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1. Introduction

1.1. Log-concave sequences

Finite sequences of numbers {ai}n
i=1 often serve as a powerful way to encode properties 

of algebraic, geometric, and combinatorial objects: ai can stand for the ith coefficient 

of a Schur polynomial, the dimension of the ith cohomology group of a toric variety, 

or the number of i-elements independent sets of a matroid, etc. The properties and 

interrelations of the elements of the sequence {ai}n
i=1 provide valuable information about 

the underlying mathematical objects. Here we focus on log-concavity relations:

a2
i ≥ ai−1ai+1 for all i = 2, . . . , n − 1,

which are tied to notions of positivity and unimodality [2,3,20,21,15,1]. The question 

that motivates our work is the following: Suppose a log-concave sequence {ai}n
i=1, whose 

elements stand for some algebraic/geometric/combinatorial properties of a mathematical 

object, satisfies

a2
j = aj−1aj+1 for some fixed index j.

What can we deduce about the underlying object? This question of identifying the ex-

tremals of the sequence {ai}n
i=1 is fundamental for a number of reasons. At the very basic 
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ai

i

: flat
: strictly log-concave

Fig. 1.1. The extremals of this log-concave sequence (cf. (1.2)) are such that a2
j = aj−1aj+1 ⇒ aj−1 =

aj = aj+1, corresponding to the flat parts of the sequence. The width of each of the flat parts can be 
characterized as well. This precise description of the shape of the sequence cannot be obtained from the 
log-concavity property alone.

level, the structure of the extremals is a basic property of the sequence which we ought 

to understand. More concretely, information about the extremals can provide informa-

tion about the shape of the sequence which cannot be inferred from the log-concavity 

property alone: see Fig. 1.1. Additionally, if one wishes to improve on the log-concavity 

property by having a2
i − ai−1ai+1 ≥ di for some non-trivial di ≥ 0, then usually un-

derstanding the extremals of {ai}, and hence the vanishing of di, is a necessary first 

step. From a different perspective, there are interesting questions related to combinato-

rial interpretations and computational complexity of the difference a2
i − ai−1ai+1, where 

characterizing the vanishing condition a2
i = ai−1ai+1 is a basic question [13,14,6].

Establishing that a given sequence, which arises in an algebraic/geometric/combina-

torial setting, is log-concave is a difficult problem, with many remaining open questions. 

In recent years, major advances were achieved on the fronts of proving log-concavity 

relations for various important sequences in combinatorics [11,12,5]. These approaches 

rely on building “dictionaries” between combinatorial and geometric-algebraic objects, 

and then using (or taking inspiration from) already-known log-concavity relations in the 

geometric-algebraic settings. What is missing, however, are the analogous dictionaries 

between the extremals arising in the combinatorial and geometric-algebraic settings. In 

this work, we take a step towards bridging this gap by focusing on the correspondence 

between combinatorics and convex geometry due to R. Stanley in the context of partially 

ordered sets. We will build such a dictionary and, as a consequence, completely charac-

terize the extremal structures arising in Stanley’s inequalities [18]. The question of the 

characterization of these extremals was already raised by Stanley, but even conjectures 

on these extremals were lacking. As we will see, this is for a good reason since, surpris-

ingly, the extremal structures of our combinatorial sequences will display the richness 

and subtle nature of their geometric counterparts.

1.2. Stanley’s inequalities

Let ᾱ = {y1, . . . , yn−k} ∪ {x1, . . . , xk} be a partially ordered set (poset) of n elements 

with a fixed chain x1 < · · · < xk of length k. The set of linear extensions of ᾱ is the set 

of bijections of ᾱ into [n] := {1, . . . , n} which are order-preserving:

N := {bijections σ : ᾱ → [n] : w ≤ z ⇒ σ(w) ≤ σ(z) ∀ w, z ∈ ᾱ}.
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1 i1 i�−1 i� − 1 i� i� + 1 ik
n

· · · y3 x1 y2 · · · x�−1 · · · y1 x� y4 · · · xk · · ·
N−

N=

N+

Fig. 1.2. Every linear extension sends xj to ij whenever j �= �. But x� is sent to one of the locations 
i� − 1, i�, i� + 1, depending on whether the linear extension is in N−, N=, N+, respectively.

We are interested in linear extensions which send the elements in the chain x1 < · · · < xk

into fixed locations. Fix 1 ≤ i1 < · · · < ik ≤ n and fix � ∈ [k] such that i�−1 + 1 < i� <

i�+1 − 1. For ◦ ∈ {−, =, +}, let

N◦ := {σ ∈ N : σ(xj) = ij ∀ j ∈ [k]\{�} and σ(x�) = i� + 1◦},

where 1◦ := 1{◦ is +} − 1{◦ is −}. In words, whenever j 
= �, xj is placed at ij , and when 

j = �, x� is placed at one of the locations in {i� − 1, i�, i� + 1}, depending on the sign of 

◦ ∈ {−, =, +}; see Fig. 1.2.

In [18, Theorem 3.2], Stanley showed that

|N=|2 ≥ |N−||N+|, (1.1)

thus resolving a conjecture of Chung, Fishburn and Graham [10]. To see the relation to 

log-concave sequences consider the case k = 1 and set

ai := |{σ ∈ N : σ(x1) = i}|, i ∈ [n]. (1.2)

Then, (1.1) amounts to the statement that the sequence {ai} is log-concave. For the 

general case k ≥ 1, (1.1) is a log-concavity statement about multi-index sequences.

The goal of this work is to provide a complete characterization of the equality cases 

of (1.1) for any k. That is, we will answer the following question: If

|N=|2 = |N−||N+|, (1.3)

what can we deduce about the poset ᾱ?

To gain some intuition for the extremals of Stanley’s inequalities (1.1) let us start with 

a trivial observation: If {y1, . . . , yn−k} are all incomparable to x�, then |N−| = |N=| =

|N+|, which yields equality in (1.1). In the same vein, consider the following example 

which is slightly less trivial.

Example 1.1. Suppose the poset ᾱ satisfies

{z ∈ ᾱ : z < x� and z ≮ x�−1} ∪ {z ∈ ᾱ : z > x� and z ≯ x�+1} = ∅. (1.4)
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Then, given any σ ∈ ∪◦∈{−,=,+}N◦, we can permute (some of) the locations of the ele-

ments {σ−1(i� −1), σ−1(i�), σ
−1(i� +1)} without violating any constraints. For example, 

given σ ∈ N+, the elements σ−1(i�−1), σ−1(i�) must be incomparable to x� = σ−1(i�+1)

since, as i�−1 + 1 < i� < i�+1 − 1, the converse would violate (1.4). Hence, we can ex-

change the locations of {σ−1(i� − 1), σ−1(i� + 1)} or {σ−1(i�), σ
−1(i� + 1)}. It follows 

that

|N=| = |N−| = |N+|, (1.5)

which in particular implies (1.3).

The mechanism (1.4) is wasteful since it is global in nature. It controls all the elements 

between x�−1 and x�+1, even though we are concerned only with the elements which are 

close to x� in the sense that they are located in i� − 1, i�, i� + 1. Instead, we expect (1.3)

to hold as soon as the mechanism (1.4) occurs only on a local scale. To make this idea 

precise we make the following definition regarding elements that are close to x�.

Definition 1.2. Fix � ∈ [k] such that i�−1 + 1 < i� < i�+1 − 1, and given ◦ ∈ {−, =, +}, 

fix σ ∈ N◦. The companions of x� = σ−1(i� + 1◦) are σ−1(ij) for ij ∈ {i� − 1, i�, i� +

1}\{i� + 1◦}, where 1◦ := 1{◦ is +} − 1{◦ is −}. The companion lower in ranking is the 

lower companion and the companion higher in ranking is the upper companion.

For example, with ◦ being −, the companions of x� = σ−1(i� − 1) are σ−1(i�) and 

σ−1(i� + 1). The lower companion is σ−1(i�) and the upper companion is σ−1(i� + 1).

1.3. The extremals of Stanley’s inequalities

The characterization of the extremals of Stanley’s inequalities will be in terms of the 

companions of x� as defined in Definition 1.2. On a finer resolution, there are two distinct 

classes of posets which in turn have different types of extremals. The two classes of posets 

will be called supercritical and critical, a terminology which will become clear later. The 

precise definitions are deferred to Definition 2.11, but for now, we will simply note that a 

supercritical poset is always critical, but the converse is false. (There are further classes 

which reduce to the supercritical and critical classes. They will be handled in Section 6, 

see also Theorem 1.6.)

Theorem 1.3. (Supercritical extremals of Stanley’s inequalities)

Suppose the poset ᾱ is supercritical. The following are equivalent:

(i) |N=|2 = |N−||N+|.

(ii) |N−| = |N=| = |N+|.

(iii) For every linear extension in N−∪N=∪N+, both companions of x� are incomparable 

to x�.
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ᾱ =

y2x3

y3 x2

y1x1

y4

N− = {y1x1x2y3y4x3y2, y1x1x2y4y3x3y2, y1x1x2y2y3x3y4, y1x1x2y3y2x3y4} ,

N= = {y1x1y3x2y4x3y2, y1x1y4x2y3x3y2, y1x1y3x2y2x3y4, y4x1y1x2y3x3y2} ,

N+ = {y1x1y4y3x2x3y2, y1x1y3y4x2x3y2, y4x1y1y3x2x3y2, y4x1y3y1x2x3y2} .

Fig. 1.3. Top: Hasse diagram (arrows point from smaller to larger elements) of poset in Example 1.4. Bottom: 
Collections of linear extensions of poset in Example 1.4.

Theorem 1.3 provides a number of insights into the extremals of (1.3). Part (ii) of 

the theorem (which held in (1.5)) is non-trivial, and even surprising, since it puts heavy 

constraints on the ways in which |N=|2 = |N−||N+| can occur. A priori, we could have 

a geometric progression where |N−| = abc−1, |N=| = abc, |N+| = abc+1, for some 

a, b, c > 0, which would yield the equality

|N=|2 = a2b2c = (abc−1)(abc+1) = |N−||N+|.

Theorem 1.3(ii) excludes this possibility. On the other hand, despite the information 

provided by (ii), it sheds no light on the mechanism which yield equality in (1.1). In con-

trast, Theorem 1.3(iii) provides the mechanism behind the extremals: The companions 

of x�, under any linear extension in 
⋃

◦∈{−,=,+} N◦, must be incomparable to x�. Hence, 

the positions of x� and both of its companions can be swapped, which leads to part (ii). 

Note that (iii) is a local condition which controls only the immediate companions of x�, 

unlike (1.4). The power of Theorem 1.3 lies in the statement that this mechanism is the 

only mechanism behind the extremals of Stanley’s inequalities for supercritical posets.

The characterization of Theorem 1.3 is very clean and one might hope that it applies 

to every poset. This hope is quickly shattered:

Example 1.4. Let ᾱ = {y1, y2, y3, y4, x1, x2, x3} with the relations

x1 < x2 < x3, y1 < x2, x2 < y2, x1 < y3 < x3.

Set � = 2, and i1 = 2, i2 = 4, i3 = 6. One can check that |N−| = |N=| = |N+| = 4

so that Theorem 1.3(ii) holds. On the other hand, Theorem 1.3(iii) is false since y1, y2

are comparable to x2 but can appear as companions of x2 under linear extensions in 

N− ∪ N= ∪ N+. See Fig. 1.3.
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Our next result goes beyond Theorem 1.3 and characterizes the extremals of critical 

posets.

Theorem 1.5. (Critical extremals of Stanley’s inequalities)

Suppose the poset ᾱ is critical. The following are equivalent:

(i) |N=|2 = |N−||N+|.

(ii) |N−| = |N=| = |N+|.

(iii) For every linear extension in N− ∪ N= ∪ N+, at least one companion of x� is 

incomparable to x�. In addition, there exist nonnegative numbers N1, N2 such that:

• For any fixed ◦ ∈ {−, =, +},

|{σ ∈ N◦ : only the lower companion of x� is incomparable to x�}|

= N1 = |{σ ∈ N◦ : only the upper companion of x� is incomparable to x�}|.

• |{σ ∈ N◦ : both companions of x� are incomparable to x�}| = N2 ∀ ◦ ∈ {−,

=, +}.

Let us compare and contrast Theorem 1.3 and Theorem 1.5. The conclusion in part 

(ii) that the equality (1.3) necessitates |N−| = |N=| = |N+| remains true for supercrit-

ical and critical posets. But the mechanisms, i.e., part (iii), for this phenomenon are 

different. Clearly, Theorem 1.3(iii) is a stronger condition since it trivially implies the 

condition in Theorem 1.5(iii). For critical posets, the conclusion that only 0 comparable 

companions are allowed (namely Theorem 1.3(iii)) is relaxed into the statement that 0 

or 1 comparable companions are allowed. But in order to get |N−| = |N=| = |N+|, there 

must be a balance between those linear extensions with 1 comparable companion, which 

is the content of the second part of Theorem 1.5(iii).

Our formulation of Theorem 1.3 and Theorem 1.5 mirrors the analogous distinction 

in convex geometry between supercritical and critical (cf. Theorem 1.10). However, our 

proofs provide us with a stronger statement which encompass both Theorem 1.3 and 

Theorem 1.5.

Theorem 1.6. (Extremals of Stanley’s inequalities) Suppose ᾱ is a poset such that 

|N=| > 0. Then, the following hold:

• The conclusions of Theorem 1.5 remain true. In addition, given any σ ∈ N◦, for any 

◦ ∈ {−, =, +}, where one of the companions is comparable to x�, we have that the 

lower and upper companions are incomparable to each other.

• If ᾱ is supercritical then the conclusions of Theorem 1.3 remain true.

Theorem 1.6 improves upon Theorem 1.3 and Theorem 1.5 by showing that the conclu-

sions of Theorem 1.5 hold even under the assumption |N=| > 0. In addition, Theorem 1.6
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provides further information on the structure of the linear extensions. The only case not 

covered by Theorem 1.6 is when |N=| = 0, which is in fact trivial and will be character-

ized later (Theorem 5.3).

Remark 1.7. (Poset characterization) There is a way to reformulate Theorem 1.3(iii) so 

that the characterization of the extremals is given in terms of conditions on the poset 

itself rather than on the set of its linear extensions:

∀ y < x� : ∃ s(y) ∈ {0, . . . , k + 1} s.t. y < xs(y)

and |{z ∈ ᾱ : y < z < xs(y)}| > is(y) − i�,

∀ y > x� : ∃ r(y) ∈ {0, . . . , k + 1} s.t. y > xr(y)

and |{z ∈ ᾱ : xr(y) < z < y}|| > i� − ir(y);

(1.6)

see Proposition 7.5. Here, x0 (res. xk+1) is the added element with the property that it 

is smaller (res. bigger) than any other element in ᾱ. The formulation (1.6) can be useful 

in practice since, given a standard description of a poset, (1.6) is easier to check. On the 

other hand, the formulation of Theorem 1.3(iii) is more compatible with our dictionary, 

which is more natural to formulate in terms of conditions on the linear extensions of the 

poset. In the first version of this manuscript we wrote that “It is an interesting problem 

to find an analogue of (1.6) for critical posets.” However, since the first version of our 

work was made public, Chan and Pak [6, Theorem 1.3] proved a remarkable result on 

the computational complexity of the characterization of Stanley’s inequalities, which in 

particular implies that a poset characterization of Stanley’s inequalities of the form (1.6)

would contradict fundamental conjectures in computational complexity [6, §3.5].

Remark 1.8. (k = 1) The characterization of the extremals of Stanley’s inequalities when 

k = 1 was done in [17, §15]. It turns out that, when k = 1, the poset must be super-

critical and the characterization of [17, §15] in this case is the same as Theorem 1.3 and 

Remark 1.7. While our proofs take much inspiration from the work [17], the new phe-

nomena of critical posets necessitated the development of many new ideas (see Fig. 1.4). 

For example, the dictionary constructed in [17, §15] was in terms of the poset itself (as in 

Remark 1.7), rather than its linear extensions. But when progressing to critical posets, 

the approach of [17, §15] no longer works (especially in light of [6, Theorem 1.3]), while 

our dictionary, which is in terms of a linear extensions description, is suitable for these 

more subtle and rich extremals.

Let us also mention that, when k = 1, Chan and Pak, using their combinatorial atlas

method [4], provided a linear-algebraic proof of Stanley’s inequalities and characterized 

their extremals, thus avoiding any use of convex geometry; see also the proof for width 

two posets by Chan, Pak, and Panova [8]. However, their approach does not currently 

extend to the case k > 1.
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Remark 1.9. (k = 2) Using our techniques, Chan and Pak [6, Lemma 9.1] showed that, 

in fact, the conclusion of Theorem 1.3 remains true whenever k = 2. Per Remark 1.8, 

the same holds true for k = 1. It follows that Example 1.4, where the conclusion of 

Theorem 1.3 is no longer valid, is sharp in terms of k.

1.4. Dictionaries between convex geometry and combinatorics

Stanley’s proof of (1.1) relies on a remarkable correspondence that he found between 

mixed volumes of certain convex polytopes and linear extensions counts. Once this cor-

respondence is established, the inequality (1.1) follows from a deep log-concavity result 

in convex geometry: The Alexandrov-Fenchel inequality. We will start this section by 

reviewing Stanley’s proof of the inequality (1.1), and then move to the discussion of its 

extremals.

1.4.1. The Alexandrov-Fenchel inequality

We start with some preliminaries from convex geometry; our standard reference is 

[16]. Given convex bodies (non-empty compact convex sets) C, C ′ ⊆ R
n−k and scalars 

λ, λ′ ≥ 0, we define their sum as

λC + λ′C ′ := {λx + λ′y : x ∈ C, y ∈ C ′}.

The volume of a sum of convex bodies behaves as a polynomial: Given a positive integer 

p, convex bodies C1, . . . , Cp ⊆ R
n−k, and scalars λ1, . . . , λp ≥ 0, we have

Voln−k(λ1C1 + · · · + λpCp) =
∑

1≤j1,...,jn−k≤p

Vn−k(Cj1
, . . . , Cjn−k

)λj1
· · · λjn−k

,

where the coefficients Vn−k(Cj1
, . . . , Cjn−k

) are called mixed volumes. These geometric 

objects generalize the notions of volume, surface area, mean width, etc. The Alexandrov-

Fenchel inequality [16, §7.3] states that sequences of mixed volumes are log-concave: For 

any convex bodies C1, . . . , Cn−k ⊂ R
n−k,

Vn−k(C1, C2, C3, . . . , Cn−k)2 ≥ Vn−k(C1, C1, C3, . . . , Cn−k)Vn−k(C2, C2, C3, . . . , Cn−k).

(1.7)

Stanley’s proof of (1.1) relies on the identification of the poset ᾱ with polytopes 

K0, . . . , Kk. We defer the explicit construction of these polytopes for later (Section 2), 

and for now denote by K a certain collection of these polytopes containing n − k − 2 of 

them. The key point is the identities

|N−| = (n − k)! Vn−k(K�, K�, K),

|N=| = (n − k)! Vn−k(K�−1, K�, K),

|N+| = (n − k)! Vn−k(K�−1, K�−1, K).

(1.8)
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With the representation (1.8) in hand, the inequality (1.1) is equivalent to

Vn−k(K�−1, K�, K)2 ≥ Vn−k(K�, K�, K)Vn−k(K�−1, K�−1, K), (1.9)

which follows immediately from (1.7).

Stanely’s proof of (1.1) is the only proof currently known. Hence, a natural route 

towards the characterization of the extremals of Stanley’s inequalities would require:

• Characterization of the extremals of the Alexandrov-Fenchel inequality.

• Dictionary between the extremals of the Alexandrov-Fenchel inequality and the ex-

tremals of Stanley’s inequalities.

For arbitrary convex bodies, the characterization of the extremals of (1.7) is a long-

standing open problem [16, §7.6]. But when the bodies are polytopes, this problem was 

recently solved by the second-named author and Van Handel [17]. Thus, the work [17]

takes care of the first item and our work here is dedicated to the second item.

To build intuition regarding the correspondence between the extremal structures of 

posets and polytopes, let us revisit Example 1.1. As will be evident (see (2.3)), the 

identity (1.4) holds if, and only if, K�−1 = K�. In this case it is clear that equality will 

be attained in (1.9). But as we saw in Theorem 1.3 and Theorem 1.5, equality can be 

attained in Stanley’s inequalities under much weaker conditions than those captured by 

Example 1.1. It follows that equality holds in (1.9) under conditions which are much 

weaker than K�−1 = K�. The characterization of these conditions is the topic of the next 

section.

1.4.2. The extremals of the Alexandrov-Fenchel inequality for convex polytopes

The terminology of supercritical and critical posets comes in fact from the analogous 

terminology in the characterization of the extremals of the Alexandrov-Fenchel inequality 

for convex polytopes as introduced in [17]—-the precise definitions of supercriticality and 

criticality is deferred to Definition 2.5. In the sequel, B ⊆ R
n−k always stands for the unit 

ball, and the notions of (B, K)-extreme normal directions and K-degenerate pairs, which 

will be used in the subsequent theorem, will be given in Definition 2.4 and Definition 2.7, 

respectively.

Theorem 1.10. (Extremals of the Alexandrov-Fenchel inequality for convex polytopes, 

[17])

• Suppose K is supercritical. Then,

Vn−k(K�−1, K�, K)2 = Vn−k(K�, K�, K)Vn−k(K�−1, K�−1, K),

if, and only if, up to dilation and translation, the supporting hyperplanes of K�−1

and K� agree in all (B, K)-extreme normal directions.
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Geometry Dictionary Combinatorics

Criticality of polytopes
(Definition 2.5)

Section 5
(Proposition 5.7)

Criticality of posets
(Definition 2.11)

Projection
([16, Theorem 5.3.1])

Section 6
(Remark 6.1)

Splitting
(Definition 6.2)

Criticality of splitting pairs
(Definition 7.6)

Section 7
Mixing of splitting pairs

(Fig. 7.1)
Maximal collection of polytopes

([17, section 9.1])
Section 7

(Proposition 7.8)
Maximal splitting pair

(Definition 7.7)
Extreme normal directions Section 8 First- and second-neighbors

Translation and dilation Sections 9-10 Chains of poset
Critical subspace
(Equation (10.1))

Section 10
Critical subposet
(Equation (10.1))

Fig. 1.4. Dictionary between geometry of polytopes and combinatorics of posets.

• Suppose K is critical. Then,

Vn−k(K�−1, K�, K)2 = Vn−k(K�, K�, K)Vn−k(K�−1, K�−1, K),

if, and only if, there exist 0 ≤ d < ∞ K-degenerate pairs (P1, Q1), . . . , (Pd, Qd), such 

that, up to dilation and translation, the supporting hyperplanes of K�−1 +
∑d

j=1 Qj

and K� +
∑d

j=1 Pj agree in all (B, K)-extreme normal directions.

The complicated structure of the (B, K)-extreme normal directions (see Fig. 2.1) is 

what gives rise to the richness of the extremals. If the supporting hyperplanes of K�−1 and 

K� agree in every direction on the sphere Sn−k−1, then, up to dilation and translation, 

K�−1 and K� are identical. This is an example where a global mechanism (supporting 

hyperplanes of K�−1, K� agree everywhere) gives rise to equality in (1.7). Theorem 1.10

provides a local mechanism for equality in (1.7) (supporting hyperplanes of K�−1, K�

agree only in very few directions), and furthermore, establishes that this local mechanism 

is the only mechanism for the extremal structures of the Alexandrov-Fenchel inequality.

1.4.3. Dictionary for extremals

A priori, it is not at all clear that the complications and richness of the extremals 

of (1.7) would also arise in our very specific family of polytopes. Indeed, in the case 

k = 1, only the supercritical extremals appear. Remarkably, not only does this com-

plexity arise, but we can provide a clean and intuitive characterization of the extremals 

arising in Stanley’s inequalities for critical posets. At the core of our work is a pow-

erful dictionary which translates between the extremal properties of convex polytopes 

and partially ordered sets. We discover new extreme normal directions, and in addition, 

introduce numerous new key ideas: closure, splitting pairs, mixing, critical subposet, to 

name just a few. It will be best to introduce these ideas at the appropriate places in 

the paper; Section 4 will contain a brief outline of our proof. We refer to Fig. 1.4 for 

a quick summary of the main components in our dictionary, and recommend that the 

reader revisit this table from time to time.
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1.5. Organization of paper

We start in Section 2 by reviewing the connection between partially ordered sets and 

convex geometry. In Section 3 we develop a number of tools (decompositions, closure) 

that are used throughout the paper and also prove the sufficiency parts of Theorem 1.3

and Theorem 1.5. Section 4 provides a brief outline of the proofs of the main results. 

Section 5 sets the first building block of our dictionary by showing the equivalences 

between notions of criticality for posets and polytopes. Section 6 introduces the idea of 

splitting and characterizes the extremals of the subcritical posets. Section 7 introduces 

the idea of mixing which is at the heart of our proofs and applies it to splitting pairs. 

In Section 8 we add to our dictionary the combinatorial characterization of the extreme 

normal directions. We complete the proof of Theorem 1.3 in Section 9 and the proofs 

of Theorem 1.5 and Theorem 1.6 in Section 10. At the end of the paper we include a 

Notation Appendix for the convenience of the reader.

2. Preliminaries

In this section we review some basics about posets and convex geometry, as well 

as introduce the notation we use throughout the paper. We review the connection be-

tween posets and mixed volumes, and state the characterization of the extremals of 

the Alexandrov-Fenchel inequality for (convex) polytopes. In addition, we provide the 

criticality definitions for polytopes and posets.

We use the notation ≤, <, =, ≥, >, ∼ to describe the relations in a poset, where ∼

stands for the comparability relation,1 and by 
≤, ≮, 
=, 
≥, ≯, � to describe their nega-

tions. Given integers p ≤ q we write

�p, q� := {p, p + 1, . . . , q − 1, q}. (2.1)

Fix positive integers k, n, with k ≤ n, and consider the poset ᾱ, of size n,

ᾱ = {y1, . . . , yn−k, x1, . . . , xk},

where x1 < x2 < · · · < xk is a chain. Let

α = {y1, . . . , yn−k}

be the induced poset of size n − k obtained from ᾱ by removing the chain. To simplify 

the notation we add two elements x0, xk+1 to ᾱ with the property that x0 is smaller 

than any element in ᾱ while xk+1 is bigger than any element in ᾱ. Note that this allows 

us to consider the case k = 0.

1 Note that ∼ is not a transitive property.
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Let N be the set of all linear extensions of ᾱ, that is,

N = {bijections σ : ᾱ → [n] : w ≤ z ⇒ σ(w) ≤ σ(z) ∀ w, z ∈ ᾱ},

with the convention that σ(x0) = 0 and σ(xk+1) = n + 1 for any σ ∈ N . Fix � ∈ [k] :=

{1, . . . , k} and fix i1 < i2 < · · · < ik ∈ [n], with the property i�−1 +1 < i� < i�+1 −1, and 

let i0 := 0, ik+1 := n +1. We define the following sets of linear extensions, N−, N=, N+ ⊆

N ,

N− := {σ ∈ N : σ(x�) = i� − 1 and σ(xm) = im ∀ m ∈ [k]\{�}},

N= := {σ ∈ N : σ(x�) = i� and σ(xm) = im ∀ m ∈ [k]\{�}},

N+ := {σ ∈ N : σ(x�) = i� + 1 and σ(xm) = im ∀ m ∈ [k]\{�}},

so Stanley’s inequalities read

|N=|2 ≥ |N−||N+|. (2.2)

2.1. Posets and polytopes

Fundamental to our approach towards the extremals of (2.2) is the connection, due 

to Stanley [18], between posets and convex polytopes. We start with the definition of an 

order polytope: Given β ⊆ α we let Rβ := {t ∈ R
n−k : tj = 0 for yj /∈ β} and define the 

order polytope Oβ ⊆ R
β ⊆ R

α by

Oβ := {t ∈ R
β : tj ∈ [0, 1] ∀ yj ∈ β, and tu ≤ tv if yu ≤ yv ∀ yu, yv ∈ β}.

The order polytope encodes important properties of the poset, e.g., the volume of Oα

is proportional to the number of linear extensions of α [19, Corollary 4.2]. Let us recall 

some basic facts about order polytopes, which will require the following poset notions. 

A maximal (res. minimal) element y ∈ α is such that there exists no z ∈ α, different 

than y, satisfying y < z (res. z < y). Given a set β ⊆ α we define β↑ (res. β↓) to be the 

set of maximal (res. minimal) elements of β. Given a relation � ∈ {≤, <, =, ≥, >, ∼, 
≤

, ≮, 
=, 
≥, ≯, �} and y ∈ β we let

β�y := {z ∈ β : z � y},

and, similarly, given relations �, ∗ ∈ {≤, <, =, ≥, >, ∼, 
≤, ≮, 
=, 
≥, ≯, �}, and y, y′ ∈ β, 

we write

β�y,∗y′ := {z ∈ β : z � y and z ∗ y′}.

An element z ∈ β covers y ∈ β if z ∈ β↓
>y. We say that β is an upper set (res. lower set) 

if α>y ⊆ β (res. α<y ⊆ β), for every y ∈ β.
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The next result provides information about the face structure of order polytopes based 

on the poset notions just introduced.

Lemma 2.1. ([19, §1]) For any β ⊆ α we have dim Oβ = |β|. The (|β| − 1)-dimensional 

faces of Oβ are precisely the following subsets of Oβ:

(i) Oβ ∩ {tj = 0} for yj ∈ β↓.

(ii) Oβ ∩ {tj = 1} for yj ∈ β↑.

(iii) Oβ ∩ {tu = tv} for yu, yv ∈ β such that yv covers yu in β.

Hyperplane sections of order polytopes will play a crucial role for us: Given i ∈ �0, k�, 

define the polytopes in Rn−k,

Ki := {t ∈ Oα : tj = 0 if yj < xi, tj = 1 if yj > xi+1, for all yj ∈ α}. (2.3)

While we defined the polytopes {Ki} as hyperplane sections of order polytopes, they are 

in fact nothing but translations of certain order polytopes. To see this relation we start 

with the next lemma whose proof is a matter of checking the definitions. In the sequel, 

given β ⊆ α let 1β :=
∑

yj∈β ej , with {ej}j∈β denoting the standard basis of Rβ.

Lemma 2.2. Let β, β′ ⊆ α be disjoint sets where β is an upper set and β′ is a lower set. 

Then,

Oα\(β∪β′) + 1β = {t ∈ Oα : tj = 0 if yj ∈ β′ and tj = 1 if yj ∈ β},

where we view Rα\(β∪β′) as a subset of Rα ∼= R
n−k.

We can now write {Ki}i∈�0,k� as translates of order polytopes. For i ∈ �0, k� define

βi := α\(α<xi
∪ α>xi+1

), (2.4)

with the convention that βi = ∅ if i < 0 or i > k; for S ⊆ �0, k� set βS := ∪i∈Sβi. The 

interpretation of βi is as the set of elements which can potentially be ordered between 

xi and xi+1. Then, applying Lemma 2.2, with the disjoint upper and lower sets β =

α>xi+1
, β′ = α<xi

, shows that

Ki = Oβi
+ 1α>xi+1

for i ∈ �0, k�. (2.5)

As an example of βS , which will be useful later, the following result handles the set 

S := �0, r� ∪ �s, k�.

Lemma 2.3. For any r ≤ s,

β�0,r�∪�s,k� = α\α>xr+1,<xs
= βr ∪ βs ∪ α<xr+1

∪ α>xs
.
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Proof. The second identity is clear so we focus on the first identity. Let j0 := −1, 0 ≤

j1 < · · · < jp ≤ k, jp+1 := k + 1. We claim that

p
⋂

q=1

(α<xjq
∪ α>xjq +1

) =

p
⋃

q=0

α>xjq +1,<xj(q+1)
. (2.6)

⊆: Let y ∈
⋂p

q=1(α<xjq
∪α>xjq +1

) so that, for each q ∈ �1, p�, either y < xjq
or y > xjq+1. 

Let q′ be the largest q such that y > xjq+1. Then, y is not bigger than xj(q′+1)+1, which 

means that y < xj(q′+1)
, as y ∈ α<xj

(q′+1)
∪ α>xj

(q′+1)
+1 (this is trivially true if q′ = p). 

Hence, y ∈ α>xj
q′ +1,<xj

(q′+1)
.

⊇: Let y ∈ α>xjq +1,<xj(q+1)
for some q ∈ �0, p�. Then, for any q′ ≤ q, y > xjq′ +1 and, 

for any q′ > q, y < xjq′ . Hence, y ∈
⋂p+1

q=0(α<xjq
∪ α>xjq +1

) =
⋂p

q=1(α<xjq
∪ α>xjq+1

).

We now to turn to the proof of the lemma. Let j0 := −1, jp+1 := k + 1, and 

{j1, . . . , jp} := {0, . . . , r, s, . . . , k}. We have

β�0,r�∪�s,k� =

p
⋃

q=1

βjq
=

p
⋃

q=1

(

α

∖ (

α<xjq
∪ α>xjq+1

))

= α

∖ p
⋂

q=1

(

α<xjq
∪ α>xjq+1

)

=
(2.6)

α

∖ p
⋃

q=0

α>xjq+1,<xj(q+1)
.

Whenever jq 
= r, jq + 1 = jq+1, so α>xjq +1,<xj(q+1)
= ∅. It follows that

⋃p
q=0 α>xjq +1,<xj(q+1)

= α>xr+1,<xs
, which completes the proof. �

2.2. Posets and mixed volumes

The connection between the polytopes {Ki}i∈�0,k� and |N−|, |N=|, |N+|, which leads 

to Stanley’s proof of (2.2), goes through the notion of mixed volumes; we refer to [16] as 

the standard reference for the theory of convex bodies. Given convex bodies (nonempty 

compact convex sets) C, C ′ ⊆ R
n−k, and scalars λ, λ′ ≥ 0, we define their sum as

λC + λ′C ′ := {λx + λ′y : x ∈ C, y ∈ C ′}.

The volume of a sum of convex bodies behaves as a polynomial: Given convex bodies 

C1, . . . , Cp ⊆ R
n−k, and scalars λ1, . . . , λp ≥ 0, we have [16, Theorem 5.1.7],

Voln−k(λ1C1 + · · · + λpCp) =
∑

j1,...,jn−k∈�1,p�

Vn−k(Cj1
, . . . , Cjn−k

)λj1
· · · λjn−k

.

The coefficients Vn−k(Cj1
, . . . , Cjn−k

), which are nonnegative, symmetric, and multilin-

ear in their arguments, are called mixed volumes. Stanley’s proof of (2.2) relies on the 

following identification of |N−|, |N=|, |N+| with mixed volumes [18, Theorem 3.2]. For 

m ∈ �0, k� let
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Km := (Km, . . . , Km
︸ ︷︷ ︸

im+1−im−1

).

Then,

|N−| = (n − k)!Vn−k(K0, K1, . . . , K�−1, . . . , K�−1
︸ ︷︷ ︸

i�−1−i�−1−1

, K�, . . . , K�
︸ ︷︷ ︸

i�+1−(i�−1)−1

, K�+1, . . . , Kk),

|N=| = (n − k)!Vn−k(K0, K1, . . . , K�−1, . . . , K�−1
︸ ︷︷ ︸

i�−i�−1−1

, K�, . . . , K�
︸ ︷︷ ︸

i�+1−i�−1

, K�+1, . . . , Kk),

|N+| = (n − k)!Vn−k(K0, K1, . . . , K�−1, . . . , K�−1
︸ ︷︷ ︸

i�+1−i�−1−1

, K�, . . . , K�
︸ ︷︷ ︸

i�+1−(i�+1)−1

, K�+1, . . . , Kk).

To shorten the notation, let

K := (K0, K1, . . . , K�−1, . . . , K�−1
︸ ︷︷ ︸

i�−i�−1−2

, K�, . . . , K�
︸ ︷︷ ︸

i�+1−i�−2

, K�+1, . . . , Kk),

to get

|N−| = (n − k)!Vn−k(K�, K�, K),

|N=| = (n − k)!Vn−k(K�−1, K�, K),

|N+| = (n − k)!Vn−k(K�−1, K�−1, K).

(2.7)

With the representation (2.7) in hand, we get that the inequality (2.2) is equivalent to

Vn−k(K�−1, K�, K)2 ≥ Vn−k(K�−1, K�−1, K)Vn−k(K�, K�, K).

The latter inequality follows immediately from the Alexandrov-Fenchel inequality [16, 

Theorem 7.3.1]: For any convex bodies C1, . . . , Cn−k ⊆ R
n−k we have

Vn−k(C1, C2, C3, . . . , Cn−k)2 ≥ Vn−k(C1, C1, C3, . . . , Cn−k)Vn−k(C2, C2, C3, . . . , Cn−k).

(AF)

This completes Stanley’s proof of (2.2). Since our goal in this paper is to understand the 

equality cases of (2.2), the above discussion naturally leads to the investigation of the 

equality cases of the Alexandrov-Fenchel inequality itself.

2.3. The extremals of the Alexandrov-Fenchel inequality for convex polytopes

We start with the support function associated to a convex body: Given a convex body 

C ⊆ R
n−k we define hC : Sn−k−1 → R by

hC(u) := sup
x∈C

〈u, x〉, for u ∈ Sn−k−1.
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The support function evaluated at u gives the distance to the origin of the hyperplane 

orthogonal to u supporting C. The support function respects the summation of convex 

bodies in the sense that

hλC+λ′C′ = λhC + λ′hC′ ,

for any convex bodies C, C ′ ⊆ R
n−k and scalars λ, λ′ ≥ 0. The function hC completely 

describes C in the sense that two convex bodies are the same if their support functions 

are identical. That is, C = C ′ if hC(u) = hC′(u) for every u ∈ Sn−k−1. Since mixed 

volumes are invariant under translations, and scale proportionally with dilations, it is 

clear that equality holds in (AF) whenever there exist a ≥ 0 and v ∈ R
n−k such that 

hC1
(u) = haC2+v(u) for every u ∈ Sn−k−1. However, the difficulty in characterizing the 

extremals of the Alexandrov-Fenchel inequality stems from the fact that equality can be 

attained in (AF) even if hC1
and haC2+v agree on a very small subset of Sn−k−1. The 

complete characterization of the extremals of (AF) has been open for decades. But in the 

case of polytopes, which is the setting relevant to Stanley’s inequalities, the problem was 

completely settled in [17]. In order to present the results of [17] we need some definitions. 

In the sequel, B ⊆ R
n−k always stands for the unit ball. Given a polytope C ⊆ R

n−k

and u ∈ Sn−k−1 we write

F (C, u) := {x ∈ C : 〈u, x〉 = hC(u)},

for the face of C in the direction u. We recall [16, Theorem 1.7.2] that

F (C + C ′, u) = F (C, u) + F (C ′, u), (2.8)

for any convex bodies C, C ′ and u ∈ Sn−k−1.

Definition 2.4. Let C := (C3, . . . , Cn−k) be a nonempty collection of polytopes in Rn−k. 

A vector u ∈ Sn−k−1 is a (B, C)-extreme normal direction if, for any C′ ⊆ C,

dim

(
∑

C∈C′

F (C, u)

)

≥ |C′|.

One example of (B, C)-extreme normal directions can be found in Fig. 2.1. The defi-

nition of (B, C)-extreme normal directions plays a crucial role in the characterization of 

the extremals of the Alexandrov-Fenchel inequality for convex polytopes. For example, 

it follows from [17] that if C1, . . . , Cn−k are full-dimensional polytopes in Rn−k, then, 

equality holds in (AF) if, and only if, there exist a ≥ 0 and v ∈ R
n−k such that

hC1
(u) = haC2+v(u) for every (B, C)-extreme normal directions u.

In the setting of Stanley’s inequalities, the full-dimensionality assumption does not 

hold so we need the full power of the results of [17]. This requires a few definitions.
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Fig. 2.1. Extreme normal directions associated to the cube. The vectors vF , vF ′ ∈ S2 are the unit normals 
of the facets F, F ′, and the line eF,F ′ is the shortest geodesic between the nodes vF , vF ′ . The (Ball, Cube)-
extreme normal directions comprises of the nodes and arcs in this embedded graph on the sphere S2.

Definition 2.5. Let C be a nonempty collection of polytopes in Rn−k.

• The collection C is subcritical if, for any collection C′ ⊆ C, dim
(∑

C∈C′ C
)

≥ |C′|. A 

collection C′ ⊆ C is sharp-subcritical if dim
(∑

C∈C′ C
)

= |C′|.
• The collection C is critical if, for any nonempty collection C′ ⊆ C, dim

(∑

C∈C′ C
)

≥

|C′| + 1. A collection C′ ⊆ C is sharp-critical if dim
(∑

C∈C′ C
)

= |C′| + 1.

• The collection C is supercritical if, for any nonempty collection C′ ⊆ C, dim
(∑

C∈C′ C
)

≥ |C′| + 2.

The origin of the above definition is the following lemma, which characterizes the 

conditions under which mixed volumes are positive [16, Theorem 5.1.8].

Lemma 2.6. (Positivity of mixed volumes) Let C1, . . . , Cn−k be convex bodies in Rn−k. 

Then, Vn−k(C1, . . . , Cn−k) > 0 if, and only if,

dim

(
∑

C∈C′

C

)

≥ |C′| for every collection C′ ⊆ {Ci}i∈�1,n−k�.

For example, if the collection of polytopes C := (C3, . . . , Cn−k) in (AF) is not subcrit-

ical, then Lemma 2.6 shows that equality holds in (AF) for trivial reasons: both sides 

of the inequality are zero. If C is subcritical with a sharp-subcritical collection, then the 

equality cases of (AF) can be reduced to the equality cases of the Alexandrov-Fenchel 

inequality in a lower dimension; we refer to [17] for details. The difficult equality cases 

of (AF) are the supercritical and, to a much larger degree, the critical collections. The 

following definition is needed for the characterization of the critical extremals of (AF).

Definition 2.7. Let C = (C3, . . . , Cn−k) be a collection of polytopes in R
n−k and let 

(P, Q) be a pair of convex bodies in Rn−k. The pair (P, Q) is a C-degenerate pair if P is 

not a translate of Q,

Vn−k(P, Q, C) = 0, and Vn−k(P, B, C) = Vn−k(Q, B, C).

Theorem 2.8. ([17, Theorem 2.13, Corollary 2.16]) Let C1, . . . , Cn−k be polytopes in 

R
n−k and let C := (C3, . . . , Cn−k).
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• Suppose C is supercritical. Then, equality holds in (AF) if, and only if, there exist 

a ≥ 0 and v ∈ R
n−k such that

hC1
(u) = haC2+v(u) for all (B, C)-extreme normal directions u.

• Suppose C is critical. Then, equality holds in (AF) if, and only if, there exist a ≥

0, v ∈ R
n−k, and a number 0 ≤ d < ∞ of C-degenerate pairs (P1, Q1), . . . , (Pd, Qd), 

such that

hC1+
∑

d
j=1 Qj

(u) = haC2+v+
∑

d
j=1 Pj

(u) for all (B, C)-extreme normal directions u.

2.3.1. The extremals of Stanley’s inequalities

The crux of our work lies in understanding how to apply Theorem 2.8 in our set-

ting in order to get a combinatorial characterization of the equality cases of (2.2). For 

convenience and future reference, let us explicitly write Theorem 2.8 in our setting.

Theorem 2.9.

• Suppose K is supercritical. Then, |N=|2 = |N−||N+| holds, if, and only if, there exist 

a ≥ 0 and v ∈ R
n−k such that

hK�−1
(u) = haK�+v(u) for all (B, K)-extreme normal directions u.

• Suppose K is critical. Then, |N=|2 = |N−||N+| holds, if, and only if, there exist a ≥

0, v ∈ R
n−k, and a number 0 ≤ d < ∞ of K-degenerate pairs (P1, Q1), . . . , (Pd, Qd), 

such that

hK�−1+
∑

d
j=1 Qj

(u) = haK�+v+
∑

d
j=1 Pj

(u) for all (B, K)-extreme normal directions u.

Our proof proceeds by induction on k. The base case k = 0 is trivial as equality in 

(2.2) cannot occur because |N−| = |N+| = 0 while |N=| = |N |. Hence, Theorem 1.3 and 

Theorem 1.5 hold trivially when k = 0. From here on we assume that k ≥ 1 and that 

equality holds in (2.2):

|N=|2 = |N+||N−|

⇐⇒ Vn−k(K�−1, K�, K)2 = Vn−k(K�−1, K�−1, K)Vn−k(K�, K�, K).

Assumption 2.10. Theorem 1.3 and Theorem 1.5 hold true for k − 1.

We conclude this section by introducing the notions of criticality for posets. The 

relations between the criticality notions of Definition 2.5 and the following Definition 2.11

is given in Section 5.
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Definition 2.11. Let ᾱ = {y1, . . . , yn−k} ∪ {x1, . . . , xk} be a poset, with a fixed chain 

x1 < · · · < xk, and fix 1 ≤ i1 < · · · < ik ≤ n such that i�−1 + 1 < i� < i�+1 − 1 for some 

fixed � ∈ [k]. Suppose that |N=| > 0.

• The poset ᾱ is supercritical if, for any integer p ≥ 1 and j0 := −1 < j1 < · · · < jp <

k + 1 =: jp+1, such that ijq+1 − ijq
− 1 − 1jq∈{�−1,�} are positive for any q ∈ [p], we 

have

p
∑

q=0

1{jq+1<j(q+1)}|ᾱ>xjq +1,<xj(q+1)
| ≤ |{q ∈ [p] : jq ∈ {� − 1, �}}| − 2

+

p
∑

q=0

1{jq+1<j(q+1)}(ij(q+1)
− ijq+1 − 1).

• The poset ᾱ is critical if, for any integer p ≥ 1 and j0 := −1 < j1 < · · · < jp <

k + 1 =: jp+1, such that ijq+1 − ijq
− 1 − 1jq∈{�−1,�} are positive for any q ∈ [p], we 

have

p
∑

q=0

1{jq+1<j(q+1)}|ᾱ>xjq +1,<xj(q+1)
| ≤ |{q ∈ [p] : jq ∈ {� − 1, �}}| − 1

+

p
∑

q=0

1{jq+1<j(q+1)}(ij(q+1)
− ijq+1 − 1).

To get some intuition for Definition 2.11 note that when |N=| > 0 we have

|ᾱ>xr+1,<xs
| ≤ is − ir+1 − 1 ∀ r ≤ s.

Hence, criticality is captured in Definition 2.11 by checking the tightness of the above 

bound. (Equivalent and more transparent definitions of (super)criticality of posets are 

given in [7, §10.7].)

Finally, let us remark that the case k = 1 is always supercritical, where we use that 

|N−|, |N=|, |N+| are positive, as |N=| > 0 and |N=|2 = |N+||N−|.

3. Linear extensions

In this section we introduce a number of ideas and tools that will simplify the proofs 

of our main results. Section 3.1 presents decompositions of N−, N=, N+. Section 3.2 uses 

the above decompositions to prove the sufficiency part of Theorem 1.3 and Theorem 10.1

(Proposition 3.2), and introduces conditions which are equivalent to Theorem 1.3 and 

Theorem 10.1 (Lemma 3.3). Finally, Section 3.3 introduces the technical tool of closure

where relations are added to the poset ᾱ based on linear extensions.
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3.1. Decompositions of linear extensions

Fix ◦ ∈ {−, =, +} and �, ∗ ∈ {�, ∼}. Recall Definition 1.2 and let

N◦(�, ∗) := {σ ∈ N◦ : lower companion � x� and upper companion ∗ x�}.

It is clear that we have the disjoint decompositions,

|N−| = |N−(�,�)| + |N−(�, ∼)| + |N−(∼,�)| + |N−(∼, ∼)|,

|N=| = |N=(�,�)| + |N=(�, ∼)| + |N=(∼,�)| + |N=(∼, ∼)|, (3.1)

|N+| = |N+(�,�)| + |N+(�, ∼)| + |N+(∼,�)| + |N+(∼, ∼)|.

The next result shows that, regardless of whether equality holds in (2.2), certain relations 

between terms in (3.1) always hold.

Lemma 3.1. For any poset ᾱ the following hold:

(i) |N−(�, �)| = |N=(�, �)| = |N+(�, �)|.

(ii) |N−(�, ∼)| = |N=(�, ∼)|.

(iii) |N=(∼, �)| = |N+(∼, �)|.

(iv) |N−(∼, �)| ≤ |N−(�, ∼)|.

(v) |N+(�, ∼)| ≤ |N+(∼, �)|.

Proof. (i) We show |N−(�, �)| = |N=(�, �)|; the argument for |N=(�, �)| =

|N+(�, �)| is analogous. Let πi�−1,i�
: [n] → [n] be the permutation that swaps 

the positions of i�−1 and i�. We claim that defining πi�−1,i�
(σ) := πi�−1,i�

◦ σ, 

for σ ∈ N−(�, �), yields a bijection πi�−1,i�
: N−(�, �) → N=(�, �). That 

πi�−1,i�
(N−(�, �)) ⊆ N=(�, �) follows from the fact that x� is incomparable 

to the element placed in i� so their positions can be swapped. Hence, to conclude 

that πi�−1,i�
is a bijection it suffices to show that πi�−1,i�

is invertible and that its 

inverse π−1
i�−1,i�

satisfies π−1
i�−1,i�

(N=(�, �)) ⊆ N−(�, �). The inverse π−1
i�−1,i�

exists 

since π−1
i�−1,i�

= πi�−1,i�
. That πi�−1,i�

(N=(�, �)) ⊆ N−(�, �) is clear.

(ii) Analogous argument to (i).

(iii) Analogous argument to (i).

(iv) Let πi�,i�+1 : [n] → [n] be the permutation that swaps the positions of i� and 

i�+1. We claim that defining πi�,i�+1
(σ) := πi�,i�+1

◦ σ, for σ ∈ N−(∼, �), yields an 

injection πi�,i�+1
: N−(∼, �) → N−(�, ∼). Indeed, fix σ ∈ N−(∼, �), so σ(x�) =

i�−1, and let yu := σ−1(i�), yv := σ−1(i�+1) so that, by the definition of N−(∼, �), 

x� < yu and yv � x�. We cannot have yu < yv since that would imply x� < yu < yv

contradicting yv � x�. Since yu = σ−1(i�), yv = σ−1(i� +1), we cannot have yv < yu

so we must have yu � yv. It follows that swapping the positions of yu and yv in σ

yields the linear extension πi�,i�+1
(σ) ∈ N−(�, ∼).
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(v) Analogous argument to (iv). �

3.2. Sufficiency

The decompositions given in Section 3.1 help us prove the sufficiency of the conditions 

of Theorem 1.3(iii) and Theorem 1.5(iii).

Proposition 3.2. (Sufficient conditions)

(a) Theorem 1.3(ii) =⇒ Theorem 1.3(i) and Theorem 1.5(ii) =⇒ Theorem 1.5(i).

(b) Theorem 1.5(iii) =⇒ Theorem 1.5(ii).

(c) Theorem 1.3(iii) =⇒ Theorem 1.5(iii) =⇒ Theorem 1.3(ii).

Proof. (a) Immediate.

(b) The conditions in Theorem 1.5(iii) read

|N−(∼, ∼)| = |N=(∼, ∼)| = |N+(∼, ∼)| = 0,

|N−(�, ∼)| = |N−(∼,�)| = N1,

|N=(�, ∼)| = |N=(∼,�)| = N1,

|N+(�, ∼)| = |N+(∼,�)| = N1,

|N−(�,�)| = |N=(�,�)| = |N+(�,�)| = N2.

Hence, (3.1) reads

|N−| = N2 + N1 + N1 + 0 = N2 + 2N1,

|N=| = N2 + N1 + N1 + 0 = N2 + 2N1,

|N+| = N2 + N1 + N1 + 0 = N2 + 2N1,

which is the statement in Theorem 1.5(ii).

(c) The first implication is immediate and the second implication follows from (b). �

In order to prove Theorem 1.3 and Theorem 1.5 it remains to show that Theorem 1.3(i) 

=⇒ Theorem 1.3(iii) and Theorem 1.5(i) =⇒ Theorem 1.5(iii). To this end, the following 

conditions will suffice.



Z.Y. Ma, Y. Shenfeld / Advances in Mathematics 436 (2024) 109404 23

Lemma 3.3.

(a) The conditions in Theorem 1.3(iii) hold if, and only if,

|N=(�, ∼)| = |N=(∼,�)| = |N=(∼, ∼)| = 0.

(b) Suppose |N=|2 = |N−||N+|. The conditions in Theorem 1.5(iii) hold if, and only if,

|N−(∼, ∼)| = |N+(∼, ∼)| = 0.

Proof. We start with proof of (a). The “only if” part is clear. To prove the “if” part, 

assume that

|N=(�, ∼)| = |N=(∼,�)| = |N=(∼, ∼)| = 0,

which by (3.1) implies

|N=| = |N=(�,�)|.

On the other hand, Lemma 3.1(i) yields

N ′ := |N−(�,�)| = |N=(�,�)| = |N+(�,�)|,

so (3.1) reads

|N−| = N ′ + |N−(�, ∼)| + |N−(∼,�)| + |N−(∼, ∼)|,

|N=| = N ′,

|N+| = N ′ + |N+(�, ∼)| + |N+(∼,�)| + |N+(∼, ∼)|.

Stanley’s inequality (2.2),

|N=|2 ≥ |N−||N+|,

implies that all the terms other than N ′ must vanish, which completes the proof.

We now prove (b). The ‘only if” part is clear. To prove the “if” part, assume that

|N−(∼, ∼)| = |N+(∼, ∼)| = 0.

Using Lemma 3.1(i-iii), set

N ′ := |N−(�,�)| = |N=(�,�)| = |N+(�,�)|,

N ′
a := |N−(�, ∼)| = |N=(�, ∼)|,

N ′
b := |N=(∼,�)| = |N+(∼,�)|,
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so (3.1) reads

|N−| = N ′ + N ′
a + |N−(∼,�)|,

|N=| = N ′ + N ′
a + N ′

b + |N=(∼, ∼)|,

|N+| = N ′ + N ′
b + |N+(�, ∼)|.

By Lemma 3.1(iv-v),

|N−(∼,�)| ≤ N ′
a and |N+(�, ∼)| ≤ N ′

b

so

|N−| = N ′ + N ′
a + |N−(∼,�)| ≤ N ′ + 2N ′

a,

|N=| = N ′ + N ′
a + N ′

b + |N=(∼, ∼)| ≥ N ′ + N ′
a + N ′

b,

|N+| = N ′ + N ′
b + |N+(�, ∼)| ≤ N ′ + 2N ′

b.

Hence,

(N ′ + 2N ′
a)(N ′ + 2N ′

b) = (N ′ + N ′
a + N ′

b)2 − (N ′
a − N ′

b)2 ≤ (N ′ + N ′
a + N ′

b)2

≤ |N=|2 = |N−||N+| ≤ (N ′ + 2N ′
a)(N ′ + 2N ′

b).

It follows that all of the above inequalities are in fact equalities. In particular,

|N=(∼, ∼)| = 0, (3.2)

N ′
a = N ′

b, (3.3)

|N−(∼,�)| = N ′
a, (3.4)

|N+(�, ∼)| = N ′
b. (3.5)

The identity (3.2), together with the assumption |N−(∼, ∼)| = |N+(∼, ∼)| = 0, implies

that every linear extension in N◦, for any ◦ ∈ {−, =, +}, has either 0 or 1 comparable 

companions to x�. It remains to show that there exist nonnegative numbers N1, N2 such 

that

|N−(∼,�)| = |N=(∼,�)| = |N+(∼,�)| = |N−(�, ∼)| = |N=(�, ∼)| = |N+(�, ∼)| = N1,

|N−(�,�)| = |N=(�,�)| = |N+(�,�)| = N2.

The first part follows since

|N−(∼,�)| =
(3.4)

N ′
a := |N−(�, ∼)| =

Lemma 3.1(ii)
|N=(�, ∼)| =

(3.3)
N ′

b := |N=(∼,�)|

=
Lemma 3.1(iii)

|N+(∼,�)| =
(3.5)

|N+(�, ∼)| =: N1,
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and the second part follows by Lemma 3.1(i). �

We conclude the section with a corollary of the above lemmas, which will be needed 

for the proof of Theorem 1.6. (Note that the assumption in the following result that ᾱ

is critical can be relaxed to |N=| > 0, cf. Section 10.)

Corollary 3.4. Let ᾱ be a critical poset such that |N=|2 = |N−||N+|, and assume that 

Theorem 1.3 and Theorem 1.5 hold true. Fix ◦ ∈ {−, =, +} and σ ∈ N◦(∼, �) ∪N◦(�, ∼). 

Then, the upper and lower companions are incomparable to each other.

Proof. We start by establishing the claim in the case where ◦ is equal to −. Fix σ ∈

N−(∼, �). If the upper and lower companions are comparable to each other, then, by 

transitivity, σ ∈ N−(∼, ∼), which is a contradiction. On the other hand, the proof of 

Lemma 3.3 shows that |N−(�, ∼)| = |N−(∼, �)|. Hence, the map πi�,i�+1 : N−(∼,�) →

N−(�, ∼) defined in the proof of Lemma 3.1(iv) is a bijection. It follows that the upper 

and lower companions in any σ ∈ N−(�, ∼) cannot be comparable to each other, or 

else they will also be comparable to each other in πi�,i�+1(σ) ∈ N−(∼, �), which is a 

contradiction.

Analogous argument works when ◦ is equal to +. In the case when ◦ is equal to =, 

we note that Lemma 3.1(ii-iii) gives bijections N−(�, ∼) → N=(�, ∼) and N+(∼, �) →

N=(∼, �), so we can argue as above to conclude that the upper and lower companions 

are incomparable. �

3.3. Closure

Since we are interested in the extremals of (2.2), it is beneficial to add relations to ᾱ

which are compatible with N−, N=, N+, while leaving these sets invariant.

Definition 3.5. Denote by Cl(ᾱ) (the closure of ᾱ) the poset with the same elements as 

ᾱ and with the partial order on Cl(ᾱ) given by

w < z if and only if σ(w) < σ(z) ∀ σ ∈ N− ∪ N= ∪ N+.

Let

N cl := {bijections σ : Cl(ᾱ) → [n] : w ≤ z ⇒ σ(w) ≤ σ(z) ∀ w, z ∈ Cl(ᾱ)},

with the analogous N cl
◦ (�, ∗) for ◦ ∈ {−, =, +} and �, ∗ ∈ {�, ∼}.

We first need to check that Definition 3.5 is well-defined. Indeed, if z1, z2, z3 ∈ Cl(ᾱ)

are such that z1 < z2 and z2 < z3 in Cl(ᾱ), then, by definition, σ(z1) < σ(z2) and 

σ(z2) < σ(z3) for every σ ∈
⋃

◦∈{−,=,+} N◦, so σ(z1) < σ(z2) < σ(z3). It follows that 

z1 < z3 in Cl(ᾱ).
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x2

x1

y3y2y1

ᾱ

x2

x1

y3y2

y1

Cl(ᾱ)

N− = {y1x1x2y2y3, y1x1x2y3y2}

N= = {y1x1y2x2y3, y1x1y3x2y2}

N+ := {y1x1y2y3x2, y1x1y3y2x2}

Fig. 3.1. Hasse diagram (arrows point from smaller to larger elements) of posets in Example 3.7, together 
with their (identical) sets of linear extensions, showing that new relations can occur under the closure 
operation.

Let us now show that the relations in Cl(ᾱ) are compatible with the relations in ᾱ.

Lemma 3.6. If z1 < z2 in ᾱ then z1 < z2 in Cl(ᾱ). If z1 � z2 in Cl(ᾱ) then z1 � z2 in ᾱ.

Proof. If z1 < z2 in ᾱ, then σ(z1) < σ(z2) for every σ ∈
⋃

◦∈{−,=,+} N◦, so z1 < z2 in 

Cl(ᾱ). The contrapositive of this statement is that if z1 � z2 in Cl(ᾱ) then z1 � z2 in 

ᾱ. �

While the closure operation is compatible with the relations in ᾱ, it can introduce 

new relations as the following example demonstrates.

Example 3.7. Let ᾱ = {x1, x2, y1, y2, y3}, so k = 2 and n = 5, and suppose that the 

only relations are x1 < x2 and y1 < x1. Let i1 = 2, i2 = 4 and l = 2, and note that 

i�−1 + 1 = i1 + 1 = 3 < 4 = i2 = i� < 5 = (n + 1) − 1 = i�+1 − 1. Let us show 

that, in Cl(ᾱ), x1 < y2 and x1 < y3, relations which do not hold in ᾱ. Indeed, take 

any σ ∈ N− ∪ N= ∪ N+ and note that σ(x1) = i1 = 2 so, since y1 < x1, we must have 

σ(y1) = 1. Thus, σ(y2), σ(y3) > 2, and hence, in Cl(ᾱ), x1 < y2 and x1 < y3. See Fig. 3.1.

The next result shows that our basic objects of interest remain more-or-less invariant 

under the closure operation. To simplify the notation, let (i) (res. (ii)) stand for the con-

ditions in Theorem 1.3(i) and Theorem 1.5(i) (res. Theorem 1.3(ii) and Theorem 1.5(ii)), 

and let (iiisupcrit) (res. (iiicrit)) stand for the conditions in Theorem 1.3(iii) (res. Theo-

rem 1.5(iii)). We use an upper script “cl” for the corresponding notation when Cl(ᾱ), 

rather than ᾱ, is used.

Proposition 3.8. The set Cl(ᾱ) is a poset satisfying

(a) N cl
◦ = N◦ for every ◦ ∈ {−, =, +}.

(b) (icl) ⇐⇒ (i),

(c) (iicl) ⇐⇒ (ii),

(d) (iiicl
supcrit) =⇒ (iiisupcrit) and (iiicl

crit) =⇒ (iiicrit).
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Proof. Cl(ᾱ) is indeed a poset since irreflexivity is immediate and transitivity was 

checked after Definition 3.5.

(a) We show that N cl
= = N=; the proof that N cl

− = N− and N cl
+ = N+ is analogous. We 

start by observing that since Lemma 3.6 yields “w < z in ᾱ implies w < z in Cl(ᾱ)”, 

it follows that “σ ∈ N cl
= implies σ ∈ N=”. Conversely, let σ ∈ N= so it suffices to 

show that σ ∈ N cl. The latter holds since if w < z in Cl(ᾱ), then it must be, by the 

definition of Cl(ᾱ), that σ(w) < σ(z), and hence σ ∈ N cl.

(b) Follows trivially from (a).

(c) Follows trivially from (a).

(d) We show that

|N cl
= (�, ∼)| = |N cl

= (∼,�)| = |N cl
= (∼, ∼)| = 0

=⇒ |N=(�, ∼)| = |N=(∼,�)| = |N=(∼, ∼)| = 0, (3.6)

which proves (iiicl
supcrit) =⇒ (iiisupcrit) by Lemma 3.3(a). To establish (3.6) we show 

|N=(�, ∼)| = 0; the proof of |N=(∼, �)| = 0 and |N=(∼, ∼)| = 0 is analogous. 

Suppose |N=(�, ∼)| > 0 so there exists σ ∈ N= such that σ(x�) = i� and x� <

σ−1(i� + 1) in ᾱ. By (a), σ ∈ N cl
= , and by Lemma 3.6, x� < σ−1(i� + 1) in Cl(ᾱ). It 

follows that σ ∈ N cl
= (�, ∼) ∪ N cl

= (∼, ∼), which is a contradiction.

Next we show

|N cl
− (∼, ∼)| = |N cl

+ (∼, ∼)| = 0 =⇒ |N−(∼, ∼)| = |N+(∼, ∼)| = 0. (3.7)

Since (iiicl
crit) =⇒ (icl

crit) by Proposition 3.2(a–b), and since (icl) ⇐⇒ (i) by part (a), 

the proof will be complete by Lemma 3.3(b).

To establish (3.7) we show that |N cl
+ (∼, ∼)| = 0 ⇒ |N+(∼, ∼)| = 0; the proof 

of |N cl
− (∼, ∼)| = 0 ⇒ |N−(∼, ∼)| = 0 is analogous. Indeed, if |N+(∼, ∼)| > 0 then 

there exists σ ∈ N+ such that σ(x�) = i� + 1 and σ−1(i� − 1), σ−1(i�) are both 

smaller than x� in ᾱ. By (a), σ ∈ N cl
+ , and by Lemma 3.6, σ−1(i� − 1), σ−1(i�)

are both smaller than x� in Cl(ᾱ). It follows that σ ∈ N cl
+ (∼, ∼). In other words, 

|N+(∼, ∼)| > 0 ⇒ |N cl
+ (∼, ∼)| > 0, which is the contrapositive of what we want to 

show. �

4. Proof outline

In this section we outline the proof of the characterization of the extremals of Stanley’s 

inequalities. The first step is to understand how we use the closure procedure. We have 

the following equivalences:

(icl) =⇒
Thms. 9.1, 10.1 + Lem. 3.3

(iiicl) =⇒
Prop. 3.2(b-c)

(iicl) =⇒
trivial

(icl)

� Prop. 3.8(b) ⇓ Prop. 3.8(d) � Prop. 3.8(c) � Prop. 3.8(b)
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(i) (iii) =⇒
Prop. 3.2(b-c)

(ii) =⇒
trivial

(i)

The only implication that has not been proven thus far is (icl) =⇒ (iiicl), which will 

follow from Theorem 9.1, Theorem 10.1, and Lemma 3.3. Hence, from here on we may 

assume:

Assumption 4.1.

ᾱ = Cl(ᾱ).

Note that Remark 1.7, which is proven in Proposition 7.5, does not require Assump-

tion 4.1. The first extremals we need to characterize are those arising in the trivial case 

|N=| = 0, which we dispose of in Theorem 5.3. Assuming that |N=| > 0, the characteri-

zation of (1.3) is divided to three types of classes, subcritical, supercritical, and critical. 

By subcritical we mean that K is subcritical. The supercritical and critical settings were 

defined in Definition 2.5 and Definition 2.11.

The characterization of the subcritical extremals relies on the splitting mechanism

(Definition 6.2 and Proposition 6.4). The idea is that if K is truly subcritical, rather than 

critical, we can reduce the problem to the extremals of a poset with a shorter chain {xi}. 

Arguing by induction, we then characterize the subcritical extremals (Theorem 6.6).

For the supercritical extremals, the starting point is Theorem 2.9 which yields that 

|N=|2 = |N−||N+| holds, if, and only if, there exist a ≥ 0 and v ∈ R
n−k such that

hK�−1
(u) = haK�+v(u) for all (B, K)-extreme normal directions u. (4.1)

The identity (4.1) constitutes a system of equations (one equation for each u) and the 

goal is to interpret these equations as combinatorial constraints on the poset ᾱ. Hence, 

the first important step is to find enough (B, K)–extreme normal directions which can be 

described combinatorially. This is achieved in Section 8 (Proposition 8.2(a-d)) by using 

the mixing phenomenon (Section 7.2). Once these directions are found in Section 8, 

Section 9 is dedicated to plugging these directions back into (4.1) and analyzing the 

outcomes. The second important step is to show that the scalar a and the vector v in 

(4.1) satisfy a = 1 and vj = 0 for certain j’s. The identity (4.1) then further simplifies 

and provides the bulk of the desired characterization of the extremals (Theorem 9.1). 

We explain in Section 9 how to control a and v.

The starting point for the critical extremals is again Theorem 2.9, but now we need to 

use its second part which states that |N=|2 = |N−||N+| holds, if, and only if, there exist 

a ≥ 0, v ∈ R
n−k, and a number 0 ≤ d < ∞ of K-degenerate pairs (P1, Q1), . . . , (Pd, Qd), 

such that

hK�−1+
∑

d
j=1 Qj

(u) = haK�+v+
∑

d
j=1 Pj

(u) for all (B, K)-extreme normal directions u.
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The presence of the degenerate pairs causes great difficulties (which are not just technical 

since, as we saw, new extremals do indeed arise for critical posets). The first key idea 

to resolve these problems is to find a sub-poset of ᾱ on which we have more-or-less 

a supercritical behavior. From a geometric standpoint, this corresponds to finding a 

subspace E⊥ such that

hK�−1
(u) = haK�+v(u)

for all (B, K)-extreme normal directions u which are contained in E⊥. (4.2)

The identification of E⊥ and its properties relies on the mixing properties of the maximal 

splitting pair (Section 7.10). Even after identifying E⊥ we face the problem that (4.2)

provides less constraints than (4.1) due to the restriction to the subspace E⊥. Hence, 

we cannot derive enough combinatorial constraints on ᾱ. The solution is to find even 

more (B, K)-extreme normal directions which were not needed for supercritical posets 

(Proposition 8.2(e-h)). With these new directions in hand, Section 10 proceeds roughly 

as Section 9 to show that a = 1 and vj = 0 for certain j’s. This description is an 

oversimplification since the situation is in fact much more delicate. It is precisely this 

delicacy which leads to the new extremals for critical posets.

5. Notions of criticality

In this section we start building our dictionary between convex geometry and combina-

torics. The first building block is a correspondence between geometric and combinatorial 

notions of criticality, which will be used throughout this work. Section 5.1 starts with 

the easiest correspondence (Lemma 5.1), which connects the linear spans of polytopes in 

K with subsets of ᾱ. Consequently, we characterize the trivial extremals which appear 

when |N=| = 0 (Theorem 5.3). Section 5.2 is dedicated to the equivalences between geo-

metric and combinatorial notions of criticality (Proposition 5.7), and their consequences 

on sharp-subcritical and sharp-critical collections (Lemmas 5.10, 5.11).

5.1. The trivial extremals

We start with some notation. Given a convex body C let aff(C) stand for the affine 

hull of C, and let Lin(C) stand for the vector space obtained by the translation of aff(C)

to the origin, i.e., Lin(C) := aff(C) −c0 = span(C−c0), for any c0 ∈ C. Given a collection 

C of convex bodies, it is immediate to see that

Lin

(
∑

C∈C
C

)

= span
(
(Lin(C1), . . . , Lin(C|C|

)
). (5.1)

The following lemma relates the combinatorics of subsets of α to the linear spans of the 

polytopes in {Ki}.
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Lemma 5.1. Let j0 := −1 < j1 < · · · < jp < k + 1 =: jp+1 and set

K′ := (Kj1
, . . . , Kj1

︸ ︷︷ ︸

κ1

, . . . , Kjp
, . . . , Kjp

︸ ︷︷ ︸

κp

),

where κ1, . . . , κp are positive integers. Then,

Lin

(
∑

K∈K′

K

)

= R
β{j1,...,jp} ,

and, consequently,

dim

(
∑

K∈K′

K

)

= n − k −
p

∑

q=0

|α>xjq +1,<xj(q+1)
|.

Proof. Combining (5.1) and (2.5) shows that Lin
(∑

K∈K′ K
)

= R
β{j1,...,jp} . It follows 

that

dim

(
∑

K∈K′

K

)

=

∣
∣
∣
∣
∣

p
⋃

q=1

βjq

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

p
⋃

q=1

α\(α<xjq
∪ α>xjq+1

)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
α

∖ p
⋂

q=1

(α<xjq
∪ α>xjq +1

)

∣
∣
∣
∣
∣
.

The proof is complete by (2.6), and by noting that the sets {α>xjq+1,<xj(q+1)
}q∈�0,p� are 

disjoint. �

As a first application of Lemma 5.1, we dispose of the trivial extremals. Before doing 

so, we present the following definition which will be used throughout the paper.

Definition 5.2. A pair (r, s) is splitting if 0 ≤ r + 1 < s ≤ k + 1 and (r + 1, s) 
= (0, k + 1). 

A splitting pair (r, s) is an �-splitting pair if r + 1 < � < s.

Theorem 5.3. (Trivial extremals) We have |N=| = 0 if, and only if, there exists a splitting 

pair (r, s) such that

|ᾱ>xr+1,<xs
| > is − ir+1 − 1.

Proof. ⇐=: Suppose there exists a splitting pair (r, s) such that

|ᾱ>xr+1,<xs
| > is − ir+1 − 1.

Every σ ∈ N= must satisfy σ(z) ∈ �ir+1 + 1, is − 1� for every z ∈ ᾱ>xr+1,<xs
. Since 

|�ir+1 + 1, is − 1�| = (is − 1) − (ir+1 + 1) + 1 = is − ir+1 − 1 < |ᾱ>xr+1,<xs
|, we see that 

no such σ can exist.
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=⇒: If |N=| = 0 then, by (2.7) and Lemma 2.6, there exist 0 ≤ j1 < · · · < jp ≤ k, 

and positive integers κ1, . . . , κp, with κq ≤ ijq+1 − ijq
− 1 for q ∈ [p], such that, with

K′ = (Kj1
, . . . , Kj1

︸ ︷︷ ︸

κ1

, . . . , Kjp
, . . . , Kjp

︸ ︷︷ ︸

κp

) ⊆ (K�−1, K�, K),

we have

dim

(
∑

K∈K′

K

)

< |K′|.

Let j0 := −1, jp+1 := k + 1 and use Lemma 5.1 to get

dim

(
∑

K∈K′

K

)

= n − k −
p

∑

q=0

|α>xjq +1,<xj(q+1)
|.

On the other hand,

|K′| =

p
∑

q=1

κq ≤
p

∑

q=1

[ijq+1 − ijq
− 1] = n − k − ijp+1

+ ij0+1 + k + 1 +

p
∑

q=1

(ijq+1 − ijq
− 1)

= n − k −

(
p+1
∑

q=1

ijq

)

+

(
p

∑

q=0

ijq+1

)

+ jp+1 − j0 − (p + 1)

= n − k −

(
p

∑

q=0

ij(q+1)

)

+

(
p

∑

q=0

ijq+1

)

+ jp+1 − j0 − (p + 1)

= n − k −
p

∑

q=0

(ij(q+1)
− ijq+1 − jq+1 + jq + 1).

It follows that

p
∑

q=0

(ij(q+1)
− ijq+1 − jq+1 + jq + 1) <

p
∑

q=0

|α>xjq +1,<xj(q+1)
|. (5.2)

Since

|α>xjq+1,<xj(q+1)
| = 1{jq+1<j(q+1)} |α>xjq +1,<xj(q+1)

|,

ij(q+1)
− ijq+1 − jq+1 + jq + 1 = 1{jq+1<j(q+1)} (ij(q+1)

− ijq+1 − j(q+1) + jq + 1),

the inequality (5.2) is equivalent to



32 Z.Y. Ma, Y. Shenfeld / Advances in Mathematics 436 (2024) 109404

p
∑

q=0

1{jq+1<j(q+1)}(ij(q+1)
− ijq+1 − jq+1 + jq + 1) <

p
∑

q=0

1{jq+1<j(q+1)}|α>xjq +1,<xj(q+1)
|.

Using

1{jq+1<j(q+1)} |ᾱ>xjq +1,<xj(q+1)
\α>xjq+1,<xj(q+1)

| = j(q+1) − jq − 2,

we get that (5.2) is equivalent to

p
∑

q=0

1{jq+1<j(q+1)}(ij(q+1)
− ijq+1 − 1) <

p
∑

q=0

1{jq+1<j(q+1)}|ᾱ>xjq +1,<xj(q+1)
|.

Hence, there must exist a pair (jq + 1, j(q+1)), with jq + 1 < j(q+1), such that

|ᾱ>xjq +1,<xj(q+1)
| > ij(q+1)

− ijq+1 − 1.

Since (jq + 1, j(q+1)) 
= (0, k + 1), because jq + 1 = 0 ⇒ q = 0 so j(q+1) = j1 ≤ jp <

jp+1 = k + 1, we conclude that there exists a splitting pair (r, s) such that

|ᾱ>xr+1,<xs
| > is − ir+1 − 1. �

Remark 5.4. Theorem 5.3 is the same as the result of Chan, Pak, and Panova in [9, 

Theorem 1.12], where it was proved using purely combinatorial arguments.

In light of Theorem 5.3 we assume from here on that |N=| > 0. Note that |N=| > 0

implies, by (2.7) and Lemma 2.6, that K is subcritical. To summarize:

Assumption 5.5.

|N=|2 = |N−||N+|, |N=| > 0, and K is subcritical.

Remark 5.6. For future reference, we note that under Assumption 5.5, ᾱ cannot be totally 

ordered. Indeed, if ᾱ is totally ordered, then at least two elements in {|N=|, |N−|, |N+|}

are zero. But since |N=|2 = |N−||N+|, that would imply that |N=| = 0.

5.2. Equivalences of criticality notions

The next result is at the base of the correspondence between criticality notions in our 

geometric and combinatorial settings, namely, the equivalence between Definition 2.5

and Definition 2.11.

Proposition 5.7. Fix a nonnegative integer c. The following are equivalent.
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(1) For any integer p ≥ 1 and j0 := −1 < j1 < · · · < jp < k + 1 =: jp+1 such that 

ijq+1 − ijq
− 1 − 1jq∈{�−1,�} are positive for any q ∈ [p], it holds that with any

K′ := (Kj1
, . . . , Kj1

︸ ︷︷ ︸

κ1

, . . . , Kjp
, . . . , Kjp

︸ ︷︷ ︸

κp

) ⊆ K,

where κq ≤ ijq+1 − ijq
− 1 − 1jq∈{�−1,�} are positive integers, we have

dim

(
∑

K∈K′

K

)

≥ |K′| + c.

(2) For any integer p ≥ 1, j0 := −1 < j1 < · · · < jp < k + 1 =: jp+1 such that 

ijq+1 − ijq
− 1 − 1jq∈{�−1,�} are positive for any q ∈ [p], it holds that

p
∑

q=0

1{jq+1<j(q+1)} |ᾱ>xjq +1,<xj(q+1)
| ≤ |{q ∈ [p] : jq ∈ {� − 1, �}}| − c

+

p
∑

q=0

1{jq+1<j(q+1)} (ij(q+1)
− ijq+1 − 1).

The proof of Proposition 5.7 follows the logic of the proof of Theorem 5.3, but it is more 

complicated since we now work with collections K′ ⊆ K, rather than K′ ⊆ (K�−1, K�, K). 

This leads to the presence of the term 1j(q+1)=� + 1jq+1=� in the proof below.

Proof of Proposition 5.7. Fix

K′ := (Kj1
, . . . , Kj1

︸ ︷︷ ︸

κ1

, . . . , Kjp
, . . . , Kjp

︸ ︷︷ ︸

κp

) ⊆ K,

where p ≥ 1, j0 := −1 < j1 < · · · < jp < k + 1 =: jp+1, and 0 < κq ≤ ijq+1 − ijq
− 1 −

1jq∈{�−1,�}. By Lemma 5.1,

dim

(
∑

K∈K′

K

)

= n − k −
p

∑

q=0

|α>xjq +1,<xj(q+1)
|.

On the other hand, using � /∈ {0, k + 1}, and arguing as in the proof of Theorem 5.3,

|K′| =

p
∑

q=1

κq ≤
p

∑

q=1

(
ijq+1 − ijq

− 1 − 1jq∈{�−1,�}
)

= n − k −
p

∑

q=0

(
ij(q+1)

− ijq+1 − jq+1 + jq + 1 + 1j(q+1)=� + 1jq+1=�

)
.
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Hence, given c, we have that

dim

(
∑

K∈K′

K

)

< |K′| + c,

if and only if

p
∑

q=0

|α>xjq +1,<xj(q+1)
| > −c +

p
∑

q=0

(
ij(q+1)

− ijq+1 − jq+1 + jq + 1 + 1j(q+1)=� + 1jq+1=�

)
.

(5.3)

Conversely, if (5.3) holds, then we may take K′ to be such that κq = ijq+1 − ijq
− 1 −

1jq∈{�−1,�} for every q, to get |K′| = n − k −
∑p

q=0

(
ij(q+1)

− ijq+1 − jq+1 + jq + 1 +

1j(q+1)=� + 1jq+1=�

)
. We may then conclude that dim

(∑

K∈K′ K
)

< |K′| + c. Hence, we 

get

dim

(
∑

K∈K′

K

)

≥ |K′| + c ⇐⇒ (5.4),

where

p
∑

q=0

|α>xjq +1,<xj(q+1)
| ≤ −c +

p
∑

q=0

(
ij(q+1)

− ijq+1 − jq+1 + jq + 1 + 1j(q+1)=� + 1jq+1=�

)
.

(5.4)

Since

p
∑

q=0

(1j(q+1)=� + 1jq+1=�) = |{q ∈ [p] : jq ∈ {� − 1, �}}|,

and

|α>xjq +1,<xj(q+1)
| = 1{jq+1<j(q+1)} |α>xjq +1,<xj(q+1)

|,

ij(q+1)
− ijq+1 − jq+1 + jq + 1 = 1{jq+1<j(q+1)}(ij(q+1)

− ijq+1 − j(q+1) + jq + 1),

the inequality (5.4) is equivalent to

p
∑

q=0

1{jq+1<j(q+1)} |α>xjq +1,<xj(q+1)
|

≤ |{q ∈ [p] : jq ∈ {� − 1, �}}| − c +

p
∑

q=0

1{jq+1<j(q+1)}
(
ij(q+1)

− ijq+1 − jq+1 + jq + 1
)

,
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= |{q ∈ [p] : jq ∈ {� − 1, �}}| − c

+

p
∑

q=0

1{jq+1<j(q+1)}
(
ij(q+1)

− ijq+1 − 1 − j(q+1) + jq + 2
)

.

Using

1{jq+1<j(q+1)} |ᾱ>xjq +1,<xj(q+1)
\α>xjq +1,<xj(q+1)

| = j(q+1) − jq − 2,

we find that (5.4) is equivalent to

p
∑

q=0

1{jq+1<j(q+1)} |ᾱ>xjq+1,<xj(q+1)
| ≤ |{q ∈ [p] : jq ∈ {� − 1, �}}| − c

+

p
∑

q=0

1{jq+1<j(q+1)} (ij(q+1)
− ijq+1 − 1). �

In contrast to Proposition 5.7, the next lemma, which treats the opposite inequality 

of Proposition 5.7, holds for a fixed K′.

Lemma 5.8. Fix an integer p ≥ 1 and j0 := −1 < j1 < · · · < jp < k + 1 =: jp+1 such 

that ijq+1 − ijq
− 1 − 1jq∈{�−1,�} are positive for any q ∈ [p]. Let

K′ := (Kj1
, . . . , Kj1

︸ ︷︷ ︸

κ1

, . . . , Kjp
, . . . , Kjp

︸ ︷︷ ︸

κp

) ⊆ K,

where κq are integers such that 0 < κq ≤ ijq+1 − ijq
− 1 − 1jq∈{�−1,�} for all q ∈ [p], be 

such that

dim

(
∑

K∈K′

K

)

≤ |K′| + c.

Then,

p
∑

q=0

1{jq+1<j(q+1)} |ᾱ>xjq+1,<xj(q+1)
| ≥ |{q ∈ [p] : jq ∈ {� − 1, �}}| − c

+

p
∑

q=0

1{jq+1<j(q+1)} (ij(q+1)
− ijq+1 − 1).

Proof. We proceed as in the proof of Proposition 5.7 and use

|K′| =

p
∑

q=1

κq ≤
p

∑

q=1

(
ijq+1 − ijq

− 1 − 1jq∈{�−1,�}
)

,
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to reason about a fixed collection K′. �

As a consequence of Lemma 5.8, we get the following combinatorial information about 

sharp collections.

Lemma 5.9. Fix c ≥ 0, an integer p ≥ 1, and j0 := −1 < j1 < · · · < jp < k + 1 =: jp+1

such that ijq+1 − ijq
− 1 − 1jq∈{�−1,�} are positive for any q ∈ [p]. Suppose there exist

K′ := (Kj1
, . . . , Kj1

︸ ︷︷ ︸

κ1

, . . . , Kjp
, . . . , Kjp

︸ ︷︷ ︸

κp

) ⊆ K,

where κq are integers such that 0 < κq ≤ ijq+1 − ijq
− 1 − 1jq∈{�−1,�} for all q ∈ [p], such 

that

dim

(
∑

K∈K′

K

)

= |K′| + c.

Then,

|{q ∈ [p] : jq ∈ {� − 1, �}}| ≤ c.

Proof. The assumption dim
(∑

K∈K′ K
)

= |K′| + c implies dim
(∑

K∈K′ K
)

≤ |K′| + c, 

so by Lemma 5.8,

p
∑

q=0

1{jq+1<j(q+1)} |ᾱ>xjq +1,<xj(q+1)
| ≥ |{q ∈ [p] : jq ∈ {� − 1, �}}| − c

+

p
∑

q=0

1{jq+1<j(q+1)} (ij(q+1)
− ijq+1 − 1).

(5.5)

On the other hand, since |N=| > 0, we have

1{jq+1<j(q+1)} |ᾱ>xjq+1,<xj(q+1)
| ≤ 1{jq+1<j(q+1)} (ij(q+1)

− ijq+1 − 1) (5.6)

(because |�ijq+1 + 1, ij(q+1)
− 1�| ≤ ij(q+1)

− ijq+1 − 1), so

p
∑

q=0

1{jq+1<j(q+1)} |ᾱ>xjq +1,<xj(q+1)
| ≤

p
∑

q=0

1{jq+1<j(q+1)} (ij(q+1)
− ijq+1 − 1). (5.7)

Combining (5.5) and (5.7) we get

|{q ∈ [p] : jq ∈ {� − 1, �}}| ≤ c. �
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We are now ready to characterize the sharp-(sub)critical collections. We start with 

the sharp-subcritical collections.

Lemma 5.10. (Sharp-subcritical collections) Fix an integer p ≥ 1, and j0 := −1 < j1 <

· · · < jp < k +1 =: jp+1 such that ijq+1 − ijq
−1 −1jq∈{�−1,�} are positive for any q ∈ [p]. 

Suppose that

K′ := (Kj1
, . . . , Kj1

︸ ︷︷ ︸

κ1

, . . . , Kjp
, . . . , Kjp

︸ ︷︷ ︸

κp

) ⊆ K,

where κq are integers such that 0 < κq ≤ ijq+1 − ijq
− 1 − 1jq∈{�−1,�} for all q ∈ [p], is 

sharp-subcritical. Then,

∀ q ∈ [p] : jq /∈ {� − 1, �} and 1{jq+1<j(q+1)} |ᾱ>xjq +1,<xj(q+1)
|

= 1{jq+1<j(q+1)} (ij(q+1)
− ijq+1 − 1).

Proof. Take c = 0 in Lemma 5.9 to get

|{q ∈ [p] : jq ∈ {� − 1, �}}| = 0. (5.8)

Since dim
(∑

K∈K′ K
)

≤ |K′|, and K is subcritical, applying Lemma 5.8 and Proposi-

tion 5.7, with c = 0, yields

p
∑

q=0

1{jq+1<j(q+1)} |ᾱ>xjq +1,<xj(q+1)
| =

p
∑

q=0

1{jq+1<j(q+1)} (ij(q+1)
− ijq+1 − 1).

By (5.6), it follows that, for every 0 ≤ jq ≤ k + 1,

1{jq+1<j(q+1)} |ᾱ>xjq +1,<xj(q+1)
| = 1{jq+1<j(q+1)} (ij(q+1)

− ijq+1 − 1). �

We now turn to the sharp-critical collections. The assumption made in the following 

lemma does not follow automatically from the fact that K is sharp-critical. Rather, we 

will be able to make this assumption only after Section 6, and the motivation behind 

this assumption can be found in Theorem 6.6. The proof, however, is similar in spirit to 

the rest of this section so it is included here.

Lemma 5.11. (Sharp-critical collections) Suppose |ᾱ>xr+1,<xs
| ≤ is − ir+1 − 2 for every 

splitting pair (r, s). Fix an integer p ≥ 1, and j0 := −1 < j1 < · · · < jp < k + 1 =: jp+1

such that ijq+1 − ijq
− 1 − 1jq∈{�−1,�} are positive for any q ∈ [p]. Then, every

K′ := (Kj1
, . . . , Kj1

︸ ︷︷ ︸

κ1

, . . . , Kjp
, . . . , Kjp

︸ ︷︷ ︸

κp

) ⊆ K,
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where κq are integers such that 0 < κq ≤ ijq+1 − ijq
− 1 − 1jq∈{�−1,�} for all q ∈ [p], 

satisfying

dim

(
∑

K∈K′

K

)

= |K′| + 1,

must be of the form

K′ = (K0, K1, . . . , Kr−1, Kr, Ks, Ks+1, . . . , Kk),

where (r, s) is an �-splitting pair satisfying

|ᾱ>xr+1,<xs
| = is − ir+1 − 2.

Proof. First note that (jq + 1, j(q+1)) 
= (0, k + 1) because jq + 1 = 0 ⇒ q = 0 so 

j(q+1) = j1 ≤ jp < jp+1 = k + 1. The assumption |ᾱ>xr+1,<xs
| ≤ is − ir+1 − 2 for every 

splitting pair (r, s) implies that

p
∑

q=0

1{jq+1<j(q+1)}|ᾱ>xjq +1,<xj(q+1)
| ≤

p
∑

q=0

1{jq+1<j(q+1)} (ij(q+1)
− ijq+1 − 2)

= − |{q ∈ [p] : jq + 1 < j(q+1)}| +

p
∑

q=0

1{jq+1<j(q+1)}(ij(q+1)
− ijq+1 − 1).

On the other hand, since dim
(∑

K∈K′ K
)

≤ |K′| + 1, applying Lemma 5.8 with c = 1

yields

p
∑

q=0

1{jq+1<j(q+1)} |ᾱ>xjq +1,<xj(q+1)
| ≥ |{q ∈ [p] : jq ∈ {� − 1, �}}| − 1

+

p
∑

q=0

1{jq+1<j(q+1)} (ij(q+1)
− ijq+1 − 1).

(5.9)

We conclude that

|{q ∈ [p] : jq ∈ {� − 1, �}}| + |{q ∈ [p] : jq + 1 < j(q+1)}| ≤ 1. (5.10)

Since

|{q ∈ [p] : jq + 1 < j(q+1)}| = 0 =⇒ {j1, . . . , jp} = {1, . . . , k},

we get
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|{q ∈ [p] : jq + 1 < j(q+1)}| = 0 =⇒ |{q ∈ [p] : jq ∈ {� − 1, �}}| = 2.

Hence, (5.10) can hold if, and only if,

|{q ∈ [p] : jq ∈ {� − 1, �}}| = 0 and |{q ∈ [p] : jq + 1 < j(q+1)}| = 1.

It follows that

K′ = (K0, K1, . . . , Kr−1, Kr, Ks, Ks+1, . . . , Kk),

where (r, s) is an �-splitting pair. Finally, plugging in |{q ∈ [p] : jq ∈ {� − 1, �}}| = 0 into 

(5.9), and using that (r, s) is the only pair (jq, j(q+1)) satisfying jq + 1 < j(q+1), yields

|ᾱ>xr+1,<xs
| ≥ −1 + [is − ir+1 − 1] = is − ir+1 − 2.

On the other hand, by assumption, |ᾱ>xr+1,<xs
| ≤ is − ir+1 − 2, so we conclude

|ᾱ>xr+1,<xs
| = is − ir+1 − 2. �

Remark 5.12. In the proof of Lemma 5.11 we only used the condition dim
(∑

K∈K′ K
)

≤

|K′| + 1, so the reader might wonder why we assume that K′ is sharp-critical. By As-

sumption 5.5, the only other possibility would be for K′ to be sharp-subcritical, but this 

is impossible by Lemma 5.10 and the assumption |ᾱ>xr+1,<xs
| ≤ is − ir+1 − 2 for every 

splitting pair (r, s).

6. Splitting and the subcritical extremals

In this section we introduce the splitting mechanism for posets, which is connected 

to a reduction to lower dimensional extremals. Consequently, we characterize the sub-

critical extremals (Theorem 6.6). To motivate the splitting mechanism recall that, by 

Lemma 5.10, we know that every sharp-subcritical collection

K′ := (Kj1
, . . . , Kj1

, . . . , Kjp
, . . . , Kjp

) ⊆ K,

must satisfy

∀ q ∈ [p] : jq /∈ {� − 1, �} and 1{jq+1<j(q+1)} |ᾱ>xjq +1,<xj(q+1)
|

= 1{jq+1<j(q+1)} (ij(q+1)
− ijq+1 − 1).

Fix an index jq such that jq /∈ {� − 1, �} and jq + 1 < j(q+1), so that

|ᾱ>xjq +1,<xj(q+1)
| = ij(q+1)

− ijq+1 − 1.
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Since |�ijq+1 + 1, ij(q+1)
− 1�| = ij(q+1)

− ijq+1 − 1, we must have

ᾱ≥xjq+1,≤xj(q+1)

bijection
�→ �ijq+1, ij(q+1)

�

under any linear extension. This means that the poset ᾱ can be split by factoring out 

the poset ᾱ≥xjq +1,≤xj(q+1)
, so that we are left with a poset with a shorter chain. We will 

show that |N=|2 = |N−||N+| implies that equality holds in Stanley’s inequalities also for 

the poset with the shorter chain. We may then resort to our induction hypothesis that 

the extremals in the case where the chain size is < k were already characterized.

Remark 6.1. The splitting mechanism described in this section can be viewed as a com-

binatorial equivalence of the projection formula for mixed volumes [16, Theorem 5.3.1]. 

This is another building block of our dictionary between geometry and combinatorics.

We now proceed to formalize the above splitting mechanism.

Definition 6.2. The split of ᾱ, based on a splitting pair (r, s), is given by defining posets 

ᾱ1, ᾱ2 as

ᾱ1 := ᾱ≥xr+1,≤xs
and ᾱ2 := (ᾱ\ᾱ1) ∪ {x},

where the relations for x are defined via x ∗ z, for ∗ ∈ {<, >} and z ∈ ᾱ\ᾱ1, if, and only 

if, there exists w ∈ ᾱ1 such that w ∗ z.2

Let (r, s) be a splitting pair satisfying � /∈ {r + 1, s}. We will define the analogues of 

N−, N=, N+ associated with the posets ᾱ1, ᾱ2. This requires distinguishing between two 

cases: (1) x� ∈ {xr+2, . . . , xs−1} and (2) x� ∈ {x1, . . . , xr} ∪ {xs+1, . . . , xk}; note that 

x� /∈ {xr+1, xs} by assumption.3 For ι = 1, 2 let

N ι := {bijections σ : ᾱι → [|ᾱι|] : w ≤ z ⇒ σ(w) ≤ σ(z) ∀ w, z ∈ ᾱi},

and, given ◦ ∈ {−, =, +}, let 1◦ := 1{◦ is +} − 1{◦ is −}.

Case (1). For ◦ ∈ {−, =, +} set

N 1
◦ := {σ ∈ N 1 : σ(xj) = ij − ir+1 + 1j=�1◦ for j ∈ �r + 1, s�},

N 2
◦ := {σ ∈ N 2 : σ(xj) = ij for j ∈ �0, r�, σ(x) = ir+1,

and σ(xj) = ij − (is − ir+1) for j ∈ �s + 1, k + 1�};

2 The new element x should be thought of as a compression of ᾱ1 into one element, namely x. The relations 
for x are consistent since we cannot have w1 < z < w2 for w1, w2 ∈ ᾱ1, z ∈ ᾱ\ᾱ1 because this would imply 
that xr ≤ z ≤ xs, and hence z ∈ ᾱ1, which is a contradiction.

3 We use the convention {xa, . . . , xz} = ∅ when z < a; e.g., {x1, . . . , xr−2} = ∅ when r = 0.
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note that the definition of N 2
◦ is independent of ◦.

Case (2). For ◦ ∈ {−, =, +} set

N 1
◦ := {σ ∈ N 1 : σ(xj) = ij − ir+1 for j ∈ �r + 1, s�},

and

N 2
◦ := {σ ∈ N 2 : σ(xj) = ij + 1{j=�}1◦ for j ∈ �0, r�, σ(x) = ir+1,

and σ(xj) = ij − (is − ir+1) + 1j=�1◦ for j ∈ �s + 1, k + 1�};

note that the definition of N 1
◦ is independent of ◦.

Before exploiting the splitting mechanism we start with a quick observation.

Lemma 6.3. For every splitting pair (r, s),

|ᾱ>xr+1,<xs
| ≤ is − ir+1 − 1 − 1r+1=� − 1s=�. (6.1)

Proof. The converse of Theorem 5.3 yields

|ᾱ>xr+1,<xs
| ≤ is − ir+1 − 1 for every splitting pair (r, s).

Hence, it suffices to consider the case where either r + 1 = � or s = �. Suppose r + 1 = �; 

the case s = � is proven analogously. Then, every σ ∈ N+ (which must exist since 

|N=| > 0 ⇒ |N+| > 0 as |N=|2 = |N−||N+|) satisfies σ(xr+1) = ir+1 + 1 and σ(xs) = is. 

Hence, given z ∈ ᾱ>xr+1,<xs
, the number of available spots for σ(z) is |�ir+1+2, is−1�| =

(is − 1) − (ir+1 + 2) + 1 = is − ir+1 − 2. �

Proposition 6.4. Fix a splitting pair (r, s) satisfying � /∈ {r + 1, s}, and let ᾱ1, ᾱ2 be the 

split based on (r, s). One of the following must occur:

(i) |N ι
=|2 = |N ι

−||N ι
+| for every ι ∈ {1, 2}.

(ii) |ᾱ>xr+1,<xs
| ≤ is − ir+1 − 2.

Proof. We will prove the proposition under the assumption that case (1) occurs; the proof 

for case (2) is analogous. Note that under case (1) we trivially have |N 2
=|2 = |N 2

−||N 2
+|

since N 2
◦ is independent of ◦.

It suffices to show that if (ii) is false then (i) is true. This will be proven by showing 

that if (ii) is false, then, for any ◦ ∈ {−, =, +},

|N◦| = |N 1
◦ ||N 2

◦ |, (6.2)

where we recall that N 2
◦ is independent of ◦. Plugging (6.2) into |N=|2 = |N−|N+| gives 

|N 1
=|2|N 2

◦ |2 = |N 1
−||N 1

+||N 2
◦ |2. Canceling |N 2

◦ | on both sides (|N 2
◦ | > 0 since |N=| > 0) 

gives (i).
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We now turn to prove (6.2) under the assumption that (ii) is false. By (6.1), (ii) being 

false is equivalent to |ᾱ>xr+1,<xs
| = is − ir+1 − 1, i.e., |ᾱ1| = is − ir+1 + 1. We will prove 

(6.2) by constructing a bijection b : N◦ → N 1
◦ × N 2

◦ for ◦ ∈ {−, =, +}. Fix ◦ ∈ {−, =, +}

and define a map b via b = (b1, b2), with b1 : N◦ → N 1
◦ , b2 : N◦ → N 2

◦ , where we set, 

for each σ ∈ N◦,

For z ∈ ᾱ1 : b1(σ)(z) = σ(z) − ir+1,

For z ∈ ᾱ2 : b2(σ)(z) =

⎧

⎪⎪⎨

⎪⎪⎩

σ(z) if σ(z) ∈ �0, ir+1 − 1�,

ir+1 if z = x,

σ(z) − (is − ir+1) if σ(z) ∈ �is + 1, n + 1�.

We will first check that, given σ ∈ N◦, b1(σ) ∈ N 1
◦ and b2(σ) ∈ N 2

◦ . We will then 

construct a map b′ : N 1
◦ × N 2

◦ → N◦ and show that b ◦ b′ = b′ ◦ b = Id, completing the 

proof. That b1(σ) ∈ N 1
◦ and b2(σ) ∈ N 2

◦ follows from the definitions of N 1
◦ , N 2

◦ and the 

fact that σ ∈ N◦. The map b′ : N 1
◦ × N 2

◦ → N◦ is defined by taking σι ∈ N ι
◦ , for ι = 1, 2, 

and setting, for z ∈ ᾱ,

b′(σ1, σ2)(z) =

⎧

⎪⎪⎨

⎪⎪⎩

σ2(z) if z ∈ ᾱ2 and σ2(z) ∈ �0, ir+1 − 1�

σ1(z) + ir+1 if z ∈ ᾱ1

σ2(z) + (is − ir+1) if z ∈ ᾱ2 and σ2(z) ∈ �ir+1 + 1, |ᾱ2|�

.

To see that b′(σ1, σ2) ∈ N◦ we first need to check that given z < w we have 

b′(σ1, σ2)(w) < b′(σ1, σ2)(z). If w, z ∈ ᾱ1 or w, z ∈ ᾱ2, this follows from σi ∈ N ι
◦ , 

for ι = 1, 2, so it remains to check w ∈ ᾱ1, z ∈ ᾱ2 and w ∈ ᾱ2, z ∈ ᾱ1; we check the first 

case and the second case is analogous. Suppose that w ∈ ᾱ1 and z ∈ ᾱ2. Then, we must 

have σ2(z) ∈ �0, ir+1 − 1� since, by the definition of x, w > z ⇒ x > z and σ2(x) = ir+1. 

Hence, b′(σ1, σ2)(w) = σ1(w) + ir+1 > σ2(z) = b′(σ1, σ2)(z). Now that we know that 

b′(σ1, σ2) respects the relations of ᾱ, in order to show that b′(σ1, σ2) ∈ N◦, it remains to 

check that b′(σ1, σ2)(xj) = ij + 1j=�1◦ for all 1 ≤ j ≤ k. This follows immediately from 

the definitions of N ι
◦ for ι ∈ {1, 2} and ◦ ∈ {−, =, +}. Finally, that b ◦ b′ = b′ ◦ b = Id

follows from the construction of b and b′. �

The next result provides a geometric characterization under which the case in Propo-

sition 6.4(i) occurs.

Lemma 6.5. Let K′ ⊆ K be a sharp subcritical collection. Then, there exists a splitting pair 

(r, s) satisfying � /∈ {r + 1, s}, with a corresponding split ᾱ1, ᾱ2, such that Kr, Ks ∈ K′

and |N ι
=|2 = |N ι

−||N ι
+| for every ι ∈ {1, 2}.

Proof. By Lemma 5.10,

K′ = (Kj1
, . . . , Kjp

),
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where j0 := −1, 0 ≤ j1 < · · · < jp ≤ k, jp+1 := k + 1, κq ≤ ijq+1 − ijq
− 1 − 1jq∈{�−1,�}, 

and p ∈ [n − k − 2], must satisfy

∀ q ∈ [p] : jq /∈ {� − 1, �} and 1{jq+1<j(q+1)} |ᾱ>xjq +1,<xj(q+1)
|

= 1{jq+1<j(q+1)} [ij(q+1)
− ijq+1 − 1].

Note that, for any 0 ≤ q ≤ p, (jq + 1, j(q+1)) 
= (0, k + 1). Indeed, for the latter to occur 

we need to have p = 1 and q = 0, but then (j0 + 1, j(0+1)) = (0, jp) 
= (0, k + 1) as 

jp < k + 1. We now show that there exists 0 ≤ q′ ≤ p such that (jq′ + 1, j(q′+1)) is a 

splitting pair. Indeed, if not, then jq + 1 = j(q+1) for every 0 ≤ q ≤ p so we get j1 =

0, j2 = 1, . . . , jp+1 = k + 1 which contradicts jq /∈ {� − 1, �}. Setting r := jq′ , s := j(q′+1), 

we get a splitting pair (r, s) such that Kr, Ks ∈ K′ and |ᾱ>xr+1,<xs
| = is − ir+1 − 1. By 

Proposition 6.4, we must have |N ι
=|2 = |N ι

−||N ι
+| for every ι ∈ {1, 2}. �

Using Lemma 6.5, the characterization of the subcritical extremals of Stanley’s in-

equalities now follows.

Theorem 6.6. (Subcritical extremals)

Suppose that K has a sharp-subcritical collection. Then there exists a splitting pair 

(r, s) such that the associated posets split ᾱ1, ᾱ2 satisfies |N ι
=|2 = |N ι

−||N ι
+| for every 

ι ∈ {1, 2}.

Our induction hypothesis Assumption 2.10 is that Theorem 1.3 and Theorem 1.5 hold 

for k − 1. Hence, without loss of generality we may assume from now on that

For all splits ᾱ1, ᾱ2 : |N ι
=|2 
= |N ι

−||N ι
+| ∀ ι ∈ {1, 2}. (6.3)

By Theorem 6.6, the assumption (6.3) implies that K is critical. Further, by Proposi-

tion 6.4,

|ᾱ>xr+1,<xs
| ≤ is − ir+1 − 2 for every splitting pair (r, s) satisfying � /∈ {r + 1, s},

so using in addition Lemma 6.3, we get

|ᾱ>xr+1,<xs
| ≤ is − ir+1 − 2 for every splitting pair (r, s).

Putting everything together we assume from now on:

Assumption 6.7. The collection K is critical and

|ᾱ≥xr+1,≤xs
| ≤ is − ir+1 for every splitting pair (r, s).
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7. Mixing

Under the current assumptions, we know that ᾱ cannot be totally ordered (Re-

mark 5.6). In this section, we develop the notion of mixing which takes advantage of 

the fact that ᾱ must have some incomparable elements. The level of mixing will depend 

on the criticality notions developed in Section 5, which will be further developed in 

the current section. We begin with Section 7.1 which characterizes the locations where 

elements of the poset can be placed. We then introduce in Section 7.2 the notions of 

criticality and maximality for splitting pairs. Finally, Section 7.3 provides information 

on the mixing properties of splitting pairs.

7.1. Range

A fixed element y ∈ α can only be placed in a limited number of locations under any 

linear extension. For example, if α is totally ordered, there would be only one such loca-

tion. We start by defining a few quantities associated to y which will provide information 

on the possible placements of y under linear extensions.

Definition 7.1. Given y ∈ α let imax(y) be the maximum index such that y > ximax(y)

and let imin(y) be the minimum index such that y < ximin(y). Set

l◦(y) := max
r≤imax(y)

(i◦
r + |ᾱ>xr,≤y|) and u◦(y) := min

s≥imin(y)
(i◦

s − |ᾱ≥y,<xs
|),

where

i◦
j := ij + 1j=�1◦,

and let

m◦
min(y) := min

σ∈N◦

σ(y) and m◦
max(y) := max

σ∈N◦

σ(y).

Note that i◦
j is the location where xj is placed under every linear extension in N◦. 

Hence, for any choice of r ≤ imax(y) (res. s ≥ imin(y)), y must be placed at a location 

at least as large (res. small) as i◦
r + |ᾱ>xr,≤y| (res. i◦

s − |ᾱ≥y,<xs
|).

Definition 7.1 immediately implies the following relations between l◦ (res. u◦) for 

◦ ∈ {−, =, +}:

Lemma 7.2. Fix y ∈ α. Then,

(i) l=(y) − 1 ≤ l−(y) ≤ l=(y) ≤ l+(y) ≤ l=(y) + 1.

(ii) If imax(y) < �, then l−(y) = l=(y) = l+(y).

(iii) u=(y) − 1 ≤ u−(y) ≤ u=(y) ≤ u+(y) ≤ u=(y) + 1.
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(iv) If imin(y) > �, then u−(y) = u=(y) = u+(y).

The next result provides necessary and sufficient conditions for an element of the 

poset to be placed at a specific location under linear extensions.

Lemma 7.3. Fix y ∈ α, ◦ ∈ {−, =, +}, and i ∈ [n]. There exists σ ∈ N◦ with σ(y) = i if, 

and only if, i ∈ �l◦(y), u◦(y)� and i 
= i◦
m for any m ∈ [k].

Proof. =⇒: Fix σ ∈ N◦ such that σ(y) = i. Since y 
= xm for all m ∈ [k] it follows 

that i 
= i◦
m. We now show i ≤ u◦(y); the argument for i ≥ l◦(y) is analogous. Given 

any s ≥ imin(y), every element z ∈ ᾱ>y,<xs
must satisfy i = σ(y) < σ(z) < σ(xs). 

Hence, σ(z) can take on only σ(xs) − i −1 possible values, which means that |ᾱ>y,<xs
| ≤

σ(xs) − i − 1. In other words, i ≤ σ(xs) − |ᾱ≥y,<xs
| = i◦

s − |ᾱ≥y,<xs
|. The latter holds 

for any s ≥ imin(y) which shows i ≤ u◦(y).

⇐=: The assumption i 
= i◦
m for any m ∈ [k] implies that we can choose m ∈ [k] such 

that i◦
m < i < i◦

m+1. Consider the poset ᾱ′ := ᾱ with the relabeling

x′
j = xj for j ∈ �1, m�, x′

m+1 = y, x′
j = xj−1 for j ∈ �m + 2, k + 1�,

i′
j = i◦

j for j ∈ �1, m�, i′
m+1 = i, i′

j = i◦
j−1 for j ∈ �m + 2, k + 1�.

To complete the proof it suffices to show that there exists a linear extension σ′ of ᾱ′

satisfying σ′(x′
j) = i′

j for all j ∈ �1, k + 1�. By Theorem 5.3, it suffices to show that

|ᾱ′
>x′

r+1,<x′
s
| ≤ i′

s − i′
r+1 − 1 for all 0 ≤ r + 1 < s ≤ k + 1. (7.1)

When r + 1 
= m + 1, s 
= m + 1, (7.1) holds by the assumption |N◦| > 0 for all 

◦ ∈ {−, =, +} and Theorem 5.3. The case r +1 = m +1 = s is impossible since r +1 < s. 

It remains to check the cases r + 1 = m + 1, s 
= m + 1 and r + 1 
= m + 1, s = m + 1. 

We verify (7.1) in the case s = m + 1; the proof for the case r + 1 = m + 1 is analogous. 

When s = m + 1, (7.1) is equivalent to

|ᾱ>xr+1,<y| = |ᾱ′
>x′

r+1,<x′
s
| ≤ i′

s − i′
r+1 − 1 = i − i◦

r+1 − 1. (7.2)

When r +1 ≤ imax(y), (7.2) holds since, by assumption, i − i◦
r+1 −1 ≥ l◦(y) − i◦

r+1 −1, so 

(7.2) holds by the definition of l◦(y). When imax(y) < r + 1 < s = m + 1, ᾱ>xr+1,<y = ∅

because if there exists xr+1 < z < y, that would imply xr+1 < y, which contradicts the 

maximality of imax(y). Hence, (7.2) is equivalent to 0 ≤ i − i◦
r+1 − 1, which holds since 

i◦
r+1 ≤ i◦

m < i, where the last inequality holds by the definition of m. �

Lemma 7.3 immediately implies:

Corollary 7.4. Fix y ∈ α and ◦ ∈ {−, =, +}. Then,

l◦(y) ≤ m◦
min(y) and m◦

max(y) ≤ u◦(y).
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A second corollary of Lemma 7.3 is the proof of Remark 1.7. Note that Assumption 4.1

is not needed for the following result.

Proposition 7.5. The condition in Theorem 1.3(iii) is equivalent to

∀ y < x� ∃ s(y) ∈ �0, k + 1� s.t. y < xs(y) and |ᾱ>y,<xs(y)
| > is(y) − i�,

and

∀ y > x� ∃ r(y) ∈ �0, k + 1� s.t. y > xr(y) and |ᾱ>xr(y),<y| > i� − ir(y).

Proof. By Lemma 3.3(a), the conditions in Theorem 1.3(iii) are equivalent to: σ−1(i� −

1) � x� and σ−1(i� + 1) � x� ∀ σ ∈ N=. We start by showing that

∀y < x� ∃ s(y) ∈ �0, k + 1� s.t. y < xs(y) and |ᾱ>y,<xs(y)
| > is(y) − i�

⇐⇒

σ−1(i� − 1) � x� ∀ σ ∈ N=;

The equivalence ∀ y > x� ∃ r(y) ∈ �0, k+1� s.t. y > xr(y) and |ᾱ>xr(y),<y| > i�−ir(y) ⇐⇒

σ−1(i� + 1) � x� ∀ σ ∈ N= is analogous.

Indeed, the statement σ−1(i� − 1) � x� ∀ σ ∈ N= is equivalent to the statement that 

for all y < x�, there exists no σ ∈ N= such that σ(y) = i� − 1. We will show that the 

latter is equivalent to u=(y) < i� −1, which completes the proof. To see this equivalence, 

note that if u=(y) < i� − 1, then Lemma 7.3 implies that exists no σ ∈ N= such that 

σ(y) = i� − 1. Conversely, suppose there exists no σ ∈ N= such that σ(y) = i� − 1, so, 

by Lemma 7.3, i� − 1 
= �l=(y), u=(y)�. Note that, by Lemma 7.3, u=(y) ≤ i� − 1 as 

y < x�. Hence, the possibility of i� − 1 < l=(y) ≤ u=(y) cannot occur, which means that 

i� − 1 
= �l=(y), u=(y)� ⇒ u=(y) < i� − 1, as claimed. �

7.2. Introduction to mixing

When ᾱ is totally ordered we have, for any splitting pair (r, s),

ᾱ≥xr+1,≤xs

bijection
�→ �ir+1, is�

under any linear extension σ ∈
⋃

◦∈{−,=,+} N◦. But under the current assumptions, ᾱ is 

not totally ordered (Remark 5.6), which means that a certain amount of mixing must 

occurs; see Definition 7.9 for a precise statement. In Section 7.3 we will show that there is 

at least one mixed element (Lemma 7.10) for any splitting pair (r, s). When the splitting 

pair is in addition an �-splitting pair we characterize the exact number of mixed element, 

which depends on the criticality level of the pair:
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Definition 7.6. An �-splitting pair (r, s) is supercritical if K′ := (K0, . . . , Kr, Ks, . . . , Kk)

satisfies dim
(∑

K∈K′ K
)

≥ |K′| + 2, and is sharp-critical if dim
(∑

K∈K′ K
)

= |K′| + 1.

We show in Section 7.3 how the above notion of criticality is related to the number 

of mixed elements (Lemma 7.13). The sharp-critical �-splitting pairs give rise to the 

following unique pair which will play an important role in the characterization of the 

extremals of the critical posets.

Definition 7.7. Let (rι, sι)ι be the sharp-critical �-splitting pairs, where we assume that 

at least one such pair exists. The maximal splitting pair (rmax, smin) is given by rmax :=

maxι rι and smin := minι sι. Associated to the maximal splitting pair are

Kmax := (K0, . . . , Krmax
, Ksmin

, . . . , Kk),

βmax := β�0,rmax�∪�smin,k�, and α\βmax = α>xrmax+1,<xsmin
,

(7.3)

where the last identity follows from Lemma 2.3.

The notion of the maximal splitting pair in Definition 7.7 is tied to the notion of max-

imal sharp-critical collections introduced [17, section 9.1], as part of the characterization 

of the extremals of the Alexandrov-Fenchel inequality for critical polytopes. In partic-

ular, a sharp-critical collection K′ ⊆ K is maximal if, for any K′ ⊆ K′′ ⊆ K, we have 

dim
(∑

K∈K′′ K
)

≥ |K′′| +2. In other words, any addition of polytopes to K′ destroys its 

sharp-critical nature. The next result explains the connection between these two notions 

of maximality.

Proposition 7.8. Suppose there exists a sharp-critical collection. Then, Kmax is the only 

maximal sharp-critical collection.

Proof. We start by recalling that all sharp-critical maximal collections of K must be 

disjoint [17, Lemma 9.2]. By assumption there exists a sharp-critical collection K′ so 

let K∗ be the (necessarily unique) maximal sharp-critical collection containing K′. On 

the other hand, Lemma 5.11 shows that any two sharp-critical collections of K have a 

non-trivial intersection. It follows that K∗ is the only maximal sharp-critical collection 

in K. Next we show that

K∗ = {union of all sharp-critical collections} = Kmax,

where the second identity follows from Lemma 5.11, which completes the proof. In-

deed, clearly, K∗ ⊆
⋃

{sharp-critical collection} since K∗ is a sharp-critical collection. If 
⋃

{sharp-critical collection} a strictly greater than K∗, i.e., it contains a polytope K not 

in K∗, then there exists a sharp-critical collection K′′ such that K ∈ K′′. Let K∗∗ be the 

(necessarily unique) maximal sharp-critical collection containing K′′. Then K∗∗ 
= K∗ (as 
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splitting pair

≥ 1 mixed element(s)
(Lemma 7.10)

supercritical �-splitting pair

≥ 2 mixed elements
(Corollary 7.14)

sharp-critical �-splitting pair

exactly 1 mixed element
(Lemma 7.13)

sharp-critical maximal splitting pair

exactly 1 mixed element, yσ
crit

(Corollary 7.15)

Fig. 7.1. A summary of the mixing results from Section 7.3.

K ∈ K∗∗ but K /∈ K∗), which contradicts the fact K∗ is the only maximal sharp-critical 

collection. �

We conclude the section by introducing notation that will be used throughout the 

paper. Let

�ij , ij+1�
◦ := �i◦

j , i◦
j+1� = �ij + 1j=�1◦, ij+1 + 1j+1=�1◦�. (7.4)

We use this notation when constants are added as well, for example, �ij +1, ij+1 −1�◦ :=

�i◦
j + 1, i◦

j+1 − 1�.

7.3. Mixing properties of splitting pairs

In this section we analyze the mixing properties of splitting pairs—see Fig. 7.1 for a 

summary. We start by making the definition of a mixed element precise (recall (2.4)):

Definition 7.9. Fix a splitting pair (r, s) and σ ∈ N◦ for ◦ ∈ {−, =, +}. An element 

yσ ∈ βr ∪ βs is a mixed element if σ(yσ) ∈ �ir+1, is�\{ir+1, . . . , is}.

Our first result in this section is on the existence of mixed elements.

Lemma 7.10. Fix a splitting pair (r, s) and σ ∈ N=. There exists a mixed element yσ ∈

βr ∪ βs such that σ(yσ) ∈ �ir+1, is�\{ir+1, . . . , is}.
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Proof. Recall that |ᾱ≥xr+1,≤xs
| ≤ is − ir+1 by Assumption 6.7, which is equivalent to 

|α>xr+1,<xs
| ≤ is − ir+1 − (s − (r + 1)) − 1. Fix σ ∈ N=. If there exists no yσ ∈ βr ∪ βs

with σ(yσ) ∈ �ir+1, is�\{ir+1, . . . , is}, then, by Lemma 2.3,

|α>xr+1,<xs
| = |α\(βr ∪ βs ∪ α<xr+1

∪ α>xs
)| ≥ |�ir+1, is�\{ir+1, . . . , is}|

= is − ir+1 + 1 − (s − (r + 1) + 1) = is − ir+1 − (s − (r + 1)),

which is a contradiction. �

Corollary 7.11. For every 0 ≤ j ≤ k, ij + 1 < ij+1.

Proof. If k = 1 then the corollary holds by the assumption i� < i�+1 − 1. Otherwise, 

note that (r, s) = (j − 1, j + 1) is a splitting pair. Fix σ ∈ N= and note that Lemma 7.10

implies that there exists yσ /∈ ᾱ≥xj ,≤xj+1
with σ(yσ) ∈ �ij , ij+1�. The first condition 

gives yσ /∈ {xj , xj+1}, so σ(yσ) /∈ {ij , ij+1}. We conclude that �ij + 1, ij+1 − 1� =

�ij , ij+1� \ {ij , ij+1} is nonempty. �

Next we move to the mixing properties of �-splitting pairs. This requires the following 

simple result.

Lemma 7.12.

• Fix j ∈ �0, k�. For every σ ∈ N=, �ij +1, ij+1 −1� ⊆ σ(βj) and, for every S ⊆ �0, k�, 
⋃

j∈S�ij + 1, ij+1 − 1� ⊆ σ(βS).

• Fix j ∈ �0, k�\{� −1, �} and ◦ ∈ {−, +}. For every σ ∈ N◦, �ij +1, ij+1 −1�◦ ⊆ σ(βj)

and, for every S ⊆ �0, k�\{� − 1, �}, 
⋃

j∈S�ij + 1, ij+1 − 1�◦ ⊆ σ(βS).

Proof. • Fix σ ∈ N=. We will show that σ(y) ∈ �ij + 1, ij+1 − 1� ⇒ y ∈ βj which 

implies �ij + 1, ij+1 − 1� ⊆ σ(βj); the statement about S follows by taking unions. If 

σ(y) ∈ �ij + 1, ij+1 − 1�, then clearly y ∈ α and σ(xj) = ij < σ(y) < ij+1 = σ(xj+1). 

Hence, neither y < xj nor y > xj+1 can occur. It follows that y ∈ βj .

• The proof is the same as for the first part where we use that j /∈ {� −1, �} ⇒ σ(xj) =

ij and σ(xj+1) = ij+1. �

We now show how the mixing properties of �-splitting pairs are related to their criti-

cality properties.

Lemma 7.13. Fix an �-splitting pair (r, s), let

K′ := (K0, . . . , Kr, Ks, . . . , Kk),

and set
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c := dim

(
∑

K∈K′

K

)

− |K′|.

Then, for any fixed σ ∈ N◦, for ◦ ∈ {−, =, +}, there are exactly c distinct mixed elements 

yσ
1 , . . . , yσ

c ∈ βr ∪ βs satisfying σ(yσ
1 ), . . . , σ(yσ

c ) ∈ �ir+1, is�\{ir+1, . . . , is}.

Proof. By Lemma 5.1,

|β�0,r�∪�s,k�| = dim

(
∑

K∈K′

K

)

and |K′| = | ∪j∈�0,r�∪�s,k� �ij + 1, ij+1 − 1�|.

On the other hand, applying Lemma 7.12 to S := �0, r� ∪ �s, k� yields ∪j∈�0,r�∪�s,k��ij +

1, ij+1 − 1� ⊆ σ(β�0,r�∪�s,k�). Hence, there are exactly c distinct elements {yσ
i }i∈[c]

satisfying yσ
i ∈ β�0,r�∪�s,k� and σ(yσ

i ) /∈ ∪j∈�0,r�∪�s,k��ij + 1, ij+1 − 1�. Now recall 

that β�0,r�∪�s,k� = βr ∪ βs ∪ α<xr+1
∪ α>xs

(Lemma 2.3), and note that σ(yσ
i ) /∈

∪j∈�0,r�∪�s,k��ij + 1, ij+1 − 1� implies that yσ
i ∈ βr ∪ βs. �

Corollary 7.14. Let (r, s) be a supercritical �-splitting pair. Then, for any σ ∈ N◦, for 

◦ ∈ {−, =, +}, there are c ≥ 2 distinct mixed elements yσ
1 , . . . , yσ

c ∈ βr ∪ βs satisfying 

σ(yσ
1 ), . . . , σ(yσ

c ) ∈ �ir+1, is�\{ir+1, . . . , is}.

Note that Corollary 7.14 is an improvement on Lemma 7.10 in the setting of super-

critical �-splitting pairs, as it guarantees the existence of two distinct mixed elements 

rather than one. In addition, because Corollary 7.14 specializes to �-splitting pairs it can 

handle N◦, for any ◦ ∈ {−, =, +}, while Lemma 7.10 applies only to N=.

We conclude this section by specializing to the setting where the �-splitting pair is 

maximal. Since the maximal splitting pair is sharp-critical, Lemma 7.13 immediately 

gives that we have exactly one mixed element.

Corollary 7.15. Fix ◦ ∈ {−, =, +} and σ ∈ N◦. There exists a unique mixed element yσ
crit

satisfying yσ
crit ∈ βrmax

∪ βsmin
and σ(yσ

crit) ∈ �irmax+1, ismin
�\{irmax+1, . . . , ismin

}.

8. The extreme normal directions

Once Assumption 6.7 is set in place, we are ready, in principle, to apply Theorem 2.8. 

However, Theorem 2.8 characterizes the extremals geometrically in terms of the (B, K)-

extreme normal directions so a combinatorial interpretation of these vectors is needed. 

The goal of this section is to characterize, combinatorially, a sufficient number of the 

(B, K)-extreme normal directions so that Theorem 2.8 can be applied.

We recall that {ej}j∈[n−k] is the standard basis of Rn−k and, for u, v ∈ [n −k] distinct, 

we let euv := eu−ev√
2

and ouv := eu+ev√
2

. We also recall the definition (2.4):

βi := α\(α<xi
∪ α>xi+1

).
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The next result characterizes certain faces of the polytopes {Ki}.

Lemma 8.1. Fix i ∈ �0, k�. We have,

(i) For yj /∈ βi, Lin(F (Ki, ±ej)) = R
βi , and for yu, yv /∈ βi, Lin(F (Ki, ±euv)) = R

βi .

(ii) For yj ∈ βi, Lin(F (Ki, −ej)) = R
βi\α≤yj and Lin(F (Ki, ej)) = R

βi\α≥yj .

(iii) For yu, yv ∈ βi such that yv covers yu in α, Lin(F (Ki, euv)) = R
βi\{yu,yv} ⊕

span(ouv).

Proof. We start by recalling (2.5):

Ki = Oβi
+ 1α>xi+1

for i ∈ �0, k�

so that

Lin(F (Ki, u)) = Lin(F (Oβi
, u)) ∀ u ∈ Sn−k−1.

(i) Let u ∈ {±ej} so, since hOβi
(u) = 0 as yj /∈ βi, we get that Lin(F (Ki, u)) =

Oβi
∩ {tj = 0} = Oβi

, where the last equality holds as yj /∈ βi. Similarly, let 

u ∈ {±euv} so, since hOβi
(u) = 0 as yu, yv /∈ βi, we get that Lin(F (Ki, u)) =

Oβi
∩ {tu = tv} = Oβi

, where the last equality holds as yu, yv /∈ βi. The proof is 

complete as dim Oβi
= |βi| (Lemma 2.1).

(ii) Since hOβi
(−ej) = 0, we get Lin(F (Ki, −ej)) = Oβi

∩ {tj = 0} = Oβi\α≤yj
where 

the last equality holds as yj ∈ βi. Analogously, since hOβi
(ej) = 1 (because yj ∈ βi), 

we get Lin(F (Ki, ej)) = Oβi
∩ {tj = 1} = Oβi\α≥yj

.

(iii) Since yu ≤ yv we have hOβi
(euv) = 0, so Lin(F (Ki, euv)) = Oβi

∩{tu = tv}. Since yv

covers yu, it follows from Lemma 2.1(iii) that dim(Lin(F (Ki, euv))) = |βi| − 1. On 

the other hand, since Lin(F (Ki, euv)) ⊥ euv, we have Lin(F (Ki, euv)) ⊆ R
βi ∩e⊥

uv =

R
βi\{yu,yv} ⊕span(ouv). The proof is complete since dim(Rβi\{yu,yv} ⊕span(ouv)) =

|βi| − 1. �

The following proposition, which is the main result of this section, characterizes 

combinatorially some of the (B, K)-extreme normal directions. We remark that the 

(B, K)-extreme normal directions given in Proposition 8.2(e–h) will be used only for 

the characterization of the extremals of sharp-critical posets.

Proposition 8.2. The following vectors are (B, K)-extreme normal directions:

(a) For each fixed 0 ≤ m ≤ �: −ej for any j such that yj ∈ α>xm
and there exists 

σ ∈ N= satisfying σ(yj) = im + 1.

(b) For each fixed � ≤ m ≤ k + 1: ej for any j such that yj ∈ α<xm
and there exists 

σ ∈ N= satisfying σ(yj) = im − 1.
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(c) euv for any u, v such that yu < yv and there exists σ ∈ N= satisfying σ(yu) + 1 =

σ(yv).

(d) euv for any u, v such that yu < yv and there exists σ ∈ N= satisfying σ(yu) = i� − 1

and σ(yv) = i� + 1.

(e) For each fixed rmax + 1 ≤ m ≤ � − 1: −ej for any j such that yj ∈ α>xm
and there 

exists σ ∈ N= satisfying σ(yj) = im + 2.

(f) For each fixed � + 1 ≤ m ≤ smin: ej for any j such that yj ∈ α<xm
and there exists 

σ ∈ N= satisfying σ(yj) = im − 2.

(g) −ej for any j such that yj ∈ α>x�−1
and there exists σ ∈ N+ satisfying σ(yj) =

i�−1 + 2.

(h) ej for any j such that yj ∈ α<x�+1
and there exists σ ∈ N− satisfying σ(yj) = i�+1−2.

Note that parts (a–b), which suffice for the supercritical posets, provide information 

about nearest neighbors of xm, while parts (e–f), which are needed for the critical posets, 

provide information about second-nearest neighbors of xm.

Proof. (of Proposition 8.2) By Definition 2.4, we need to show that, whenever u is one 

of the vectors in the proposition, we have, for any collection K′ ⊆ K,

dim

(
∑

K∈K′

F (K, u)

)

≥ |K′|.

Let j0 := −1 < 0 ≤ j1 < · · · < jp ≤ k < k + 1 =: jp+1 and κ1, . . . , κp, with 0 ≤ κq ≤

ijq+1 − ijq
− 1 − 1jq∈{�−1,�}, for jq ∈ �0, k�, and set

K′ := (Kj1
, . . . , Kj1

︸ ︷︷ ︸

κ1

, . . . , Kjp
, . . . , Kjp

︸ ︷︷ ︸

κp

),

J := {j1, . . . , jp}.

For notational simplicity we set

Ij := �ij + 1, ij+1 − 1� for j ∈ �0, k�, IS := ∪jq∈SIjq
for S ⊂ �0, k�; (8.1)

for example,

I�r+1,s� = �ir+1, is�\{ir+1, . . . , is}.

Note that

|IJ | − 1�−1∈J − 1�∈J ≥ |K′|,

because 0 ≤ κq ≤ ijq+1 − ijq
− 1 − 1jq∈{�−1,�} and since Ijq

= ijq+1 − ijq
− 1.
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(a) Fix 0 ≤ m ≤ � and consider σ ∈ N= such that σ(yj) = im + 1 where j is such that 

yj ∈ α>xm
. Let

γjq
:=

{

βjq
if yj /∈ βjq

βjq
\α≤yj

if yj ∈ βjq

,

and γJ := ∪jq∈Jγq. By Lemma 8.1(i–ii),

Lin(F (Kjq
, −ej)) = R

γjq for all jq ∈ J,

so, by (5.1),

Lin

(

F

(
∑

K∈K′

K, −ej

))

= R
γJ .

It follows that

dim

(
∑

K∈K′

F (K, −ej)

)

= |γJ |,

so it remains to show that |γJ | ≥ |K′|. Since |IJ | −1�−1∈J −1�∈J ≥ |K′|, it will suffice 

to show that

|γJ | ≥ |IJ | − 1�−1∈J − 1�∈J ,

which requires the following claim.

Claim 8.3.

(i) For jq 
= m, Ijq
⊆ σ(γjq

).

(ii) For jq = m, Im\{im + 1} ⊆ σ(γm).

Proof. (i) We need to consider the cases yj /∈ βjq
and yj ∈ βjq

. If yj /∈ βjq
then the 

result holds by Lemma 7.12. Suppose yj ∈ βjq
. Then, we must have m < jq; 

otherwise, jq < m (by assumption jq 
= m) so xjq+1 ≤ xm < yj , but this 

implies yj /∈ βjq
, which is a contradiction. Now let y be any element such 

that σ(y) ∈ Ijq
, which by Lemma 7.12, implies that y ∈ βjq

. Since σ(y) ≥

ijq
+ 1 > im + 1 = σ(yj), we can conclude that, in fact, y ∈ βjq

\α≤yj
= γjq

. To 

summarize, σ(y) ∈ Ijq
⇒ y ∈ γjq

, which shows Ijq
⊆ σ(γjq

).

(ii) We need to consider the cases yj /∈ βm and yj ∈ βm. Suppose yj /∈ βm. By 

Corollary 7.11, im + 1 < im+1 so σ(yj) = im + 1 ∈ Im ⊆ σ(βm), where we used 

Lemma 7.12. This contradicts yj /∈ βm so we are left to consider yj ∈ βm. Let 
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y be any element such that σ(y) ∈ Im\{im + 1} = �im + 2, im+1 − 1�. Then, 

y ∈ βm\α≤yj
since, by Lemma 7.12, y ∈ βm, but we also have σ(y) ≥ im + 2 >

im + 1 = σ(yj). To summarize, σ(y) ∈ Im\{im + 1} ⇒ y ∈ βm\α≤yj
, which 

shows Im\{im + 1} ⊆ σ(γm). �

In order to use Claim 8.3 in the proof of |γJ | ≥ |IJ | −1�−1∈J −1�∈J , we distinguish 

between two cases: m /∈ J and m ∈ J . If m /∈ J , then taking a union over jq ∈ J in 

Claim 8.3 gives IJ ⊆ σ(γJ ), so |γJ | ≥ |IJ | ≥ |IJ | − 1�−1∈J − 1�∈J , as desired.

Suppose then that m ∈ J . Taking a union over jq ∈ J in Claim 8.3 gives IJ\{im +

1} ⊆ σ(γJ ). Hence, if � ∈ J , we have |γJ | ≥ |IJ | − 1 ≥ |IJ | − 1�−1∈J − 1�∈J , which 

completes the proof. It remains to consider the case m ∈ J and � /∈ J :

Choose the largest 0 ≤ b ≤ p such that jb < �, so jb < � < jb+1, and, in particular, 

(jb, jb+1) is an �-splitting pair. By Lemma 7.10, there exists yσ ∈ βjb
∪ βjb+1 such 

that σ(yσ) ∈ I�jb+1,jb+1−1�. Since m = jq < � for some 0 ≤ q ≤ p, and since b is 

the largest element in �0, p� such that jb < �, we have q ≤ b, and hence m ≤ jb. It 

follows that σ(yj) = im+1 < ijb+1+1 ≤ σ(yσ), and, in particular, yσ /∈ α≤yj
. Hence, 

yσ ∈ (βjb
\α≤yj

) ∪(βjb+1
\α≤yj

) ⊆ γjb
∪γjb+1

⊆ γJ , so (IJ\{im+1}) ∪{σ(yσ)} ⊆ σ(γJ ). 

Finally, σ(yσ) /∈ IJ because J and �jb +1, jb+1 −1� do not intersect, which completes 

the proof since it implies that |γJ | ≥ |(IJ\{im +1}) ∪{σ(yσ)}| ≥ |IJ | −1 +1 = |IJ | ≥

|IJ | − 1�−1∈J − 1�∈J .

(b) The proof is analogous to part (a).

(c) Fix u, v such that there exist yu < yv with σ ∈ N= satisfying σ(yu) + 1 = σ(yv). For 

jq ∈ J , let

γjq
:=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βjq
if yu, yv /∈ βjq

βjq
\{yu, yv} if yu, yv ∈ βjq

,

βjq
\α≥yu

if yu ∈ βjq
, yv /∈ βjq

,

βjq
\α≤yv

if yu /∈ βjq
, yv ∈ βjq

.

We start by describing the faces of {Kjq
}jq∈J in the directions {euv}.

Claim 8.4. For every jq ∈ J ,

Lin(F (Kjq
, euv)) =

{

R
γjq ⊕ span(ouv) if yu, yv ∈ βjq

,

R
γjq otherwise.

Proof. There are four cases to consider:

• yu, yv ∈ βjq
: The claim follows from Lemma 8.1(iii).

• yu, yv /∈ βjq
: The claim follows from Lemma 8.1(i).

• yu ∈ βjq
, yv /∈ βjq

: We will show that Lin(F (Kjq
, euv)) = Lin(F (Kjq

, eu)), and 

the claim will then follow from Lemma 8.1(ii). Indeed, the assumption yv /∈ βjq
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implies that yv ∈ α<xjq
∪ α>xjq+1

. But yv /∈ α<xjq
because, otherwise, yu <

yv < xjq
, which contradicts the assumption yu ∈ βjq

. Hence, yv > xjq+1 so, by 

the definition (2.3) of Kjq
, tv = 1 for any t ∈ Oα. Since suptu∈[0,1] tu = 1 (as 

yu ∈ βjq
⇒ y 
< xjq

), it follows that hKjq
(euv) = suptu∈[0,1]

tu−tv√
2

= 0, and hence

Lin(F (Kjq
, euv)) = Kjq

∩ {tu = tv} = Kjq
∩ {tu = 1} = Lin(F (Kjq

, eu)),

as needed.

• yu /∈ βjq
, yv ∈ βjq

: The argument is analogous to the previous case: yu ∈ βjq
and 

yv /∈ βjq
. �

Next we prove the analogue of Claim 8.3.

Claim 8.5. Choose m ∈ �0, k + 1� such that im < σ(yu) < σ(yv) < im+1.

(i) For jq 
= m, Ijq
⊆ σ(γjq

).

(ii) For jq = m, Im\{σ(yu), σ(yv)} ⊆ σ(γm).

Proof. We need to consider the four cases (1) yu, yv ∈ βjq
, (2) yu, yv /∈ βjq

, (3) 

yu ∈ βjq
, yv /∈ βjq

, and (4) yu /∈ βjq
, yv ∈ βjq

.

(i) Case (1): For any y such that σ(y) ∈ Ijq
, we have y ∈ βjq

, by Lemma 7.12, 

and y /∈ {yu, yv}, since σ(yu), σ(yv) ∈ Im, and Im ∩ Ijq
= ∅ as m 
= jq. Hence, 

y ∈ βjq
\{yu, yv} = γjq

, so we conclude Ijq
⊆ σ(γjq

).

Case (2): Since γjq
= βjq

, Lemma 7.12 implies Ijq
⊆ σ(γjq

).

Case (3): For any y such that σ(y) ∈ Ijq
, we have y ∈ βjq

, by Lemma 7.12. 

On the other hand, the proof of Claim 8.4 showed that yv > xjq+1, so the 

assumption on m implies that jq < m, which means that σ(y) < ijq+1 ≤ im <

σ(yu). In particular, y /∈ α≥yu
so we conclude that y ∈ βjq

\α≥yu
= γjq

. It 

follows that Ijq
⊆ σ(γjq

).

Case (4) is analogous to case (3).

(ii) Case (1): For any y ∈ Im\{σ(yu), σ(yv)}, Lemma 7.12 implies that y ∈

βm\{yu, yv} = γm, which implies that Im\{σ(yu), σ(yv)} ⊆ σ(γm).

Case (2): Since γm = βm, Lemma 7.12 implies Im\{σ(yu), σ(yv)} ⊆ σ(γm).

Case (3): As shown in part (i) case (3), we must have jq < m so this case 

cannot occur.

Case (4) is analogous to case (3). �

Choose m ∈ �0, k + 1� such that im < σ(yu) < σ(yv) < im+1. To complete the 

proof we distinguish between two cases: m /∈ J and m ∈ J . Suppose m /∈ J . By (5.1)

and Claim 8.4, RγJ ⊆ Lin
(∑

K∈K′ F (K, euv)
)
, so dim

(∑

K∈K′ F (K, euv)
)

≥ |γJ |. 

On the other hand, by Claim 8.5 and as m /∈ J , |γJ | ≥ |IJ |. We conclude
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dim

(
∑

K∈K′

F (K, euv)

)

≥ |IJ | ≥ |IJ | − 1�−1∈J − 1�∈J ≥ |K′|,

which completes the proof.

Suppose that m ∈ J . By the definition of m, σ(yu), σ(yv) ∈ Im, so Lemma 7.12 im-

plies that yu, yv ∈ βm. By Claim 8.4, it follows that F (Km, euv) = R
γm ⊕ span(ouv). 

On the other hand, for any jq ∈ J , by the definition of γjq
, we have yu, yv /∈ γjq

. 

Hence, Rγjq ∩span(ouv) = {0} for all jq ∈ J , and in particular, RγJ ∩span(ouv) = {0}. 

It follows from (5.1) that

Lin

(
∑

K∈K′

F (K, euv)

)

= R
γJ ⊕ span(ouv),

and

dim

(
∑

K∈K′

F (K, euv)

)

= |γJ | + 1.

We now consider separately the cases � ∈ J and � /∈ J . Suppose � ∈ J . By Claim 8.5, 

|γJ | ≥ |IJ | − 2 so

|γJ | + 1 ≥ |IJ | − 1 ≥ |IJ | − 1 − 1�−1∈J ≥ |K′|,

which completes the proof. It remains to consider the case m ∈ J and � /∈ J :

Choose the largest b ∈ �0, p� such that jb < �, so jb < � < jb+1, and, in particular, 

(jb, jb+1) is an �-splitting pair. By Lemma 7.10, there exists yσ ∈ βjb
∪ βjb+1

with 

σ(yσ) ∈ I�jb+1,jb+1−1�. We will show that

yσ ∈ γjb
∪ γjb+1

. (8.2)

Assume for now that (8.2) holds. Then, (IJ\{σ(yu), σ(yv)}) ∪ {σ(yσ)} ⊆ σ(γJ). On 

the other hand, arguing as in part (a) for the case m ∈ J, � /∈ J , we have σ(yσ) /∈ IJ . 

Hence, |γJ | +1 ≥ |IJ |, so dim
(∑

K∈K′ F (K, euv)
)

≥ |IJ | ≥ |IJ | −1�−1∈J −1�∈J ≥ |K′|, 
which completes the proof.

It remains to prove (8.2). We will show yσ ∈ βjb
⇒ yσ ∈ γjb

, and the argument 

for yσ ∈ βjb+1
⇒ yσ ∈ γjb+1

is analogous. Since yσ ∈ βjb
∪ βjb+1

, (8.2) will follow. 

Suppose then that yσ ∈ βjb
so our task is to show that yσ ∈ γjb

. There are two 

cases to consider: jb ≥ m and jb+1 ≤ m; we will consider the case jb ≥ m and the 

argument for the case jb+1 ≤ m is analogous.

Let us start by showing that γjq
cannot be equal to βjq

\α≥yu
. Indeed, the latter 

occurs only if yu ∈ βjq
, yv /∈ βjq

, in which case, either yv < xjb
or yv > xjb+1. 

If yv < xjb
, then yu < yv < xjb

which contradicts yu ∈ βjq
. If yv > xjb+1, then 

σ(xjb+1) < σ(yv) < im+1 = σ(xm+1), which contradicts m ≤ jb. We conclude that 



Z.Y. Ma, Y. Shenfeld / Advances in Mathematics 436 (2024) 109404 57

γjq
∈ {βjq

, βjq
\{yu, yv}, βjq

\α≤yu
}, and since yσ ∈ βjb

, it suffices to show that yσ /∈

{yu, yv} and yσ /∈ α≤yu
. To see that yσ /∈ {yu, yv}, note that σ(yσ) ∈ I�jb+1,jb+1−1�

while σ(yu), σ(yv) ∈ Im. Since m ≤ jb, I�jb+1,jb+1−1� ∩ Im = ∅ so yσ /∈ {yu, yv}. To 

see that yσ /∈ α≤yu
, note that, since m ≤ jb, σ(yu) < im+1 ≤ ijb+1 < σ(yσ), where 

the last inequality holds as σ(yσ) ∈ I�jb+1,jb+1−1�.

(d) Fix u, v such that there exist yu < yv with σ ∈ N= satisfying σ(yu) = i� − 1 and 

σ(yv) = i� + 1. For jq ∈ J we let γjq
be as in part (c). We start by showing that 

Claim 8.4 holds here as well.

Claim 8.6. For every jq ∈ J ,

Lin(F (Kjq
, euv)) =

{

R
γjq ⊕ span(ouv) if yu, yv ∈ βjq

,

R
γjq otherwise.

Proof. The proof is the same as the proof of Claim 8.4, but we need to check that, 

when yu, yv ∈ βjq
, yv covers yu in α. The latter must be true since, otherwise, there 

exists z ∈ α such that yu < z < yv, so i� − 1 = σ(yu) < σ(z) < σ(yv) = i� + 1. This 

implies z = x�, which contradicts z ∈ α. �

Next we prove the analogue of Claim 8.5.

Claim 8.7.

(i) For jq /∈ {� − 1, �}, Ijq
⊆ σ(γjq

).

(ii) For jq = � − 1, I�−1\{i� − 1} ⊆ σ(γ�−1).

(iii) For jq = �, I�\{i� + 1} ⊆ σ(γ�).

Proof. We need to consider the four cases (1) yu, yv ∈ βjq
, (2) yu, yv /∈ βjq

, (3) 

yu ∈ βjq
, yv /∈ βjq

, and (4) yu /∈ βjq
, yv ∈ βjq

.

(i) Case (1): For any y such that σ(y) ∈ Ijq
, we have y /∈ {yu, yv} since 

σ(yu), σ(yv) /∈ Ijq
(because jq /∈ {� − 1, �}). Hence, by Lemma 7.12, y ∈

βjq
\{yu, yv} = γjq

, so we conclude Ijq
⊆ σ(γjq

).

Case (2): By Lemma 7.12, Ijq
⊆ βjq

= γjq
so Ijq

⊆ σ(γjq
).

Case (3): We start by showing that jq < �. Indeed, suppose for contradiction 

that jq ≥ �. Since yv /∈ βjq
, we have that either yv < xjq

or yv > xjq+1 ≥ x�+1. 

We cannot have yv > xjq+1 ≥ x�+1, since σ(yv) = i� + 1 < i�+1 = σ(x�+1). 

Hence, we must have yu < yv < xjq
, which contradicts yu ∈ βjq

. We conclude 

that jq < �. The assumption jq /∈ {� − 1, �} implies that in fact jq < � − 1. 

Hence, for any y such that σ(y) ∈ Ijq
, we have y ∈ βjq

\α≥yu
= γjq

, because 

σ(y) < ijq+1 ≤ i�−1 < i� − 1 = σ(yu). It follows that Ijq
⊆ σ(γjq

).

Case (4) is analogous to case (3).
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(ii) Case (1): For any y such that σ(y) ∈ I�−1\{i� − 1}, we have y /∈ {yu, yv} so, by 

Lemma 7.12, I�−1\{i� − 1} ⊆ σ(γ�−1).

Case (2): By Lemma 7.12, I�−1 ⊆ σ(β�−1) = σ(γ�−1) so I�−1 ⊆ σ(γ�−1).

Case (3): For any y such that σ(y) ∈ I�−1\{i� −1}, we have y ∈ β�−1\α≥yu
=

γ�−1, because, by the definition of I�−1\{i�−1}, σ(y) < i�−1 = σ(yu). It follows 

that I�−1\{i� − 1} ⊆ σ(γ�−1).

Case (4) is analogous to case (3).

(iii) The argument is analogous to (ii). �

By (5.1) and Claim 8.6, RγJ ⊆ Lin
(∑

K∈K′ F (K, euv)
)
, so dim

(∑

K∈K′ F (K, euv)
)

≥ |γJ |. By Claim 8.7, using the fact that {Ijq
}jq∈J\{�−1,�}, I�−1, I� are disjoint, we 

have

|γJ | ≥
∑

jq∈J

[|Ijq
| − 1jq=�−1 − 1jq=�] = |IJ | − 1�−1∈J − 1�∈J ≥ |K′|,

which completes the proof.

(e) Fix rmax + 1 ≤ m ≤ � − 1 and consider σ ∈ N= such that σ(yj) = im + 2 where 

j is such that yj ∈ α>xm
. By Corollary 7.11, σ(yj) = im + 2 ≤ im+1 = σ(xm+1), 

and since σ(yj) 
= σ(xm+1) (as yj 
= xm+1), we get that σ(yj) = im + 2 < im + 3 ≤

σ(xm+1) = im+1. It follows that im + 1 < im+1 − 1, so σ(yj) ∈ Im.

For jq ∈ J , let γjq
be as in part (a), and note that an analogous argument yield

dim

(
∑

K∈K′

F (K, −ej)

)

= |γJ |,

and

Claim 8.8.

(i) For jq 
= m, Ijq
⊆ σ(γjq

).

(ii) For jq = m, Im\{im + 1, im + 2} ⊆ σ(γm).

In order to complete the proof we distinguish between two cases: m /∈ J and 

m ∈ J . The proof of the case m /∈ J is the same as in part (a). Suppose that m ∈ J

and consider the following cases:

• � − 1, � ∈ J : The proof is complete since |K′| ≤ |IJ | − 1�−1∈J − 1�∈J = |IJ | − 2, 

and since Claim 8.8 yields |γJ | ≥ |IJ | − 2.

• � − 1 ∈ J and � /∈ J : Since � /∈ J , there is an index jb such that jb = � − 1 and 

jb+1 > �, and note that (jb, jb+1) is a splitting pair. Note that since m ≤ � −1, and 

m ∈ J , we must have m ≤ jb. By Lemma 7.10, there exists yσ ∈ βjb
∪ βjb+1 such 

that σ(yσ) ∈ I�jb+1,jb+1−1�. Suppose yσ ∈ βjb
; the proof for the case yσ ∈ βjb+1 is 
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analogous. Since σ(yσ) > ijb+1 ≥ im+1 > σ(yj), we get yσ ∈ βjb
\α≤yj

⊆ γjb
⊆ γJ . 

Hence,

(IJ\{im + 1, im + 2}) ∪ {σ(yσ)} ⊆ σ(γJ ).

Since σ(yσ) ∈ I�jb+1,jb+1−1�, we have σ(yσ) /∈ IJ (because jb = � − 1 and � /∈ J so 

the indices {jb + 1, . . . , jb+1 − 1} = �jb + 1, jb+1 − 1� are not in J), so we get that 

|γJ | ≥ |IJ | − 1 = |IJ | − 1�−1∈J − 1�∈J ≥ |K′|.
• � − 1 /∈ J and � ∈ J : The proof is analogous to the case � − 1 ∈ J and � /∈ J .

• � − 1, � /∈ J : Since � − 1, � /∈ J , we can choose b to be an index such that jb <

� − 1 < � < jb+1, or the largest index such jb < � − 1 < �, and note that (jb, jb+1)

is an �-splitting pair. Note that since m ≤ � −1, and m ∈ J , we must have m ≤ jb. 

Consider the collection

K′′ := (K0, . . . , Kjb
, Kjb+1, . . . , Kk)

and note that, by Assumption 6.7, K′′ is critical. We claim that K′′ is in fact 

supercritical. Indeed, if K′′ is sharp-critical, then jb ≤ rmax. But jb ≥ m > rmax, 

so we get a contradiction. Since K′′ is supercritical, and since (jb, jb+1) is an 

�-splitting pair, Corollary 7.14 provides two distinct yσ, zσ ∈ βjb
∪ βjb+1

, with 

σ(yσ), σ(zσ) ∈ I�jb+1,jb+1−1�, from which it follows that

I�0,jb�∪�jb+1,k� ∪ {σ(yσ), σ(zσ)} ⊆ σ(β�0,jb�∪�jb+1,k�).

Suppose that yσ ∈ βjb
; the case yσ ∈ βjb+1

is analogous. Since m ≤ jb, σ(yσ) >

ijb+1 ≥ im+1 > σ(yj), so we can conclude that yσ ∈ βjb
\α≤yj

⊆ γjb
⊆ γJ . 

Analogous argument shows that zσ ∈ γJ . By Claim 8.8, it follows that

(IJ\{im + 1, im + 2}) ∪ {σ(yσ), σ(zσ)} ⊆ σ(γJ ).

Since σ(yσ), σ(zσ) ∈ I�jb+1,jb+1−1�, we have σ(yσ), σ(zσ) /∈ IJ (because b satisfies 

jb < � − 1 < � < jb+1, or the maximal jb < � − 1, so the indices {jb + 1, . . . , jb+1 −

1} = �jb + 1, jb+1 − 1� are not in J). On the other hand, because m ∈ J and 

im + 2 < im+1, we have im + 1, im + 2 ∈ IJ . It follows that (IJ\{im + 1, im + 2}) ∪

{σ(yσ), σ(zσ)}| = |IJ |, and hence, |γJ | ≥ |IJ | ≥ |K′|.
(f) The proof is analogous to part (e).

(g) Consider σ ∈ N+ such that σ(yj) = i�−1 + 2 where j is such that yj ∈ α>x�−1
. By 

Corollary 7.11, σ(x�−1) < i�−1 + 2 = σ(yj) < i� + 1 = σ(x�), so we conclude that 

yj ∈ β�−1. For jq ∈ J let γjq
be as in part (a), and note that an analogous argument 

yields dim
(∑

K∈K′ F (K, −ej)
)

= |γJ |. We start with the analogue of Claim 8.7.
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Claim 8.9.

(i) For jq /∈ {� − 1, �}, Ijq
⊆ σ(γjq

).

(ii) For jq = � − 1, (I�−1 ∪ {i�})\{i�−1 + 1, i�−1 + 2} ⊆ σ(γ�−1).

(iii) For jq = �, I�\{i� + 1} ⊆ σ(γ�).

Proof. There two cases to consider: (1) yj /∈ βjq
and (2) yj ∈ βjq

.

(i) Case (1): By Lemma 7.12, Ijq
⊆ σ(βjq

) = σ(γjq
).

Case (2): First we note that jq ≥ � − 1 since, otherwise, yj > x�−1 ≥ xjq+1

which contradicts yj ∈ βjq
. Since jq /∈ {� − 1, �}, it follows that in fact � < jq. 

Hence, for any y such that σ(y) ∈ Ijq
, we have σ(y) > σ(xjq

) ≥ σ(x�+1) =

i�+1 > i�−1 + 2 = σ(yj), so that y /∈ α≤yj
. It follows that y ∈ γjq

, so we 

conclude Ijq
⊆ σ(γjq

).

(ii) Case (1) cannot occur since we have shown that yj ∈ β�−1.

Case (2): Every y such that σ(y) ∈ (I�−1 ∪ {i�})\{i�−1 + 1, i�−1 + 2} satisfies 

σ(x�−1) < σ(y) < σ(x�), so y ∈ β�−1. Further, σ(y) > i�−1 + 2 = σ(yj), so 

y /∈ α≤yj
. It follows that y ∈ γ�−1, so we conclude (I�−1 ∪{i�})\{i�−1 +1, i�−1 +

2} ⊆ σ(γ�−1).

(iii) Case (1): Every y such that σ(y) ∈ I�\{i� + 1} satisfies σ(x�) = i� + 1 < σ(y) <

i�+1 = σ(x�+1), so y ∈ β� = γ�. We conclude that I�\{i� + 1} ⊆ σ(γ�).

Case (2): Every y such that σ(y) ∈ I�\{i� + 1} satisfies σ(x�) = i� + 1 <

σ(y) < i�+1 = σ(x�+1, so y ∈ β�. Further, σ(y) > i� + 1 > i�−1 + 2 = σ(yj), so 

y /∈ α≤yj
. It follows that y ∈ γ�, so we conclude I�\{i� + 1} ⊆ σ(γ�). �

By (5.1) Lin
(∑

K∈K′ F (K, −ej)
)

= R
γJ , so dim

(∑

K∈K′ F (K, −ej)
)

= |γJ |. By 

Claim 8.9, using the fact that {Ijq
}jq∈J\{�−1,�}, I�−1, I� are disjoint, it suffices to show 

that |(I�−1 ∪ {i�})\{i�−1 + 1, i�−1 + 2}| = |I�−1| − 1, and that |I�\{i� + 1}| = |I�| − 1, 

since then

|γJ | ≥
∑

jq∈J

[|Ijq
| − 1jq=�−1 − 1jq=�] = |IJ | − 1�−1∈J − 1�∈J ≥ |K′|,

which completes the proof. To see that |(I�−1 ∪{i�})\{i�−1 +1, i�−1 +2}| = |I�−1| −1, 

we note that |I�−1 ∪{i�}| = |I�−1| +1, and that i�−1 +1, i�−1 +2 ∈ I�−1 ∪{i�}, because 

i�−1 +1 < i�−1 +2 ≤ i�, by Corollary 7.11. Hence, |(I�−1 ∪{i�})\{i�−1 +1, i�−1 +2}| =

(|I�−1| + 1) − 2 = |I�−1| − 1. Finally, it is clear that |I�\{i� + 1}| = |I�| − 1, since 

i� + 1 ∈ I�.

(h) The proof is analogous to part (g). �
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9. Supercritical posets

In this section we complete the characterization of the extremals of Stanley’s in-

equalities for supercritical posets. The following result, together with Proposition 3.2, 

Lemma 3.3, Proposition 3.8, and Proposition 5.7, complete the proof of Theorem 1.3.

Theorem 9.1. Suppose that K is supercritical and that |N=|2 = |N−||N+|. Then,

|N=(�, ∼)| = |N=(∼,�)| = |N=(∼, ∼)| = 0.

In order to prove Theorem 9.1, we will invoke Theorem 2.9 and use the extreme normal 

directions found in Proposition 8.2(a–d). Theorem 2.9 tells us that there exist a ≥ 0 and 

v ∈ R
n−k such that

hK�−1
(u) = haK�+v(u) for all (B, K)-extreme normal directions u. (9.1)

The following results derive constraints from (9.1) on the allowed a and v. We start with 

v.

Proposition 9.2.

(a) For each fixed 0 ≤ m ≤ � − 1: vj = 0 for any j such that yj ∈ α>xm
and there exists 

σ ∈ N= satisfying σ(yj) = im + 1.

(b) For each fixed � + 1 ≤ m ≤ k + 1: vj = 1 − a for any j such that yj ∈ α<xm
and 

there exists σ ∈ N= satisfying σ(yj) = im − 1.

(c) vu = vv for any u, v such that yu < yv and there exists σ ∈ N= satisfying σ(yu) +1 =

σ(yv).

(d) vu = vv for any u, v such that yu < yv and there exists σ ∈ N= satisfying σ(yu) =

i� − 1 and σ(yv) = i� + 1.

Proof. (a) By Proposition 8.2(a), −ej is a (B, K)-extreme normal direction, so by (9.1), 

hK�−1
(−ej) = ahK�

(−ej) − vj . Since σ(yj) = im + 1, and m ≤ � − 1, we have 

σ(yj) = im + 1 ≤ i�−1 + 1 < i�, i�+1, so yj /∈ α>x�
∪ α>x�+1

. Hence, it follows from 

(2.5) that hK�−1
(−ej) = hK�

(−ej) = 0. We conclude that vj = 0.

(b) By Proposition 8.2(b), ej is a (B, K)-extreme normal direction, so by (9.1), 

hK�−1
(−ej) = ahK�

(−ej) + vj . Since σ(yj) = im − 1, and m ≥ � + 1, we have 

σ(yj) = im − 1 ≥ i�+1 − 1 > i�, i�−1, so yj /∈ α<x�−1
∪ α<x�

. Hence, it follows from 

(2.5) that hK�−1
(ej) = 1 and ahK�

(ej) + vj = a + vj . We conclude that vj = 1 − a.

(c) By Proposition 8.2(c), euv is a (B, K)-extreme normal direction, so by (9.1), 

hK�−1
(euv) = ahK�

(euv) + 1√
2
(vu−vv). We will show that hK�−1

(euv) = hK�
(euv) = 0, 

from which we can conclude vu = vv. We will show that hK�−1
(euv) = 0; the proof 

of hK�
(euv) = 0 is analogous. We distinguish between the following cases:
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Case (1): yu, yv ∈ β�−1. By (2.5), hK�−1
(euv) = 0 since tu ≤ tv for t ∈ Oβ�−1

, and 

equality is attained with t = 0.

Case (2): yu ∈ β�−1, yv /∈ β�−1, or yu /∈ β�−1, yv ∈ β�−1. See the proof of Claim 8.4.

Case (3): yu, yv /∈ β�−1. Since there exists σ ∈ N= with σ(yu) + 1 = σ(yv), the 

assumption yu, yv /∈ β�−1 implies that either yu, yv < x�−1, or yu, yv > x�. Hence, 

either tu = tv = 1, or tu = tv = 0 for any t ∈ K�−1, so, in particular, hK�−1
(euv) = 0.

(d) The proof is analogous to part (c), where we note that yu /∈ β�−1 cannot occur. �

While Proposition 9.2(a–b) took care of elements neighboring xm’s, the next result 

takes care of elements that are at the bottom (res. the top) of the poset.

Lemma 9.3. For any yj ∈ α: If m=
min(yj) < i� then vj = 0, and if m=

max(yj) > i� then 

vj = 1 − a.

Proof. We prove that m=
max(yj) > i� ⇒ vj = 1 − a; the proof of m=

min(yj) < i� ⇒ vj = 0

is analogous.

Set yj0
:= yj and construct the sequence yj0

< yj1
< · · · < yjp

, for some p < ∞, 

iteratively, according to the algorithm below. The sequence will be constructed so that 

yji
∈ α for every i ∈ �0, p�, vji

= vji+1
for all i ∈ �0, p − 1�, and vjp

= 1 − a. Clearly, it 

will then follow that vj = vj0
= 1 − a, completing the proof.

Assume that the sequence yj0
< yj1

< · · · < yji
has been constructed. Set M :=

m=
max(yji

), and note that i� < m=
max(yj0

) ≤ M . Consider the following two cases:

• M 
= im − 1 for every � < m: Choose σ ∈ N= such that σ(yji
) = M (such a σ

must exist by the definition of M) and set yji+1
:= σ−1(M + 1). We first show that 

M + 1 
= im for any m ∈ �0, k�. Indeed, by assumption M + 1 
= im for every � < m, 

and if m ≤ �, then im ≤ i� < M + 1. It follows that yji+1
∈ α. Next we show 

that yji
< yji+1

. Indeed, otherwise, by the definition of M , yji
and yji+1

must be 

incomparable, so we can swap the positions of yji
and yji+1

in σ to get σ′ ∈ N= such 

that σ′(yji
) = M + 1, which contradicts the maximality of M . We conclude that 

yji
< yji+1

. Finally, by Proposition 9.2(c), vji
= vji+1

.

• M = im −1 for some � < m: In this case, the sequence will be terminated with p := i. 

Note that Corollary 7.11 implies that yji
∈ α, since M = im − 1. We will show that 

σ(yji
) < σ(xm) for all σ ∈ ∪◦∈{−,=,+}N◦. Then, by Assumption 4.1, it follows that 

yji
< xm so, by Proposition 9.2(b), vji

= 1 − a. To show that σ(yji
) < σ(xm)

for all σ ∈ ∪◦∈{−,=,+}N◦, suppose for contradiction otherwise, which means that 

there exists σ ∈ N◦, for some ◦ ∈ {−, =, +}, such that σ(yji
) > σ(xm) = im. Set 

q := σ(yji
). We will show that Lemma 7.3 can be applied with yji

, =, and q, to 

yield σ′ ∈ N= such that σ′(yji
) = q, contradicting the maximality of M (since 

q > im > im − 1 = M).

To apply Lemma 7.3 to yji
, =, and q, we need to check that all of the conditions of 

the lemma are satisfied. Applying the lemma to yji
, ◦, and q, we get q ≤ u◦(yji

), and 
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by Lemma 7.2 (as imin(yji
) > m > �), we get q ≤ u◦(yji

) = u=(yji
). On the other 

hand, by Corollary 7.4, l=(yji
) ≤ m=

max(yji
) = M = im − 1 < q. We conclude that 

the condition q ∈ �l=(yji
), u=(yji

)� holds. Finally, we show that q 
= ir + 1= = ir

for any r ∈ �1, k�. Indeed, if q = ir for some r ∈ �1, k�, then ir = q > im, which 

implies � < m < r, and hence σ(xr) = ir as r 
= �. It follows that σ(yji
) = q = σ(xr), 

contradicting y ∈ α. �

Next we move to a.

Lemma 9.4. a = 1.

Proof. Fix σ ∈ N= and set yσ
u := σ−1(i� − 1), yσ

v := σ−1(i� + 1). There are a few cases 

to check:

• yσ
u � x�: If m

=
max(yσ

u) > i�, then, since m=
min(yσ

u) ≤ σ(yσ
u) < i�, Lemma 9.3 implies 

that vu = 0 and vu = 1 − a so a = 1. Suppose then that m=
max(yσ

u) < i�. We 

claim that u=(yσ
u) ≤ i�. Indeed, otherwise, u=(yσ

u) ≥ i� + 1 ≥ σ(yσ
u) ≥ l=(yσ

u). 

Hence, since i� + 1 
= σ(xm) for any m ∈ �1, k�, Lemma 7.3 implies that there 

exists σ′ ∈ N= satisfying σ′(yσ
u) = i� + 1, which contradicts the maximality of 

m=
max(yσ

u) < i�. Now, since u=(yσ
u) ≤ i�, there must exist b, with yσ

u < xb, such that 

i◦
b − |ᾱ≥yσ

u ,<xb
| ≤ i�. It follows that |ᾱ≥yσ

u ,<xb
| ≥ ib − i�, where we used i=

b = ib. 

Fix z ∈ ᾱ>yσ
u ,<xb

, and note that z 
= x�, since otherwise x� > yσ
u , which contradicts 

the assumption yσ
u � x�. In particular, since σ(x�) = i�, we have σ(z) 
= i�. Since 

i� − 1 = σ(yσ
u) < σ(z) < σ(xb) = ib, we conclude that σ(z) ∈ �i� + 1, ib − 1�. 

The size of �i� + 1, ib − 1� is ib − i� − 1, so combining |ᾱ>yσ
u ,<xb

| ≥ ib − i� − 1, with 

σ(z) ∈ �i� +1, ib −1� for every z ∈ ᾱ>yσ
u ,<xb

, shows that σ(ᾱ>yσ
u ,<xb

) = �i� +1, ib −1�. 

In particular, since σ(yσ
v ) = i� + 1, we get that yσ

v ∈ ᾱ>yσ
u ,<xb

, so yσ
v < yσ

u . It follows 

from Proposition 9.2(c) that vu = vv. Since m=
min(yσ

u) < i�, and m=
max(yσ

v ) > i�, 

Lemma 9.3 yields 0 = vu = vv = 1 − a. We conclude that a = 1.

• yσ
v � x�: Analogous to the case yσ

u � x�.

• yσ
u < x� and x� < yσ

v : By Proposition 9.2(d), vu = vv. Since yσ
u < x�, we have 

m=
min(yσ

u) < i� so, by Lemma 9.3, vu = 0. Similarly, since x� < yσ
v , we have 

m=
max(yσ

v ) > i� so, by Lemma 9.3, vv = 1 −a. We conclude that 0 = vu = vv = 1 −a, 

so a = 1. �

We are now ready to prove Theorem 9.1.

Proof. (of Theorem 9.1) We will show that

∀ σ ∈ N= : σ−1(i� − 1) � x� and σ−1(i� + 1) � x�, (9.2)

which is equivalent to |N=(�, ∼)| = |N=(∼, �)| = |N=(∼, ∼)| = 0.
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Let yj ∈ α be any element such that there exists σ ∈ N= with σ(yj) = i� + 1; 

the proof for elements yj ∈ α with σ ∈ N= satisfying σ(yj) = i� − 1 is analogous. 

Since m=
max(yj) > i�, Lemma 9.3 yields vj = 1 − a = 0, where the last equality follows 

from Lemma 9.4. Assume for contradiction that x� is comparable to yj , which, by the 

assumption σ(yj) = i� + 1, means that x� < yj . By Proposition 8.2(a), −ej is a (B, K)-

extreme normal direction so, by (9.1), hK�−1
(−ej) = hK�

(−ej). Since x� < yj , we have 

hK�−1
(−ej) = −1. On the other hand, i� < σ(yj) = i� + 1 < i�+1, so yj ∈ β�. By (2.5), 

hK�
(−ej) = 0 
= −1 = hK�−1

(−ej), so we have arrived at the desired contradiction. �

10. Critical posets

In this section we complete the characterization of the extremals of Stanley’s inequal-

ities for critical posets (as well as Theorem 1.6). We will assume that K is sharp-critical 

since, otherwise, we reduce back to the supercritical setting. We note that the assump-

tion that K is sharp-critical implies, by Proposition 7.8, that the maximal sharp-critical 

collection Kmax, with its associated splitting pair (rmax, smin), exists. The following re-

sult (Theorem 10.1), together with Proposition 3.2, Lemma 3.3, Proposition 3.8, and 

Proposition 5.7, complete the proof of Theorem 1.5.

The proof of Theorem 1.6 follows by Corollary 3.4, and by applying Theorem 6.6

repeatedly until arriving at a critical subposet. Once a critical subposet is reached, The-

orem 1.5 can be applied to the critical subposet, together with the bijection construction 

in the proof of Proposition 6.4, to conclude that the results of Theorem 1.5 hold for the 

original poset as well.

Theorem 10.1. Suppose that K is sharp-critical and that |N=|2 = |N−||N+|. Then,

|N−(∼, ∼)| = |N+(∼, ∼)| = 0.

10.1. The critical subspace

We now enter the critical territory so the equation

hK�−1
(u) = haK�+v(u) for all (B, K)-extreme normal directions u,

which held for supercritical posets, is no longer valid. Instead, we only have

hK�−1+
∑

d
j=1 Qj

(u) = haK�+v+
∑

d
j=1 Pj

(u) for all (B, K)-extreme normal directions u,

where (P1, Q1), . . . , (Pd, Qd) are K-degenerate pairs. Our approach to this problem is 

to find a subspace E⊥, on which we do in fact have hK�−1
(u) = haK�+v(u) for all 

(B, K)-extreme normal directions u ∈ E⊥. Since we now require that the (B, K)-extreme 

normal directions are contained in E⊥, we will need more of them in order to derive 
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enough constraints to characterize the extremals of critical posets. These extreme normal 

directions are the ones given in Proposition 8.2(e–h). We define the subspace E⊥ by

E⊥ := R
α\βmax , (10.1)

where we recall (7.3). We call the subspace E the critical subspace and note that, by 

Lemma 5.1, Lin(Kmax) = R
βmax = E. The following result explains the connection 

between K-degenerate pairs and E.

Lemma 10.2. Let (P, Q) be a K-degenerate pair. Then, Lin(P ), Lin(Q) ⊆ E.

Proof. The result follows by [17, Lemma 9.6] and Proposition 7.8. �

When we restrict to the subspace E⊥, we are in the supercritical case in the following 

sense:

Lemma 10.3. There exist a ≥ 0 and v ∈ Sn−k−1 such that

hK�−1
(u) = haK�+v(u) for all (B, K)-extreme normal directions u

which are contained in E⊥.

Proof. Let u ∈ E⊥ be a (B, K)-extreme normal direction. By Theorem 2.9

hK�−1+
∑

d
j=1 Q′

j+
∑

d
j=1 qj

(u) = haK�+v+
∑

d
j=1 P ′

j +
∑

d
j=1 pj

(u),

where (Pj , Qj)j∈�1,d� are K-degenerate pairs and P ′
j = Pj − pj , Q′

j = Qj − qj where 

pj ∈ Pj , qj ∈ Qj are fixed. Hence, with v′ := v +
∑d

j=1 pj −
∑d

j=1 qj , P̃ :=
∑d

j=1 P ′
j , 

and Q̃ :=
∑d

j=1 Q′
j , we have

hK�−1+Q̃(u) = haK�+v′+P̃ (u).

Since P̃ , Q̃ ⊆ E and u ∈ E⊥, we have hQ̃(u) = hP̃ (u) = 0. Relabeling v′ → v completes 

the proof. �

10.2. The critical extremals

In order to prove Theorem 10.1 we need to prove the analogues of Proposition 9.2, 

Lemma 9.3, and Lemma 9.4, as well as some additional results. Roughly speaking, on

α\βmax = α>xrmax+1,<xsmin
,

we have a supercritical behavior. Indeed, the proof of the following result is analogous to 

the proof of Proposition 9.2 once we use the full power of Proposition 8.2, Lemma 10.3, 

and restrict to yj , yu, yv ∈ α>xrmax+1,<xsmin
, rather than allowing for all yj , yu, yv ∈ α.



66 Z.Y. Ma, Y. Shenfeld / Advances in Mathematics 436 (2024) 109404

Proposition 10.4. For any yj , yu, yv ∈ α>xrmax+1,<xsmin
:

(a) For each fixed 0 ≤ m ≤ � − 1: vj = 0 for any j such that yj ∈ α>xm
and there exists 

σ ∈ N= satisfying σ(yj) = im + 1.

(b) For each fixed � + 1 ≤ m ≤ k + 1: vj = 1 − a for any j such that yj ∈ α<xm
and 

there exists σ ∈ N= satisfying σ(yj) = im − 1.

(c) vu = vv for any u, v such that yu < yv and there exists σ ∈ N= satisfying σ(yu) +1 =

σ(yv).

(d) vu = vv for any u, v such that yu < yv and there exists σ ∈ N= satisfying σ(yu) =

i� − 1 and σ(yv) = i� + 1.

(e) For each fixed rmax ≤ m ≤ � − 1: vj = 0 for any j such that yj ∈ α>xm
and there 

exists σ ∈ N= satisfying either σ(yj) = im + 1 or σ(yj) = im + 2.

(f) For each fixed � + 1 ≤ m ≤ smin: vj = 1 − a for any j such that yj ∈ α<xm
and there 

exists σ ∈ N= satisfying either σ(yj) = im − 1 or σ(yj) = im − 2.

(g) vj = 0 for any j such that yj ∈ α>x�−1
and there exists σ ∈ N+ satisfying σ(yj) =

i�−1 + 2.

(h) vj = 1 − a for any j such that yj ∈ α<x�+1
and there exists σ ∈ N− satisfying 

σ(yj) = i�+1 − 2.

Towards the proofs of the analogues of Lemma 9.3 and Lemma 9.4 we recall Corol-

lary 7.15, together with some of its immediate consequences.

Corollary 10.5. Fix ◦ ∈ {−, =, +} and σ ∈ N◦. There exists a unique mixed element 

yσ
crit satisfying yσ

crit ∈ βrmax
∪ βsmin

and σ(yσ
crit) ∈ �irmax+1, ismin

�\{irmax+1, . . . , ismin
}. 

In particular, any other element y 
= yσ
crit satisfying σ(y) ∈ �irmax+1, ismin

� must satisfy 

y ∈ ᾱ≥xrmax+1,≤xsmin
. Furthermore, yσ

crit satisfies either yσ
crit 
≥ xrmax+1 or yσ

crit 
≤ xsmin
. 

If yσ
crit 
≥ xrmax+1, then yσ

crit 
≥ y for any y ∈ ᾱ≥xrmax+1,≤xsmin
. Analogously, if yσ

crit 
≤

xsmin
, then yσ

crit 
≤ y for any y ∈ ᾱ≥xrmax+1,≤xsmin
.

The following result is the analogue of Lemma 9.3 where again we restrict to yj ∈

α>xrmax+1,<xsmin
rather than allowing for all yj ∈ α.

Lemma 10.6. For any yj ∈ α>xrmax+1,<xsmin
: If m=

min(yj) < i� then vj = 0, and if 

m=
max(yj) > i� then vj = 1 − a.

Proof. We prove that m=
max(yj) > i� ⇒ vj = 1 − a; the proof of m=

min(yj) < i� ⇒ vj = 0

is analogous.

Set yj0
:= yj ∈ α>xrmax+1,<xsmin

and construct the sequence yj0
< yj1

< · · · < yjp
, 

for some p < ∞, iteratively, according to the algorithm below. The sequence will be 

constructed so that yji
∈ α>xrmax+1,<xsmin

for every i ∈ �0, p�, vji
= vji+1

for all i ∈

�0, p − 1�, and vjp
= 1 − a. Clearly, it will then follow that vj = vj0

= 1 − a, completing 

the proof.
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Assume that the sequence yj0
< yj1

< · · · < yji
has been constructed. Set M :=

m=
max(yji

) and note that i� < m=
max(yj0

) ≤ M < ismin
. Let b be the index satisfying 

ib < M < ib+1 so that � ≤ b ≤ smin − 1. Consider the following two cases:

• M /∈ {im − 2, im − 1} for every � < m. Choose σ ∈ N= such that σ(yji
) = M (such a 

σ must exist by the definition of M) and set yr = σ−1(M +1), ys = σ−1(M +2). Note 

that ib+1 /∈ {M+1, M+2} since M /∈ {im−2, im−1} for every � < m, so in particular, 

we can take b +1 = m (using b +1 > �). Hence, we have ib < M, M +1, M +2 < ib+1, 

so M, M + 1, M + 2 ∈ �ib + 1, ib+1 − 1�, and hence yr, ys ∈ α. Note that yji
< yr

since otherwise their positions in σ can be swapped to contradict the maximality of 

M . Further, M, M + 1, M + 2 ∈ �ib + 1, ib+1 −1� ⇒ σ(yr), σ(ys) ∈ �ib + 1, ib+1 −1� ⊆

I�rmax+1,smin−1�, where the last containment holds since b ≤ smin−1 (as shown above), 

and since rmax + 1 ≤ b (because rmax + 1 < � ≤ b as (rmax, smin) is an �-splitting 

pair). Corollary 10.5 now yields yr, ys ∈ α>xrmax+1,<xsmin
∪ {yσ

crit}. We now choose 

yji+1
as follows:

(1) If yr ∈ α>xrmax+1,<xsmin
set yji+1

:= yr. Then we see that yji
< yji+1

and that 

yji+1
∈ α>xrmax+1,<xsmin

so Proposition 10.4(c) yields vji+1
= vji

.

(2) If yr = yσ
crit, then ys ∈ α>xrmax+1,<xsmin

. If yσ
crit 
≥ xrmax+1, then yσ

crit 
≥ yji
, a 

contradiction. Otherwise, yσ
crit 
≤ xsmin

, so yσ
crit 
≤ ys. Hence, we can swap the 

positions of yr = yσ
crit and ys, which reduces to (1).

• M ∈ {im − 2, im − 1} for some � < m. In this case the sequence will be terminated 

with p := i. Arguing as in the analogous case in Lemma 9.3, we get that yji
< xm. 

Note that m = b + 1 ≤ smin (the last inequality was shown above), so since � + 1 ≤

m ≤ smin, Proposition 10.4(f) yields vji
= 1 − a. �

The following result can be viewed as a continuation of Lemma 10.6. To ease the 

notation we will use

Ij := �ij + 1, ij+1 − 1� and IS := ∪j∈SIj for S ⊆ �0, k�. (10.2)

Lemma 10.7. For any yj ∈ α>xrmax+1,<xsmin
: If min◦∈{−,=,+} m◦

min(yj) < i� + 1◦ then 

vj = 0, and if max◦∈{−,=,+} m◦
max(yj) > i� + 1◦ then vj = 1 − a.

Proof. We will prove max◦∈{−,=,+} m◦
max(yj) > i� + 1◦ ⇒ vj = 1 − a; the proof of 

min◦∈{−,=,+} m◦
min(yj) < i� + 1◦ ⇒ vj = 0 is analogous. Fix ◦ ∈ {−, =, +} and σ ∈ N◦

such that σ(yj) > σ(x�) = i� + 1◦. There are three cases to consider:

(1) ◦ is =. We have m=
max(yj) ≥ σ(yj) and by assumption σ(yj) > σ(x�) = i�. Hence, 

m=
max(yj) > i� and the proof is complete by Lemma 10.6.
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(2) ◦ is +. Let q := σ(yj) > i� +1. We are going to apply Lemma 7.3 with yj , =, and q so 

we will check its conditions. Since imin(yj) > �, Lemma 7.2 and Corollary 7.4 yield 

u=(yj) = u+(yj) ≥ m+
max(yj) ≥ q and l=(yj) ≤ l+(yj) ≤ m+

min(yj) ≤ σ(yj) = q, so 

we conclude that q ∈ �l=(yj), u=(yj)�. Next we show that q 
= im for any m ∈ [k]. 

Indeed, if m ≤ � then im ≤ i� < q, and if m > �, then im = q implies σ(yj) = σ(xm), 

which is impossible since yj ∈ α>xrmax+1,<xsmin
⊆ α. It follows from Lemma 7.3 that 

there exists σ′ ∈ N= such that σ′(yj) = q. It follows that m=
max(yj) ≥ σ′(yj) = q > i�, 

and the proof is complete by Lemma 10.6.

(3) ◦ is −. If m=
max(yj) > i� we are done by Lemma 10.6. Suppose then that m=

max(yj) <

i� (note that m=
max(yj) = i� is impossible).

Claim 10.8. m−
max(yj) = i� = σ(yj).

Proof. Suppose for contradiction that m−
max(yj) ≥ i� + 1, so there must exist σ1 ∈ N−

with σ1(yj) ≥ i� + 1. Since imin(yj) > �, Lemma 7.2 and Corollary 7.4 yield u=(yj) =

u−(yj) ≥ m−
max(yj) ≥ σ1(yj) = i� + 1. On the other hand, by Corollary 7.4 and the 

assumption m=
max(yj) < i�, we have l=(yj) ≤ m=

min(yj) ≤ m=
max(yj) < i�, so we conclude 

that i�+1 ∈ �l=(yj), u=(yj)�. By Corollary 7.11, im 
= i�+1 for any m ∈ [k] so Lemma 7.3

implies that there exists σ2 ∈ N= satisfying σ2(yj) = i�+1, which contradicts m=
max(yj) <

i�. We conclude that m−
max(yj) ≤ i�. Since, by assumption, σ(yj) > σ(x�) = i� − 1 we 

get m−
max(yj) = σ(yj) = i�. �

Let yv be such that σ(yv) = i� + 1 and note that yv ∈ α by Corollary 7.11. We must 

have yj < yv since if yj � yv (by Claim 10.8 it is impossible to have yv < yj), then we 

can swap the positions of yj and yv in σ to get σ3 ∈ N− satisfying σ3(yj) = i� + 1, which 

contradicts Claim 10.8. Next we show that there exists σ′ ∈ N= satisfying σ′(yj) = i� −1

and σ′(yv) = i� + 1. Indeed, since we assume m=
max(yj) < i�, we have that, for any 

σ4 ∈ N=, σ4(yj) < σ4(x�). Hence, since by the assumption σ(yj) > σ(x�), we must have 

yj � x�. Swapping the positions of yj and x� in σ yields σ′, where we used Claim 10.8.

We will now analyze the element yv. Since σ′(yv) = i� + 1 we see that σ′(yv) ∈

I�rmax+1,smin−1� because (rmax, smin) is an �-splitting pair. Hence, Corollary 10.5 yields 

that either yv = yσ
crit or yv ∈ α>xrmax+1,<xsmin

. Consider both cases:

(a) yv ∈ α>xrmax+1,<xsmin
. Since yj < yv, and since there exists σ′ ∈ N= satisfying 

σ′(yj) = i� − 1 and σ′(yv) = i� + 1, Proposition 10.4(d) yields vj = vv. On the other 

hand, vv = 1 −a by Lemma 10.6 since m=
max(yv) > i� as σ′(yv) = i� +1. We conclude 

that vj = 1 − a, which proves the lemma.

(b) yv = yσ
crit. Since yv > yj and yj ∈ α>xrmax+1,<xsmin

(as we cannot have yj = yσ
crit), 

we have yσ
crit > xrmax+1. Hence, we must have yσ

crit 
≤ xsmin
. Let z be such that 

σ(z) = i� + 2 and note that σ′(z) = i� + 2 as well (since σ′ was obtained from 

σ by swapping the positions of yj and x� in σ). If σ′(z) ∈ I�rmax+1,smin−1�, then, 

by Corollary 10.5, since z 
= yσ
crit, we must have z ∈ α>xrmax+1,<xsmin

. Recall that 
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yσ
crit 
≤ xsmin

so yσ
crit 
≤ z. Hence, we can swap yv = yσ

crit and z to reduce to the case 

(a).

Suppose then that σ′(z) /∈ I�rmax+1,smin−1�:

Claim 10.9. If σ′(z) /∈ I�rmax+1,smin−1� then z = x�+1 and i�+1 = i� + 2.

Proof. Since σ′(z) = i� + 2 /∈ I�rmax+1,smin−1� we get that i� + 2 /∈ I� (because 

rmax + 1 < � < smin as (rmax, smin) is an �-splitting pair). Hence, i� + 2 ≥ i�+1 (since 

i�+2 ≤ i� is impossible). On the other hand, Corollary 7.11 yields i�+1 < i�+1 ≤ i�+2

so we conclude i� + 2 = i�+1. Since σ′ ∈ N= we also conclude that z = x�+1. �

Since (rmax, smin) is an �-splitting pair, we have that either smin = � + 1 or 

smin > � + 1. If smin = � + 1 then, since by assumption yj ∈ α>xrmax+1,<xsmin
, we 

have yj < xsmin
= x�+1. Since, by Claim 10.8 and Claim 10.9, σ(yj) = i� = i�+1 − 2, 

Proposition 10.4(h) shows that vj = 1 − a.

Suppose then that smin > � + 1. Consider the set

γ := {y ∈ α : σ′(y) ∈ I��+1,smin−1�, y ≯ xl+1}.

We claim that γ is nonempty. Indeed, since (�, smin) is a splitting pair, Lemma 7.10

yields yσ′

∈ β� ∪ βsmin
such that σ′(yσ′

) ∈ I��+1,smin−1�. We must have that either 

yσ′


≤ xsmin
or yσ′


≥ xl+1. We cannot have yσ′


≤ xsmin
since rmax+1 < � +1 and yσ′


=

yσ
crit (as σ′(yσ

crit) = i� + 1 /∈ I��+1,smin−1� � σ′(yσ′

)) imply yσ′

∈ α>xrmax+1,<xsmin
. 

Hence, yσ′

∈ γ. Now pick y ∈ γ↓, which exists as γ is nonempty. Note that y ∈ γ↓

implies that y ∈ α>xrmax+1,<xsmin
because σ′(y) ∈ I��+1,smin−1� ⊆ I�rmax+1,smin−1�

yields, by Corollary 10.5, y ∈ α>xrmax+1,<xsmin
∪{yσ

crit}, and y 
= yσ
crit since σ′(yσ

crit) =

i� + 1 /∈ I��+1,smin−1� � σ′(y).

We will show next that the positions of y and yv can be swapped in both σ and 

σ′ to yield valid linear extensions in N−, N=, respectively. This completes the proof 

since we reduce back to 3(a).

Let us now verify that the swaps yield valid linear extensions. We will show the 

validity of the swap of σ; the argument for σ′ is analogous since by construction σ and 

σ′ are the same up to the swap of yj and x�. Suppose this swap violated some relation 

so that there exists w such that σ(yv) = i�+1 < σ(w) < σ(y), satisfying either yv < w

or w < y. We cannot have yσ
crit = yv < w because σ(w) ∈ �irmax+1, ismin

� implies, 

by Corollary 10.5, that w ≤ xsmin
(as w 
= yσ

crit). But then yσ
crit = yv < w ≤ xsmin

, 

which contradicts yσ
crit 
≤ xsmin

, as was shown at the beginning of (3). We also cannot 

have w < y since, otherwise, w 
≥ xl+1 by the definition of γ. But if w /∈ α, then 

w = xr for some r ≥ l+1 (as i� +1 < σ(w)) which implies w ≥ xl+1, a contradiction. 

On the other hand, if w ∈ α, then combined with σ(w) ∈ �il+1, ismin
� we have that 

σ(w) ∈ I�l+1,smin−1�. Hence, w ∈ γ, which contradicts y ∈ γ↓. �
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Next we move to proving the analogue of Lemma 9.4. We will again use the notation 

(10.2).

Lemma 10.10. a = 1.

Proof. We will show that there exists yj ∈ α>xrmax+1,<xsmin
such that yj � x�. This will 

complete the proof since, by Assumption 4.1, yj � x� implies that there exist σ, σ′ ∈

∪◦∈{−,=,+}N◦ satisfying σ(yj) > σ(x�) and σ′(yj) < σ′(x�). Applying Lemma 10.7 yields 

0 = vj = 1 − a so a = 1.

We now show that there exists yj ∈ α>xrmax+1,<xsmin
such that yj � x�. Suppose for 

contradiction that such yj does not exist. Then, for any y ∈ α>xrmax+1,<xsmin
, we must 

have either y < x� or y > x�. In particular, we have the disjoint union

α>xrmax+1,<xsmin
= [α>xrmax+1,<xsmin

∩ α<x�
] ∪ [α>xrmax+1,<xsmin

∩ α>x�
]. (10.3)

Let us show that

|α>xrmax+1,<xsmin
∩ α>x�

| ≤ |I��,smin−1�| − 1 and

|α>xrmax+1,<xsmin
∩ α<x�

| ≤ |I�rmax+1,�−1�| − 1; (10.4)

we prove the first inequality and the proof of the second inequality is analogous. Given 

any σ ∈ N+ and y ∈ α>xrmax+1,<xsmin
∩ α>x�

we have i� + 1 < σ(y) < ismin
so σ(y) ∈

I��,smin−1�\{il + 1}. It follows that |α>xrmax+1,<xsmin
∩ α>x�

| ≤ |I��,smin−1�| − 1 as desired. 

By (10.3) and (10.4) we now get

|α>xrmax+1,<xsmin
| ≤ |I�rmax+1,�−1�| + |I��,smin−1�| − 2 = |I�rmax+1,smin−1�| − 2. (10.5)

However, by Lemma 7.13, |α>xrmax+1,<xsmin
| = |I�rmax+1,smin−1�| − |{mixed elements}|. 

Hence, the number of mixed elements is at least 2 which means that the maximal splitting 

pair is supercritical, which contradicts Proposition 7.8. �

We are now ready to prove Theorem 10.1.

Proof of Theorem 10.1. We start by proving the analogue of (9.2).

Lemma 10.11. Let y ∈ α>xrmax+1,<xsmin
.

(a) If there exists σ ∈ N= such that either σ(y) = i� − 1 or σ(y) = i� + 1, then y � x�.

(b) If there exists σ ∈ N− ∪ N+ such that σ(y) = i�, then y � x�.

Proof. (a) We proceed as in the proof of Theorem 9.1 where we use Lemma 10.3 rather 

than (9.1).
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(b) Let y ∈ α>xrmax+1,<xsmin
be such that there exists σ ∈ N− with σ(y) = i�; the proof 

for the case σ ∈ N+ is analogous. Since we cannot have y < x� it suffices to show 

that y 
> x�. Suppose for contradiction that y > x�. By Lemma 7.3, l−(y) ≤ i� so by 

Lemma 7.2 l=(y) ≤ i� + 1. On the other hand, for any σ′ ∈ N=, Corollary 7.4 yields 

i� = σ′(x�) < σ′(y) ≤ m=
max(y) ≤ u=(y) so u=(y) ≥ i� + 1. Since i� + 1 
= im for any 

m ∈ [k] (by Corollary 7.11), Lemma 7.3 yields σ′′ ∈ N= such that σ′′(y) = i� + 1. 

By part (a), y � x�, which contradicts y > x�. �

We now prove |N+(∼, ∼)| = 0; the proof of |N−(∼, ∼)| = 0 is analogous. Suppose for 

contradiction that |N+(∼, ∼)| > 0 so there exists σ ∈ N+ such that yu := σ−1(i�−1) and 

yv := σ−1(i�) satisfy yu, yv < x�. Since i� − 1, i� ∈ I�rmax+1,smin−1� (because (rmax, smin)

is an �-splitting pair so irmax+1 ≤ i�−1 < i� − 1 by Corollary 7.11), Corollary 10.5 yields 

yu, yv ∈ α>xrmax+1,<xsmin
∪ {yσ

crit}. Consider the following two cases:

If yv ∈ α>xrmax+1,<xsmin
, then, by Lemma 10.11(b), yv � x� which contradicts yv < x�.

If yv = yσ
crit, we have yu ∈ α>xrmax+1,<xsmin

. Then, because yσ
crit < x� < xsmin

, we must 

have yσ
crit 
≥ xrmax+1, which implies yv = yσ

crit 
≥ yu. Hence, we can swap the positions of 

yu and yv in σ to reduce to the previous case. �

Notation index

• [p] := {1, . . . , p} for positive integers p.

• �p, q� := {p, p + 1, . . . , q − 1, q} for integers p ≤ q; (2.1).

• ᾱ = {y1, . . . , yn−k, x0, x1, . . . , xk, xk+1} and α = {y1, . . . , yn−k} where x0 (res. xk+1) 

is smaller (res. bigger) than every element in ᾱ.

• i0 = 0 and ik+1 = n + 1. j0 = −1 and jp+1 = k + 1.

• 1◦ = 1{◦ is +} − 1{◦ is −} for ◦ ∈ {−, =, +}.

• βi = α\(α<xi
∪ α>xi+1

) and βS = ∪i∈Sβi; (2.4).

• imax(y) (res. imin(y)) is the maximum (res. minimum) number such that y > ximax(y)

(res. y < ximin(y)); Definition 7.1.

• l◦(y) := maxr≤imax(y)(ir + 1◦ + |ᾱ>xr,<y| + 1) and u◦(y) := mins≥imin(y)(is + 1◦ −

|ᾱ>y,<xs
| − 1); Definition 7.1.

• m◦
min(y) = minσ∈N◦

σ(y) and m◦
max(y) = maxσ∈N◦

σ(y) for ◦ ∈ {−, =, +} and 

y ∈ α; Definition 7.1.

• i◦
j := ij + 1j=�1◦; Definition 7.1.

• rmax = maxι rι and smin = minι sι where (rι, sι) are the sharp-critical �-splitting 

pairs; Definition 7.7.

• yσ
crit; Corollary 7.15.

• Kmax, βmax := β�0,rmax�∪�smin,k�, α\βmax = α>xrmax+1,<xsmin
, and E⊥ := R

α\βmax ; 

(7.3), (10.1).

• �ij , ij+1�
◦ := �i◦

j , i◦
j+1� = �ij + 1j=�1◦, ij+1 + 1j+1=�1◦� and �ij + 1, ij+1 − 1�◦ :=

�i◦
j + 1, i◦

j+1 − 1�; (7.4).

• Ijq
:= �ij + 1, ij+1 − 1� for jq ∈ �0, k�, IJ := ∪jq∈J Ijq

; (8.1), (10.2).
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