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1. Introduction

This work focuses on the development of intrinsic dimensional versions of classical
functional inequalities. In order to explain the meaning of “intrinsic” in this context
it is best to start with an important example. The logarithmic Sobolev inequality in
Gauss space [61,36] asserts that for every nice-enough absolutely continuous probability
measure g on R™,

H(lh) < 51lm). 1)

where 7, is the standard Gaussian measure on R". Here,

HGal) [ 1og (L) di @)

is the relative entropy of p with respect to v and

dcf |V(du/dv)?
e L R 3)

is the relative Fisher information of p with respect to v, provided that v << p.

Gross’ motivation for (1) was to find a substitute for the Euclidean Sobolev inequalities
which holds in infinite-dimensional spaces (which was needed in constructive quantum
field theories). Sobolev inequalities have the feature that the dimension n of the ambient
space R™ appears explicitly in the constants of the inequalities, which leads to triviality
upon taking the limit n — oo. In contrast, the constant 1/2 appearing in (1) is dimension-
free, leading to (1) being well-defined in infinite dimensions. On the other hand, as was
already observed by Stam [61], (1) can in fact be improved if the dimension n is taken
into account. To see this improvement we first apply a standard change of measure (see
[66]) which shows that (1) is equivalent to
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) — H ) < (AR

(4)
where A, is the Lebesgue measure on R™. The dimensional log-Sobolev inequality [61,
23,20],

M)~ HO ) < 5 log (112 ) )

improves upon (4) as can be seen from the inequality logs < s — 1 for s € (0,00).
It is clear that when the Fisher information is large, (5) provides an exponential re-
finement over (4). Despite this quantitative improvement, (5) suffers from a lack of
sensitivity to the intrinsic dimension of p. To see this, suppose that u is of the form
dp(zy, ..., xn) = di(z1, .- -y 2k) Ak (Tk41, - - ., Tn), where k < n and i is an abso-
lutely continuous probability measure on R*. Then (5) rephrased in terms of i asserts
that

; (6)

H(ElAe) — Hywl[Ar) < glog (1 + W)

which deteriorates to (4) as the ambient dimension n increases, despite the fact that the

intrinsic dimension k of p is fixed. In other words, (5) is insensitive to the structure of

w. In [27, p. 12], Dembo showed that (5) can be further improved to an inequality which
captures the intrinsic dimension of pu:

1
H(ul[An) = H(allAn) = 5 log det I(n|[An), (7)

where

12 ®2
3(ul) [ =

is the relative Fisher information matrixz of u with respect to v. Observe that

I(pllv) = trI(ullv), (9)

and thus (7) improves on (5) by the elementary inequality logdet C' < nlog “nc which
holds for every n x m positive semidefinite matrix C. In particular, both sides of (7)
behave additively with respect to product measures: Plugging in dpu = dji dy,,—x into (7)

yields

1
H(i[[Ax) = HOvl|Ae) < ) log det I(fi| Ax) (10)

which captures correctly the intrinsic dimension of p. More generally, by considering the
eigenvalues of the Fisher information matrix, (7) can quantify the extent to which
degenerates along each eigenvector direction.
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The goal of this work is to initiate a systematic study of intrinsic dimensional versions
of classical functional inequalities. We focus on some important model spaces: Euclidean
space, Hamming cube, and space forms (manifolds of constant sectional curvature). These
model spaces have historically played a crucial role in the development of functional in-
equalities and their study has been the impetus leading to fruitful generalizations and
abstractions; see the monograph [9]. In view of the richness of the subject, our intrinsic
dimensional functional inequalities on these spaces improve on multiple classical inequal-
ities from the literature. The tools required to establish intrinsic dimensional functional
inequalities in each of the model spaces will depend on the unique characteristics of
the space itself: scaling (Euclidean space), tensorization (Hamming cube), and stochas-
tic methods (space forms). In the rest of the introduction we will review each of these
methods and present examples of the intrinsic dimensional functional inequalities which
follow. We defer the statements of many of our results to the main body of the paper;
see the following brief summary:

Part 1. Euclidean and product spaces: scaling and tensorization

o Logarithmic Sobolev inequalities for homogeneous measures (Section 2.2).
¢ Bayesian Cramér-Rao bounds (Section 2.3).

o Gagliardo-Nirenberg—Sobolev inequalities (Section 3).

o Beckner inequalities (Section 4).

¢ g-logarithmic Sobolev inequalities (Section 5).

o Nonlinear logarithmic Sobolev inequalities in product spaces (Section 7).

Part 2. Space forms: stochastic methods

o Local logarithmic Sobolev inequalities on space forms (Section 9).
e Local logarithmic Sobolev inequalities and Hamilton’s matrix inequalities on non-
positively curved space forms (Section 10).

1.1. FEuclidean spaces: scaling

Most classical functional inequalities on R™ are coordinate-free results phrased in a
coordinate-dependent way. As such, they can often be substantially refined when ex-
pressed in a suitable basis. Concretely, the correct basis is found by performing a change
of variables of the form x — Az and then optimizing over a prescribed class of symmetries
A € G C GL,. Let us remark that explicit improvements of this form can be obtained
only when it is possible to solve these optimization problems, which is not always the
case. These improvements are moreover motivated by the study of equality cases. When
a functional inequality has a non-constant function A : R™ — R as an equality case, then
the refined inequality obtained in the manner described above would be saturated by
all functions of the form h4(x) = h(Az), where A € G. This principle has already been
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applied by Dembo [27] in the case of the Gaussian logarithmic Sobolev inequality (see
also [30,14] and Section 2 below). In the first part of the paper we shall present more
applications of this idea to other important functional inequalities in Euclidean space
and further consequences.

1.1.1. Beckner inequalities
In [13], Beckner proved that any smooth function u € C§°(R™) satisfies the estimates

Vpel,2),  uli,e,) —luli, 6., < @=p)IVull,q,)- (11)

This family of inequalities interpolates between the Gaussian Poincaré inequality (corre-
sponding to p = 1) and Gross’ logarithmic Sobolev inequality [36] which arises as a limit
when p — 27. We refer to the influential work of Latala and Oleszkiewicz [42] as well
as [9, Section 7.6] for examples of Beckner-type inequalities satisfied by non-Gaussian
measures.

In [28, Corollary 4], Dolbeault and Toscani proposed a dimensional refinement of Beck-
ner’s inequality (11) for functions satisfying a second moment normalization condition.
More specifically, they showed that if a function v € C§°(R"™) satisfies the normalization

condition
[ 1aPu@? (@) = nlulf . (12)
R~
then
2 ||u||%p(%) 2
el [l e (1- ot ) < IVulh, (0
L2(’Y")

where the function ¢, ,, is given by
Vse(0,1), ¢pnls) g(u — §) R — 1). (14)
Observe that (13) improves upon (11) up to the value of the implicit constant as

P 1 P
Vse(0,1), wp’n(s)z2(2_p)log<1_5>22(2_p)-s. (15)

The improvement (13) becomes particularly substantial when [[ul|z (y,) < [[u[lLy(y,)-

In the spirit of the matricial refinement (7) over the dimensional logarithmic Sobolev
inequality (5), we present the following refinement of (13) for functions whose second
moment matriz is appropriately normalized.
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Theorem 1. Fiz n € N and let u € C§°(R™) be such that

Vije{l...n}, /xi:vju(x)Qd'yn(x) = Sl . (16)
Rn

where ;5 is the Kronecker delta. Then, we have

_2-p
2
ullZ, i, = IulZ, . p

Vpell2), ) <1 - |det 7/(%)@2 dy, + Id,,

4
2, s 1ellZs g,

(17)

Applying the inequality det C' < (%)n and rearranging, we see that (17) strengthens
(13).

1.1.2. Gagliardo—Nirenberg—Sobolev inequalities
Fix n € N. The Gagliardo-Nirenberg inequality [34,53] asserts that for every p, q,r, s €
[1,00) and 0 € [0, 1] satisfying the constraint

%:g+(%—%)(1—9), (18)

there exists a universal (optimal) constant CP%™* > 0 such that every u € C§°(R")
satisfies

||u||Lp(]R") < CPans|

-0
u”%q(R")||VU’||},T(]R7L;E2)7 (19)
where we use the standard notation

1/r

n r/s
Vel ey = (R/ (3 otey) "ar | (20)
=1

In the special case r € (1,n) and 6 = 0, inequality (19) boils down to the classical
Sobolev inequality [59,60]. The endpoint case r = 1 and # = 0 was due to [34,53] and
the corresponding optimal constant for s = 2 was found by Federer, Fleming and Rishel
[31,32]. The optimal constant in the range r € (1,n) and § = 0 for s = 2 was discovered
by Aubin and Talenti [2,62]. The logarithmic Sobolev inequality (4) can be obtained as
an endpoint case of the Gagliardo-Nirenberg—Sobolev inequality (19) with the optimal
constant when s = 2 (see [26, Section 1]). Finally, the optimal constant C?*"™* for general
parameters was found by Cordero-Erausquin, Nazaret and Villani in [22, Section 3]. In
this paper, we present a refined inequality for r = s.



A. Eskenazis, Y. Shenfeld / Journal of Functional Analysis 286 (2024) 110338 7

Theorem 2. Let p,q,r € [1,00), 8 € [0,1] and CP®™" > 0 be such that (19) is satisfied
for all functions u € C§°(R™) with r = s under the constraint (18). Then, for every
u € C§°(R™), we have

e n
ull, &) < CPT""nw ||u||%q(]R”) ( H ||aju||Lr(R")) (21)

i=1

The inequality (21) improves on (19) by the arithmetic mean-geometric mean inequal-
ity so Theorem 2 asserts that Euclidean Gagliardo—Nirenberg—Sobolev inequalities, that
is, inequalities of the form (19) with the choice of parameter r = 2, self-improve via scal-
ing. In particular, (21) captures the fact (absent from (19)) that 9;u = 0 on R™ implies
that v = 0 under any L,-integrability assumption for u

1.2. Product spaces: tensorization

If (2, 7) is a probability space, then for a measurable function f : Q — R4 we shall
denote its entropy with respect to 7 by

Ent..[f] d:“/flogfdw— (/fdw) log</fd7r). (22)

Q Q Q

The usefulness of logarithmic Sobolev inequalities in probability and geometry stems
largely from the fact that entropy satisfies a simple yet powerful tensorization principle,
rendering them dimension-free estimates [43]. In the interesting work [55], Polyanskiy
and Samorodnitsky introduced a family of more general inequalities for Markov semi-
groups called nonlinear logarithmic Sobolev inequalities (see also [36,66,23,24,20,50,57]
for previous occurrences of such estimates in the literature and applications). Let { P }1>0
be a Markov semigroup acting on measurable functions f : 2 — R with stationary mea-
sure 7. Following [55], we say that {P;};>¢ satisfies the (p, ®)-LSI, where p > 1 and
®:R; — Ry is a concave, continuous function with ®(0) = 0, if for every measurable
function f: Q — Ry, we have

&(f, f’“)) 7 (23)

P P
a7 < B[] (T
where (-, ) is the Dirichlet form corresponding to { P; }+>0. As usual, the term &(f, fP~1)
is interpreted as E(f,log f) in the endpoint case p = 1.

In [55, Theorem 1], the authors proved a dimensional tensorization property for non-
linear log-Sobolev inequalities asserting that if { P, },>¢ satisfies the (p, ®)-LSI, then for
any n > 1, the product semigroup {P"};>0 with stationary measure 7" satisfies the
(p, n@(%-))fLSI:

Entn[fP] < nEn[fP]® (%) . (24)
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By considering functions f of the form f(z1,...,z,) = f(xl, .., x), for k < n, we see
that (24) suffers from the problem of incorporating the ambient dimension n into the
constant, thus ignoring the structure of f. In the FEuclidean setting, we overcame this
issue by finding the correct basis via an optimization procedure over the cone of positive
semidefinite matrices. In contrast, such an approach is not suitable on the Hamming
cube due to its discrete nature. Our solution to this problem is to refine tensorization
instead of scaling. Indeed, as a consequence of a more general tensorization principle (see
Theorem 18 below), we shall prove the following stronger nonlinear logarithmic Sobolev
inequality for product spaces.

Theorem 3. Let (Q, 7, {P;}i>0) be a stationary Markov semigroup satisfying the (p, ®)-
LSI for some p > 1 and some concave, continuous function ® : Ry — Ry with ®(0) = 0.
Then, for any n > 1, every measurable function f: Q" — Ry satisfies

- &(f, 7 1]
Enty [f? Z ( 7r”[fp] >7 (25)

i=1

where &;(-,-) is the Dirichlet form associated with the i-th component of the semigroup
{P" }ez0.

It follows readily from Jensen’s inequality that

" (s, 4771 (.17
22 ( 17 ) <ne (ST ) 26)

i=1

where €(-, -) is the Dirichlet form associated to {P™};>0 and thus (25) indeed strength-
ens (24). Moreover, in [55, Theorems 4 and 6], the authors found the optimal functions
®,, such that the (p, ®,)-LSI is satisfied on the one-dimensional Hamming cube {0,1}
equipped with the uniform measure. Tensorizing their result via Theorem 3, one deduces
an improved nonlinear logarithmic Sobolev inequality on the Hamming cube {0, 1}".

1.8. Space forms: stochastic methods

In order to explain our intrinsic dimensional functional inequalities on space forms
we first recall the notion of local logarithmic Sobolev inequalities. Starting with the
Euclidean setting, fix T'> 0, x € R™, and let d“ = lész(a ) where ; is the Dirac mass at
z, f:R" — ]R is a nonnegative function, and {Pt}tzo is the Euclidean heat semigroup
given by Pih(z) := [ h(z + V/tz)dy,(2). Plugging p into (5) yields (after integration by
parts and usmg the explicit form of Prd,),

Pr(flog f)(x) — Prf(x)log Prf(x)

. 5 T Pr(fAlog f)(@) 1)
< S PrAf(@) + 5 Pri()log (1 - 5TPTT) '
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The inequality (27) is the local dimensional logarithmic Sobolev inequality on R™ [10].
While (27) provides an upper bound on the (local) entropy, the reverse local dimensional
logarithmic Sobolev inequality [10] provides a lower bound,

Pr(flog )(x) — Ppf(x)log Prf(x)
. (28)
> S PrAL@) - §Prfe)iox (14+ T AlogPrf(a).

Analogously, we can use (7), instead of (5), to get the local intrinsic dimensional loga-
rithmic Sobolev inequality on R,

Pr(flog f)(z) — Prf(x)log Prf(x)

Pr(fV?log f(w))) (29)
2 b

R e O

which improves on (27). As for a reverse local intrinsic dimensional logarithmic Sobolev
inequality in R™, we will establish below (Theorem 32) that

Pr(flog f)(x) — Prf(x)log Prf(x)

> gAPTf(x) — %PTf(x) log det (Id,, + T'V?log Prf(z)),

which improves on (28).

Turning to the manifold setting, local dimensional logarithmic Sobolev inequalities
exist on manifolds in forms which account for both the dimension of the manifold as well
as the Ricci curvature [6]. In light of the existence of the local intrinsic dimensional log-
arithmic Sobolev inequalities on Euclidean spaces (29) and (30), we wish to understand
whether such inequalities can also exist on manifolds. Upon closer inspection, however, it
is clear that inequalities such as (29) and (30) cannot hold if the only curvature informa-
tion given pertains to the Ricci tensor. On a conceptual level, the difference between the
dimensional and intrinsic dimensional inequalities is that the former provide information
about the trace of the Fisher information matrix, while the latter provide information
about the full spectrum. Hence, while information on the trace of the Riemann tensor,
i.e., Ricci curvature, suffices to yield a dimensional inequality, information on the full Rie-
mann tensor, i.e., sectional curvature, should be required to give an intrinsic dimensional
inequality.

A concrete manifestation of this intuition is exhibited by the inequalities of Li—Yau
and Hamilton [47,37]. As was realized in [10], the reverse local dimensional logarithmic
Sobolev inequality (28) implicitly implies the Li—Yau inequality on R™,

Vr € R™, —Alog Prf(z) <
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since the argument in the log term of (28) must be nonnegative. Analogously, the re-
verse local intrinsic dimensional logarithmic Sobolev inequality (30) implies Hamilton’s
inequality,

1
vz € R", —V2log Prf(z) = Tldn, (32)

where < is the order of positive semidefinite matrices. In the manifold setting, the Li—Yau
inequality, which is a statement about the trace of the Hessian of log Pr f, holds under a
nonnegativity assumption on the trace of the Riemann tensor, namely the Ricci tensor
[47,68]. Indeed, Bakry and Ledoux [10] (see also the follow-up work [6]) established (re-
verse) local dimensional logarithmic Sobolev inequalities on manifolds with nonnegative
Ricci curvature which imply the Li—Yau inequality. In contrast, Hamilton’s inequality,
which is a statement about the Hessian of log Pr f, requires the manifold to have non-
negative sectional curvature (and also to be Einstein), which is an assumption on the full
spectrum of the Riemann tensor [37]. It follows that if local intrinsic dimensional loga-
rithmic Sobolev inequalities were to hold, then information about the sectional curvature
should be provided.

In this work we establish local intrinsic dimensional logarithmic Sobolev inequalities as
well as Hamilton-type matrix inequalities for space forms: Euclidean spaces, spheres, and
hyperbolic spaces. In addition to serving as the model spaces for functional inequalities
on manifolds, these spaces are the simplest non-trivial examples of manifolds where we
could hope for local intrinsic dimensional logarithmic Sobolev inequalities to hold. The
methods of scaling and tensorization which worked, respectively, for Euclidean spaces and
product spaces no longer apply on curved spaces as they lack product and homogeneity
structures. Hence, we take a different route and build on the stochastic approach of Lehec
[44,45] and Eldan, Lehec, and Shenfeld [30] towards logarithmic Sobolev inequalities. We
start by stating our local intrinsic dimensional logarithmic Sobolev on space forms while
deferring precise definitions to Part 2.

Theorem 4. Let (M, g) be an n-dimensional Riemannian manifold with constant sectional
curvature k € R\ {0} with the associated heat semigroup {P;}t>0. Fix T >0, z € M, a
smooth positive function f: M — R with fM fdPré, = 1, and let u be the probability
measure with %T”&w = f. Define the 2-tensor C(t) = e::A +tB fort € R where A, B
are the 2-tensors given by

A= —e T (PpV2f(z) — s PrAf(z) - g)
B ((n—21)n - APTf(z)) e (33)

n

Then, we have the local intrinsic dimensional logarithmic Sobolev inequality
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Pr(flog f)(z) — Prf(z)log Pr f(x)

T T

-1
% /tr[ CH-C(T) (g +E,(Viog f)©* [ 20()-26(T) ds) E,(Vlog f)®260<t>—C<T>} dt,
0 t
(34)
and the reverse local intrinsic dimensional logarithmic Sobolev inequality
Pr(flog f)(z) — Prf(x)log Prf(x)
1 r t -1
£C(H)—=C(0 ®2 2C(s)—2C(0
0 0

x (Vlog Prf(x)) e 0-CO)] at.

As will become clear from the proof of Theorem 4, the theorem is not optimal and fol-
lows from a more powerful “master” matrix differential inequality (section 10.3). There
are other inequalities which can be deduced from the master matrix differential inequal-
ity, specifically in space forms with nonpositive sectional curvature. In particular, we
prove Hamilton-type matrix inequalities for the heat equation:

Theorem 5. Let (M,g) be an n-dimensional Riemannian manifold with constant non-
positive sectional curvature k < 0. Let {P}¢>0 be the associated heat semigroup and let
f:M =R be a positive function. Then, for every x € M and every T > 0,

4 AP
if, either k =0, or £k <0 and —— Tif()— ,
n°K PTf( ) (36)
then — V?log Prf(x) = %Idn Vo € M.
Further,
4 APrf(x)
—>1
if k <0 and —— w2k Pri(@) > 1,
then — V?log Prf(x) (37)

nkK 4 APrf(x) nkT | 4 APrf(x)

In flat space, where k = 0, Theorem 5 reduces to (32), namely, Hamilton’s matrix

inequality [37, Corollary 4.4]. In hyperbolic spaces, Theorem 5 is completely new. The
4 APrf(x)
n2k PTq}(m)
improved Li-Yau inequality of Bakry, Bolley, and Gentil—see Remark 34.

constraint > 1 is natural. Indeed, Theorem 5 is a matrix version of the

Going beyond matrix inequalities, we can use our master matrix differential inequality
to obtain another form of local intrinsic dimensional logarithmic Sobolev inequalities.
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Theorem 6. Let (M, g) be the n-dimensional hyperbolic space with sectional curvature

k < 0 with the associated heat semigroup {P;}i>0. Fiz T > 0, x € M, a smooth positive

function f : M — R with fodPTéz = 1, and let p be the probability measure with
di_ — ¢ Then, with

dPrs,
arctan (i (O’Z‘ + M)) if A <0,
ef n?k? 4 def VA ?
= 4{nZAPTf( ) — }7 o = _—2oj-fm if A =0,
arctanh (=45 (o5 + %)) ifA>0,
(38)

we have the local intrinsic dimensional logarithmic Sobolev inequality

Pr(flog f)(z) — Prf(x)log Prf(x)

1 1 Og(coscxo/s_;:ra)) Zf/\>0
PrAf(x) n?kT ) (39)
< - - - > iy log ( ) ifA=0
2 2
(coshcc\)/Sh_(O;)Jr )) Zf A<0
where {o;}7_, are the eigenvalues of E,[— V2log f], and the reverse local intrinsic di-

mensional logarithmic Sobolev inequality

Pr(flog f)(x) — Prf(x)log Prf(x)

cos(a;) .
o N log(coS fT+a)) ifA>0
L Prbf(a) w1 1og(

ifA=0

T+o¢1 )

cosh(a;) .
log (co@h(FT+a )) FA<0

where {0}, are the eigenvalues of —V?log Prf(z).
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Part 1. Euclidean and product spaces: scaling and tensorization
2. Logarithmic Sobolev inequalities in Euclidean spaces and Cramér—Rao bounds

In this section we discuss strengthenings of logarithmic Sobolev inequalities for mea-
sures on Euclidean spaces by means of scaling. In addition, we derive an application of
these inequalities to Bayesian Cramér—Rao bounds.

2.1. Warm-up: Gross’ inequality

The Euclidean reformulation (4) of the logarithmic Sobolev inequality in Gauss space
[36] asserts that if f: R™ — R is a probability density, then

T 2
/ () log £(x)dz — HallAn) < 5 / %dx—n | (41)
R~ n

Fix such a density f and consider the reparametrized density fa : R — R, which is
given by fa(x) = (det A) - f(Ax), where A € GL,, is a positive definite matrix. Applying
(41) for fa we get

/ f(2)log f(2) dz + log det A — H(7, [ An) = / fa(x)log £4(x) dz — H(ml|An)
R~ R

(42)
1 Va@)* ) 1 A-Vi@)P .
=2\ Thw T T2 / IR A
which after rearranging becomes
[ r@os sy as -t < 3 | [T 0 togaera -
Rn n (43)

= 5 (x(A2 - 3(uA,)) — logdet A — )
For the optimal choice of matrix A = J(u||A\,)~'/2, (43) readily becomes Dembo’s in-
equality (7). Observe that in this argument we made critical use of the change of variables
formula for the Lebesgue measure, i.e., that A\, (AK) = (det A) - A\, (K) for any Borel
K C R™ and A € GL,,. While Lebesgue is the only measure on Euclidean space satisfying
such an invariance property under all linear transformations, in the next section we shall
observe that a weaker self-improvement can be deduced for measures which behave well
under diagonal linear maps.
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2.2. Logarithmic Sobolev inequalities for homogeneous measures

Let p1,...,pn > 0. An absolutely continuous measure p on R™ with density w : R™ —
R is called (py,...,pn)-homogeneous if for every t1,...,¢, > 0,
Vo= (x1,...,2,) € R", Wt 1, .oty Ty) =P w (T, . Ty). (44)

Theorem 7. Fix ci,c0 >0, n € N, p1,...,p, >0 and let p be a (p1, ..., pn)-homogeneous
measure such that for any Borel probability measure i on R™,

H(ullp) < exl(ulip) + co- (45)

Then, for any Borel probability measure p on R™ with positive differentiable density f,
we have

n

H(pllp) < ;Z(l + pi) log fj‘;k / (a'“ff(;y))) dp(y) | + co. (46)
R»

The existence of homogeneous measures p satisfying inequalities of the form (45), as
well as more general entropy-energy inequalities follows, for instance, from [9, Proposi-
tion 7.3.1].

Proof of Theorem 7. Let f = ‘;—’; be an arbitrary positive function with p-integral

equal to 1 and fix t¢1,...,t, > 0. The measure pu; with density z — fi(z) =
G PP f(ty2y L b my,) with Tespect to p is a probability measure, as

[Ter [ st tznule) do = I t”l/f Wt st g) dy = 1, (47)
i=1 B

where we made the change of variables (y1,...,yn) = (t121, ..., tnZy). We have,
H(pellp)
_Htlﬂh /f (t11, ...t mn){logf(tlxl,.. tnTn +Z 1+ pg) logtk} (x)dax
i=1 R» k=1

n

= Htpl / {logf( ) + Z(l + pr) logtk} w(ty 'y, .ot tyn) dy

Rn k=1

=H(ullp) + > (1 + pr)logt.
k=1
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Similarly, assuming in addition that f is differentiable, for every k € {1,...,n} we have
Nfe(x) =ty [I,t; P O f(t1z1, . . ., tpzy,) and thus

2
() =3t T / Oty )P

tlxla cee ,tnl'n)

— th . Htfl/ (akf(y)) w(tl—ly17 o ,tglyn) dy = Zti / (akf;y))z dp(y)

e S f(y) =y, f(y)
(48)
Therefore, applying (45) for p; and reorganizing the terms, we deduce that
H(ullp) < nf g Zt2 8kf ) dp(y) — Xn:(l + pr)log i + c2
otn 20 k=1
It is now elementary to check that the above infimum is attained when
Lt+pe [ (Okf(y)? -1
Vke{l,...n}, = (/ dpy) 49
(oon =S ([ o) (49)

and plugging this choice of parameters completes the proof. 0O

Specifically for Lebesgue measure, Theorem 7 implies that if 4 has differentiable den-
sity f,

H(ulAn) — HillAn) Zlo (R/ %dy, (50)

which is weaker than Dembo’s inequality (7) in view of the elementary estimate
det C' <[], Css which holds for all positive semidefinite matrices C'. On the other hand,
(50) combined with Jensen’s inequality implies (5). We refer to [7,10,5,6] for further
dimensional logarithmic Sobolev inequalities and applications to Li—Yau-type estimates
[47], hypercontractivity [51,19,52,12 4] and heat kernel estimates [4,7].

2.8. A Bayesian Cramér—Rao bound

In [1], Aras, Lee, Pananjady and Courtade observed that logarithmic Sobolev in-
equalities formally imply Bayesian Cramér—Rao bounds, thus extending some results of
Efroimovich [29] for Gaussian measures. In this section, we investigate similar applica-
tions of intrinsic dimensional log-Sobolev inequalities in the spirit of (46) and (7).
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Following [1], we work in the setting of parametric statistics. Let {ug }gecrn be a family
of probability measures on a measurable space (€2, F). Assume moreover that there exists
a dominating o-finite measure A on €2 such that py has a positive density with respect
to A,

vV 6eR", dpe(x) = f(x;0) dA(z). (51)

We shall assume throughout that each function 8 — f(z;6) is smooth and that
/Vef(ar; 6) d\(z) =0 (52)
Q

for almost every 6 € R™. The Fisher information of the parametric family {pg}gern is

n at [|Vof(@:0) )
VOcRY,  g(o) X Q/if(x;e) dA(z). (53)

Finally, if 7 is a probability measure on R™, we denote the mutual information of = with
the family {pg}ocrn by

: def 2010 f(z;0) 2 dr
Mm@wn—£[!f<ﬁﬂg<&ﬁﬂ%@dﬂ@)dx>d<m. (54)

The main result of [1, Theorem 1] specified to the standard Gaussian measure ~,, asserts
that for every absolutely continuous probability measure © on R,

() + il < 5 (i) + [ 3(6)an(d)). (55)
Rn

Inequality (55) implies the Gaussian logarithmic Sobolev inequality (1) since choosing
o = A independently of 0, the terms I(m;{ug}) and J(0) both vanish. We present
inequalities in the spirit of (55) for homogeneous measures satisfying a log-Sobolev in-
equality of the form (45).

Theorem 8. Fix ci,c0 >0, n € N, p1,...,p, >0 and let p be a (p1, ..., pn)-homogeneous
measure such that for any Borel measure p on R™,

H(ullp) < el(ullp) + ca. (56)

Then, for every parametric family {1g}ocrn and every absolutely continuous measure
on R™ whose density with respect to p is h : R™ — R, we have
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I(m; {ne}) + H(xlp)

S N Ry ey

R~

—_

+ Co.
(57)

Observe that the terms inside the logarithm on the right-hand side are the k-th compo-

nent of the Fisher informations I(7|p) and J(@) respectively, in analogy with Theorem 7.

Proof of Theorem 8. Consider the function f: € — R, given by

VeeQ,  flo)l / F(z:0) dm(0) (58)
Rn

and observe that
/f ) dA(z //fo:ﬂ )dm(0) dA(z //dug )dm (6 (59)
Q Rn

Moreover, for x € 2, consider the function h, : R® — R given by

VOER", b)Y W

and notice that the measure v, on R"™ with duv,(6) = h,(0) dp(0) is a probability measure
since

(60)

h(0) f (x:0) f(@:0) (38)

VIR":/—d(‘): dmw(0) =" 1. 61
®") ty e = [ S an(0) (61)

R" R"

By Theorem 7 and the assumption on p, for every x € Q2 we have
1 < 2ecy (Oxh.(0))?

-y (1 )1 . 2
H(vallp) < 2; + i) Og<1+pk/ o) ap(0)) + 2 (62)

— En

Integrating this inequality with respect to the probability measure f(z)d\(x), we get

/ H(vallo) f(x) dA(z)

%;(1 +px) / log ( ff;k / (3’“}3((;)” WO F@) AN +er ()
- J J

IN

—

IN

L3+ o (2 / / Ol D5 @) dp(0) A0)) + e,

k=1
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where the last line follows from Jensen’s inequality. Moreover, by definition we have

[ Healore i = [ [ ao) xelog(%)dmmdm
Q Q Rn
_ / 1(0) og h(60) dp(0) + / / F(@:0) 1og(f;9(”;f))dA(x) dr(6)

R~ R» Q
= H(rllp) + I (m; {po})-

Similarly, computing the integral on the right-hand side of (63), gives

2 - )2
[ [0 - | LI A 1,1,
Q Rn n
/ 8’“h /f 9) dX(z) dp(0 +2/8kh /aak 2;0) dA(z) dp(0)
/h / (9. /( e 0))) d\(z) dp(0)

2 /(3khh // 3@ A\ (z) dn(0).

Rn

Combining everything, we deduce the desired inequality. O

Remark 9. In the case of the Gaussian measure p = ~,, we have at our disposal the in-
trinsic dimensional logarithmic Sobolev inequality (7). Repeating the same proof mutatis
mutandis while replacing (46) with (7), we conclude that for any probability measure 7
on R™ whose density with respect to v, is h : R™ — R, and for every parametric family
{1o}oern, we have

I(7r; {Me}) + H(7lvn)

Mo, —n 1 Vo (:0)%
< TR Slogdet (21d, + () + / / w AN dr(0) ~ Mz ).
R7Q

where My, = [ 6®2dr (). This recovers a result of Efroimovich [29, Theorem 5]. Com-
bining the inequalities logdet C' < nlog = ¢ and logy < y — 1, which hold for all y > 0
and all n X n positive definite matrices C we see that Efroimovich’s inequality is a
strengthening of (55).
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3. Gagliardo—Nirenberg—Sobolev inequalities

In this section we shall prove Theorem 2:

Theorem 10. Let p,q,r € [1,00), 6 € [0,1] and CP2™" > 0 be such that

el @y < CPE Nulll, oy IVl (e (65)
is satisfied for all functions u € C§°(R™) under the constraint
1 0 1 1
5:5+(?_5)(1_9)' (66)
Then, for every u € C§°(R™), we have
1-0
' (67)

n
1-0 /] n
ez, @y < P00l oy ( [T 100z, @) ™
j=1

Proof. Fix t = (t1,...,t,) € R and consider the function u; € C§°(R™) given by

Va=(x1,...,2,) € R", ug(x) o u(t11, - -« tnn). (68)
Then, for s > 1 we have
||ut||L Rn) = /\u tlxl,.. t nLn | dx) Htfl/s ]R" (69)
R~
and
IVuell, ey = 3 / l0sudlly, oy = S8 Lt 00l @y (70)
=1, i=1  j=1
Therefore, applying (65) to u; and rearranging, we deduce that
1_e_1-¢ n 1-0
T q r r T
Jullz, @y < CP (Ht )l ey (2 B0, @)
i=1
’ o (71)
(66) rr T o
= grar (Ht )7l ey (Zt 10l )
=1
for every tq,...,t, > 0. Choosing

ti = HaiUHZTl(Rn)

gives the desired inequality (67). O
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4. Beckner inequalities

In this section we shall prove Theorem 1:
Theorem 11. Fiz n € N and let u € C§°(R™) be such that
Vigelon), [ nau? dun =l (73)
Rn

where ;5 is the Kronecker delta. Then, we have

lull?, = lullZ
Vpell?2), La(yn) LOm) <9 _ et /(Vu)®2 Ay + Id,,
ullZ, s lull?.cr, ”van

(74)

For the proof of Theorem 11 we shall use the intrinsic dimensional logarithmic Sobolev
inequality (7) which takes the following simple form for appropriately normalized func-
tions in Gauss space.

Lemma 12. Let u € Cg°(R"™) be such that ||ul|1,(y,) =1 and

Vi, jed{l,...,n}, /:cmju(x)z dy (z) = 0. (75)
Rn
Then, we have
1
Ent., [u 2 < 3 log det | 4 /(Vu)®2 dym + 1d,, | - (76)
Rn

Proof. Let u € C§°(R™) satisfy the assumptions of the lemma and define f(z) =

2 exp(—|z|*/2)

u(x) CRE which is the density of a probability measure p on R™. Then, we have

H(ulAn) = H(ym | An) = Ent.,, [u?] — /|w|2 2 da(a) — 5 log 2 + & log 2me

(77)
© Ent,, [u2).
On the other hand, for k € {1,...,n}, we compute
O f(z) = (2u(2)dpu(z) — zpu(z)? e t=l'/2 (78)

(2m)n/2
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and thus for i, € {1,...,n}, we get

I(pl|An)s —4/8u8 udfyn—2/ (z;0;u(z) + z;0;u(x))u(z) dyn(z)

Rn
—i—/xixju(x)Q dvyn ().
]Rn

For i # j, integration by parts gives

Z/xj&u( Yu(z) dyn (z /8 iU d’yn( )= /a:izju(:r)z dyn () @ 0, (80)

R~ R~ Rn

whereas for ¢ = j, again by integration by parts,

2 [ widru(oyu(e) dra / 0, (aiu(@)?) dino) ~ [ ula)? dua(z)

R~ Rn
/xu< @) -1 20,
]RTL

Plugging the above in (79) and using (75) again for the last term, we deduce that

I(ulAn) = 4 /(Vu)®2 dy, + 1d, (81)
Rn

and the conclusion of the lemma follows from (7). O
Equipped with Lemma 12, we proceed to the proof of Theorem 1.

Proof of Theorem 11. Assume, without loss of generality, that ||u[|z,(,) = 1. Combining
a lemma of Dolbeault and Toscani [28, Lemma 5] (see also [42]) with Lemma 12, we get
that

1 _ (76)
H ||2LQ ) < exp < pEnt% [u2]> < det | 4 /(Vu)®2 dvyn, + 1d,
Ty~ Wl <\

Therefore,

u <1—det|4 [(Vu)®2dy, +1d, , 83
L »(1n)
R"

which is the desired estimate under the normalization |[ul|z,¢,,) =1. O
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5. g-logarithmic Sobolev inequalities

Following Bobkov and Zegarlinski [18] (see also [11]) we say that a probability measure
1 on the real line satisfies the g-logarithmic Sobolev inequality with constant C' > 0 if
for any f € C§°(R) we have

But, 1717 < € [ I @) du(o) (51)
R
Standard tensorization principles show that if (84) holds, then for any f € C§°(R™),

B 1119 £ €Y [ us@ltant @), (85)

= 1R"

where p"" = p®p®---® p is the product measure of i.i.d. coordinates distributed like p.
In particular, it has been established in [18, Corollary 5.6] (see also [16, Section 5]) that
the measure 1, with density Zipe’mp, where p > 2, satisfies the g-logarithmic Sobolev
inequality for ¢ = ﬁ with some constant C; > 1. In order to investigate scale-invariant
refinements of (85) for this family of measures in the spirit of (50), we first need to
formulate them as Euclidean inequalities.

Theorem 13. For any q € (1,2), there exists a constant C'q > 0 such that for any n € N
and any probability measure p on R™ with positive differentiable density g,

s dig(x) |4 _a_
) < G 3 [ (|29 ol ) auta. (56)
ilen
Proof. For p = -4 > 2 consider the probability measure du,(z) = ;:‘p on R, where

the normalizing constant is Z, = 2I'(1+1/p) > 2. Let p be a probability measure on R™
with differentiable density g : R™ — R and consider the function f : R — R given
by

YV axeR" f(z) = Zg/qg(x)l/qeﬂwl\g/q, (87)

which satisfies [g, f(z)? )?dpg (z) = 1. Therefore, the g-logarithmic Sobolev inequality for
p, applied to the functlon f implies that

7y [ fore B os sty s = pung 1) < G5 [l sopeas ()

p i:]'R"n,

Observe that
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%/f(x)qe—l\rl\ﬁlogf(x)q dz = /g(x) log (Z;‘g(x)e”r”?)dag
p
R~

. (89)
= Hlan) + [ llelf du(e) + oz Z;
Rn
and for i € {1,...,n},
1 / lall? 1 [|9ig(x)
— 0; f(x)|%e “szdx:—/ ¢ + psign(z;)|z;|P~ 1‘ dp( 90
7 |0:f ()] 7 1w gn ()|l p(z (90)
R" R"
Therefore, rearranging (88) we deduce that
H(ul|An) Z/ zg +p51gn @) |z [P 1‘ dp(z /|xi|pd,u(x)—logZ;L
z:an
g(z
Z/( LN+ 1) dua)
(91)

for some different constant C'q > 0 and the proof is complete. O

This Euclidean weakening of the g-logarithmic Sobolev inequality (85) for u;; makes
it amenable to refinements via scaling.

Theorem 14. For any q € (1,2) and p = %, there exists a constant C'q > 0 such that
for any n € N and any probability measure yn on R",

L ~ 0;9(x) |4 C
) <3 it (Gt [ 225" auay + S [ anto) -0t} 02
i=1 ‘ Rn v Rn

9(x)
Proof. Fix ty,...,t, > 0 and consider the probability measure p; whose density is given
by z — g¢(x) def ty - tpg(ti21, ..., thxy,). Then, we have
H(pel|An) = H(pllAn) + ) logt; (93)
i=1
and for every i € {1,...,n},
0igi(x) dig(z) @ | |aglP
d = t}——= d . 94
J (12282 ) st = [ (205" 4 50 ) ante). o)
R™ Rn

Therefore, applying (86) to u: and rearranging, we deduce that
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n

H(lIA) Z{c tf

i=1

dig(x) |2
g(x)

C
+ o / el dn(a) ~logt ) (95)
k3 Rn

and taking an infimum over tq,...,t, > 0 completes the proof. O
6. Beyond linear rescalings

The simple idea of the previous sections can be summarized as follows. Let

X(f) < L(f) (96)

be a functional inequality valid for regular enough functions f on R™ and fix a subgroup
of symmetries G C GL,,. For a fixed f : R® — R for which inequality (96) is valid and
A € G, consider the function fu : R™ — R given by fa(x) = f(Az). If (96) applied to
fa can be rearranged to an upper bound for K(f) of the form

K(f) < L(f, A), (97)

then taking an infimum over A € G yields a stronger inequality as (96) just amounts to
the choice A = Id,,. Observe that enhancing inequalities in this way, always produces
a larger family of extremals. For instance, (4) becomes an equality only when u is a
translate of 7, (5) becomes an equality when p is a Gaussian measure with covariance
matrix of the form old,,, where o > 0, and (7) becomes an equality for any Gaussian
measure on R™.

In this section, we will discuss the possibility of refining functional inequalities by
using changes of variables via nonlinear maps and we shall illustrate this in the case of
the logarithmic Sobolev inequality (4). Let T : R™ — R™ be a smooth diffeomorphism
and for a measure p on R™ with a differentiable density f : R™ — R, consider the
measure pr whose density is given by fr(z) = (foT)(z)| det DT ()|, where € R™ and
DT € M, (R) is the differential of T'. We need the following computations for the relative
entropy and Fisher information of .

Lemma 15. In the setting above,

H(erlan) = Hplw) + [ o et DT () a0 (98)
R’n
and
—1 7)) - T 2
url) = [ [PPER I g acenr @) dute). 9
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The proof is a straightforward computation using a change of variables and is thus
omitted. These formulas along with the fact that any absolutely continuous measure can

be transported to 7, give rise to the following variational formula for relative entropy
on R".

Theorem 16. Let o be an absolutely continuous measure on R™. Then,

with equality if T is a transport map from u to 7y, where

—1 x . z 2
W(T) def%/‘DT(T (@) V@) | G log |det DT(T(2))]| dpu(a)

f(x)
R’!L
- / log | det DT(T~(2))| du(z).
RTL

Proof. Applying the logarithmic Sobolev inequality (4) to pur and using Lemma 15, we
get

H(ul ) + / log | det DT(T~ ()| du(x) — H(ml|An)

Rn
) (101)

Y) 4 Viog|det DT(T~Y(z))|| du(z),

=2

with equality only if ur = v,,. The existence of a map T transporting u to v, is a classical
fact in optimal transport going back to at least [56,41] (see also [64]). O

We are not aware of a proof of (100) which does not rely on the logarithmic Sobolev in-
equality (4). It remains very interesting to understand whether (100) can lead to stability
estimates for (4), or even (7), in the spirit of [30, Theorem 3].

Formula (100) becomes more tractable when specified to specific kinds of diffeomor-
phisms. For instance, when T is a product map of the form T'(x) = (11(z1), ..., Tn(zn)),
we get

< inf
B T1,-- )TILEDIH(R) Z / {

=1

2

0; _ _
(rion ) f + (log |7 o)) —1ogn’°n1|} dp.

(102)
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A similar simplified formula can be derived if T is a rotationally invariant map of the form
T(z) = o(|z|)z. The equality cases of Theorem 16 show that if p is a product measure
or a rotationally invariant measure, then the inequalities obtained by optimizing over
the corresponding class of nonlinear transformations become equalities. For the case of
a general probability measure u, we pose the following question.

Question 17. Let pu be an arbitrary absolutely continuous probability measure on R™.
For which collection of diffeomorphisms 74,...,7, € Diff(R) is the infimum (102) at-
tained?

A similar question can be asked for the optimal rotationally invariant change of vari-
ables.

We have not investigated whether nonlinear changes of variables may give rise to
variational formulas a la (100) when applied to other estimates like the Gagliardo—
Nirenberg—Sobolev inequality (65) or Beckner’s inequality (11).

7. Tensorization of nonlinear logarithmic Sobolev inequalities in product spaces

Let I be a countable set, {(X;,u;)}ier a family of probability spaces where X; is
countable and denote their product space by (X, u) = ([[;c; Xs, ®icrps). For a point

z = (2;)ier € X and i € I, we shall denote by z.; the point (z;);x € [[;4;X; and by

i def ®jiftj. Moreover, for a point 2 € [],,; X; and a function f : X — R, we shall

denote by f, : X; = R the restriction of f given by

VyeX;, fz(y) = f(zay) (103)

For each i € I, let B; be a functional acting on measurable functions g : [[,,X; — R
for any J C I. We shall say that the family of functionals {B;};cr disintegrates if it

satisfies the identities
Our main tensorization principle for nonlinear entropy inequalities is the following.

Theorem 18. Fix a countable set I and two collections of functionals {Q;}icr, {M;}icr
which disintegrate in the above sense. Let ® : R — R be a concave function and suppose
that, for any i € I, every function f; : X; — Ry satisfies the inequality

(105)

Ent,, [fi] < Qi(fi) + E.,[f:]® <M2(fZ)—Ql(fl)> .

Then, every function f: X — Ry satisfies
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Ent,[f] <Y Qi(f) +Eu[f]> @ (fcf(f)) (106)

iel i€l

Proof. Combining the subadditivity of entropy and the assumptions of the theorem
(including the disintegration of {Q;}:cr) we get that, for every f: X — R,

Ent, | Z/Entm foo ] dpi ()

el
(107)

. . Eu fo,
Since f Eﬂi [f-LNL] dMNi ('rfvi) = ]Eu[f]a and EMi [f»LNL] > 0; it follows that HIéLf[f]NJ d/f('Nl (:CNl)
defines a probability measure on [] i X;j- Hence, by Jensen’s inequality and disintegra-

tion, we get

Ent,[f] < Z Qi(f) +Euf]D @ ( / Mi(fzﬁ;} [;IQ.i](fINJ , E%E{‘ﬂw] d uw_(w))

(108)
This completes the proof of the theorem. 0O

Remark 19. While Theorem 18 is stated in a general form which contains the disintegrat-
ing additive errors {Q;}icr, in its main application (Theorem 3) which refines the result
of [55], these are assumed to be vanishing. We chose to include the deficits in the gen-
eral formulation above as such terms often appear in modified logarithmic Sobolev-type
inequalities, especially in discrete settings (see, for instance, [15,67,17,39]).

Proof of Theorem 3. The conclusion (25) directly follows from Theorem 18 with Q;(f) =
0 and M;(f) = Epn[E:(f1/P, f1-1/P)] since these functionals disintegrate. O

Remark 20. A different refinement of the log-Sobolev inequality on the discrete cube in
terms of the logarithmic Laplace transform of the underlying measure can be found in
[3, Equation (12)]
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Part 2. Space forms: stochastic methods
8. Preliminaries

In this section we will introduce the necessary prerequisites from stochastic calculus
on manifolds required to prove Theorem 4. We will be following the standard notation
of [38,54].

8.1. The frame bundle

Let (M, g) be a complete n-dimensional Riemannian manifold. The orthonormal frame
bundle O(M) of M is the set of all pairs of the form (z,u), where x € Mand u : R* — T,;M
is a Euclidean isometry. We shall denote by 7 : O(M) — M the natural projection given
by 7(z,u) = . Any scalar-valued function f : M — R admits a natural lift f : O(M) — R
given by

V (z,u) € O(M), f(z,u) = f(z). (109)

Abusing notation, we shall often identify the pair (z,u) € O(M) with the isomorphism
u.

A curve {u;}iejo,1) in O(M) is called horizontal if for every a € R", the vector field
{usa}iepo,1) is parallel along the curve {7u;}icjo,1) in M. A tangent vector X € T,,0(M)
is called horizontal if it is the tangent vector of a horizontal curve passing from u.
For any vector X € T,4M there exists a unique horizontal vector X € T,O(M) such
that m.X = X; we say that X is the horizontal lift of X at u. Let {e1,...,e,} be the
standard basis of R™. The i-th fundamental horizontal vector field H; evaluated at a point
u € O(M) is the horizontal lift of the vector ue; € TryM. Thus, for any i € {1,...,n},
the lift f of a function f: M — R satisfies

YV ueOM), Hif(u) = Ve, f(mua). (110)
A vector field on O(M) is called horizontal if it lies in the span of {Hy,...,H,}. We

denote by (-, -)nor the natural inner product on the space of horizontal vector fields on
O(M) given by

n n
<Z ZiHi7ZWiHi>
i=1 i=1

Moreover, we shall denote by Vo, f = (Hif,...H,f) € R™ the horizontal gradient of
a given function f : O(M) — R. The frame bundle O(M) is equipped with Bochner’s

n
= ZZiWi. (111)
=1

hor

horizontal Laplacian
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n
def
M) < § HZ, (112)
=1

and can be verified (see [38, Proposition 3.1.2]) that the lift f of any function f: M — R
satisfies

VueoM),  Agmf(u)=Af(ru), (113)

where A is the Laplace—Beltrami operator of (M, g).
We record for future reference the following very useful expression for the action of
the commutator of Agvy with H; on lifted functions.

Lemma 21. If f : (M,g) — R is a smooth function, then for any i € {1,...,n}, its lift f
satisfies

Vuce O(M), Ao(M)Hlf(u) — HZAo(M)f(u) = RlC(Vf, 1162')(71'11), (1].4)
where Ric(-,-) is the Ricci tensor on M.

Proof. We shall follow the notation of [38, Section 5.5]. For i,k € {1,...,n}, it follows
from [38, Lemma 5.5.1] that the commutator [H;, Hy] is a vertical vector field and thus
[Hi, Hi]f =0, i.e.

HiH,f = H;Hif. (115)
Therefore, we have
H2H,f = HyHiHyf = [Hy, Hi]Hyf + H H2E. (116)
Substituting the expression of [38, Lemma 5.5.1] for [Hy, H;], we get

[Hg, HiHif = — ZQ VapHif = — ZQ Vi, Hilf (117)

where in the last identity we used that V,,f = 0. Again, by [38, Lemma 5.5.1], if we
denote by A% the number § for (a,b) = (k,f) and —% for (a,b) = (£, k), and zero
otherwise, we obtain

a a 1
- Zbﬁk’;[vab, HiJf = = > QI AGTHf = o ; {0 — QL PHA = ;Qi’iwf, (118)

a,b,l

where the antisymmetry of  on the top indices follows from its definition in [38, p. 153]
as it is an o(d)-valued tensor. Combining (116), (117), (118) and summing over k, we
deduce that
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Ao Hif () — HiAgwf(u) = Y~ QFHf(u ZQ KV we, f(mu). (119)

Now, observe that by the definition of € in terms of the Riemann tensor R of M in [38,
p. 149],

Ok = g(R(uey, ue;)ue, uey) (120)
and the conclusion follows from the definition of Ricci curvature. 0O
8.2. Brownian motion on manifolds

Let W, = (W},...,W) be a standard Brownian motion on R™ and (M,g) be a
complete n-dimensional Riemannian manifold. We consider the following stochastic dif-
ferential equation on the frame bundle O(M),

dd, = Z H,(®;) o AW/, (121)

where the shorthand notation o refers to the Stratonovitch integral. In It6 terms, the
above SDE asserts that for every smooth g : O(M) — R, we have

dg(®¢) = Y Hig(®y) dW; + 2B0mg(®:)dt. (122)

i=1

For any initial condition &9 = u € O(M), this equation has a strong solution which
does not blow up in finite time if the Ricci curvature of M is bounded from below
by any constant £ € R (see [38, Theorem 4.2.4] and [63] for a sufficient and almost
necessary condition for stochastic completeness). We denote by B, = 7®;, where t > 0,
the Brownian motion on M whose starting point is z = mu € M. Applying (122), we
deduce that for any smooth function f : M — R, the Brownian motion {B;};>¢ satisfies
the SDE

n

Af(B) = 3 @Lf(B) W] + JAf(B)dt. (123)

i=1

8.83. The Féllmer process and Lehec’s formula

In this section we introduce an analogue of the classical Féllmer process [58,33,46] on
Riemannian manifolds (see also [38, Section 5.4]). We then present a result of Lehec [45]
who used this process to give a stochastic proof of the dimensional logarithmic Sobolev
inequality for manifolds with Ricci curvature bounded below (see [10,6] for more general
statements proven via semigroup arguments).
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Let Wy = (W}, ..., W) be a standard Brownian motion on R" and (M, g) be a com-
plete n-dimensional Riemannian manifold whose Ricci curvature is bounded from below.
We shall denote by dz the volume measure on M and by {P,};>¢ the heat semigroup on
M. Recall that for a smooth function h» : M — R, the action of the heat flow {P,};>¢ on
g is characterized by the ordinary differential equation

aPh 1
5 (@) = SAPh(a) (124)

Vi>0, zeM,

with initial condition Pyh = h on M. We recall that the heat semigroup and the Laplacian
commute: APh = P,Ah, and we write P,V f(z) for the 2-tensor on T;M identified with
the symmetric matrix (P, V? f(®oe;, ®oe;)(x));;—, - Note that P, and V? do not commute
(cf. Theorem 24).

For a positive function f: M — Ry and T" > 0, we consider the following system of
stochastic differential equations with respect to (¥, X;) € O(M) x M

7 125
Xt = W\Ijt ( )

{d\pt =37 Hi(W,) o (AW} + W71V log Pr_, f(X,) dt)
where the notation o again refers to the Stratonovitch integral. It is known (see [45,
Theorem 7]) that if f is a smooth-enough positive function, then for any initial condition
Uy = u € O(M), the system (125) has a strong solution on [0,7T]. In [45, Theorem 7],
Lehec proved the manifold version of an important representation formula for relative
entropy in terms of the Féllmer process Xy, first proven in their earlier work [44].

Theorem 22 (Lehec). Let (M,g) be a complete n-dimensional Riemannian manifold
whose Ricci curvature is bounded from below and fix a smooth enough positive den-
sity function f: M — Ry and T > 0. If {X;}iepo,1) @5 a solution of (125) with initial
condition Wy = u and mu = z, then the relative entropy of the measure p with density

dp .
Iprs, = 1

T

1
HulPrs,) = 5B | [ |Viog ProsfOX0)dt] (126)
0

where |v] o g:(v,v) forx € M and v € TyM.

It is worth pointing out that, in view of the decay and regularity of the heat kernel
on space forms (see, e.g., [21, Chapter 6] and [48,25,35]), it suffices to assume that the
functions for which we wish to prove the logarithmic Sobolev inequalities of Theorem 4
are Lipschitz and bounded away from 0. Therefore, the regularity conditions required
for the function f in Lehec’s theorem will always be tacitly assumed to hold.
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We record for future reference the following computations (see also [38, Equations
(5.5.2) — (5.5.4)]) on the SDE satisfied by partial derivatives of the logarithm of the heat
kernel.

Lemma 23. Let (M,g) be a complete n-dimensional Riemannian manifold and fix a

smooth enough positive density function f: M — Ry and T > 0. Denote by F;, : M — R
the function given by

YV xeM, Fy(x) =log Pr—_.f(x) (127)

and by Fy the lift of Fy onto O(M). If {Xt}iepo,m) is a solution of (125) and {Wi}i>o is
a standard Brownian motion on R™, then for every i € {1,...,n} we have

1
AHF,(T,) = (VT HF,(T,), dIW,) + iRic(VFt,\Iltei)(Xt)dt. (128)

Proof. Using Itd’s formula and (125), we get (omitting the dependence on ¥, on the
right-hand side of (129))

OH;F 1
dHF(U4) = (V' HF,, dWr) +{ o T 5 RomHiF: + (VITHF, VIR, >} dt.
(129)
Observe that the function F; satisfies the equation
8Ft 1 1 hor 2
= = —580mF: - 5|v i (130)
which, after applying H; on both sides, gives
8H2Ft aFt 1 1 h 2
=H,— =—-—-H;A F; — —H;|V™F,|". 131
B 5 sHiBomF: = SHil n (131)
Moreover, we have
H |vhorF | vhorF vhorF > <Hth°‘Ft, vhorFt> _ 2<Vh0rHiFt, vhor]:;\t>7
(132)

where in the last identity we use that [H;, Hi]Jh = 0 for any lifted function h on O(M)
[38, Lemma 5.5.1]. Substituting (131) and (132) in (129), we finally obtain

dH;Fy(0;) = (V"THF (), th>+ [Aomy, Hi]Fe (0) dt (133)

and the desired identity follows immediately from Lemma 21. O
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8.4. The heat flow on space forms

The classical Bochner formula (see, e.g., [65]) implies that if (M, g) is a Riemannian
manifold with constant Ricci curvature Ric = k € R, then

Vt>0, VPf=e "2PVf (134)

for every smooth function f: M — R. In [65], Wang investigated commutation relations
of this form for second order derivatives instead of the gradient V. We shall use the
following result.

Theorem 24 (Wang). A Riemannian manifold (M,g) of dimension n has constant sec-
tional curvature k € R if and only if the Hessian tensor of every smooth function
f:M — R satisfies

—nKr
(&

1—
V>0, V2P.f=e ™ PV f+———PAf g (135)
n
9. Intrinsic dimensional logarithmic Sobolev inequality in space forms

Having explained the necessary background we can now present Theorem 4. We first

du
dPro,

recall that when = f, we have

H(ul|Pro.) = Pr(flog f)(x) — Prf(x)log Prf(x).

Theorem 25. Let (M, g) be an n-dimensional Riemannian manifold with constant sec-
tional curvature k € R\ {0} with the associated heat semigroup {P;}1>0. Fiz T > 0,
x € M, a smooth positive function f : M — R with fodPTém =1, and let p be the
™ A4+ tB fort € R,

probability measure with % = f. Define the 2-tensor C(t) =

nkKk
where A, B are 2-tensors given by

A=—e T (PrV2f(z) — LPrAf(z) - g)
B— ((n—QI)m _ APTf(w)) g,

n

(136)

and let E, (V log f) 92 dof E[(Vhor log f(\I/T))®2]. Then, we have the local intrinsic di-

menstonal logarithmic Sobolev inequality

H(ull Prés)
T T
1 C(t)—C(T) ®2 [ oc(s)—20(T) 1.\ ®2 C(t)—C(T)
< 5 tr {e (g JrIE#(V logf) e ds) IE#(V logf) e dt,
0 ¢

(137)
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and the reverse local intrinsic dimensional logarithmic Sobolev inequality

H(ul| Prd.)
T t
1 C#)—C(o 20(s)—C(0 -1
i/tr[ )= ()(g—(VIOgPTf( )) /e ) ()ds) (138)
0 0

x (Vlog PTf(x))®26c(t C(O)] dt.

The proof of Theorem 25 (see also the stronger Theorem 30) is modeled after the
stochastic proof by Eldan, Lehec, and Shenfeld [30] of the intrinsic dimensional logarith-
mic Sobolev inequality in flat space (7) (and a weaker reverse inequality [30, Theorem
3]). A basic ingredient of this approach is deriving a stochastic differential equation for
the tensor whose trace is the term |V log Pr_, f(X;) |2 in (126). This is the content of the
next lemma for which we establish the following notation. Let {B;};>¢ be a Brownian
motion on M with By = x. As before, we denote by F}; the function log Pr_;f and by Fy
its horizontal lift on O(M). Moreover, we shall denote by G; the function exp Fy; = Pr_.f
and by G; = exp F; its lift. Consider the random matrices Q(t), P(t) € M,,(R) (the space
of n x n square matrices over R) given by

Qij (1) & HiH,Fy (W) = HHF (W) = Qi(t),
(139)

We can now derive the aforementioned stochastic differential equation.
Lemma 26. Let (M, g) be a Riemannian manifold. In the terminology above, for every

i,j € {1,...,n}, there exists a martingale {M;;(t)}icjo,r) such that for t € [0,T], we
have

HiFe(0y) - HF(0y)

= M;;(t) +

DN | =

t
/Ric(VFS(XS), HiF,(Ty) - Ugej + HF (V) - Uge;) ds
0

t

+ / Pij(s) ds.

0

Proof. Observe that by the chain rule, we have (omitting the dependence on ¥; on the
right-hand side below)

HH,G



A. Eskenazis, Y. Shenfeld / Journal of Functional Analysis 286 (2024) 110338 35

and by the definition and symmetry of the matrix Q(¢),
Pi;(t) = ZQik(t)Qk:j(t) = Z HpHiF; - H H;Fy = <Vh°rHiFt,Vh°rHth> . (141)
k=1 k=1
Combining It6’s product rule with Lemma 23, we get that for 4, € {1,...,n},
d{HiFt(\Ilt) . Hth(\I/t)}
= H;F(¥¢)dH;F(¥;) + H;F (V,)dH,F¢ (V) + dH;F (¥) - dH;F(2y)
1 142
= {§Ric(VFt,HiFt - Weej + HFy - We;) + <vh°inFt,vh°ijFt>} dt (142)
+ (H;F V"' H,Fy + H;F, VIO HFy, W),

where in the right-hand side we again omitted the dependence on ¥, and X;. Denoting
the term in the last line by dM;(t), it is clear that {M;;(t)}icjo,7) is a martingale and
(142) becomes

HiFe(0y) - HF(0,)

= My;(t) +

DN |

t
/Ric(VFS(XS), HiF (V) - Ugej + HF(U,) - Uge;) ds
0

t
—+ / Pij (S) dS,
0

where we also used (141). This is the desired identity. O

The stochastic differential equation of Lemma 26 will allow us to derive a differential
equation for

Vie0,T), vy(t) EEMHF(,) HF,(W)], ije{l,...,n};  (143)

note that with this notation, (126) reads H(u| Prd,) = %fOT tr[v(¢)] dt. We will then

turn the differential equation into a differential inequality from which Theorem 30 and
Theorem 25 shall follow. To derive the differential equation for v(t) we start by defining

m(t) = E[-Q(¢)] and n(t) = E[P(¢)]. (144)

Assuming that the underlying manifold M is Einstein and taking expectations, we deduce
the following differential equation for v(¢).
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Lemma 27. Let (M, g) be an Finstein manifold with constant Ricci curvature Ric = p for
some p € R. For everyi,j € {1,...,n} and t € (0,T), we have

dvij (t)
dt

— (1) + pug(1): (145)
Proof. Since M has constant Ricci curvature p, we have

Ric(VFy(Xy), HiF(U,)-Wge;) = pHiF(W,)-g(VFy(X,), Uses) = pHF(W,)-HF (V).

(146)
Plugging this in the rightmost term of Lemma 26, we get that
t t
HiFt(\Ilt) . Hth(\I’t) = sz(t) =+ p/ HiFs(\Ils) . Hst(\Ifs) dS —|— / Pz-j(s) dS. (147)
0 0

The result follows after taking expectation (since EM;;(t) = M;;(0) = 0) and differenti-
ating. O

In order to turn (145) into a differential inequality we will use Jensen’s inequality
n(t) = m(t)?> where we used P = Q2. To use the latter inequality we need to better
understand the term m(t). On manifolds of constant curvature, m(t) takes the following
simple form.

Lemma 28. Let (M, g) be an n-dimensional Riemannian manifold with constant sectional
curvature k € R. For every i,j € {1,...,n} and t € (0,T), we have

1— efnn(Tft)
mi;(t) = vy (t) — e T PpV2 f(Dge;, Boey) (z) — ——————PrAf(2) 6. (148)

Proof. Taking expectations in (140), we obtain

(140)

mig(t) = E[-Quy ()] "2 viy(t) — [

HiHjGt(\I/t)} (149)

Gt(\I/t)

It follows from (125) and (121) that ¥; has law f(Br) with respect to ®; for every
t € [0,T] (see also the proof of [45, Theorem 7] for an argument based on Girsanov’s
theorem). Therefore, by the tower property of conditional expectation, we have

f(BT)} =E [%@if)t)ﬂi [f(BT)H(I)T}rSt]}

SR

(150)
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Recall that for any function h : M — R with horizontal lift h, we have
YV ueoM), H;H;h(u) = V?h(ue;, ue;)(ru), (151)
see, e.g., [38, Equation (2.2.3)]. Combining (151) with Theorem 24, we deduce that

151
HiH, Ge(@,) "2 V2 Pp_ f(@rer, Bre;)(By)

1— e—nK(T—t)

135) _ _
12 g—nn(r DPr_ V2 f(®rei, Brej)(By) + TPTftAf(Bt) - g(Pre;, Prey)
—nk(T—t) 2 1—- einH(Tit)
=e Pr_V=f(®se;, Pre;)(By) + #PT—tAf(Bt) i,
(152)
where in the last equality we used that {®;eq, ..., ®;e, } is an orthonormal basis of Ts, M.
Taking expectations on both sides, we get
E[HH;Gy(®))] = e ™ T=OE[Pr_ V2 f(Dre;, Drej)(By)]
1— efnn(Tft) (153)
+ TE[PT—tAf(Bt)] “ 0y

By the definition [65, Equation (1.2)] of the action of {Ps}s>¢ on tensors, we have
E [PT—tV2f((I)t€ia (Ptej)(Bt)] =E [VQf(q>T€i, @Te])(BT)] = PTV2f((I)0€i, (I)oej)(l‘),

where the last identity follows from the definition of stochastic parallel transport given
by {®50®;'}s>0 (see [38, Section 2.3]). Similarly, we have

E[Pr—Af(By)] = E[Af(Br)] = PrAf(z) (154)

and combining everything we deduce that

1— —nk(T—t)
E [HlHJGt((I)t)] = e_"”(T_t)PTV2f(<I>Oei, (I)Oej)(l')ﬂ-eTPTAf(fE)(S” (155)

Plugging (155) and (150) in (149) completes the proof. O

We are now ready to derive the differential inequality for v(t). For simplicity, we shall
denote by cp def PrAf(z) and by Jp the symmetric matrix with

def

(JT)ij = PTVQf(fl)oei, (I)Oej)(l‘) — %PTAf(.’E) . 5ij7 (156)

which satisfies trJr = 0. Combining all of the above, we get the following matrix in-
equality:
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Proposition 29. Let (M, g) be an n-dimensional Riemannian manifold with constant sec-
tional curvature k € R. For every t € (0,T), we have

du(t
o) 2 — (e*"“(T*”JT ter. Idn>v(t) —u(t) (e*”'ﬂT*f)JT yer. Idn>
dt n n
2
+ (e‘"”(T_t)JT tex. Idn) 4 (n - 1)ro(t),
(157)
so in particular,
do(t _
v(t) = u(t)? + (((n 21)r€ _ %) d,, — e—m(T—t)JT)v(t)
dt (158)
+ o) (M52 = <) dy — e Ty,
where = is the inequalities in the positive semidefinite ordering.
Proof. Combining the matrix Jensen inequality
2
n(t) =E[Q(t)*] = E[ - Q(t)]” = m(t)? (159)

with (145), (148) and expanding, we get (157)

do(t)
dt

=v(t)? - (e_"”(T_t)JT + <. Idn)v(t) —v(t) (e_"’“(T_t)JT + L. Idn)

2
n (e_m(T—t)JT + CTT . Idn) + (n — 1)ko(t).
(160)

The inequality (158) follows since the squared matrix is positive semidefinite. O

Proposition 29 allows us to deduce the following local intrinsic dimensional logarithmic
Sobolev inequalities which are, however, non-explicit.

Theorem 30. Let (M,g) be an n-dimensional Riemannian manifold with constant sec-
tional curvature k € R. Fiz T > 0, x € M, a smooth positive function f : M — R with
fM fdPré, =1, and let p be the probability measure with %T"Jm = f. Suppose there is
a family of matrices U(t) € M,,(R) for t € [0, T] which solves the equation

dU(t) _ 2 —nk(T—t) cr —nk(T—t) cr
= U® - (e Jr + <L Idn)U(t) —U) (e Jr+ <. Idn)
2
+ (e_"“(T_t)JT +ex. Idn) + (n— 1)KU(?),
(161)
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with either initial condition U(0) := v(0) or U(T) := v(T). Then, we have the local
intrinsic dimensional logarithmic Sobolev inequality

H(u|| Pré.,) < w[U®)]dt, U(T) =E(V" log f(¥r))*?, (162)

DN | =
O\q

and the reverse local intrinsic dimensional logarithmic Sobolev inequality

DN | =

H(u| Pro,) > / w[U@)]dt, U0) = (V2 log Prf(z))*>. (163)

Proof. Lehec’s formula (126) implies

T
/tr[v(t)] dt.
0

(164)
For the reverse local intrinsic dimensional logarithmic Sobolev inequality, we note that

N =

T
3 1 &
H(pl| Pro,) (2 L SE /|VFtXt] dt :§Z/IEHFt %] dt =
0

i=1

U(0) = v(0) so the result follows by (157) and standard comparison principles for ma-
trix Ricatti equations, see [40]. For the local intrinsic dimensional logarithmic Sobolev
inequality, we have U(T") = v(T') and the conclusion follows by reversing time. 0O

Theorem 30 provides sharp results which are, however, not explicit since the solutions
of (161) are complicated. They are expressed in terms of special functions, except in the
flat space case where they simplify considerably— see Section 9.1. To avoid the compli-
cation of Theorem 30 we will use (158), rather than the stronger inequality (157), which
will lead to explicit bounds, namely Theorem 25. To this end, we shall need the following
technical lemma on matrix Bernoulli differential inequalities.

Lemma 31. Fix T > ¢ >0, n € N, v € R\ {0} and let A,B € M, (R) be symmetric
matrices with AB = BA. Consider C(t) e e”A +tB, where t € R. For any positive
definite matriz V. € M, (R), if a continuous functzon Ve, T] = M,(R) for which
every V(t) is a positive semi-definite matriz satisfies the ordinary differential inequality

av(t)

Vite (e,T), I

= V() + ("A+ B)V(t)+ V(t)(e" A+ B) (165)

with boundary condition V (e) = V., then it also satisfies the matriz inequalities

T
1
Viele ], V(1) 2 eCOCD (1d, + V(T / ACI2CT) 4g) Y (1) =),
t

(166)
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and

t
-1
Vte [E,T}, V(t) > eC(H=C(e) (Idn _ V(E) /620(5)—20(8) ds) V(s)ec(t)_c(f),

€

(167)
Moreover, the right-hand side of (167) is positive definite for everyt € (g,T).
Proof. Since A and B commute, we have
4 ewm _ (e A+ B)eC® = O (1A + B). (168)

dt

As V. is positive definite, the same holds for V(¢) for ¢ near € so let tymax € [€,T] be the
supremum over t € [e,T] where V(t) is positive definite. For ¢ € (&, tmax), multiplying
(165) by V(t)~! on both sides, we deduce that

dv ()~
7‘/((12 < —ld, - V@E)'c't) - ')V (169)
where C'(¢) o dgit). Therefore, we have
56 -1 (169)
%[ec(t)V(t)_leC(t)] (168) C ) (Cl(t)v(t)—l+%+V(t)—lc/(t))eC’(t) < 20

(170)
where in the last inequality we used that C(t) is symmetric. Integrating from € to ¢, we
get

t
COV () 71eCM — CEY ()71l ) < _/ezc(s) ds (171)
g

which can be rearranged to give, for every t € [, tmax),

t

V() < 6O (ec(g)v(e)fleC(e) _ /620(8) d5>efc<t>. (172)

g

Since the right-hand side of (172) is finite for every ¢ € [e,T], we can take the limit
t 1 tmax to conclude that V(tmax) is positive definite, and hence ty.x = T. Since the
function A — A~! is operator decreasing on positive definite matrices, this proves (167)
after some simple algebraic manipulations. Moreover, as a consequence of (172), the
right-hand side of (167) is indeed positive definite. Similarly, integrating (170) from ¢ to
T and rearranging gives
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T
V)t = e W (eC<T>V(T)—1eC<T> + /e%’(s) ds)e‘c(t). (173)
t

However, since V (t)~! is positive definite for every t € [¢,T] this is equivalent to

T
-1
V(t) < CO-CT) (Idn+V(T)/eQC(S)’ZC(T) ds) V(T)eCH=C) (174)

which concludes the proof of (166). O

Proof of Theorem 25. Fix T' > 0, ¢ > 0, and x € M. Let f : M — R be a smooth
positive function with fM fdPrd, = 1 and let o be the probability measure on M with

%T”éw = f. Without loss of generality, we can perturb f and assume that

v. CE[(V log Pr_£(0.)) %] (175)

is a positive definite matrix. Following the terminology above, Lehec’s formula (126)

implies
e 1es [ 1 f
H (|| Pré.) (li‘)) /|VFt (Xy) | dt| = 5 /]E [HiF ()% dt = i/tr[v(t)] dt
=179 0
(176)
Since v(g) = v, is a positive definite matrix, Proposition 29 and Lemma 31 give
T 1
ViteleT], v(t) = CH=CM (Idn + vp / e2C(5)=2¢(T) ds) vpeCO=CM (177)
t
where C(t) = %A + tB, for the matrices
A= —rmTJ
B = (& °r) . |d,. (178)
Y =Nk

By the perturbation above, we have thus established the validity of (177) for an ar-
bitrary smooth positive density f and for any ¢ > 0. Since vy = E, (V log f)®2, the
logarithmic Sobolev inequality of Theorem 25 follows by combining (176) and (177)
with ¢ — 07. The reverse logarithmic Sobolev inequality follows by using (167) since

vy = (V logPTf(x))®2. O
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9.1. Intrinsic dimensional local logarithmic Sobolev inequalities in flat spaces

Our next goal is to prove the intrinsic dimensional local logarithmic Sobolev inequal-
ities in flat spaces, i.e., equations (29) and (30). In contrast to the proof of Theorem 25,
which uses the weaker inequality (158), here we will use the stronger inequality (157)
which in flat space has an explicit clear solution.

Theorem 32. Fix T > 0 and x € R™. Let f : R™ — R be a smooth positive function with
fRn fdPrd, =1 and let p be the probability measure on R™ with dﬁﬁ = f. Then, we
have the local intrinsic dimensional logarithmic Sobolev inequality

fV?log f(x))
Prf(z)

and the reverse local intrinsic dimensional logarithmic Sobolev inequality

H(l| Prés) < 5 APr[(2) + 3 Prf () logdet (ldn il ) . (179)

H(u|| Prd,) > %APTf(x) - %PTf(x) log det (I, + TV?log Prf(x)).  (180)

Proof. The inequality (179) follows by setting d—({\% o Iéf;é:) in (7). To prove (180),

we may assume without loss of generality assume that —V?log Prf(x) is invertible. Set
U(0) o v(0) = (Vlog Pr f(x))®? and use the normalization assumption [g, fdPré, =

Prf(z) =1 to conclude that

_ VPPrf(x)

U(0) = V?Pr(a) = (Viog Prf(e)* — <52 5

= —V?log Prf(x) (181)
is invertible. In flat space, using x = 0 and Jy + <& - Id, = PrV?f(x), equation (161)
becomes

dz—it) =U(t)* = PrV2f(@)U(t) = U Prv2f(z) + (PrV2f(z))®.  (182)

The solution of (182) can be verified to be
Vie(0,T), Ut)=(U0)=PrV3f(a)] ' —t)" +PrV3f(z), (183)
where we used Hamilton’s matrix inequality (32) (see also Theorem 33 below) to justify

the invertibility of [U(0) — PrV2f(z)]~! —t. Applying (163) of Theorem 30 yields

T

T
H(u|| Pré,) > — /tr[((v2 log Prf(x))~! +t)’1] dt + EPTAf(x), (184)
0

N | =

where again we used normalization assumption Prf(z) = 1. To rewrite the right-hand
side of (184) let {\;}?_, stand for the eigenvalues of V?log Prf(z) so
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n

T n T =
/tr[((V2 log Prf(z))~" +1) '] dt = > /(A;l +1)hdt = log (%)
0 %

=17 i=1
= log det (Idn +TV?log PTf(:c)) .
(185)

It follows that (184) reads

T 1
H(u|| Pré,) > §APTf(x) — 5 logdet (Id,, + TV?log Prf(z)) , (186)
so using again Prf(z) =1, (186) is equivalent to

H(ul|Prdo,) > gAPTf(m) - %PTf(x) logdet (Id, +TV*log Prf(x)) O

Semigroup vs. stochastic interpolation. The idea of writing the relative entropy as an
integral of a gradient term goes back to the beginning of the Bakry—Emery theory of
functional inequalities (see [8,4] or [9, Section 5.5]). Such gradient terms often satisfy
differential inequalities & la Proposition 29 which allow for the use of comparison princi-
ples in the spirit of Lemma 31. For instance, Lehec in [45] considered the scalar-valued
function « : [0,7] — R given by

v telo,T], a(t) = E[|[VF(Xy)|?] (187)
and showed that
vte(0,T), a(t) > %(a(t) - CT)2 + (n — 1)ra(t) > ? (a(t) + n(n — 1)k — 2c7).

(188)
Applying a standard comparison principle to the latter inequality, he then derived a
dimensional upper bound for the relative entropy, see [45, Equation (25)]. It is worth
pointing out that (188) is also a consequence of (157) after taking traces and using the
elementary inequality trC? > @ which holds for all n x n positive semidefinite ma-
trices C. A close inspection of the arguments of this section reveals that the logarithmic
Sobolev inequality of Theorem 25 is a strengthening of Lehec’s result for manifolds of

constant sectional curvature.

By reasoning similar to (150), for every i € {1,...,n}, we have
2 (HiG(2))? (HiG(®0))* (HiG(®0))?
E[(HiF(¥,))2] = E [W] ~E [Wf(BT)] —E [W
(189)
and thus
_ IVPr_. fI? .
Vte(0,T), a(t) =P {71%—15]” } (x). (190)
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This semigroup representation of «(t) was used by Bakry, Bolley and Gentil in [6, p. 405]
to give an independent proof of inequality (188) for semigroups satisfying the curvature
dimension condition CD(p,n), where p = (n — 1)« (observe that a(t) is denoted by A’(t)
in their paper). Their main result [6, Theorem 2.2] improves upon [45, Equation (25)]
as they did not disregard the nonnegative constant in the second inequality of (188)
and thus get to apply a tighter comparison principle. One could implement a similar
strategy in the matricial setting treated here, by replacing the matrix inequality (158)
with the stronger inequality (157) and solving the corresponding ordinary differential
equation. However, solutions of this equation appear to be non-explicit, so we chose the
comparatively simpler presentation of Theorem 25 for clarity of the exposition. If one
were to implement this reasoning, it is clear from the proofs of this section that the
resulting inequality would improve upon [6, Theorem 2.2].

10. Nonpositively curved space forms

The goal of this section is to prove Theorem 5 (section 10.1) and Theorem 6 (sec-
tion 10.2). We conclude with section 10.3 which discusses some of the ideas behind our
proofs.

10.1. Matrix inequalities

The main result of this section is the following Hamilton-type matrix inequality,
namely, Theorem 5.

Theorem 33. Let (M, g) be an n-dimensional Riemannian manifold with constant non-
positive sectional curvature k < 0. Then, for every T >0,

4 AP
if, either k =0, or k <0 and TTif(I) =1,
n?k Prf(z) (191)
1
then — V?log Prf(z) < Tld” Vo € M.
Further,
e VASIARS |
if K <0 and 25 Prf (@) ) > 1,
then — V?log Prf(z) (192)

nK 4 APrf(x) ncT | 4 APpf(x)
=< o> {\/miPTf(z) — 1lcot (T\/@iPTf(x) — 1) — 1} Id,,.

Remark 34. To put Theorem 5 in a larger context, and also to shed light on the conditions

regarding ﬁ Apij}{g), let us recall the improved Li-Yau inequality of Bakry, Bolley, and
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Gentil [6, Corollaries 2.3,2.4]: Let (M, g) be an n-dimensional Riemannian manifold with
lower bound (n—1)k on its Ricci curvature. Let { P, },>0 be the associated heat semigroup
and let f: M — R be a positive function. Then, for every € M and every T > 0,

4 AP 42
rf@) g A (193)
n(in— 1)k Prf(x) (n —1)2k2T2
and
— Alog Prf(z) < (194)
n(n—1)k 4 APr f(x) (n—1)rkT 4 APr f(x)
2 {\/n(nfl)n PTT}(J:) — lcoth ( 2 \/n(nfl)/i PTj}(w) B 1) - 1}
. 4 APr f(x)
if n(n—1)k PTq}(ﬂc) <1 (195)
n(n—1)k 4 APr f(x) (n—1)rT 4 APr f(x)
2 {\/n(n—l)n PTT}(J:) — Lot ( 2 \/n(n—l)m PTT}(Q:) - 1) B 1}
. 4 AP f(a:) 47'(2
if1< n(n—1)k PTq;‘(z) <1+ (n—1)2k2T2"
Hence, in the regime 1 + ﬁ < n(n4—1)n Apiq}{g) <1+ (n_f)’;;TQ we are able to obtain

in hyperbolic spaces a matriz version of the improved Li-Yau inequality.

Proof of Theorem 33. We start by showing that

def
m(t) = E[-V?log Pr_+f(X})] (196)
satisfies the following differential inequality.

Lemma 35. When k < 0,

vtelo,T], dn;t(t) =m(t)* + nem(t) + KAPrf() - g. (197)
Proof. Define
u(t) & emnrT=0) 1 %T g (198)

def

where (JT)ij = PTV2f(¢'oe¢, (I)()Gj)(l') — %PTAf(IE) . Jij and cr déf PTAf(I) By (148),

m(t) = v(t) — u(t), (199)
so, by (157),

dm(t) _ dv(t) nke— (T g,

dt dt
= v(t)? — u(t)o(t) —v()u(t) +u(t)® + (n — )ko(t) — nru(t) + kep - g (201)

di}i—(tt) —nku(t) + ker - g (200)
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(t)? + nem(t) — ko(t) + ker - g (202)
() + nem(t) + ker - g (203)

m
m

Y

where the last inequality uses that x < 0 and that v(¢) > 0 (since it is a nonnegative
sum of rank-one matrices). O

The following technical lemma on matrix differential inequalities will allow us to
further control the matrix m(t).

Lemma 36. Fiz T > 0 and let W (t) be a family of matrices for t € [0,T] satisfying the
differential inequality

AW (t)
at

v telo,T], =W () +aW(t)+ - 1d, (204)

def

for some constant o, 3 € R. Fiz 0 € S~ and let ¢(t) = (W (t)0,0) fort € [0,T]. Then,

fizing $(0) = ¢ we have

VEe0T] 60 >60) -3 (205)
where
VA tan(vV At + ¢) fA>0
NORRE—— FA=0 (206)
—v—=Atanh(v/ =M +c¢3) if A <O,
with
def Oé2
A=pF——, (207)
4
and
def 1 (07 def 2 def 1 [0}
c1 = arctan (ﬁ (C+ 5)) , Co = _26—1—0[7 c3 = arctanh <——__)\ (c—|— E)) .
(208)

Proof. Since W (t) satisfies dvgft) =W(t)2+aW(t)+B-1d, for all t € [0,T], we get that

vt el0T], dﬁf) = <dvgt(t)o,e> > (W ()%0,0) + a(W ()0, 0) + 8|0 209)

> (W (t)0,0)* + a(W(t)0,0) + BI0* = ¢(t)* + ag(t) + B.

Hence, ¢ satisfies the ordinary differential inequality
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Ve, %(f) > (1) + ao(t) + B. (210)

The solution of the ordinary differential equation

do(t)

Y telo,T], T o) +ao(t)+ B, o(0)=c (211)
is
!
olt) =&r(1) — 5
where
Vtan(vVAt + ¢;) iftA>0
O - ifA=0 (212)
—v—=Atanh(v/—=At +¢3) if A <0,
with
2
def o
=p0—-— 21
) - (213)
and

e 1 e 2 e 1
c1 def arctan (ﬁ <c+ %)) ,  Co def _20+a’ c3 def arctanh <_ﬁ (c+ %)) .

Applying standard comparison theorems [49] we get that

Vite [OvT]v ¢(t) > gz\(t) - o

|

We are now ready for the proof of Theorem 33. Recall that Lemma 36 showed that

the matrix m(t) satisfies (204) with a« = nk and 8 = KAPpf(z). In the following we
let ¢(t) ef (m(t)0,0) for @ € S"~1. Let us distinguish between the flat and negatively
curved cases.

When s = 0 we need to show

(215)

el

$(0) <

since we can choose  to be any normalized eigenvector of —V?2log Prf(z). If ¢(0) < 0
then (215) is trivial so we may assume from now on that ¢(0) > 0. As kK = 0 we have
a=8=0s0A=08— O‘Tz = 0. Hence, applying (205) we see that
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v telo,T], o(t) > 6(0)

> T (216)

In particular, (216) implies that the denominator 1—¢(0)¢ never vanishes since, otherwise,
the right-hand side of (216) is +oo0 (as ¢(0) > 0) while the left-hand side is finite (as
@(t) < 400). The non-vanishing of 1 — ¢(0)¢, together with ¢(0) > 0, implies that

1
0<1—-1tp(0) <<= ¢(0)< T (217)
Taking t = T establishes (215).
When £ < 0 we have o = kep and 8 = nk so A = kAPy f(z) = 2= If - APrf(z) =
1, so that A = 0, then the argument proceeds as in the case k = 0. When n2kAPTf(x)
1, so that A > 0, applying (205) yields
Vte[0,T],  é(t) > Vitan(VAt +c) — % (218)
where
e 1
¢ % arctan (ﬁ (qS(O) + %)) . (219)

In particular, as ¢(t) is finite, it follows that tan(v/At 4 ¢) < 400 for every t € [0, T]. At
t=0,ce (—3,%) by (219) and the range of arctan. It follows that, for every ¢ € [0, 7],

T 1 nK
3> VAt +c = VAt + arctan (ﬁ (¢(0) + 7)) . (220)
Plugging in t = T into (220) and rearranging yields
()<\/_tan(——\/_T)—_: Acot(\/_T> n;; (221)

Letting 0 to be any normalized eigenvector of —V?log Pr f(z) and recalling the definition
of X yields (192) upon rearrangement. 0O

n;ln API;TJCJES) < 1 since the tanh
function, which will replace in the proof the tan function, is well-defined everywhere. It

Remark 37. We cannot address in Theorem 33 the regime

remains to be seen whether this is an artifact of the proof or an inherent obstacle.

Remark 38. The proof of Theorem 33 was obtained by using the inequality (205) subject
to fixing the value of ¢(0). Analogously, we can fix the value of ¢(T") and use (205) (by
reversing the time) to get different matrix inequalities. Indeed, our proof of Theorem 40
below makes use of the freedom to choose the initial (terminal) condition.
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10.2. Intrinsic dimensional local logarithmic Sobolev inequalities in hyperbolic spaces

In this section we prove local intrinsic dimensional logarithmic Sobolev inequalities for
the hyperbolic space, namely, Theorem 6. The inequalities provided by Theorem 40 below
will be obtained as a consequence of the differential inequality of Lemma 35 together
with the following simple observation:

Lemma 39. Let f : M — R be such that fodPT(Sx = 1 and let p be the probability
measure with d;jﬁ = f. Then,

T
Pr(f10g f)(&) ~ Prf(@)log Pri (@) = H(plPros) = =2 4 0 futm(oa
0
(222)
Proof. By Theorem 22, (143), and (199),
1 f 1 f 1 f
H(p|Préy) == [ trlo@®)])dt = = [ te[m(t)]dt — = [ tr[u(t)]dt (223)
ooy [
where we recall (198),
u(t) & emner=0) g Lrof (@) TAnf @) g (224)

with (Jr);; o PrV? f(®oei, ®oe;)(x) — 2 PpAf(x) - 6;5. The proof is complete since

tr[JT} =0. O

Theorem 40. Let (M, g) be the n-dimensional hyperbolic space with sectional curvature

Kk < 0 with the associated heat semigroup {P,}>o. Fiz T > 0, x € M, a smooth positive

function f : M — R with fodPT(Sz =1, and let p be the probability measure with
di_ — ¢ Then, with

dPrs,
arctan (% (o; + %)) if A <0,
def TLZHQ 4 def 9 A .
= —4 mAPTf(ﬁU) — 1 5 a; = _2gi+nn ZfA — 0,
arctanh <_\/+T (O'i + %)) if A >0,
(225)

we have the local intrinsic dimensional logarithmic Sobolev inequality
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Pr(flog f)(z) — Prf(z)log Pr f(x)

1 1 Og(coscx(?(;ia)) Zf)\>0
PrAf(x) n2kT . (226)
>~ - - z 1 log ( ) lf A=0
2 2
1‘ 1 1Og (COShCCj@%la ) if A < 0
where {o;}1'_, are the eigenvalues of E,[—V?log f], and the reverse local intrinsic di-

mensional logarithmic Sobolev inequality

Pr(flog f)(z) — Prf(x)log Prf(x)

' log (Coscofs(;;a )) if A >0

PrA 2T (227)
> _ Tzf(x)_n; + 10g(T+a,) fA=0
cosh(a;) .
10g (COSh VAT +ao; )) Zf/\ <0
where {o;}"_, are the eigenvalues of —V?*log Prf(z).
Proof. Given any basis {6;}"_; of R™ we have
Vtel[o,T],  trm(t)] =Y ¢i(t) (228)

where ¢;(t) wof (m(t)8;,0;) for i = 1,...,n. It follows from Lemma 35 and Lemma 36

that

vt e [0,T), tr[m (Z@A )-”2 (229)

where

VAtan(VAt + ¢iq) itA>0

ef .
Ein(t) < - ifA=0 (230)

—v=A tanh(\/ -\t + Ci,g) if A <0,

with
2,2
A AP () — ”4” , (231)

and
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def 1 nk def 2
i1 = t —F | @i - ) i,2 = T 20.(0) - R
Cil arc zm(\/X ((b (0) + 5 )) Ci2 26:(0) + nr

i3 def srctanh (\/1__)\ ((bi(()) + n;)) .

It follows from Lemma 39 that

(232)

n T
Pr(71os )(e) - PrS)los Prf) 2 P15/ LS [ e
=10

Hence, taking {6,}7; to be the eigenvectors of m(0) = —V?log Pr f(x), and integrating

{& (1)}, yields (227). )
To prove (226) we define ¢;(t) := ¢;(T — t) which satisfies

Vie[0,T],  $(t) <&a(T —t) - % (234)
where now
def 1 nK def 2
¢i,1 = arctan <— ( (T)+ —)) . Ci2
VA 1 2 20,(T) 4+ nk (235)
Ci3 4 arctanh <_ﬁ (@(T) + %)) )

The proof now proceeds as in the proof of (227). O
10.3. Discussion

We conclude this section by discussing the roles of matrix differential inequalities in
our proofs.

Matrix differential inequalities. The master matrix differential inequality (157), which is
at the core of all of our proofs, can be expressed either in terms of v(t),

du(t)

ar = v(t)? —u(t)v(t) — v(t)u(t) +ut)?® + (n — 1)ro(t), (236)

or in terms of m(t),

dm(t)

" = m(t)? + nem(t) — kv(t) + ker - g (237)

The inequalities (236) and (237) are equivalent and contain the same information. In
Aw(t)
at

particular, in flat space forms, where x = 0, both inequalities are of the form
W (t)2. In curved spaces, there are two different ways to proceed from (236) and (237):
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(1) Omit the term u(t)? from (236) to get
u(t) = U(t) (238)

where

dU(t)

I Ut)? —u®)U(t) — Ut)u(t) + (n — D)KU(2). (239)

The point of omitting u?(t) is that equation (239) can be solved explicitly, in contrast
to the equation resulting if we keep the u?(¢) term.'
(2) Omit the term —kw(t) from (237), which can be done only in negatively curved space

forms to get
m(t) = U(t) (240)

where

dU(t
% =U(t)? +nxU(t) + ker - g. (241)
Again, the point of omitting —xv(t) is so that (241) can be solved explicitly. Note

that in flat spaces, there is no loss in omitting —xv(t).

Matrix vs. trace differential inequalities. The proofs of Theorem 40 and Theorem 25
proceed along similar but different lines. Both proofs start by establishing an inequality
of the form

AW (t)
at

- F(W (1)) (242)

for some quadratic functional F. The goal is to bound tr[IW(¢)] which can be achieved
by two means. Letting {U(¢)} be the solution to

du(t) _
= = FUw) (243)

we could:
(1) Argue that W(t) = U(t) and then take the trace on both sides to get

tr[W (8)] > te[U()]. (244)

L If we take the trace in (236) then the equation with the u(t)? term can be solved explicitly—see the
end of section 9. However, if we do so we would get the ambient dimension n rather than the intrinsic
dimension.
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This is the method used to prove Theorem 25 and Theorem 32 (with different func-
tionals F).
(2) When F has scalar (rather than matrix) coeflicients, it holds that

(FW(1))0,0) = F((W(2)0,0)) (245)

with strict inequality unless 6 is an eigenvector of W (t). We can then {6;} to be any
basis and let ¢; w (t) := (W (t)6;,0:), ¢i,v(t) == (U(t)0;,0;) so

(wi’d;v:(t) z Fleiw (), d@(’i—i(t) = F(oiu (1), (246)

which shows ¢; w (t) > ¢; v(t). Hence, for any basis {6} we have
W) =D diw(®) = Y diu(t) = U (1)) (247)
This is the method used to prove Theorem 40.
While both methods lead to the inequality
tr[W ()] = tr[U(1)], (248)

the second method is weaker since the inequality ‘MLTVI{/(Q > Flosw(t)) is weaker in

principle than dvgit(t) = F(W(t)) unless 6; is an eigenvector of W (t). However, for the
purpose of proving an inequality for the trace, there is no loss since the trace is invariant
under rotations so for each ¢ we can introduce a rotation R(t) which takes {6;} to the
eigenvectors of W (t) or U(t).
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