢ ¢ J.

e {—1,¢ ¢ J: Since £ —1,¢ ¢ J, we can choose b to be an index such that j, <
£—1 < €< jpt1, or the largest index such j, < £ —1 < ¢, and note that (jp, jp+1)
is an ¢-splitting pair. Note that since m < £—1, and m € J, we must have m < j,.
Consider the collection

ICH = (]Co,.. '7ICjb7’Cjb+17" .,’Ck)

and note that, by Assumption 6.7, K" is critical. We claim that K" is in fact
supercritical. Indeed, if K" is sharp-critical, then j, < rpax. But j, > m > rpax,
so we get a contradiction. Since K" is supercritical, and since (jp,jp11) is an
(-splitting pair, Corollary 7.14 provides two distinct y?,27 € 3;, U B;,,,, with
o(y?),0(27) € Ijj, 41,5y, —1], from which it follows that

Ljo,ju10Ljsr1,k] Y0 (W7);0(27)} C 0(Blo,5,10041.k1)-

Suppose that y7 € f,; the case y” € f3;,,, is analogous. Since m < j, o(y”) >
ij+1 = Gmy1 > 0(y;j), so we can conclude that y” € fj,\a<,, € 75, S .
Analogous argument shows that z € «;. By Claim 8.8, it follows that

LA {im + 1im +2}) U{o(y7),0(27)} € o(vs)-

Since o (y7),0(27) € Ijy41,5y..—1], We have o(y7),0(27) ¢ 1; (because b satisfies
Jb < L€—1< €< jpy1, or the maximal j, < £—1, so the indices {jp+1,..., jp+1 —
1} = [Jo + 1, jo+1 — 1] are not in J). On the other hand, because m € J and
im+2 < ims1, we have i, + 1,4y, + 2 € 1. It follows that (Iy\{im +1,%m +2})U
{o(y7), 0"V} = [1,], and hence, |y;] > [1,] > K]

(f) The proof is analogous to part (e).

(g) Consider o € N such that o(y;) = ig—1 + 2 where j is such that y; € a4, ,. By
Corollary 7.11, o(x¢—1) < ig—1 +2 = o(y;) < ig +1 = o(z¢), so we conclude that
yj € Be—1. For j, € J let 7;, be as in part (a), and note that an analogous argument
yields dim (3 jccxr F(K, —€;)) = |7s]. We start with the analogue of Claim 8.7.
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Claim 8.9.

(1) For jq ¢ {E - 176}7 Ijq c 0(7]};)'

(i) For jy = £~ 1, (I U {ie)\ir1 + Lir s +2} C o).
(iii) For jq =/, Ig\{ig + 1} - O'(’}/@).

Proof. There two cases to consider: (1) y; ¢ B;, and (2) y; € 3;,.

(i)

(iii)

Case (1): By Lemma 7.12, I;  C o(B;,) = o(v;,)-

Case (2): First we note that j, > ¢ — 1 since, otherwise, y; > x¢o_1 > ;11
which contradicts y; € 3;,. Since j, ¢ {£ — 1,£}, it follows that in fact £ < j,.
Hence, for any y such that o(y) € I, , we have o(y) > o(x;,) > o(zeq1) =
igr1 > i1 +2 = o(y;), so that y ¢ a<,,. It follows that y € ~; , so we
conclude I, C a(v;, ).

Case (1) cannot occur since we have shown that y; € S,_1.

Case (2): Every y such that o(y) € (Ir—1 U{ie})\{ir—1+1,i—1 + 2} satisfies
o(ze—1) < o(y) < o(xe), so y € Be—1. Further, o(y) > ip—1 +2 = o(y;), so
y & a<,y,. It follows that y € v,_1, so we conclude (I,—1 U{ig})\{ig—1 41,11+
2} C o(ve-1)-

Case (1): Every y such that o(y) € I,\{i,+ 1} satisfies o(xp) = iy +1 < o(y) <
io41 = 0(xp11), S0 y € By = vp. We conclude that Tp\{is + 1} C o(ve).

Case (2): Every y such that o(y) € I,\{i, + 1} satisfies o(z) = ir + 1 <
o(y) < iey1 = o(xet1, s0 y € Be. Further, o(y) > i+ 1> 491 +2 = o(y;), so
y ¢ a<,,. It follows that y € v,, so we conclude Io\{i + 1} C o(v,). O

By (5.1) Lin (3 gexr F(K, —€;)) = R77, so dim (3 jeexr F(K, —¢€;)) = |74]. By
Claim 8.9, using the fact that {I;, }; e\ {¢—1,e3,Le—1, I are disjoint, it suffices to show
that |(Ip—1 U {iz})\{’izf1 + 1,901+ 2}| = |I;—1] — 1, and that |I[\{ig + 1}| = I, -1,
since then

] = Z (L, | = 1j,=e—1 = Lj,=e) = 15| = Lem1es — Lees > |K'],
Ja€J

which completes the proof. To see that |(To—1 U{i¢})\{ir—1+1,70-1+2}| = |To—1]| -1,
we note that |I,_1 U{is}| = |T,—1|+1, and that i,_1 41,491 +2 € I,_1 U{is}, because
to—1+1 < ip_1+2 < iy, by Corollary 7.11. Hence, |(Lr—1 U{ig})\{ir—1+1,ip—1+2} =
(|Te—1] + 1) — 2 = |Iy—1| — 1. Finally, it is clear that |I,\{i, + 1}| = |I¢| — 1, since
o+ 1€l

(h) The proof is analogous to part (g). O
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9. Supercritical posets

In this section we complete the characterization of the extremals of Stanley’s in-
equalities for supercritical posets. The following result, together with Proposition 3.2,
Lemma 3.3, Proposition 3.8, and Proposition 5.7, complete the proof of Theorem 1.3.

Theorem 9.1. Suppose that K is supercritical and that IN=|?> = [N_||Ny|. Then,
IN=(,~) = IN=(~, %) = IN=(~,~)[ = 0.

In order to prove Theorem 9.1, we will invoke Theorem 2.9 and use the extreme normal
directions found in Proposition 8.2(a~d). Theorem 2.9 tells us that there exist a > 0 and
v € R"* such that

hr, ,(0) = hex,+v(u) for all (B, K)-extreme normal directions u. (9.1)

The following results derive constraints from (9.1) on the allowed a and v. We start with
V.

Proposition 9.2.

(a) For each fited 0 <m < {¢—1:v; =0 for any j such that y; € a~,,, and there exists
o € N= satisfying o(y;) = im + 1.

(b) For each firted £+ 1 < m < k+1:v; =1 —a for any j such that y; € aey,, and
there exists o € N= satisfying o(y;) = im — 1.

(c) Vi = vy for any u,v such that y, <y, and there exists o € N— satisfying o(y,)+1 =
o(yv)-

(d) vy = vy for any u,v such that y, < y, and there exists o € N satisfying o(y,) =
io—1 and o(y,) =i + 1.

Proof. (a) By Proposition 8.2(a), —e; is a (B, K)-extreme normal direction, so by (9.1),
hi, ,(—ej) = ahk,(—ej) — v;. Since o(y;) = im + 1, and m < £ — 1, we have
o(yj) =im +1 < i1 +1 <'ig,ig41, 50 Yj ¢ Q>g, Uasy,, . Hence, it follows from
(2.5) that hg, ,(—e;) = hik,(—e;) = 0. We conclude that v; = 0.

(b) By Proposition 8.2(b), e; is a (B,K)-extreme normal direction, so by (9.1),
hi, ,(—ej) = ahk,(—e;j) + v;. Since o(y;) = im — 1, and m > £+ 1, we have
o(y;) =tm — 1 > dp41 — 1 > g, 001, 50 Yj & A<y, , U ey, Hence, it follows from
(2.5) that hg, ,(e;) =1 and ahg,(e;) + v; = a + v;. We conclude that v; =1 — a.

(c) By Proposition 8.2(c), ey, is a (B,K)-extreme normal direction, so by (9.1),
hice (€uw) = al, (€un)+ 75 (vu—vy). We will show that hi, , (eun) = b, (€un) = 0,
from which we can conclude v,, = v,. We will show that hk,_,(eyy,) = 0; the proof
of hg,(eyy) = 0 is analogous. We distinguish between the following cases:
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Case (1): Yy, Yu € Be—1. By (2.5), hk,_, (eyy) = 0 since ¢, < t, for t € Og,_,, and
equality is attained with ¢ = 0.

Case (2): yu € Br—1,Yv & Be—1,0r Yu & Be—1,Yo € Be—1. See the proof of Claim 8.4.

Case (3): Yu,y» & Be—1. Since there exists o € N= with o(y,) + 1 = o(y,), the

assumption y,,y, ¢ Pe—1 implies that either y,, vy, < T¢—1, O Yy, Yy, > 4. Hence,

either ¢, =t, =1,ort, =t, =0 for any t € K,_1, so, in particular, hg, ,(€y,) = 0.

(d) The proof is analogous to part (c), where we note that y,, ¢ S,—1 cannot occur. 0O

While Proposition 9.2(a-b) took care of elements neighboring x,,’s, the next result
takes care of elements that are at the bottom (res. the top) of the poset.

Lemma 9.3. For any y; € a: If my;,(y;) < i¢ then v; = 0, and if mg,,,(y;) > i¢ then
v = 1—a.

Proof. We prove that mg,,, (y;) > i¢ = v; = 1 — a; the proof of m_;,(y;) <ig=v; =0
is analogous.

Set y;, := y; and construct the sequence y;, < y;, < -+ < Yip>s for some p < oo,
iteratively, according to the algorithm below. The sequence will be constructed so that
yj; € a for every i € [0,p], vj, = vj,,, foralli € [0,p—1], and v;, =1 — a. Clearly, it
will then follow that v; = v;, = 1 — a, completing the proof.

Assume that the sequence y;, < y;, < --- < y;, has been constructed. Set M :=

mmax

(y;,), and note that iy < mp,,. (y;,) < M. Consider the following two cases:

o M # i, — 1 for every £ < m: Choose o € N such that o(y;,) = M (such a o
must exist by the definition of M) and set y;,,, := o~ *(M + 1). We first show that
M +1 # iy, for any m € [0, k]. Indeed, by assumption M + 1 # i, for every £ < m,
and if m < ¢, then i, < iy < M + 1. It follows that y;,,, € a. Next we show
that y;, < yj,,,. Indeed, otherwise, by the definition of M, y;, and y;,,, must be
incomparable, so we can swap the positions of y;, and y;,., in ¢ to get ¢’ € N= such
that o'(y;,) = M + 1, which contradicts the maximality of M. We conclude that
Yj; < Yjis, - Finally, by Proposition 9.2(c), v;, = vj,,,.

o M =i, —1 for some ¢ < m: In this case, the sequence will be terminated with p := 3.
Note that Corollary 7.11 implies that y;, € a, since M = i,,, — 1. We will show that
o(y;,) < o(xy,) for all 0 € Useq— = 13No. Then, by Assumption 4.1, it follows that
Yj, < Zm so, by Proposition 9.2(b), vj, = 1 — a. To show that o(y;,) < o(zm)
for all o € er{_,=7+}./\/o, suppose for contradiction otherwise, which means that
there exists o € N, for some o € {—,=,+}, such that o(y;,) > o(zm) = im. Set
q = o(y;;). We will show that Lemma 7.3 can be applied with y;,, =, and ¢, to
yield ¢/ € N- such that o'(y;,) = ¢, contradicting the maximality of M (since
q > im > iy — 1= M).

To apply Lemma 7.3 to y;,, =, and ¢, we need to check that all of the conditions of
the lemma are satisfied. Applying the lemma to y;,, o, and g, we get g < uo(y;,), and
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by Lemma 7.2 (as imin(y;,) > m > £), we get ¢ < uo(yj,) = u=(y;,). On the other
hand, by Corollary 7.4, I=(y;,) < Mg (y,) = M = iy, — 1 < g. We conclude that
the condition ¢ € [I=(y;,),u=(y;,)] holds. Finally, we show that ¢ # i, + 1= = i,
for any r € [1,k]. Indeed, if ¢ = 4, for some r € [1,k], then i, = g > 4,,, which
implies £ < m < r, and hence o(z,) = 4, as r # £. It follows that o(y;,) = ¢ = o(,),
contradicting y € a. O

Next we move to a.
Lemma 9.4. a = 1.

Proof. Fix 0 € N_ and set yJ := o 1(iy — 1), yJ := 071 (ig + 1). There are a few cases
to check:

o y7 oz I mi, (y7) > ig, then, since my;, (v7) < o(y9) < i¢, Lemma 9.3 implies

max
that v, = 0 and v, = 1 —a so a = 1. Suppose then that m_, . (v7) < i,. We
claim that u—(y?) < 4. Indeed, otherwise, u—(y7) > ip + 1 > o(y2) > I-(y7).
Hence, since iy + 1 # o(zy,) for any m € [1,k], Lemma 7.3 implies that there
exists o/ € N_ satisfying o/(y9) = 4¢ + 1, which contradicts the maximality of
Mk (YS) < ig. Now, since u—(y9) < i¢, there must exist b, with y7 < xp, such that
iy — |a>ys <a,| < de. It follows that |a>ye <z, > ip — i¢, where we used i, = .
Fix z € @>ys <4, and note that z # x4, since otherwise x, > y;, which contradicts
the assumption y? ~ x,. In particular, since o(xy) = iy, we have o(z) # 4. Since
iv—1 =0l < o(z) < o(zy) = ip, we conclude that o(z) € [ie + 1,4 — 1].
The size of [[ig + 1,4, — 1] is iy — i¢ — 1, so combining [asys <z, | > ip —i¢ — 1, with
o(z) € [ig+1,i,—1] for every z € asyo <a,, shows that o(Gsys <o) = [ie+1,3,—1].
In particular, since o(yg) = i¢ + 1, we get that yJ € asyo <4y, 50 yJ < yg. It follows

from Proposition 9.2(c) that v, = v,. Since my;, (y7) < i¢, and mg, (y9) > ig,

m
Lemma 9.3 yields 0 = v, = v, = 1 — a. We conclude that a = 1.

o Y7 ~ xy: Analogous to the case yJ ~ xy.

o y7 < zy and x4 < yJ: By Proposition 9.2(d), v, = v,. Since yJ < xy, we have
mo,(¥7) < ip so, by Lemma 9.3, v, = 0. Similarly, since z, < yJ, we have

Mo (Y9) > i so, by Lemma 9.3, v, = 1 —a. We conclude that 0 =v,, = v, =1—a,

max

soa=1 0O
We are now ready to prove Theorem 9.1.
Proof. (of Theorem 9.1) We will show that
VoeN=: o 'ig—1) =z, and o (ig+1) = 2y, (9.2)

which is equivalent to |N=(», ~)| = [N=(~, »)| = |N=(~,~)| = 0.
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Let y; € a be any element such that there exists o € N= with o(y;) = i¢ + 1;
the proof for elements y; € a with ¢ € NZ satisfying o(y;) = i, — 1 is analogous.
Since mp,,, (y;) > ir, Lemma 9.3 yields v; = 1 — a = 0, where the last equality follows
from Lemma 9.4. Assume for contradiction that z, is comparable to y;, which, by the
assumption o(y;) = 4, + 1, means that z, < y;. By Proposition 8.2(a), —e; is a (B, K)-
extreme normal direction so, by (9.1), hk, ,(—e€;) = hx,(—e;). Since z; < y;, we have
hk, ,(—e;) = —1. On the other hand, iy < o(y;) = ir + 1 < ig41, s0 y; € f¢. By (2.5),
hi,(—ej) =0%# —1 = hk, ,(—e€;), so we have arrived at the desired contradiction. O

10. Critical posets

In this section we complete the characterization of the extremals of Stanley’s inequal-
ities for critical posets (as well as Theorem 1.6). We will assume that fC is sharp-critical
since, otherwise, we reduce back to the supercritical setting. We note that the assump-
tion that /C is sharp-critical implies, by Proposition 7.8, that the maximal sharp-critical
collection Kpayx, with its associated splitting pair (rmax, Smin), exists. The following re-
sult (Theorem 10.1), together with Proposition 3.2, Lemma 3.3, Proposition 3.8, and
Proposition 5.7, complete the proof of Theorem 1.5.

The proof of Theorem 1.6 follows by Corollary 3.4, and by applying Theorem 6.6
repeatedly until arriving at a critical subposet. Once a critical subposet is reached, The-
orem 1.5 can be applied to the critical subposet, together with the bijection construction
in the proof of Proposition 6.4, to conclude that the results of Theorem 1.5 hold for the
original poset as well.

Theorem 10.1. Suppose that K is sharp-critical and that INZ|*> = [N_||N,|. Then,
IN=(~, ~)| = N (~, ~)] = 0.

10.1. The critical subspace

We now enter the critical territory so the equation

hi, ,(0) = hak,+v(u) for all (B, K)-extreme normal directions u,

which held for supercritical posets, is no longer valid. Instead, we only have

hKuﬁE}L QW) = haKg+v+Zj:1 p;(w) for all (B, K)-extreme normal directions u,
where (P1,Q1),..., (P4, Qq) are K-degenerate pairs. Our approach to this problem is
to find a subspace EL, on which we do in fact have hx, (1) = hux,+v(u) for all

(B, K)-extreme normal directions u € E-. Since we now require that the (B, K)-extreme
normal directions are contained in E, we will need more of them in order to derive
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enough constraints to characterize the extremals of critical posets. These extreme normal
directions are the ones given in Proposition 8.2(e-h). We define the subspace E+ by

Et = RO\ Pmax (10.1)

where we recall (7.3). We call the subspace E the critical subspace and note that, by
Lemma 5.1, Lin(Kpax) = RPmex = E. The following result explains the connection
between K-degenerate pairs and F.

Lemma 10.2. Let (P, Q) be a K-degenerate pair. Then, Lin(P),Lin(Q) C E.
Proof. The result follows by [17, Lemma 9.6] and Proposition 7.8. O

When we restrict to the subspace E+, we are in the supercritical case in the following
sense:

Lemma 10.3. There exist a > 0 and v € S* %=1 such that

hi,_,(0) = hor,+v(1) for all (B, K)-extreme normal directions u

which are contained in E*.

Proof. Let u € E+ be a (B, K)-extreme normal direction. By Theorem 2.9

th,l-i-E?:l Q+Yd ¢ (w) = haKe—i-V—i-Zd P44 p; (),

j=17"13
where (P}, Qj)je[1,q) are K-degenerate pairs and P} = P; — p;, Q; = Q; — ¢; where
pj € Pj, q¢; € Q; are fixed. Hence, with v/ := v + ijl pj — ijl g, P = Z?zl P,
and Q = z;l:l Q’;, we have

hKH+Q(u) = haKe+v/+P(u)-

Since P,Q C E and u € E*, we have hg(u) = hp(u) = 0. Relabeling v/ — v completes
the proof. O

10.2. The critical extremals

In order to prove Theorem 10.1 we need to prove the analogues of Proposition 9.2,
Lemma 9.3, and Lemma 9.4, as well as some additional results. Roughly speaking, on

o\Bmax = Q>a,, 01 s pin ?

we have a supercritical behavior. Indeed, the proof of the following result is analogous to
the proof of Proposition 9.2 once we use the full power of Proposition 8.2, Lemma 10.3,
and restrict to y;, Yu, Yo € O>a,, 11,<a.,, > Tather than allowing for all y;, yu,y» € .
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Proposition 10.4. For any y;, Yu, Yo € O>z,, . 11,<z., . *

(a) For each fizred 0 < m < {—1:v; =0 for any j such that y; € o, and there exists
o € N satisfying o(y;) = im + 1.

(b) For each fizxed £ +1 < m < k+1:v; =1—a for any j such that y; € a<,,, and
there exists o € N= satisfying o(y;) = im — 1.

(c) Vi = vy for any u, v such that y, < y, and there exists o € N= satisfying o(y,)+1 =
o(yo).

(d) vy = vy for any u,v such that y, < y, and there exists o € N satisfying o(y,) =
0 —1 and o(y,) = i¢ + 1.

(e) For each fized rmax < m < € —1:v; =0 for any j such that y; € a~,,, and there
exists o € N= satisfying either o(y;) = im + 1 or o(y;) = im + 2.

(f) For each fited {+1 < m < smin: v; = 1 —a for any j such that y; € ac,,, and there
exists 0 € N= satisfying either o(y;) = im — 1 or o(y;) = im — 2.

(9) vj =0 for any j such that y; € asy, , and there exists o € Ny satisfying o(y;) =
to—1 + 2.

(h) vi = 1 —a for any j such that y; € acy,,, and there exists o € N_ satisfying
o(y;) = ie+1 — 2.

Towards the proofs of the analogues of Lemma 9.3 and Lemma 9.4 we recall Corol-
lary 7.15, together with some of its immediate consequences.

Corollary 10.5. Fiz o € {—,=,+} and 0 € N,. There exists a unique mized element
Yot SALiSfYing Yo,y € Bropay U Bspim and U(ygrit) € [[iTmaerlﬂismin]]\{iTmaerh cee isnlin}'
In particular, any other element y # y2,., satisfying o(y) € [iry .. +1s%s..,] must satisfy
YE >z, 41, <wa . - Furthermore, y7,.,, satisfies either y7,., 2 Tr..41 OT Yorit L T -
If Y2t 2 Trport1, then y%.. # y for any y € A>ppn 1, <a - Analogously, if y9,.,; £
Tones then Yo, £ y for any y € Gz <anr -

The following result is the analogue of Lemma 9.3 where again we restrict to y; €
Q>z,  1,<z. . Tather than allowing for all y; € a.

Lemma 10.6. For any y; € g, o1.<woy,© I Miin(y;) < ie then v; =0, and if

Proof. We prove that mg,,, (y;) > i¢ = v; = 1 — a; the proof of m;,(y;) <ig=v; =0
is analogous.

Set yj, == Y;j € Q>g,,. 41,<z. . and construct the sequence y;, < y;, < -+ < y;,,
for some p < oo, iteratively, according to the algorithm below. The sequence will be
constructed so that y;, € ass, ., <z, forevery i € [0,p], vj, = v;,,, foralli €
[0,p — 1], and v;, = 1 — a. Clearly, it will then follow that v; = v;, = 1 — a, completing
the proof.
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Assume that the sequence y;, < y;, < --- < y;, has been constructed. Set M :=
Moy (Y5;) and note that i, < my,, (yj,) < M < is,,.. Let b be the index satisfying
ip < M < ip1q so that £ < b < spin — 1. Consider the following two cases:

o M ¢ {im —2,im — 1} for every £ < m. Choose o € N_ such that o(y;,) = M (such a
o must exist by the definition of M) and set y,, = o~} (M +1),ys = o~} (M +2). Note
that ipr1 ¢ {M+1, M+2} since M ¢ {im,—2, i —1} for every £ < m, so in particular,
we can take b+1 = m (using b+1 > ¢). Hence, we have i), < M, M +1, M +2 < ip41,
so M, M +1,M + 2 € [iy + 1,441 — 1], and hence y,,ys € a. Note that y;, < y,
since otherwise their positions in ¢ can be swapped to contradict the maximality of
M. Further, M, M+ 1, M +2 € [ip+ 1,ip+1 — 1] = o(yr),0(ys) € [iv+1,ip4+1 — 1] C
I[rast1,5min—1]» Where the last containment holds since b < sy, —1 (as shown above),
and since rpax + 1 < b (because rmax + 1 < € < b as (Fmax, Smin) 18 an £-splitting
pair). Corollary 10.5 now yields y,,ys € o>z, 1 <z, U{Y%i ). We now choose
Yj;,, as follows:

(1) fyr € ase, . 1.<2.,. S€t Y., = yr. Then we see that y;, < y;,,, and that
Yjirr € O>a,, . i1,<z., . SO Proposition 10.4(c) yields vj,,, = vj,.
(2) It Yr = ygritv then Ys € > e+ 1, <Tspin * It ygrit 2 Lrmax+1) then ygrit Z Yjir &
contradiction. Otherwise, ¥ £ Zs,.s SO Yt £ ys. Hence, we can swap the

positions of y, = y%;, and ys, which reduces to (1).

o M € {iy, — 2,4y — 1} for some £ < m. In this case the sequence will be terminated
with p := i. Arguing as in the analogous case in Lemma 9.3, we get that y;, < zp,.
Note that m = b+ 1 < sy, (the last inequality was shown above), so since £ 4+ 1 <
m < Smin, Proposition 10.4(f) yields vj, =1 —a. O

The following result can be viewed as a continuation of Lemma 10.6. To ease the
notation we will use

Ij = [[ij + 17Z'j+1 — 1]] and Ig:= UjeSIj for S C [[O,k]] (102)

Lemma 10.7. For any y; € asq, . <e, ¢ If minger — ymps (y5) < i+ 1o then
vj =0, and if maxee(— — 43 Mpax(yj) > i + 1o then v; =1 —a.

Proof. We will prove max,er— — 3 My (y5) > ir + 1o = v; = 1 — a; the proof of
MiNge(— — 4} Myin(¥5) < e+ 1o = v; = 0 is analogous. Fix o € {—,=,+} and 0 € N,
such that o(y;) > o(x¢) = i¢ + 1o. There are three cases to consider:

(1) ois =. We have mz, (y;) > o(y;) and by assumption o(y;) > o(z¢) = i¢. Hence,
Moy (Y;) > i¢ and the proof is complete by Lemma 10.6.
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(2) ois +. Let ¢ := o(y;) > ig+1. We are going to apply Lemma 7.3 with y;,=, and ¢ so
we will check its conditions. Since imin(y;) > ¢, Lemma 7.2 and Corollary 7.4 yield
u=(y;) = ui(y;) = mbax(y;) > ¢ and I=(y;) < L (y5) < mib(y;) < o(y;) = g, s0
we conclude that ¢ € [I=(y,),u=(y,)]. Next we show that ¢ # i,, for any m € [k].
Indeed, if m < £ then 4, < i, < ¢, and if m > ¢, then i,,, = ¢ implies o(y;) = o(zm),
which is impossible since y; € a>z, i <z, C . It follows from Lemma 7.3 that
there exists o’ € N such that ¢/(y;) = ¢. It follows that mg,. (y,;) > o’(y;) = ¢ > e,
and the proof is complete by Lemma 10.6.

(3) ois —. If my, . (y;) > i¢ we are done by Lemma 10.6. Suppose then that mg,,. (y;) <
iy (note that mp,,, (y;) = i is impossible).

Claim 10.8. m,,. (y;) = ir = o(y;).

Proof. Suppose for contradiction that my,,, (y;) > i¢ + 1, so there must exist o1 € N_
with o1(y;) > i + 1. Since ipin(y;) > ¢, Lemma 7.2 and Corollary 7.4 yield u=(y;) =
u—(yj) > Mpax(yj) > 01(y;) = i¢ + 1. On the other hand, by Corollary 7.4 and the
assumption mg,,. (y;) < iz, we have I=(y;) < mg;,(y;) < maa(y;) < ir, so we conclude
that i,+1 € [I=(y;), u=(y;)]. By Corollary 7.11, 4, # i,+1 for any m € [k]| so Lemma 7.3
implies that there exists oo € N= satisfying o2 (y;) = i,+1, which contradicts mz, . (y;) <
i¢. We conclude that mp,,. (y;) < 4¢. Since, by assumption, o(y;) > o(xe) = ig — 1 we
get Mo (Y;) = 0(y;) = ie. O

Let y, be such that o(y,) = i¢ + 1 and note that y, € a by Corollary 7.11. We must
have y; < y, since if y; » y, (by Claim 10.8 it is impossible to have y, < y;), then we
can swap the positions of y; and y, in o to get o3 € N_ satisfying o3(y;) = ir + 1, which
contradicts Claim 10.8. Next we show that there exists o’ € N= satisfying o’ (y;) = i, —1
and o'(y,) = i + 1. Indeed, since we assume mg,,, (y;) < ¢, we have that, for any
o4 € N=, 04(yj) < o4(x,). Hence, since by the assumption o(y;) > o(x;), we must have
yj » x¢. Swapping the positions of y; and z, in ¢ yields o', where we used Claim 10.8.

We will now analyze the element y,. Since o'(y,) = i + 1 we see that o'(y,) €
I ar+1,smin—1] DecCause (Tmax, Smin) is an £-splitting pair. Hence, Corollary 10.5 yields
that either y, = yg,; Or Yo € >y, 11 ,<a, , - Consider both cases:

(@) Yo € asu, . 1<e. - Since y; < y,, and since there exists o’ € NZ satisfying
o'(y;) =i¢— 1 and o’ (y,) = i¢ + 1, Proposition 10.4(d) yields v; = v,. On the other
hand, v, = 1 —a by Lemma 10.6 since m. . (y») > i¢ as 0’ (y,) = i¢+ 1. We conclude
that v; = 1 — a, which proves the lemma.

(b) Yo = Y& Since y, > y; and y; € sy, 4 <z, . (as we cannot have y; = yZ;),
we have yJ;, > ©r,..+1. Hence, we must have yZ; & ... Let z be such that
o(z) = iy + 2 and note that ¢'(2) = iy + 2 as well (since o’ was obtained from
o by swapping the positions of y; and z¢ in o). If 0'(2) € Ij. +1,5mm—1]> then,
by Corollary 10.5, since z # yg, we must have 2z € as,, ., <z, . Recall that
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Yt L T S0 Yo L 2. Hence, we can swap y, = yZ;, and z to reduce to the case

(a).

Suppose then that o’(2) ¢ If,.. 1,6mm—1]"
Claim 10.9. If 0/(2) € I, . 41,5mm—1] then 2z =z 1 and igyq = dp + 2.

Proof. Since ¢'(2) = ir +2 ¢ I . 41,5mm—1] We get that iy +2 ¢ I, (because
Tmax + 1 < £ < Smin 88 (Pmax, Smin) 18 an £-splitting pair). Hence, iy + 2 > ig11 (since
1p+2 < iy is impossible). On the other hand, Corollary 7.11 yields ip+1 < ip41 < 3042
so we conclude iy + 2 = ip11. Since 0’ € N— we also conclude that z = xpy;. O

Since (max; Smin) 18 an f-splitting pair, we have that either sy, = ¢+ 1 or
Smin > £+ 1. If spin = £ 4 1 then, since by assumption y; € Az, <o, s WE
have y; < ., = Z¢41. Since, by Claim 10.8 and Claim 10.9, o(y;) = i¢ = 41 — 2,
Proposition 10.4(h) shows that v; =1 —a.

Suppose then that syin > ¢ + 1. Consider the set

yi={y€a:0'(y) € Ipps1,smm—1]-¥ # T141}-

We claim that v is nonempty. Indeed, since (¢, Smin) is a splitting pair, Lemma 7.10
yields 47 € B¢ U B, such that o'(y7') € I[t41,smm—1]- We must have that either
yo & x,,,, ory® # x141. We cannot have y© £z, since ryax+1 < (+1and y7 #
Yorie (a8 0" (Ydie) = e+ 1 ¢ Lpe+1,smin—1] 2 U/(ygl)) imply yg, € >z b1, <Tapyy
Hence, y"/ € v. Now pick y € v+, which exists as 7 is nonempty. Note that y €
implies that y € x4, ., .<z.  because 0'(y) € Iyt smim—1] S Irpat Lsmm—11
yields, by Corollary 10.5,y € o>z, oy <z U{yd ), and y # ydy, since o' (y&,) =
i+ 1 ¢ It 511 2 ' ()

We will show next that the positions of y and ¥, can be swapped in both ¢ and
o’ to yield valid linear extensions in N_, N_, respectively. This completes the proof
since we reduce back to 3(a).

Let us now verify that the swaps yield valid linear extensions. We will show the
validity of the swap of o; the argument for ¢’ is analogous since by construction o and
o’ are the same up to the swap of y; and x,. Suppose this swap violated some relation
so that there exists w such that o(y,) = iy+1 < o(w) < o(y), satisfying either y, < w
or w < y. We cannot have yZ;, = y, < w because o(w) € iy, +1,%s,:,] implies,
by Corollary 10.5, that w < z,_,. (as w # y%y ). But then yZ; = yp < w < x5,
which contradicts yZ;, € Ts,..,, as was shown at the beginning of (3). We also cannot
have w < y since, otherwise, w % x;41 by the definition of 4. But if w ¢ «, then
w = x, for some r > [4+1 (as ig+1 < o(w)) which implies w > x;41, a contradiction.
On the other hand, if w € «, then combined with o(w) € [i141,%s,,,] We have that
o(w) € Iji41,5,1,—1]- Hence, w € 7, which contradicts y € v+, O
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Next we move to proving the analogue of Lemma 9.4. We will again use the notation
(10.2).

Lemma 10.10. ¢ = 1.

Proof. We will show that there exists y; € a>y, ., <s, . such that y; ~ . This will
complete the proof since, by Assumption 4.1, y; = x, implies that there exist 0,0’ €
Use{—,=,+}/No satisfying o(y;) > o(x¢) and o' (y;) < o’(2¢). Applying Lemma 10.7 yields
O=v;=1-asoa=1.

We now show that there exists y; € ass, .\ <z, such that y; « x,. Suppose for

contradiction that such y; does not exist. Then, for any y € asy, <z, We must
have either y < zy or y > x4. In particular, we have the disjoint union
a>x7‘max+17<x5min = [a>x7‘max+11<x5min N a<xf] U [a>x7"max+17<x5min N OZ>U]. (103)
Let us show that
|a>1rmax+1’<ffsmin N a>$e| < |I|Ie75min_1]]| —1 and
|a>93'r'max+17<wsmm N a(wz' S |I|I'rmax+1,lfl]]| - 17 (104)

we prove the first inequality and the proof of the second inequality is analogous. Given
any 0 € Ny and y € asy, oy <z, 0 Qsg, We have i + 1 < 0(y) < i, 50 o(y) €
e s —17 \{71 + 1} It follows that sy, ) <o, Nasg,| < (I, —17] — 1 as desired.
By (10.3) and (10.4) we now get

|a>x7‘max+17<xsmin| S |I|I7'max+1;‘€_1]]‘ + |Iﬂly5min_1]]| - 2 = ‘IIITxnax+17SIniu_l]]| - 2 (105)

However, by Lemma 7.13, |ase, ) <z,

= Mgyt tomnag| — | {mixed clements} |
Hence, the number of mixed elements is at least 2 which means that the maximal splitting
pair is supercritical, which contradicts Proposition 7.8. O

We are now ready to prove Theorem 10.1.
Proof of Theorem 10.1. We start by proving the analogue of (9.2).

Lemma 10.11. Let y € O, 1, < -

(a) If there exists o € N= such that either o(y) =i¢ — 1 or o(y) =i¢ + 1, then y ~ x,.
(b) If there exists o € N_ UNy such that o(y) = ig, then y = x.

Proof. (a) We proceed as in the proof of Theorem 9.1 where we use Lemma 10.3 rather
than (9.1).
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(b) Let y € asq,,. .1 <z besuch that there exists o € N_ with o(y) = i¢; the proof
for the case 0 € A, is analogous. Since we cannot have y < z; it suffices to show
that y % xy. Suppose for contradiction that y > xy. By Lemma 7.3, [_(y) < i, so by
Lemma 7.2 I_(y) < iz + 1. On the other hand, for any o/ € N_, Corollary 7.4 yields
io=0'(x¢) < o' (y) <mi(y) <u=(y) so u=(y) > i¢ + 1. Since iy + 1 # i, for any
m € [k] (by Corollary 7.11), Lemma 7.3 yields ¢’ € N_ such that o”(y) = i + 1.
By part (a), y = x4, which contradicts y > xy. O

We now prove [N, (~,~)| = 0; the proof of |N_(~,~)| = 0 is analogous. Suppose for
contradiction that [Ny (~,~)| > 0 so there exists ¢ € N, such that y, := o~ !(iy—1) and
Yo 1= 0 1(iy) satisfy yu,y, < . Since iy — 1,4y € I ant1,smim—1] (because (Tmax, Smin)
is an {-splitting pair so 4, +1 < is—1 < ig — 1 by Corollary 7.11), Corollary 10.5 yields
YusYo € Oz, oy <z, U{ydy}- Consider the following two cases:

Iy, € asa, . 1.<z.,, > then, by Lemma 10.11(b), ¥, » x¢ which contradicts y, < x.

Ifyy = y&ie, we have y, € asy, 1 <z, . Then, because yg;, < x¢ < s,,,, we must
have Y%, 7 Trpa+1, Which implies v, = yZ.;, # yu. Hence, we can swap the positions of
1y, and y, in o to reduce to the previous case. 0O

Notation index

[p] :={1,...,p} for positive integers p.

o [pq] ={p,p+1,...,9—1,q} for integers p < ¢; (2.1).

o a={Y1, s Yn—k> L0, T1s-- -, Tk, Thr1} and @ = {y1,...,Yn—r} where xg (res. Tjy1)
is smaller (res. bigger) than every element in a.

e j9p=0and ig41 =n+1 jo=—-1and jp41 =k+1.

o 1, = 1{0 is +} — 1{0 is —} for o € {—, =, —‘r}.

o Bi=oa\(acs, Uasy,,,) and Bs = UiesBi; (2.4).

* imax(y) (res. imin(y)) is the maximum (res. minimum) number such that y > x; . ()
(res. y < ;. (y)); Definition 7.1.

o lo(y) = max,<i,, (y) (ir + 1o + |00, <y| + 1) and uo(y) = mings;,, () (is + 1o —
|@>y, <z, | — 1); Definition 7.1.

o Muin(y) = mingen, o(y) and my,,(y) = maxeen, o(y) for o € {—,=,+} and
y € a; Definition 7.1.

e 45 :=1i; + lj=¢1o; Definition 7.1.

o Tmax = max, 7, and Sy, = min, s, where (r,,s,) are the sharp-critical (-splitting
pairs; Definition 7.7.

o yZ.; Corollary 7.15.

o Kmaxs Bmax = Bl0,rmax]Ulsmin,k]» @ \Bmax = A>gp 1<z, s and E+ = RO\max;
(7.3), (10.1).

o [ijyij+1]° = [35,354] = [45 + Lj=elo,dj41 + 1jp1=¢1o] and [i; + 1,441 — 1]° :=
[ + 1,32, — 1[; (7.4).

. Ijq = [[ij + 1,041 — 1]] for j, € [[O,kﬂ, I;:= queJIjq; (8.1), (10.2).
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