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1. Introduction

This work focuses on the development of intrinsic dimensional versions of classical 
functional inequalities. In order to explain the meaning of “intrinsic” in this context 
it is best to start with an important example. The logarithmic Sobolev inequality in 
Gauss space [61,36] asserts that for every nice-enough absolutely continuous probability 
measure μ on Rn,

H(μ‖γn) ≤ 1
2 I(μ‖γn), (1)

where γn is the standard Gaussian measure on Rn. Here,

H(μ‖ν) def=
∫

log
(dμ

dν

)
dμ (2)

is the relative entropy of μ with respect to ν and

I(μ‖ν) def=
∫ ∣∣∣∇ log dμ

dν

∣∣∣2 dμ =
∫ |∇(dμ/dν)|2

dμ/dν dν (3)

is the relative Fisher information of μ with respect to ν, provided that ν << μ.
Gross’ motivation for (1) was to find a substitute for the Euclidean Sobolev inequalities 

which holds in infinite-dimensional spaces (which was needed in constructive quantum 
field theories). Sobolev inequalities have the feature that the dimension n of the ambient 
space Rn appears explicitly in the constants of the inequalities, which leads to triviality 
upon taking the limit n → ∞. In contrast, the constant 1/2 appearing in (1) is dimension-
free, leading to (1) being well-defined in infinite dimensions. On the other hand, as was 
already observed by Stam [61], (1) can in fact be improved if the dimension n is taken 
into account. To see this improvement we first apply a standard change of measure (see 
[66]) which shows that (1) is equivalent to
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H(μ‖λn) − H(γn‖λn) ≤ I(μ‖λn) − n

2 , (4)

where λn is the Lebesgue measure on Rn. The dimensional log-Sobolev inequality [61,
23,20],

H(μ‖λn) − H(γn‖λn) ≤ n

2 log
(

I(μ‖λn)
n

)
, (5)

improves upon (4) as can be seen from the inequality log s ≤ s − 1 for s ∈ (0, ∞). 
It is clear that when the Fisher information is large, (5) provides an exponential re-
finement over (4). Despite this quantitative improvement, (5) suffers from a lack of 
sensitivity to the intrinsic dimension of μ. To see this, suppose that μ is of the form 
dμ(x1, . . . , xn) = dμ̃(x1, . . . , xk) dγn−k(xk+1, . . . , xn), where k < n and μ̃ is an abso-
lutely continuous probability measure on Rk. Then (5) rephrased in terms of μ̃ asserts 
that

H(μ̃‖λk) − H(γk‖λk) ≤
n

2 log
(

1 + I(μ̃‖λk) − k

n

)
, (6)

which deteriorates to (4) as the ambient dimension n increases, despite the fact that the 
intrinsic dimension k of μ is fixed. In other words, (5) is insensitive to the structure of 
μ. In [27, p. 12], Dembo showed that (5) can be further improved to an inequality which 
captures the intrinsic dimension of μ:

H(μ‖λn) − H(γn‖λn) ≤ 1
2 log det I(μ‖λn), (7)

where

I(μ‖ν) def=
∫ (∇(dμ/dν))⊗2

dμ/dν dν (8)

is the relative Fisher information matrix of μ with respect to ν. Observe that

I(μ‖ν) = tr I(μ‖ν), (9)

and thus (7) improves on (5) by the elementary inequality log detC ≤ n log trC
n which 

holds for every n × n positive semidefinite matrix C. In particular, both sides of (7)
behave additively with respect to product measures: Plugging in dμ = dμ̃dγn−k into (7)
yields

H(μ̃‖λk) − H(γk‖λk) ≤
1
2 log det I(μ̃‖λk) (10)

which captures correctly the intrinsic dimension of μ. More generally, by considering the 
eigenvalues of the Fisher information matrix, (7) can quantify the extent to which μ
degenerates along each eigenvector direction.
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The goal of this work is to initiate a systematic study of intrinsic dimensional versions 
of classical functional inequalities. We focus on some important model spaces: Euclidean 
space, Hamming cube, and space forms (manifolds of constant sectional curvature). These 
model spaces have historically played a crucial role in the development of functional in-
equalities and their study has been the impetus leading to fruitful generalizations and 
abstractions; see the monograph [9]. In view of the richness of the subject, our intrinsic 
dimensional functional inequalities on these spaces improve on multiple classical inequal-
ities from the literature. The tools required to establish intrinsic dimensional functional 
inequalities in each of the model spaces will depend on the unique characteristics of 
the space itself: scaling (Euclidean space), tensorization (Hamming cube), and stochas-
tic methods (space forms). In the rest of the introduction we will review each of these 
methods and present examples of the intrinsic dimensional functional inequalities which 
follow. We defer the statements of many of our results to the main body of the paper; 
see the following brief summary:

Part 1. Euclidean and product spaces: scaling and tensorization

• Logarithmic Sobolev inequalities for homogeneous measures (Section 2.2).
• Bayesian Cramér–Rao bounds (Section 2.3).
• Gagliardo–Nirenberg–Sobolev inequalities (Section 3).
• Beckner inequalities (Section 4).
• q-logarithmic Sobolev inequalities (Section 5).
• Nonlinear logarithmic Sobolev inequalities in product spaces (Section 7).

Part 2. Space forms: stochastic methods

• Local logarithmic Sobolev inequalities on space forms (Section 9).
• Local logarithmic Sobolev inequalities and Hamilton’s matrix inequalities on non-

positively curved space forms (Section 10).

1.1. Euclidean spaces: scaling

Most classical functional inequalities on Rn are coordinate-free results phrased in a 
coordinate-dependent way. As such, they can often be substantially refined when ex-
pressed in a suitable basis. Concretely, the correct basis is found by performing a change 
of variables of the form x �→ Ax and then optimizing over a prescribed class of symmetries 
A ∈ G ⊆ GLn. Let us remark that explicit improvements of this form can be obtained 
only when it is possible to solve these optimization problems, which is not always the 
case. These improvements are moreover motivated by the study of equality cases. When 
a functional inequality has a non-constant function h : Rn → R as an equality case, then 
the refined inequality obtained in the manner described above would be saturated by 
all functions of the form hA(x) = h(Ax), where A ∈ G. This principle has already been 
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applied by Dembo [27] in the case of the Gaussian logarithmic Sobolev inequality (see 
also [30,14] and Section 2 below). In the first part of the paper we shall present more 
applications of this idea to other important functional inequalities in Euclidean space 
and further consequences.

1.1.1. Beckner inequalities
In [13], Beckner proved that any smooth function u ∈ C∞

0 (Rn) satisfies the estimates

∀ p ∈ [1, 2), ‖u‖2
L2(γn) − ‖u‖2

Lp(γn) ≤ (2 − p)‖∇u‖2
L2(γn). (11)

This family of inequalities interpolates between the Gaussian Poincaré inequality (corre-
sponding to p = 1) and Gross’ logarithmic Sobolev inequality [36] which arises as a limit 
when p → 2−. We refer to the influential work of Latała and Oleszkiewicz [42] as well 
as [9, Section 7.6] for examples of Beckner-type inequalities satisfied by non-Gaussian 
measures.

In [28, Corollary 4], Dolbeault and Toscani proposed a dimensional refinement of Beck-
ner’s inequality (11) for functions satisfying a second moment normalization condition. 
More specifically, they showed that if a function u ∈ C∞

0 (Rn) satisfies the normalization 
condition ∫

Rn

|x|2u(x)2 dγn(x) = n‖u‖2
L2(γn), (12)

then

∀p ∈ [1, 2), ‖u‖2
L2(γn)ϕp,n

(
1 −

‖u‖2
Lp(γn)

‖u‖2
L2(γn)

)
≤ ‖∇u‖2

L2(γn), (13)

where the function ϕp,n is given by

∀ s ∈ (0, 1), ϕp,n(s) def= n

4

(
(1 − s)−

2p
n(2−p) − 1

)
. (14)

Observe that (13) improves upon (11) up to the value of the implicit constant as

∀ s ∈ (0, 1), ϕp,n(s) ≥ p

2(2 − p) log
( 1

1 − s

)
≥ p

2(2 − p) · s. (15)

The improvement (13) becomes particularly substantial when ‖u‖Lp(γn) << ‖u‖L2(γn).
In the spirit of the matricial refinement (7) over the dimensional logarithmic Sobolev 

inequality (5), we present the following refinement of (13) for functions whose second 
moment matrix is appropriately normalized.
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Theorem 1. Fix n ∈ N and let u ∈ C∞
0 (Rn) be such that

∀ i, j ∈ {1, . . . , n},
∫
Rn

xixju(x)2 dγn(x) = δij‖u‖2
L2(γn), (16)

where δij is the Kronecker delta. Then, we have

∀ p ∈ [1, 2),
‖u‖2

L2(γn) − ‖u‖2
Lp(γn)

‖u‖2
L2(γn)

≤ 1 −

⎡⎣det

⎛⎝ 4
‖u‖2

L2(γn)

∫
Rn

(∇u)⊗2 dγn + Idn

⎞⎠⎤⎦− 2−p
2p

.

(17)

Applying the inequality detC ≤
( trC

n

)n and rearranging, we see that (17) strengthens 
(13).

1.1.2. Gagliardo–Nirenberg–Sobolev inequalities
Fix n ∈ N. The Gagliardo–Nirenberg inequality [34,53] asserts that for every p, q, r, s ∈

[1, ∞) and θ ∈ [0, 1] satisfying the constraint

1
p

= θ

q
+
(1
r
− 1

n

)
(1 − θ), (18)

there exists a universal (optimal) constant Cp,q,r,s > 0 such that every u ∈ C∞
0 (Rn)

satisfies

‖u‖Lp(Rn) ≤ Cp,q,r,s‖u‖θLq(Rn)‖∇u‖1−θ
Lr(Rn;�ns ), (19)

where we use the standard notation

‖∇u‖Lr(Rn;�ns ) =

⎛⎝∫
Rn

( n∑
i=1

|∂iu(x)|s
)r/s

dx

⎞⎠1/r

. (20)

In the special case r ∈ (1, n) and θ = 0, inequality (19) boils down to the classical 
Sobolev inequality [59,60]. The endpoint case r = 1 and θ = 0 was due to [34,53] and 
the corresponding optimal constant for s = 2 was found by Federer, Fleming and Rishel 
[31,32]. The optimal constant in the range r ∈ (1, n) and θ = 0 for s = 2 was discovered 
by Aubin and Talenti [2,62]. The logarithmic Sobolev inequality (4) can be obtained as 
an endpoint case of the Gagliardo–Nirenberg–Sobolev inequality (19) with the optimal 
constant when s = 2 (see [26, Section 1]). Finally, the optimal constant Cp,q,r,s for general 
parameters was found by Cordero-Erausquin, Nazaret and Villani in [22, Section 3]. In 
this paper, we present a refined inequality for r = s.
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Theorem 2. Let p, q, r ∈ [1, ∞), θ ∈ [0, 1] and Cp,q,r,r > 0 be such that (19) is satisfied 
for all functions u ∈ C∞

0 (Rn) with r = s under the constraint (18). Then, for every 
u ∈ C∞

0 (Rn), we have

‖u‖Lp(Rn) ≤ Cp,q,r,rn
1−θ
r ‖u‖θLq(Rn)

( n∏
j=1

‖∂ju‖Lr(Rn)

) 1−θ
n

. (21)

The inequality (21) improves on (19) by the arithmetic mean-geometric mean inequal-
ity so Theorem 2 asserts that Euclidean Gagliardo–Nirenberg–Sobolev inequalities, that 
is, inequalities of the form (19) with the choice of parameter r = 2, self-improve via scal-
ing. In particular, (21) captures the fact (absent from (19)) that ∂iu ≡ 0 on Rn implies 
that u ≡ 0 under any Ls-integrability assumption for u

1.2. Product spaces: tensorization

If (Ω, π) is a probability space, then for a measurable function f : Ω → R+ we shall 
denote its entropy with respect to π by

Entπ[f ] def=
∫
Ω

f log f dπ −
(∫

Ω

f dπ
)

log
(∫

Ω

f dπ
)
. (22)

The usefulness of logarithmic Sobolev inequalities in probability and geometry stems 
largely from the fact that entropy satisfies a simple yet powerful tensorization principle, 
rendering them dimension-free estimates [43]. In the interesting work [55], Polyanskiy 
and Samorodnitsky introduced a family of more general inequalities for Markov semi-
groups called nonlinear logarithmic Sobolev inequalities (see also [36,66,23,24,20,50,57]
for previous occurrences of such estimates in the literature and applications). Let {Pt}t≥0
be a Markov semigroup acting on measurable functions f : Ω → R with stationary mea-
sure π. Following [55], we say that {Pt}t≥0 satisfies the (p, Φ)–LSI, where p ≥ 1 and 
Φ : R+ → R+ is a concave, continuous function with Φ(0) = 0, if for every measurable 
function f : Ω → R+, we have

Entπ[fp] ≤ Eπ[fp]Φ
(
E(f, fp−1)
Eπ[fp]

)
, (23)

where E(·, ·) is the Dirichlet form corresponding to {Pt}t≥0. As usual, the term E(f, fp−1)
is interpreted as E(f, log f) in the endpoint case p = 1.

In [55, Theorem 1], the authors proved a dimensional tensorization property for non-
linear log-Sobolev inequalities asserting that if {Pt}t≥0 satisfies the (p, Φ)–LSI, then for 
any n ≥ 1, the product semigroup {P⊗n

t }t≥0 with stationary measure πn satisfies the (
p, nΦ( 1

n ·)
)
–LSI:

Entπn [fp] ≤ nEπn [fp]Φ
(
E(f, fp−1)

p

)
. (24)
nEπn [f ]
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By considering functions f of the form f(x1, . . . , xn) = f̃(x1, . . . , xk), for k < n, we see 
that (24) suffers from the problem of incorporating the ambient dimension n into the 
constant, thus ignoring the structure of f . In the Euclidean setting, we overcame this 
issue by finding the correct basis via an optimization procedure over the cone of positive 
semidefinite matrices. In contrast, such an approach is not suitable on the Hamming 
cube due to its discrete nature. Our solution to this problem is to refine tensorization 
instead of scaling. Indeed, as a consequence of a more general tensorization principle (see 
Theorem 18 below), we shall prove the following stronger nonlinear logarithmic Sobolev 
inequality for product spaces.

Theorem 3. Let (Ω, π, {Pt}t≥0) be a stationary Markov semigroup satisfying the (p, Φ)–
LSI for some p ≥ 1 and some concave, continuous function Φ : R+ → R+ with Φ(0) = 0. 
Then, for any n ≥ 1, every measurable function f : Ωn → R+ satisfies

Entπn [fp] ≤ Eπn [fp]
n∑

i=1
Φ
(
Eπn

[
Ei(f, fp−1)

]
Eπn [fp]

)
, (25)

where Ei(·, ·) is the Dirichlet form associated with the i-th component of the semigroup 
{P⊗n

t }t≥0.

It follows readily from Jensen’s inequality that

n∑
i=1

Φ
(
Eπn

[
Ei(f, fp−1)

]
Eπn [fp]

)
≤ nΦ

(
E(f, fp−1)
nEπn [fp]

)
, (26)

where E(·, ·) is the Dirichlet form associated to {P⊗n
t }t≥0 and thus (25) indeed strength-

ens (24). Moreover, in [55, Theorems 4 and 6], the authors found the optimal functions 
Φp such that the (p, Φp)-LSI is satisfied on the one-dimensional Hamming cube {0, 1}
equipped with the uniform measure. Tensorizing their result via Theorem 3, one deduces 
an improved nonlinear logarithmic Sobolev inequality on the Hamming cube {0, 1}n.

1.3. Space forms: stochastic methods

In order to explain our intrinsic dimensional functional inequalities on space forms 
we first recall the notion of local logarithmic Sobolev inequalities. Starting with the 
Euclidean setting, fix T ≥ 0, x ∈ Rn, and let dμ

dλn
= fPT δx

PT f(x) where δx is the Dirac mass at 
x, f : Rn → R is a nonnegative function, and {Pt}t≥0 is the Euclidean heat semigroup 
given by Pth(x) :=

∫
h(x +

√
tz)dγn(z). Plugging μ into (5) yields (after integration by 

parts and using the explicit form of PT δx),

PT (f log f)(x) − PT f(x) logPT f(x)

≤ T
PTΔf(x) + n

PT f(x) log
(

1 − T PT (fΔ log f)(x)
)
.

(27)

2 2 n PT f(x)
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The inequality (27) is the local dimensional logarithmic Sobolev inequality on Rn [10]. 
While (27) provides an upper bound on the (local) entropy, the reverse local dimensional 
logarithmic Sobolev inequality [10] provides a lower bound,

PT (f log f)(x) − PT f(x) logPT f(x)

≥ T

2 PTΔf(x) − n

2PT f(x) log
(

1 + T

n
Δ logPT f(x)

)
.

(28)

Analogously, we can use (7), instead of (5), to get the local intrinsic dimensional loga-
rithmic Sobolev inequality on Rn,

PT (f log f)(x) − PT f(x) logPT f(x)

≤ T

2 PTΔf(x) + 1
2PT f(x) log det

(
Idn − T

PT (f∇2 log f(x))
PT f(x)

)
,

(29)

which improves on (27). As for a reverse local intrinsic dimensional logarithmic Sobolev 
inequality in Rn, we will establish below (Theorem 32) that

PT (f log f)(x) − PT f(x) logPT f(x)

≥ T

2 ΔPT f(x) − 1
2PT f(x) log det

(
Idn + T∇2 logPT f(x)

)
,

(30)

which improves on (28).
Turning to the manifold setting, local dimensional logarithmic Sobolev inequalities 

exist on manifolds in forms which account for both the dimension of the manifold as well 
as the Ricci curvature [6]. In light of the existence of the local intrinsic dimensional log-
arithmic Sobolev inequalities on Euclidean spaces (29) and (30), we wish to understand 
whether such inequalities can also exist on manifolds. Upon closer inspection, however, it 
is clear that inequalities such as (29) and (30) cannot hold if the only curvature informa-
tion given pertains to the Ricci tensor. On a conceptual level, the difference between the 
dimensional and intrinsic dimensional inequalities is that the former provide information 
about the trace of the Fisher information matrix, while the latter provide information 
about the full spectrum. Hence, while information on the trace of the Riemann tensor, 
i.e., Ricci curvature, suffices to yield a dimensional inequality, information on the full Rie-
mann tensor, i.e., sectional curvature, should be required to give an intrinsic dimensional 
inequality.

A concrete manifestation of this intuition is exhibited by the inequalities of Li–Yau 
and Hamilton [47,37]. As was realized in [10], the reverse local dimensional logarithmic 
Sobolev inequality (28) implicitly implies the Li–Yau inequality on Rn,

∀x ∈ Rn, −Δ logPT f(x) ≤ n
, (31)
T
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since the argument in the log term of (28) must be nonnegative. Analogously, the re-
verse local intrinsic dimensional logarithmic Sobolev inequality (30) implies Hamilton’s 
inequality,

∀x ∈ Rn, −∇2 logPT f(x) � 1
T

Idn, (32)

where � is the order of positive semidefinite matrices. In the manifold setting, the Li–Yau 
inequality, which is a statement about the trace of the Hessian of logPT f , holds under a 
nonnegativity assumption on the trace of the Riemann tensor, namely the Ricci tensor 
[47,68]. Indeed, Bakry and Ledoux [10] (see also the follow-up work [6]) established (re-
verse) local dimensional logarithmic Sobolev inequalities on manifolds with nonnegative 
Ricci curvature which imply the Li–Yau inequality. In contrast, Hamilton’s inequality, 
which is a statement about the Hessian of logPT f , requires the manifold to have non-
negative sectional curvature (and also to be Einstein), which is an assumption on the full 
spectrum of the Riemann tensor [37]. It follows that if local intrinsic dimensional loga-
rithmic Sobolev inequalities were to hold, then information about the sectional curvature 
should be provided.

In this work we establish local intrinsic dimensional logarithmic Sobolev inequalities as 
well as Hamilton-type matrix inequalities for space forms: Euclidean spaces, spheres, and 
hyperbolic spaces. In addition to serving as the model spaces for functional inequalities 
on manifolds, these spaces are the simplest non-trivial examples of manifolds where we 
could hope for local intrinsic dimensional logarithmic Sobolev inequalities to hold. The 
methods of scaling and tensorization which worked, respectively, for Euclidean spaces and 
product spaces no longer apply on curved spaces as they lack product and homogeneity 
structures. Hence, we take a different route and build on the stochastic approach of Lehec 
[44,45] and Eldan, Lehec, and Shenfeld [30] towards logarithmic Sobolev inequalities. We 
start by stating our local intrinsic dimensional logarithmic Sobolev on space forms while 
deferring precise definitions to Part 2.

Theorem 4. Let (M, g) be an n-dimensional Riemannian manifold with constant sectional 
curvature κ ∈ R \ {0} with the associated heat semigroup {Pt}t≥0. Fix T > 0, x ∈ M, a 
smooth positive function f : M → R with 

∫
M

f dPT δx = 1, and let μ be the probability 

measure with dμ
dPT δx

= f . Define the 2-tensor C(t) = enκt

nκ A + tB for t ∈ R where A, B
are the 2-tensors given by

⎧⎨⎩A = −e−nκT
(
PT∇2f(x) − 1

nPTΔf(x) · g
)

B =
(

(n−1)κ
2 − ΔPT f(x)

n

)
· g.

(33)

Then, we have the local intrinsic dimensional logarithmic Sobolev inequality
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PT (f log f)(x) − PT f(x) logPT f(x)

≤ 1
2

T∫
0

tr
[
eC(t)−C(T )

(
g + Eμ

(
∇ log f

)⊗2
T∫
t

e2C(s)−2C(T ) ds
)−1

Eμ

(
∇ log f

)⊗2
eC(t)−C(T )

]
dt,

(34)

and the reverse local intrinsic dimensional logarithmic Sobolev inequality

PT (f log f)(x) − PT f(x) logPT f(x)

≥ 1
2

T∫
0

tr
[
eC(t)−C(0)

(
g −

(
∇ logPT f(x)

)⊗2
t∫

0

e2C(s)−2C(0) ds
)−1

×
(
∇ logPT f(x)

)⊗2
eC(t)−C(0)

]
dt.

(35)

As will become clear from the proof of Theorem 4, the theorem is not optimal and fol-
lows from a more powerful “master” matrix differential inequality (section 10.3). There 
are other inequalities which can be deduced from the master matrix differential inequal-
ity, specifically in space forms with nonpositive sectional curvature. In particular, we 
prove Hamilton-type matrix inequalities for the heat equation:

Theorem 5. Let (M, g) be an n-dimensional Riemannian manifold with constant non-
positive sectional curvature κ ≤ 0. Let {Pt}t≥0 be the associated heat semigroup and let 
f : M → R be a positive function. Then, for every x ∈ M and every T ≥ 0,

if, either κ = 0, or κ < 0 and 4
n2κ

ΔPT f(x)
PT f(x) = 1,

then −∇2 logPT f(x) � 1
T

Idn ∀x ∈ M.

(36)

Further,

if κ < 0 and 4
n2κ

ΔPT f(x)
PT f(x) > 1,

then −∇2 logPT f(x)

� nκ

2

{√
4

n2κ

ΔPT f(x)
PT f(x) − 1 cot

(
nκT

2

√
4

n2κ

ΔPT f(x)
PT f(x) − 1

)
− 1
}

Idn.

(37)

In flat space, where κ = 0, Theorem 5 reduces to (32), namely, Hamilton’s matrix 
inequality [37, Corollary 4.4]. In hyperbolic spaces, Theorem 5 is completely new. The 
constraint 4

n2κ
ΔPT f(x)
PT f(x) > 1 is natural. Indeed, Theorem 5 is a matrix version of the 

improved Li-Yau inequality of Bakry, Bolley, and Gentil—see Remark 34.
Going beyond matrix inequalities, we can use our master matrix differential inequality 

to obtain another form of local intrinsic dimensional logarithmic Sobolev inequalities.
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Theorem 6. Let (M, g) be the n-dimensional hyperbolic space with sectional curvature 
κ < 0 with the associated heat semigroup {Pt}t≥0. Fix T > 0, x ∈ M, a smooth positive 
function f : M → R with 

∫
M

f dPT δx = 1, and let μ be the probability measure with 
dμ

dPT δx
= f . Then, with

λ
def= n2κ2

4

{
4

n2κ
ΔPT f(x) − 1

}
, αi

def=

⎧⎪⎪⎨⎪⎪⎩
arctan

(
1√
λ

(
σi + nκ

2
))

if λ < 0,

− 2
2σi+nκ if λ = 0,

arctanh
(
− 1√

−λ

(
σi + nκ

2
))

if λ > 0,
(38)

we have the local intrinsic dimensional logarithmic Sobolev inequality

PT (f log f)(x) − PT f(x) logPT f(x)

≤ −PTΔf(x)
2 − n2κT

2 − 1
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑n
i=1 log

(
cos(αi)

cos(
√
λT+αi)

)
if λ > 0∑n

i=1 log
(

αi

T+αi

)
if λ = 0∑n

i=1 log
(

cosh(αi)
cosh(

√
−λT+αi)

)
if λ < 0

(39)

where {σi}ni=1 are the eigenvalues of Eμ[−∇2 log f ], and the reverse local intrinsic di-
mensional logarithmic Sobolev inequality

PT (f log f)(x) − PT f(x) logPT f(x)

≥ −PTΔf(x)
2 − n2κT

2 + 1
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑n
i=1 log

(
cos(αi)

cos(
√
λT+αi)

)
if λ > 0∑n

i=1 log
(

αi

T+αi

)
if λ = 0∑n

i=1 log
(

cosh(αi)
cosh(

√
−λT+αi)

)
if λ < 0

(40)

where {σi}ni=1 are the eigenvalues of −∇2 logPT f(x).
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Part 1. Euclidean and product spaces: scaling and tensorization

2. Logarithmic Sobolev inequalities in Euclidean spaces and Cramér–Rao bounds

In this section we discuss strengthenings of logarithmic Sobolev inequalities for mea-
sures on Euclidean spaces by means of scaling. In addition, we derive an application of 
these inequalities to Bayesian Cramér–Rao bounds.

2.1. Warm-up: Gross’ inequality

The Euclidean reformulation (4) of the logarithmic Sobolev inequality in Gauss space 
[36] asserts that if f : Rn → R+ is a probability density, then

∫
Rn

f(x) log f(x) dx− H(γn‖λn) ≤ 1
2

⎛⎝∫
Rn

|∇f(x)|2
f(x) dx− n

⎞⎠ . (41)

Fix such a density f and consider the reparametrized density fA : Rn → R+ which is 
given by fA(x) = (detA) · f(Ax), where A ∈ GLn is a positive definite matrix. Applying 
(41) for fA we get∫
Rn

f(x) log f(x) dx + log detA− H(γn‖λn) =
∫
Rn

fA(x) log fA(x) dx− H(γn‖λn)

≤ 1
2

⎛⎝∫
Rn

|∇fA(x)|2
fA(x) dx− n

⎞⎠ = 1
2

⎛⎝∫
Rn

|A · ∇f(x)|2
f(x) dx− n

⎞⎠ ,

(42)

which after rearranging becomes

∫
Rn

f(x) log f(x) dx− H(γn‖λn) ≤ 1
2

⎛⎝∫
Rn

|A · ∇f(x)|2
f(x) dx− log detA2 − n

⎞⎠
= 1

2
(
tr
(
A2 · I(μ‖λn)

)
− log detA2 − n

)
.

(43)

For the optimal choice of matrix A = I(μ‖λn)−1/2, (43) readily becomes Dembo’s in-
equality (7). Observe that in this argument we made critical use of the change of variables 
formula for the Lebesgue measure, i.e., that λn(AK) = (detA) · λn(K) for any Borel 
K ⊂ Rn and A ∈ GLn. While Lebesgue is the only measure on Euclidean space satisfying 
such an invariance property under all linear transformations, in the next section we shall 
observe that a weaker self-improvement can be deduced for measures which behave well 
under diagonal linear maps.
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2.2. Logarithmic Sobolev inequalities for homogeneous measures

Let p1, . . . , pn ≥ 0. An absolutely continuous measure ρ on Rn with density w : Rn →
R+ is called (p1, . . . , pn)-homogeneous if for every t1, . . . , tn > 0,

∀ x = (x1, . . . , xn) ∈ Rn, w(t1x1, . . . , tnxn) = tp1
1 · · · tpn

n w(x1, . . . , xn). (44)

Theorem 7. Fix c1, c2 > 0, n ∈ N, p1, . . . , pn ≥ 0 and let ρ be a (p1, . . . , pn)-homogeneous 
measure such that for any Borel probability measure μ on Rn,

H(μ‖ρ) ≤ c1I(μ‖ρ) + c2. (45)

Then, for any Borel probability measure μ on Rn with positive differentiable density f , 
we have

H(μ‖ρ) ≤ 1
2

n∑
k=1

(1 + pk) log

⎛⎝ 2ec1
1 + pk

∫
Rn

(∂kf(y))2

f(y) dρ(y)

⎞⎠+ c2. (46)

The existence of homogeneous measures ρ satisfying inequalities of the form (45), as 
well as more general entropy-energy inequalities follows, for instance, from [9, Proposi-
tion 7.3.1].

Proof of Theorem 7. Let f = dμ
dρ be an arbitrary positive function with ρ-integral 

equal to 1 and fix t1, . . . , tn > 0. The measure μt with density x �→ ft(x) =
t1+p1
1 · · · t1+pn

n f(t1x1, . . . , tnxn) with respect to ρ is a probability measure, as

n∏
i=1

t1+pi

i

∫
Rn

f(t1x1, . . . , tnxn)w(x) dx =
n∏

i=1
tpi

i

∫
Rn

f(y)w(t−1
1 y1, . . . , t

−1
n yn) dy = 1, (47)

where we made the change of variables (y1, . . . , yn) = (t1x1, . . . , tnxn). We have,

H(μt‖ρ)

=
n∏

i=1
t1+pi

i

∫
Rn

f(t1x1, . . . , tnxn)
{

log f(t1x1, . . . , tnxn) +
n∑

k=1

(1 + pk) log tk

}
w(x) dx

=
n∏

i=1
tpi

i

∫
Rn

f(y)
{

log f(y) +
n∑

k=1

(1 + pk) log tk

}
w(t−1

1 y1, . . . , t
−1
n yn) dy

= H(μ‖ρ) +
n∑

(1 + pk) log tk.

k=1
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Similarly, assuming in addition that f is differentiable, for every k ∈ {1, . . . , n} we have 
∂kft(x) = tk

∏
i t

1+pi

i ∂kf(t1x1, . . . , tnxn) and thus

I(μt‖ρ) =
n∑

k=1

t2k ·
n∏

i=1
t1+pi

i

∫
Rn

(∂kf(t1x1, . . . , tnxn))2

f(t1x1, . . . , tnxn) w(x) dx

=
n∑

k=1

t2k ·
n∏

i=1
tpi

i

∫
Rn

(∂kf(y))2

f(y) w(t−1
1 y1, . . . , t

−1
n yn) dy =

n∑
k=1

t2k

∫
Rn

(∂kf(y))2

f(y) dρ(y).

(48)

Therefore, applying (45) for μt and reorganizing the terms, we deduce that

H(μ‖ρ) ≤ inf
t1,...,tn≥0

⎧⎨⎩c1

n∑
k=1

t2k

∫
Rn

(∂kf(y))2

f(y) dρ(y) −
n∑

k=1

(1 + pk) log tk + c2

⎫⎬⎭ .

It is now elementary to check that the above infimum is attained when

∀ k ∈ {1, . . . , n}, t2k = 1 + pk
2c1

( ∫
Rn

(∂kf(y))2

f(y) dρ(y)
)−1

(49)

and plugging this choice of parameters completes the proof. �
Specifically for Lebesgue measure, Theorem 7 implies that if μ has differentiable den-

sity f ,

H(μ‖λn) − H(γn‖λn) ≤ 1
2

n∑
k=1

log

⎛⎝∫
Rn

(∂kf(y))2

f(y) dy

⎞⎠ , (50)

which is weaker than Dembo’s inequality (7) in view of the elementary estimate 
detC ≤

∏
s Css which holds for all positive semidefinite matrices C. On the other hand, 

(50) combined with Jensen’s inequality implies (5). We refer to [7,10,5,6] for further 
dimensional logarithmic Sobolev inequalities and applications to Li–Yau-type estimates 
[47], hypercontractivity [51,19,52,12,4] and heat kernel estimates [4,7].

2.3. A Bayesian Cramér–Rao bound

In [1], Aras, Lee, Pananjady and Courtade observed that logarithmic Sobolev in-
equalities formally imply Bayesian Cramér–Rao bounds, thus extending some results of 
Efroimovich [29] for Gaussian measures. In this section, we investigate similar applica-
tions of intrinsic dimensional log-Sobolev inequalities in the spirit of (46) and (7).
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Following [1], we work in the setting of parametric statistics. Let {μθ}θ∈Rn be a family 
of probability measures on a measurable space (Ω, F). Assume moreover that there exists 
a dominating σ-finite measure λ on Ω such that μθ has a positive density with respect 
to λ,

∀ θ ∈ Rn, dμθ(x) = f(x; θ) dλ(x). (51)

We shall assume throughout that each function θ �→ f(x; θ) is smooth and that

∫
Ω

∇θf(x; θ) dλ(x) = 0 (52)

for almost every θ ∈ Rn. The Fisher information of the parametric family {μθ}θ∈Rn is

∀ θ ∈ Rn, J(θ) def=
∫
Ω

|∇θf(x; θ)|2
f(x; θ) dλ(x). (53)

Finally, if π is a probability measure on Rn, we denote the mutual information of π with 
the family {μθ}θ∈Rn by

I
(
π; {μθ}

) def=
∫
Rn

∫
Ω

f(x; θ) log
(

f(x; θ)∫
Rn f(x, φ) dπ(φ)

)
dλ(x) dπ(θ). (54)

The main result of [1, Theorem 1] specified to the standard Gaussian measure γn asserts 
that for every absolutely continuous probability measure π on Rn,

I
(
π; {μθ}

)
+ H(π‖γn) ≤ 1

2

(
I(π‖γn) +

∫
Rn

J(θ) dπ(θ)
)
. (55)

Inequality (55) implies the Gaussian logarithmic Sobolev inequality (1) since choosing 
μθ = λ independently of θ, the terms I(π; {μθ}) and J(θ) both vanish. We present 
inequalities in the spirit of (55) for homogeneous measures satisfying a log-Sobolev in-
equality of the form (45).

Theorem 8. Fix c1, c2 > 0, n ∈ N, p1, . . . , pn ≥ 0 and let ρ be a (p1, . . . , pn)-homogeneous 
measure such that for any Borel measure μ on Rn,

H(μ‖ρ) ≤ c1I(μ‖ρ) + c2. (56)

Then, for every parametric family {μθ}θ∈Rn and every absolutely continuous measure π
on Rn whose density with respect to ρ is h : Rn → R+, we have
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I
(
π; {μθ}

)
+ H(π‖ρ)

≤ 1
2

n∑
k=1

(1 + pk) log

⎛⎝ 2ec1
1 + pk

( ∫
Rn

(∂kh(θ))2

h(θ) dρ(θ) +
∫
Rn

∫
Ω

(∂θkf(x; θ))2

f(x; θ) dλ(x) dπ(θ)
)⎞⎠

+ c2.
(57)

Observe that the terms inside the logarithm on the right-hand side are the k-th compo-
nent of the Fisher informations I(π|ρ) and J(θ) respectively, in analogy with Theorem 7.

Proof of Theorem 8. Consider the function f : Ω → R+ given by

∀ x ∈ Ω, f(x) def=
∫
Rn

f(x; θ) dπ(θ) (58)

and observe that∫
Ω

f(x) dλ(x) =
∫
Ω

∫
Rn

f(x; θ) dπ(θ) dλ(x) =
∫
Rn

∫
Ω

dμθ(x)dπ(θ) = 1. (59)

Moreover, for x ∈ Ω, consider the function hx : Rn → R+ given by

∀ θ ∈ Rn, hx(θ) def= h(θ)f(x; θ)
f(x) (60)

and notice that the measure νx on Rn with dνx(θ) = hx(θ) dρ(θ) is a probability measure 
since

νx(Rn) =
∫
Rn

h(θ)f(x; θ)
f(x) dρ(θ) =

∫
Rn

f(x; θ)
f(x) dπ(θ) (58)= 1. (61)

By Theorem 7 and the assumption on ρ, for every x ∈ Ω we have

H(νx‖ρ) ≤
1
2

n∑
k=1

(1 + pk) log
( 2ec1

1 + pk

∫
Rn

(∂khx(θ))2

hx(θ)
dρ(θ)

)
+ c2. (62)

Integrating this inequality with respect to the probability measure f(x)dλ(x), we get∫
Ω

H(νx‖ρ)f(x) dλ(x)

≤ 1
2

n∑
k=1

(1 + pk)
∫
Ω

log
( 2ec1

1 + pk

∫
Rn

(∂khx(θ))2

hx(θ) dρ(θ)
)
f(x) dλ(x) + c2

≤ 1
2

n∑
(1 + pk) log

( 2ec1
1 + pk

∫ ∫ (∂khx(θ))2

hx(θ) f(x) dρ(θ) dλ(x)
)

+ c2,

(63)
k=1 Ω Rn
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where the last line follows from Jensen’s inequality. Moreover, by definition we have

∫
Ω

H(νx‖ρ)f(x) dλ(x) =
∫
Ω

∫
Rn

h(θ)f(x; θ) log
(h(θ)f(x; θ)

f(x)

)
dρ(θ) dλ(x)

=
∫
Rn

h(θ) log h(θ) dρ(θ) +
∫
Rn

∫
Ω

f(x; θ) log
(f(x; θ)

f(x)
)
dλ(x) dπ(θ)

= H(π‖ρ) + I
(
π; {μθ}

)
.

(64)

Similarly, computing the integral on the right-hand side of (63), gives

∫
Ω

∫
Rn

(∂khx(θ))2

hx(θ) f(x) dρ(θ) dλ(x)=
∫
Ω

∫
Rn

(
f(x; θ)∂kh(θ) + h(θ)∂θkf(x; θ)

)2
h(θ)f(x; θ) dρ(θ) dλ(x)

=
∫
Rn

(∂kh(θ))2

h(θ)

∫
Ω

f(x; θ) dλ(x) dρ(θ) + 2
∫
Rn

∂kh(θ)
∫
Ω

∂θkf(x; θ) dλ(x) dρ(θ)

+
∫
Rn

h(θ)
∫
Ω

(∂θkf(x; θ))2

f(x; θ) dλ(x) dρ(θ)

(52)=
∫
Rn

(∂kh(θ))2

h(θ) dρ(θ) +
∫
Rn

∫
Ω

(∂θkf(x; θ))2

f(x; θ) dλ(x) dπ(θ).

Combining everything, we deduce the desired inequality. �
Remark 9. In the case of the Gaussian measure ρ = γn, we have at our disposal the in-
trinsic dimensional logarithmic Sobolev inequality (7). Repeating the same proof mutatis 
mutandis while replacing (46) with (7), we conclude that for any probability measure π
on Rn whose density with respect to γn is h : Rn → R+, and for every parametric family 
{μθ}θ∈Rn , we have

I
(
π; {μθ}

)
+ H(π‖γn)

≤ trM2,π − n

2 + 1
2 log det

(
2Idn + I(π‖γn) +

∫
Rn

∫
Ω

(∇θf(x; θ))⊗2

f(x; θ) dλ(x) dπ(θ) − M2,π

)
,

where M2,π =
∫
θ⊗2 dπ(θ). This recovers a result of Efroimovich [29, Theorem 5]. Com-

bining the inequalities log detC ≤ n log trC
n and log y ≤ y − 1, which hold for all y > 0

and all n × n positive definite matrices C, we see that Efroimovich’s inequality is a 
strengthening of (55).
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3. Gagliardo–Nirenberg–Sobolev inequalities

In this section we shall prove Theorem 2:

Theorem 10. Let p, q, r ∈ [1, ∞), θ ∈ [0, 1] and Cp,q,r,r > 0 be such that

‖u‖Lp(Rn) ≤ Cp,q,r,r‖u‖θLq(Rn)‖∇u‖1−θ
Lr(Rn;�nr ) (65)

is satisfied for all functions u ∈ C∞
0 (Rn) under the constraint

1
p

= θ

q
+
(1
r
− 1

n

)
(1 − θ). (66)

Then, for every u ∈ C∞
0 (Rn), we have

‖u‖Lp(Rn) ≤ Cp,q,r,rn
1−θ
r ‖u‖θLq(Rn)

( n∏
j=1

‖∂ju‖Lr(Rn)

) 1−θ
n

. (67)

Proof. Fix t = (t1, . . . , tn) ∈ Rn
+ and consider the function ut ∈ C∞

0 (Rn) given by

∀ x = (x1, . . . , xn) ∈ Rn, ut(x) def= u(t1x1, . . . , tnxn). (68)

Then, for s ≥ 1 we have

‖ut‖Ls(Rn) =
( ∫
Rn

|u(t1x1, . . . , tnxn)|s dx
)1/s

=
n∏

j=1
t
−1/s
j ‖u‖Ls(Rn) (69)

and

‖∇ut‖rLr(Rn;�nr ) =
n∑

i=1

∫
Rn

‖∂iut‖rLr(Rn) =
n∑

i=1
tri

n∏
j=1

t−1
j ‖∂iu‖rLr(Rn). (70)

Therefore, applying (65) to ut and rearranging, we deduce that

‖u‖Lp(Rn) ≤ Cp,q,r,r
( n∏

j=1
tj

) 1
p− θ

q−
1−θ
r ‖u‖θLq(Rn)

( n∑
i=1

tri ‖∂iu‖rLr(Rn)

) 1−θ
r

(66)= Cp,q,r,r
( n∏

j=1
tj

)− 1−θ
n ‖u‖θLq(Rn)

( n∑
i=1

tri ‖∂iu‖rLr(Rn)

) 1−θ
r

(71)

for every t1, . . . , tn > 0. Choosing

ti = ‖∂iu‖−1
Lr(Rn) (72)

gives the desired inequality (67). �
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4. Beckner inequalities

In this section we shall prove Theorem 1:

Theorem 11. Fix n ∈ N and let u ∈ C∞
0 (Rn) be such that

∀ i, j ∈ {1, . . . , n},
∫
Rn

xixju(x)2 dγn(x) = δij‖u‖2
L2(γn), (73)

where δij is the Kronecker delta. Then, we have

∀ p ∈ [1, 2),
‖u‖2

L2(γn) − ‖u‖2
Lp(γn)

‖u‖2
L2(γn)

≤ 1 − det

⎛⎝ 4
‖u‖2

L2(γn)

∫
Rn

(∇u)⊗2 dγn + Idn

⎞⎠− 2−p
2p

.

(74)

For the proof of Theorem 11 we shall use the intrinsic dimensional logarithmic Sobolev 
inequality (7) which takes the following simple form for appropriately normalized func-
tions in Gauss space.

Lemma 12. Let u ∈ C∞
0 (Rn) be such that ‖u‖L2(γn) = 1 and

∀ i, j ∈ {1, . . . , n},
∫
Rn

xixju(x)2 dγn(x) = δij . (75)

Then, we have

Entγn
[u2] ≤ 1

2 log det

⎛⎝4
∫
Rn

(∇u)⊗2 dγn + Idn

⎞⎠ . (76)

Proof. Let u ∈ C∞
0 (Rn) satisfy the assumptions of the lemma and define f(x) =

u(x)2 exp(−|x|2/2)
(2π)n/2 which is the density of a probability measure μ on Rn. Then, we have

H(μ‖λn) − H(γn‖λn) = Entγn
[u2] − 1

2

∫
Rn

|x|2u(x)2 dγn(x) − n

2 log 2π + n

2 log 2πe

(75)= Entγn
[u2].

(77)

On the other hand, for k ∈ {1, . . . , n}, we compute

∂kf(x) =
(
2u(x)∂ku(x) − xku(x)2

)e−|x|2/2

n/2 (78)

(2π)



A. Eskenazis, Y. Shenfeld / Journal of Functional Analysis 286 (2024) 110338 21
and thus for i, j ∈ {1, . . . , n}, we get

I(μ‖λn)ij = 4
∫
Rn

∂iu∂ju dγn − 2
∫
Rn

(
xj∂iu(x) + xi∂ju(x)

)
u(x) dγn(x)

+
∫
Rn

xixju(x)2 dγn(x).
(79)

For i �= j, integration by parts gives

2
∫
Rn

xj∂iu(x)u(x) dγn(x) =
∫
Rn

∂i
(
xju(x)2

)
dγn(x) =

∫
Rn

xixju(x)2 dγn(x) (75)= 0, (80)

whereas for i = j, again by integration by parts,

2
∫
Rn

xi∂iu(x)u(x) dγn(x) =
∫
Rn

∂i
(
xiu(x)2

)
dγn(x) −

∫
Rn

u(x)2 dγn(x)

=
∫
Rn

x2
iu(x)2 dγn(x) − 1 (75)= 0.

Plugging the above in (79) and using (75) again for the last term, we deduce that

I(μ‖λn) = 4
∫
Rn

(∇u)⊗2 dγn + Idn (81)

and the conclusion of the lemma follows from (7). �
Equipped with Lemma 12, we proceed to the proof of Theorem 1.

Proof of Theorem 11. Assume, without loss of generality, that ‖u‖L2(γn) = 1. Combining 
a lemma of Dolbeault and Toscani [28, Lemma 5] (see also [42]) with Lemma 12, we get 
that

1
‖u‖2

Lp(γn)
=

‖u‖2
L2(γn)

‖u‖2
Lp(γn)

≤ exp
(

2 − p

p
Entγn

[u2]
)

(76)
≤ det

⎛⎝4
∫
Rn

(∇u)⊗2 dγn + Idn

⎞⎠
2−p
2p

.

(82)
Therefore,

1 − ‖u‖2
Lp(γn) ≤ 1 − det

⎛⎝4
∫
Rn

(∇u)⊗2 dγn + Idn

⎞⎠− 2−p
2p

, (83)

which is the desired estimate under the normalization ‖u‖L2(γn) = 1. �
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5. q-logarithmic Sobolev inequalities

Following Bobkov and Zegarlinski [18] (see also [11]) we say that a probability measure 
μ on the real line satisfies the q-logarithmic Sobolev inequality with constant C > 0 if 
for any f ∈ C∞

0 (R) we have

Entμ[|f |q] ≤ C

∫
R

|f ′(x)|q dμ(x). (84)

Standard tensorization principles show that if (84) holds, then for any f ∈ C∞
0 (Rn),

Entμn [|f |q] ≤ C
n∑

i=1

∫
Rn

|∂if(x)|q dμn(x), (85)

where μn = μ ⊗μ ⊗· · ·⊗μ is the product measure of i.i.d. coordinates distributed like μ. 
In particular, it has been established in [18, Corollary 5.6] (see also [16, Section 5]) that 
the measure μp with density 1

Zp
e−|x|p , where p > 2, satisfies the q-logarithmic Sobolev 

inequality for q = p
p−1 with some constant Cq > 1. In order to investigate scale-invariant 

refinements of (85) for this family of measures in the spirit of (50), we first need to 
formulate them as Euclidean inequalities.

Theorem 13. For any q ∈ (1, 2), there exists a constant C̃q > 0 such that for any n ∈ N

and any probability measure μ on Rn with positive differentiable density g,

H(μ‖λn) ≤ C̃q

n∑
i=1

∫
Rn

(∣∣∣∂ig(x)
g(x)

∣∣∣q + |xi|
q

q−1

)
dμ(x). (86)

Proof. For p = q
q−1 > 2 consider the probability measure dμp(x) = e−|x|p

Zp
on R, where 

the normalizing constant is Zp = 2Γ(1 +1/p) > 2. Let μ be a probability measure on Rn

with differentiable density g : Rn → R+ and consider the function f : Rn → R+ given 
by

∀ x ∈ Rn, f(x) = Zn/q
p g(x)1/qe‖x‖

p
p/q, (87)

which satisfies 
∫
Rn f(x)q dμn

p (x) = 1. Therefore, the q-logarithmic Sobolev inequality for 
μn
p applied to the function f implies that

1
Zn
p

∫
Rn

f(x)qe−‖x‖p
p log f(x)q dx = Entμn

p
[fq] ≤ Cq

Zn
p

n∑
i=1

∫
Rn

|∂if(x)|qe−‖x‖p
p dx. (88)

Observe that
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1
Zn
p

∫
Rn

f(x)qe−‖x‖p
p log f(x)q dx =

∫
Rn

g(x) log
(
Zn
p g(x)e‖x‖

p
p
)
dx

= H(μ‖λn) +
∫
Rn

‖x‖pp dμ(x) + logZn
p ,

(89)

and for i ∈ {1, . . . , n},

1
Zn
p

∫
Rn

|∂if(x)|qe−‖x‖p
p dx = 1

qq

∫
Rn

∣∣∣∂ig(x)
g(x) + psign(xi)|xi|p−1

∣∣∣q dμ(x). (90)

Therefore, rearranging (88) we deduce that

H(μ‖λn) ≤ Cq

qq

n∑
i=1

∫
Rn

∣∣∣∂ig(x)
g(x) + psign(xi)|xi|p−1

∣∣∣q dμ(x) −
n∑

i=1

∫
Rn

|xi|p dμ(x) − logZn
p

≤ C̃q

n∑
i=1

∫
Rn

(∣∣∣∂ig(x)
g(x)

∣∣∣q + |xi|p
)

dμ(x)

(91)

for some different constant C̃q > 0 and the proof is complete. �
This Euclidean weakening of the q-logarithmic Sobolev inequality (85) for μn

p makes 
it amenable to refinements via scaling.

Theorem 14. For any q ∈ (1, 2) and p = q
q−1 , there exists a constant C̃q > 0 such that 

for any n ∈ N and any probability measure μ on Rn,

H(μ‖λn) ≤
n∑

i=1
inf
ti>0

{
C̃qt

q
i

∫
Rn

∣∣∣∂ig(x)
g(x)

∣∣∣q dμ(x) + C̃q

tpi

∫
Rn

|xi|p dμ(x) − log ti
}
. (92)

Proof. Fix t1, . . . , tn > 0 and consider the probability measure μt whose density is given 

by x �→ gt(x) def= t1 · · · tng(t1x1, . . . , tnxn). Then, we have

H(μt‖λn) = H(μ‖λn) +
n∑

i=1
log ti (93)

and for every i ∈ {1, . . . , n},∫
Rn

(∣∣∣∂igt(x)
gt(x)

∣∣∣q + |xi|p
)

dμt(x) =
∫
Rn

(
tqi

∣∣∣∂ig(x)
g(x)

∣∣∣q + |xi|p
tpi

)
dμ(x). (94)

Therefore, applying (86) to μt and rearranging, we deduce that
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H(μ‖λn) ≤
n∑

i=1

{
C̃qt

q
i

∫
Rn

∣∣∣∂ig(x)
g(x)

∣∣∣q dμ(x) + C̃q

tpi

∫
Rn

|xi|p dμ(x) − log ti
}

(95)

and taking an infimum over t1, . . . , tn > 0 completes the proof. �
6. Beyond linear rescalings

The simple idea of the previous sections can be summarized as follows. Let

K(f) ≤ L(f) (96)

be a functional inequality valid for regular enough functions f on Rn and fix a subgroup 
of symmetries G ⊆ GLn. For a fixed f : Rn → R for which inequality (96) is valid and 
A ∈ G, consider the function fA : Rn → R given by fA(x) = f(Ax). If (96) applied to 
fA can be rearranged to an upper bound for K(f) of the form

K(f) ≤ L̃(f,A), (97)

then taking an infimum over A ∈ G yields a stronger inequality as (96) just amounts to 
the choice A = Idn. Observe that enhancing inequalities in this way, always produces 
a larger family of extremals. For instance, (4) becomes an equality only when μ is a 
translate of γn, (5) becomes an equality when μ is a Gaussian measure with covariance 
matrix of the form σIdn, where σ > 0, and (7) becomes an equality for any Gaussian 
measure on Rn.

In this section, we will discuss the possibility of refining functional inequalities by 
using changes of variables via nonlinear maps and we shall illustrate this in the case of 
the logarithmic Sobolev inequality (4). Let T : Rn → Rn be a smooth diffeomorphism 
and for a measure μ on Rn with a differentiable density f : Rn → R+ consider the 
measure μT whose density is given by fT (x) = (f ◦T )(x)| detDT (x)|, where x ∈ Rn and 
DT ∈ Mn(R) is the differential of T . We need the following computations for the relative 
entropy and Fisher information of μT .

Lemma 15. In the setting above,

H(μT ‖λn) = H(μ‖λn) +
∫
Rn

log |detDT (T−1(x))|dμ(x) (98)

and

I(μT ‖λn) =
∫ ∣∣∣∣DT (T−1(x)) · ∇f(x)

f(x) + ∇ log |detDT (T−1(x))|
∣∣∣∣2 dμ(x). (99)
Rn
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The proof is a straightforward computation using a change of variables and is thus 
omitted. These formulas along with the fact that any absolutely continuous measure can 
be transported to γn give rise to the following variational formula for relative entropy 
on Rn.

Theorem 16. Let μ be an absolutely continuous measure on Rn. Then,

H(μ‖λn) − H(γn‖λn) = min
T∈Diff(Rn)

ψ(T ) (100)

with equality if T is a transport map from μ to γn, where

ψ(T ) def= 1
2

∫
Rn

∣∣∣∣DT (T−1(x)) · ∇f(x)
f(x) + ∇ log |detDT (T−1(x))|

∣∣∣∣2 dμ(x)

−
∫
Rn

log |detDT (T−1(x))|dμ(x).

Proof. Applying the logarithmic Sobolev inequality (4) to μT and using Lemma 15, we 
get

H(μ‖λn) +
∫
Rn

log |detDT (T−1(x))|dμ(x) − H(γn‖λn)

≤ 1
2

∫
Rn

∣∣∣∣DT (T−1(x)) · ∇f(x)
f(x) + ∇ log |detDT (T−1(x))|

∣∣∣∣2 dμ(x),
(101)

with equality only if μT = γn. The existence of a map T transporting μ to γn is a classical 
fact in optimal transport going back to at least [56,41] (see also [64]). �

We are not aware of a proof of (100) which does not rely on the logarithmic Sobolev in-
equality (4). It remains very interesting to understand whether (100) can lead to stability 
estimates for (4), or even (7), in the spirit of [30, Theorem 3].

Formula (100) becomes more tractable when specified to specific kinds of diffeomor-
phisms. For instance, when T is a product map of the form T (x) = (τ1(x1), . . . , τn(xn)), 
we get

H(μ‖λn) − H(γn‖λn)

≤ inf
τ1,...,τn∈Diff(R)

n∑
i=1

∫
Rn

{
1
2

∣∣∣∣ (τ ′i ◦ τ−1
i )∂if
f

+ (log |τ ′i ◦ τ−1
i |)′

∣∣∣∣2 − log |τ ′i ◦ τ−1
i |
}

dμ.

(102)
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A similar simplified formula can be derived if T is a rotationally invariant map of the form 
T (x) = σ(|x|)x. The equality cases of Theorem 16 show that if μ is a product measure 
or a rotationally invariant measure, then the inequalities obtained by optimizing over 
the corresponding class of nonlinear transformations become equalities. For the case of 
a general probability measure μ, we pose the following question.

Question 17. Let μ be an arbitrary absolutely continuous probability measure on Rn. 
For which collection of diffeomorphisms τ1, . . . , τn ∈ Diff(R) is the infimum (102) at-
tained?

A similar question can be asked for the optimal rotationally invariant change of vari-
ables.

We have not investigated whether nonlinear changes of variables may give rise to 
variational formulas à la (100) when applied to other estimates like the Gagliardo–
Nirenberg–Sobolev inequality (65) or Beckner’s inequality (11).

7. Tensorization of nonlinear logarithmic Sobolev inequalities in product spaces

Let I be a countable set, {(Xi, μi)}i∈I a family of probability spaces where Xi is 
countable and denote their product space by (X, μ) = (

∏
i∈I Xi, ⊗i∈Iμi). For a point 

x = (xi)i∈I ∈ X and i ∈ I, we shall denote by x∼i the point (xj)j 
=i ∈
∏

j 
=i Xj and by 

μ∼i
def= ⊗j 
=iμj . Moreover, for a point z ∈

∏
j 
=i Xj and a function f : X → R, we shall 

denote by fz : Xi → R the restriction of f given by

∀ y ∈ Xi, fz(y)
def= f(z, y). (103)

For each i ∈ I, let Bi be a functional acting on measurable functions g :
∏

j∈JXj → R

for any J ⊆ I. We shall say that the family of functionals {Bi}i∈I disintegrates if it 
satisfies the identities

∀ i ∈ I,

∫
Bi

(
fx∼i

)
dμ∼i(x∼i) = Bi(f). (104)

Our main tensorization principle for nonlinear entropy inequalities is the following.

Theorem 18. Fix a countable set I and two collections of functionals {Qi}i∈I , {Mi}i∈I

which disintegrate in the above sense. Let Φ : R → R be a concave function and suppose 
that, for any i ∈ I, every function fi : Xi → R+ satisfies the inequality

Entμi
[fi] ≤ Qi(fi) + Eμi

[fi]Φ
(
Mi(fi) −Qi(fi)

Eμi
[fi]

)
. (105)

Then, every function f : X → R+ satisfies
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Entμ[f ] ≤
∑
i∈I

Qi(f) + Eμ[f ]
∑
i∈I

Φ
(
Mi(f) −Qi(f)

Eμ[f ]

)
. (106)

Proof. Combining the subadditivity of entropy and the assumptions of the theorem 
(including the disintegration of {Qi}i∈I) we get that, for every f : X → R+,

Entμ[f ] ≤
∑
i∈I

∫
Entμi

[fx∼i
] dμ∼i(x∼i)

(105)
≤
∑
i∈I

∫ [
Qi(fx∼i

) + Eμi
[fx∼i

]Φ
(
Mi(fx∼i

) −Qi(fx∼i
)

Eμi
[fx∼i

]

)]
dμ∼i(x∼i)

=
∑
i∈I

Qi(f) + Eμ[f ]
∑
i∈I

∫
Φ
(
Mi(fx∼i

) −Qi(fx∼i
)

Eμi
[fx∼i

]

)
Eμi

[fx∼i
]

Eμ[f ] dμ∼i(x∼i).

(107)

Since 
∫
Eμi

[fx∼i
] dμ∼i(x∼i) =Eμ[f ], and Eμi

[fx∼i
] ≥ 0, it follows that Eμi

[fx∼i
]

Eμ[f ] dμ∼i(x∼i)
defines a probability measure on 

∏
j 
=i Xj . Hence, by Jensen’s inequality and disintegra-

tion, we get

Entμ[f ] ≤
∑
i∈I

Qi(f) + Eμ[f ]
∑
i∈I

Φ
(∫

Mi(fx∼i
) −Qi(fx∼i

)
Eμi

[fx∼i
] · Eμi

[fx∼i
]

Eμ[f ] dμ∼i(x∼i)
)

=
∑
i∈I

Qi(f) + Eμ[f ]
∑
i∈I

Φ
(
Mi(f) −Qi(f)

Eμ[f ]

)
.

(108)

This completes the proof of the theorem. �
Remark 19. While Theorem 18 is stated in a general form which contains the disintegrat-
ing additive errors {Qi}i∈I , in its main application (Theorem 3) which refines the result 
of [55], these are assumed to be vanishing. We chose to include the deficits in the gen-
eral formulation above as such terms often appear in modified logarithmic Sobolev-type 
inequalities, especially in discrete settings (see, for instance, [15,67,17,39]).

Proof of Theorem 3. The conclusion (25) directly follows from Theorem 18 with Qi(f) =
0 and Mi(f) = Eπn [Ei(f1/p, f1−1/p)] since these functionals disintegrate. �
Remark 20. A different refinement of the log-Sobolev inequality on the discrete cube in 
terms of the logarithmic Laplace transform of the underlying measure can be found in 
[3, Equation (12)]
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Part 2. Space forms: stochastic methods

8. Preliminaries

In this section we will introduce the necessary prerequisites from stochastic calculus 
on manifolds required to prove Theorem 4. We will be following the standard notation 
of [38,54].

8.1. The frame bundle

Let (M, g) be a complete n-dimensional Riemannian manifold. The orthonormal frame 
bundle O(M) of M is the set of all pairs of the form (x, u), where x ∈ M and u : Rn → TxM
is a Euclidean isometry. We shall denote by π : O(M) → M the natural projection given 
by π(x, u) = x. Any scalar-valued function f : M → R admits a natural lift f : O(M) → R

given by

∀ (x,u) ∈ O(M), f(x,u) = f(x). (109)

Abusing notation, we shall often identify the pair (x, u) ∈ O(M) with the isomorphism 
u.

A curve {ut}t∈[0,1] in O(M) is called horizontal if for every a ∈ Rn, the vector field 
{uta}t∈[0,1] is parallel along the curve {πut}t∈[0,1] in M. A tangent vector X ∈ TuO(M)
is called horizontal if it is the tangent vector of a horizontal curve passing from u. 
For any vector X ∈ TπuM there exists a unique horizontal vector X ∈ TuO(M) such 
that π∗X = X; we say that X is the horizontal lift of X at u. Let {e1, . . . , en} be the 
standard basis of Rn. The i-th fundamental horizontal vector field Hi evaluated at a point 
u ∈ O(M) is the horizontal lift of the vector uei ∈ TπuM. Thus, for any i ∈ {1, . . . , n}, 
the lift f of a function f : M → R satisfies

∀ u ∈ O(M), Hif(u) = ∇ueif(πu). (110)

A vector field on O(M) is called horizontal if it lies in the span of {H1, . . . , Hn}. We 
denote by 〈·, ·〉hor the natural inner product on the space of horizontal vector fields on 
O(M) given by

〈
n∑

i=1
ZiHi,

n∑
i=1

WiHi

〉
hor

=
n∑

i=1
ZiWi. (111)

Moreover, we shall denote by ∇horf = (H1f , . . .Hnf) ∈ Rn the horizontal gradient of 
a given function f : O(M) → R. The frame bundle O(M) is equipped with Bochner’s 
horizontal Laplacian
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ΔO(M)
def=

n∑
i=1

H2
i , (112)

and can be verified (see [38, Proposition 3.1.2]) that the lift f of any function f : M → R

satisfies

∀ u ∈ O(M), ΔO(M)f(u) = Δf(πu), (113)

where Δ is the Laplace–Beltrami operator of (M, g).
We record for future reference the following very useful expression for the action of 

the commutator of ΔO(M) with Hi on lifted functions.

Lemma 21. If f : (M, g) → R is a smooth function, then for any i ∈ {1, . . . , n}, its lift f
satisfies

∀ u ∈ O(M), ΔO(M)Hif(u) − HiΔO(M)f(u) = Ric(∇f,uei)(πu), (114)

where Ric(·, ·) is the Ricci tensor on M.

Proof. We shall follow the notation of [38, Section 5.5]. For i, k ∈ {1, . . . , n}, it follows 
from [38, Lemma 5.5.1] that the commutator [Hi, Hk] is a vertical vector field and thus 
[Hi, Hk]f = 0, i.e.

HkHif = HiHkf . (115)

Therefore, we have

H2
kHif = HkHiHkf = [Hk,Hi]Hkf + HiH2

kf . (116)

Substituting the expression of [38, Lemma 5.5.1] for [Hk, Hi], we get

[Hk,Hi]Hkf = −
∑
a,b

Ωab
kiVabHkf = −

∑
a,b

Ωab
ki [Vab,Hk]f , (117)

where in the last identity we used that Vabf = 0. Again, by [38, Lemma 5.5.1], if we 
denote by Ak�

ab the number 1
2 for (a, b) = (k, �) and −1

2 for (a, b) = (�, k), and zero 
otherwise, we obtain

−
∑
a,b

Ωab
ki [Vab,Hk]f = −

∑
a,b,�

Ωab
kiA

k�
abH�f = 1

2
∑
�

{
Ω�k

ki − Ωk�
ki

}
H�f =

∑
�

Ω�k
kiH�f , (118)

where the antisymmetry of Ω on the top indices follows from its definition in [38, p. 153]
as it is an o(d)-valued tensor. Combining (116), (117), (118) and summing over k, we 
deduce that
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ΔO(M)Hif(u) − HiΔO(M)f(u) =
∑
k,�

Ω�k
kiH�f(u) =

∑
k,�

Ω�k
ki∇ue�f(πu). (119)

Now, observe that by the definition of Ω in terms of the Riemann tensor R of M in [38, 
p. 149],

Ω�k
ki = g

(
R(uek,uei)uek,ue�

)
(120)

and the conclusion follows from the definition of Ricci curvature. �
8.2. Brownian motion on manifolds

Let Wt = (W 1
t , . . . , W

n
t ) be a standard Brownian motion on Rn and (M, g) be a 

complete n-dimensional Riemannian manifold. We consider the following stochastic dif-
ferential equation on the frame bundle O(M),

dΦt =
n∑

i=1
Hi(Φt) ◦ dW i

t , (121)

where the shorthand notation ◦ refers to the Stratonovitch integral. In Itô terms, the 
above SDE asserts that for every smooth g : O(M) → R, we have

dg(Φt) =
n∑

i=1
Hig(Φt) dW i

t + 1
2ΔO(M)g(Φt) dt. (122)

For any initial condition Φ0 = u ∈ O(M), this equation has a strong solution which 
does not blow up in finite time if the Ricci curvature of M is bounded from below 
by any constant κ ∈ R (see [38, Theorem 4.2.4] and [63] for a sufficient and almost 
necessary condition for stochastic completeness). We denote by Bt = πΦt, where t ≥ 0, 
the Brownian motion on M whose starting point is x = πu ∈ M. Applying (122), we 
deduce that for any smooth function f : M → R, the Brownian motion {Bt}t≥0 satisfies 
the SDE

df(Bt) =
n∑

i=1
Φi

tf(Bt) dW i
t + 1

2Δf(Bt) dt. (123)

8.3. The Föllmer process and Lehec’s formula

In this section we introduce an analogue of the classical Föllmer process [58,33,46] on 
Riemannian manifolds (see also [38, Section 5.4]). We then present a result of Lehec [45]
who used this process to give a stochastic proof of the dimensional logarithmic Sobolev 
inequality for manifolds with Ricci curvature bounded below (see [10,6] for more general 
statements proven via semigroup arguments).
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Let Wt = (W 1
t , . . . , W

n
t ) be a standard Brownian motion on Rn and (M, g) be a com-

plete n-dimensional Riemannian manifold whose Ricci curvature is bounded from below. 
We shall denote by dx the volume measure on M and by {Pt}t≥0 the heat semigroup on 
M. Recall that for a smooth function h : M → R, the action of the heat flow {Pt}t≥0 on 
g is characterized by the ordinary differential equation

∀ t > 0, x ∈ M,
∂Pth

∂t
(x) = 1

2ΔPth(x) (124)

with initial condition P0h = h on M. We recall that the heat semigroup and the Laplacian 
commute: ΔPth = PtΔh, and we write Pt∇2f(x) for the 2-tensor on TxM identified with 
the symmetric matrix (Pt∇2f(Φ0ei, Φ0ej)(x))ni,j=1. Note that Pt and ∇2 do not commute 
(cf. Theorem 24).

For a positive function f : M → R+ and T > 0, we consider the following system of 
stochastic differential equations with respect to (Ψt, Xt) ∈ O(M) × M

{
dΨt =

∑n
i=1 Hi(Ψt) ◦

(
dW i

t + Ψ−1
t ∇ logPT−tf(Xt) dt

)
Xt = πΨt

, (125)

where the notation ◦ again refers to the Stratonovitch integral. It is known (see [45, 
Theorem 7]) that if f is a smooth-enough positive function, then for any initial condition 
Ψ0 = u ∈ O(M), the system (125) has a strong solution on [0, T ]. In [45, Theorem 7], 
Lehec proved the manifold version of an important representation formula for relative 
entropy in terms of the Föllmer process Xt, first proven in their earlier work [44].

Theorem 22 (Lehec). Let (M, g) be a complete n-dimensional Riemannian manifold 
whose Ricci curvature is bounded from below and fix a smooth enough positive den-
sity function f : M → R+ and T > 0. If {Xt}t∈[0,T ] is a solution of (125) with initial 
condition Ψ0 = u and πu = x, then the relative entropy of the measure μ with density 

dμ
dPT δx

= f is

H(μ‖PT δx) = 1
2E

⎡⎣ T∫
0

∣∣∇ logPT−tf(Xt)
∣∣2 dt

⎤⎦ , (126)

where |v| def= gx(v, v) for x ∈ M and v ∈ TxM.

It is worth pointing out that, in view of the decay and regularity of the heat kernel 
on space forms (see, e.g., [21, Chapter 6] and [48,25,35]), it suffices to assume that the 
functions for which we wish to prove the logarithmic Sobolev inequalities of Theorem 4
are Lipschitz and bounded away from 0. Therefore, the regularity conditions required 
for the function f in Lehec’s theorem will always be tacitly assumed to hold.
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We record for future reference the following computations (see also [38, Equations 
(5.5.2) – (5.5.4)]) on the SDE satisfied by partial derivatives of the logarithm of the heat 
kernel.

Lemma 23. Let (M, g) be a complete n-dimensional Riemannian manifold and fix a 
smooth enough positive density function f : M → R+ and T > 0. Denote by Ft : M → R

the function given by

∀ x ∈ M, Ft(x) = logPT−tf(x) (127)

and by Ft the lift of Ft onto O(M). If {Xt}t∈[0,T ] is a solution of (125) and {Wt}t≥0 is 
a standard Brownian motion on Rn, then for every i ∈ {1, . . . , n} we have

dHiFt(Ψt) =
〈
∇horHiFt(Ψt), dWt

〉
+ 1

2Ric
(
∇Ft,Ψtei

)
(Xt) dt. (128)

Proof. Using Itô’s formula and (125), we get (omitting the dependence on Ψt on the 
right-hand side of (129))

dHiFt(Ψt) =
〈
∇horHiFt, dWt

〉
+
{
∂HiFt

∂t
+ 1

2ΔO(M)HiFt + 〈∇horHiFt,∇horFt〉
}

dt.

(129)
Observe that the function Ft satisfies the equation

∂Ft

∂t
= −1

2ΔO(M)Ft −
1
2
∣∣∇horFt

∣∣2, (130)

which, after applying Hi on both sides, gives

∂HiFt

∂t
= Hi

∂Ft

∂t
= −1

2HiΔO(M)Ft −
1
2Hi

∣∣∇horFt

∣∣2. (131)

Moreover, we have

Hi

∣∣∇horFt

∣∣2 = Hi〈∇horFt,∇horFt〉 = 2〈Hi∇horFt,∇horFt〉 = 2〈∇horHiFt,∇horFt〉,
(132)

where in the last identity we use that [Hi, Hk]h = 0 for any lifted function h on O(M)
[38, Lemma 5.5.1]. Substituting (131) and (132) in (129), we finally obtain

dHiFt(Ψt) =
〈
∇horHiFt(Ψt), dWt

〉
+ 1

2[ΔO(M),Hi]Ft(Ψt) dt (133)

and the desired identity follows immediately from Lemma 21. �
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8.4. The heat flow on space forms

The classical Bochner formula (see, e.g., [65]) implies that if (M, g) is a Riemannian 
manifold with constant Ricci curvature Ric = κ ∈ R, then

∀ t ≥ 0, ∇Ptf = e−κt/2Pt∇f (134)

for every smooth function f : M → R. In [65], Wang investigated commutation relations 
of this form for second order derivatives instead of the gradient ∇. We shall use the 
following result.

Theorem 24 (Wang). A Riemannian manifold (M, g) of dimension n has constant sec-
tional curvature κ ∈ R if and only if the Hessian tensor of every smooth function 
f : M → R satisfies

∀ r ≥ 0, ∇2Prf = e−nκrPr∇2f + 1 − e−nκr

n
PrΔf · g. (135)

9. Intrinsic dimensional logarithmic Sobolev inequality in space forms

Having explained the necessary background we can now present Theorem 4. We first 
recall that when dμ

dPT δx
= f , we have

H(μ‖PT δx) = PT (f log f)(x) − PT f(x) logPT f(x).

Theorem 25. Let (M, g) be an n-dimensional Riemannian manifold with constant sec-
tional curvature κ ∈ R \ {0} with the associated heat semigroup {Pt}t≥0. Fix T > 0, 
x ∈ M, a smooth positive function f : M → R with 

∫
M

f dPT δx = 1, and let μ be the 

probability measure with dμ
dPT δx

= f . Define the 2-tensor C(t) = enκt

nκ A + tB for t ∈ R, 
where A, B are 2-tensors given by⎧⎨⎩A = −e−nκT

(
PT∇2f(x) − 1

nPTΔf(x) · g
)

B =
(

(n−1)κ
2 − ΔPT f(x)

n

)
· g,

(136)

and let Eμ

(
∇ log f

)⊗2 def= E
[(
∇hor log f(ΨT )

)⊗2]. Then, we have the local intrinsic di-
mensional logarithmic Sobolev inequality

H(μ‖PT δx)

≤ 1
2

T∫
0

tr
[
eC(t)−C(T )

(
g + Eμ

(
∇ log f

)⊗2
T∫
t

e2C(s)−2C(T ) ds
)−1

Eμ

(
∇ log f

)⊗2
eC(t)−C(T )

]
dt,

(137)
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and the reverse local intrinsic dimensional logarithmic Sobolev inequality

H(μ‖PT δx)

≥ 1
2

T∫
0

tr
[
eC(t)−C(0)

(
g −

(
∇ logPT f(x)

)⊗2
t∫

0

e2C(s)−C(0) ds
)−1

×
(
∇ logPT f(x)

)⊗2
eC(t)−C(0)

]
dt.

(138)

The proof of Theorem 25 (see also the stronger Theorem 30) is modeled after the 
stochastic proof by Eldan, Lehec, and Shenfeld [30] of the intrinsic dimensional logarith-
mic Sobolev inequality in flat space (7) (and a weaker reverse inequality [30, Theorem 
3]). A basic ingredient of this approach is deriving a stochastic differential equation for 
the tensor whose trace is the term 

∣∣∇ logPT−tf(Xt)
∣∣2 in (126). This is the content of the 

next lemma for which we establish the following notation. Let {Bt}t≥0 be a Brownian 
motion on M with B0 = x. As before, we denote by Ft the function logPT−tf and by Ft

its horizontal lift on O(M). Moreover, we shall denote by Gt the function expFt = PT−tf

and by Gt = expFt its lift. Consider the random matrices Q(t), P(t) ∈ Mn(R) (the space 
of n × n square matrices over R) given by

Qij(t)
def= HiHjFt(Ψt) = HjHiFt(Ψt) = Qji(t),

P(t) def= Q(t)2.
(139)

We can now derive the aforementioned stochastic differential equation.

Lemma 26. Let (M, g) be a Riemannian manifold. In the terminology above, for every 
i, j ∈ {1, . . . , n}, there exists a martingale {Mij(t)}t∈[0,T ] such that for t ∈ [0, T ], we 
have

HiFt(Ψt) · HjFt(Ψt)

= Mij(t) + 1
2

t∫
0

Ric
(
∇Fs(Xs),HiFs(Ψs) · Ψsej + HjFs(Ψs) · Ψsei

)
ds

+
t∫

0

Pij(s) ds.

Proof. Observe that by the chain rule, we have (omitting the dependence on Ψt on the 
right-hand side below)

Qij(t) = HiHjFt = HiHj log Gt = HiHjGt − HiFt · HjFt (140)
Gt
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and by the definition and symmetry of the matrix Q(t),

Pij(t) =
n∑

k=1

Qik(t)Qkj(t) =
n∑

k=1

HkHiFt · HkHjFt =
〈
∇horHiFt,∇horHjFt

〉
. (141)

Combining Itô’s product rule with Lemma 23, we get that for i, j ∈ {1, . . . , n},

d
{
HiFt(Ψt) · HjFt(Ψt)

}
= HiFt(Ψt)dHjFt(Ψt) + HjFt(Ψt)dHiFt(Ψt) + dHjFt(Ψt) · dHiFt(Ψt)

=
{

1
2Ric

(
∇Ft,HiFt · Ψtej + HjFt · Ψtei

)
+
〈
∇horHiFt,∇horHjFt

〉}
dt

+
〈
HiFt∇horHjFt + HjFt∇horHiFt, dWt

〉
,

(142)

where in the right-hand side we again omitted the dependence on Ψt and Xt. Denoting 
the term in the last line by dMij(t), it is clear that {Mij(t)}t∈[0,T ] is a martingale and 
(142) becomes

HiFt(Ψt) · HjFt(Ψt)

= Mij(t) + 1
2

t∫
0

Ric
(
∇Fs(Xs),HiFs(Ψs) · Ψsej + HjFs(Ψs) · Ψsei

)
ds

+
t∫

0

Pij(s) ds,

where we also used (141). This is the desired identity. �
The stochastic differential equation of Lemma 26 will allow us to derive a differential 

equation for

∀ t ∈ (0, T ), vij(t)
def= E

[
HiFt(Ψt) · HjFt(Ψt)

]
, i, j ∈ {1, . . . , n}; (143)

note that with this notation, (126) reads H(μ‖PT δx) = 1
2
∫ T

0 tr
[
v(t)

]
dt. We will then 

turn the differential equation into a differential inequality from which Theorem 30 and 
Theorem 25 shall follow. To derive the differential equation for v(t) we start by defining

m(t) def= E[−Q(t)] and n(t) def= E[P(t)]. (144)

Assuming that the underlying manifold M is Einstein and taking expectations, we deduce 
the following differential equation for v(t).
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Lemma 27. Let (M, g) be an Einstein manifold with constant Ricci curvature Ric = ρ for 
some ρ ∈ R. For every i, j ∈ {1, . . . , n} and t ∈ (0, T ), we have

dvij(t)
dt = nij(t) + ρvij(t). (145)

Proof. Since M has constant Ricci curvature ρ, we have

Ric
(
∇Fs(Xs),HiFs(Ψs)·Ψsej

)
= ρHiFs(Ψs)·g(∇Fs(Xs),Ψsej) = ρHiFs(Ψs)·HjFs(Ψs).

(146)
Plugging this in the rightmost term of Lemma 26, we get that

HiFt(Ψt) · HjFt(Ψt) = Mij(t) + ρ

t∫
0

HiFs(Ψs) · HjFs(Ψs) ds +
t∫

0

Pij(s) ds. (147)

The result follows after taking expectation (since EMij(t) = Mij(0) = 0) and differenti-
ating. �

In order to turn (145) into a differential inequality we will use Jensen’s inequality 
n(t) � m(t)2 where we used P = Q2. To use the latter inequality we need to better 
understand the term m(t). On manifolds of constant curvature, m(t) takes the following 
simple form.

Lemma 28. Let (M, g) be an n-dimensional Riemannian manifold with constant sectional 
curvature κ ∈ R. For every i, j ∈ {1, . . . , n} and t ∈ (0, T ), we have

mij(t) = vij(t)− e−nκ(T−t)PT∇2f(Φ0ei,Φ0ej)(x)− 1 − e−nκ(T−t)

n
PTΔf(x) · δij . (148)

Proof. Taking expectations in (140), we obtain

mij(t) = E[−Qij(t)]
(140)= vij(t) − E

[
HiHjGt(Ψt)

Gt(Ψt)

]
. (149)

It follows from (125) and (121) that Ψt has law f(BT ) with respect to Φt for every 
t ∈ [0, T ] (see also the proof of [45, Theorem 7] for an argument based on Girsanov’s 
theorem). Therefore, by the tower property of conditional expectation, we have

E

[
HiHjGt(Ψt)

Gt(Ψt)

]
= E

[
HiHjGt(Φt)

Gt(Φt)
f(BT )

]
= E

[
HiHjGt(Φt)

Gt(Φt)
E
[
f(BT )

∣∣{Φr}r≤t

]]
= E

[
HiHjGt(Φt)

Gt(Φt)
PT−tf(Bt)

]
= E

[
HiHjGt(Φt)

]
.

(150)
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Recall that for any function h : M → R with horizontal lift h, we have

∀ u ∈ O(M), HiHjh(u) = ∇2h(uei,uej)(πu), (151)

see, e.g., [38, Equation (2.2.3)]. Combining (151) with Theorem 24, we deduce that

HiHjGt(Φt)
(151)= ∇2PT−tf(Φtei,Φtej)(Bt)

(135)= e−nκ(T−t)PT−t∇2f(Φtei,Φtej)(Bt) + 1 − e−nκ(T−t)

n
PT−tΔf(Bt) · g(Φtei,Φtej)

= e−nκ(T−t)PT−t∇2f(Φtei,Φtej)(Bt) + 1 − e−nκ(T−t)

n
PT−tΔf(Bt) · δij ,

(152)

where in the last equality we used that {Φte1, . . . , Φten} is an orthonormal basis of TBt
M. 

Taking expectations on both sides, we get

E
[
HiHjGt(Φt)

]
= e−nκ(T−t)E

[
PT−t∇2f(Φtei,Φtej)(Bt)

]
+ 1 − e−nκ(T−t)

n
E
[
PT−tΔf(Bt)

]
· δij .

(153)

By the definition [65, Equation (1.2)] of the action of {Ps}s≥0 on tensors, we have

E
[
PT−t∇2f(Φtei,Φtej)(Bt)

]
= E

[
∇2f(ΦT ei,ΦT ej)(BT )

]
= PT∇2f(Φ0ei,Φ0ej)(x),

where the last identity follows from the definition of stochastic parallel transport given 
by {Φs ◦ Φ−1

0 }s≥0 (see [38, Section 2.3]). Similarly, we have

E
[
PT−tΔf(Bt)

]
= E

[
Δf(BT )

]
= PTΔf(x) (154)

and combining everything we deduce that

E
[
HiHjGt(Φt)

]
= e−nκ(T−t)PT∇2f(Φ0ei,Φ0ej)(x)+1 − e−nκ(T−t)

n
PTΔf(x)·δij . (155)

Plugging (155) and (150) in (149) completes the proof. �
We are now ready to derive the differential inequality for v(t). For simplicity, we shall 

denote by cT
def= PTΔf(x) and by JT the symmetric matrix with

(JT )ij
def= PT∇2f(Φ0ei,Φ0ej)(x) − 1

n
PTΔf(x) · δij , (156)

which satisfies trJT = 0. Combining all of the above, we get the following matrix in-
equality:
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Proposition 29. Let (M, g) be an n-dimensional Riemannian manifold with constant sec-
tional curvature κ ∈ R. For every t ∈ (0, T ), we have

dv(t)
dt � v(t)2 −

(
e−nκ(T−t)JT + cT

n · Idn
)
v(t) − v(t)

(
e−nκ(T−t)JT + cT

n · Idn
)

+
(
e−nκ(T−t)JT + cT

n · Idn
)2

+ (n− 1)κv(t),
(157)

so in particular,

dv(t)
dt � v(t)2 +

(( (n−1)κ
2 − cT

n

)
· Idn − e−nκ(T−t)JT

)
v(t)

+ v(t)
(( (n−1)κ

2 − cT
n

)
· Idn − e−nκ(T−t)JT

)
,

(158)

where � is the inequalities in the positive semidefinite ordering.

Proof. Combining the matrix Jensen inequality

n(t) = E
[
Q(t)2

]
� E

[
−Q(t)

]2 = m(t)2 (159)

with (145), (148) and expanding, we get (157)

dv(t)
dt � v(t)2 −

(
e−nκ(T−t)JT + cT

n · Idn
)
v(t) − v(t)

(
e−nκ(T−t)JT + cT

n · Idn
)

+
(
e−nκ(T−t)JT + cT

n · Idn
)2

+ (n− 1)κv(t).
(160)

The inequality (158) follows since the squared matrix is positive semidefinite. �
Proposition 29 allows us to deduce the following local intrinsic dimensional logarithmic 

Sobolev inequalities which are, however, non-explicit.

Theorem 30. Let (M, g) be an n-dimensional Riemannian manifold with constant sec-
tional curvature κ ∈ R. Fix T > 0, x ∈ M, a smooth positive function f : M → R with ∫
M

f dPT δx = 1, and let μ be the probability measure with dμ
dPT δx

= f . Suppose there is 
a family of matrices U(t) ∈ Mn(R) for t ∈ [0, T ] which solves the equation

dU(t)
dt = U(t)2 −

(
e−nκ(T−t)JT + cT

n · Idn
)
U(t) − U(t)

(
e−nκ(T−t)JT + cT

n · Idn
)

+
(
e−nκ(T−t)JT + cT

n · Idn
)2

+ (n− 1)κU(t),
(161)
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with either initial condition U(0) := v(0) or U(T ) := v(T ). Then, we have the local 
intrinsic dimensional logarithmic Sobolev inequality

H(μ‖PT δx) ≤
1
2

T∫
0

tr
[
U(t)

]
dt, U(T ) = E

(
∇hor log f(ΨT )

)⊗2
, (162)

and the reverse local intrinsic dimensional logarithmic Sobolev inequality

H(μ‖PT δx) ≥ 1
2

T∫
0

tr
[
U(t)

]
dt, U(0) =

(
∇hor logPT f(x)

)⊗2
. (163)

Proof. Lehec’s formula (126) implies

H(μ‖PT δx)
(126)= 1

2E

⎡⎣ T∫
0

∣∣∇Ft(Xt)
∣∣2 dt

⎤⎦ = 1
2

n∑
i=1

T∫
0

E
[
HiFt(Ψt)2

]
dt = 1

2

T∫
0

tr
[
v(t)

]
dt.

(164)
For the reverse local intrinsic dimensional logarithmic Sobolev inequality, we note that 
U(0) = v(0) so the result follows by (157) and standard comparison principles for ma-
trix Ricatti equations, see [40]. For the local intrinsic dimensional logarithmic Sobolev 
inequality, we have U(T ) = v(T ) and the conclusion follows by reversing time. �

Theorem 30 provides sharp results which are, however, not explicit since the solutions 
of (161) are complicated. They are expressed in terms of special functions, except in the 
flat space case where they simplify considerably– see Section 9.1. To avoid the compli-
cation of Theorem 30 we will use (158), rather than the stronger inequality (157), which 
will lead to explicit bounds, namely Theorem 25. To this end, we shall need the following 
technical lemma on matrix Bernoulli differential inequalities.

Lemma 31. Fix T > ε > 0, n ∈ N, γ ∈ R \ {0} and let A, B ∈ Mn(R) be symmetric 

matrices with AB = BA. Consider C(t) def= eγt

γ A + tB, where t ∈ R. For any positive 
definite matrix Vε ∈ Mn(R), if a continuous function V : [ε, T ] → Mn(R) for which 
every V (t) is a positive semi-definite matrix satisfies the ordinary differential inequality

∀ t ∈ (ε, T ), dV (t)
dt � V (t)2 +

(
eγtA + B

)
V (t) + V (t)

(
eγtA + B

)
(165)

with boundary condition V (ε) = Vε, then it also satisfies the matrix inequalities

∀ t ∈ [ε, T ], V (t) � eC(t)−C(T )
(
Idn + V (T )

T∫
t

e2C(s)−2C(T ) ds
)−1

V (T )eC(t)−C(T ),

(166)
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and

∀ t ∈ [ε, T ], V (t) � eC(t)−C(ε)
(
Idn − V (ε)

t∫
ε

e2C(s)−2C(ε) ds
)−1

V (ε)eC(t)−C(ε).

(167)
Moreover, the right-hand side of (167) is positive definite for every t ∈ (ε, T ).

Proof. Since A and B commute, we have

d
dte

C(t) =
(
eγtA + B

)
eC(t) = eC(t)(eγtA + B

)
. (168)

As Vε is positive definite, the same holds for V (t) for t near ε so let tmax ∈ [ε, T ] be the 
supremum over t ∈ [ε, T ] where V (t) is positive definite. For t ∈ (ε, tmax), multiplying 
(165) by V (t)−1 on both sides, we deduce that

dV (t)−1

dt � −Idn − V (t)−1C ′(t) − C ′(t)V (t)−1, (169)

where C ′(t) def= dC(t)
dt . Therefore, we have

d
dt
[
eC(t)V (t)−1eC(t)] (168)= eC(t)(C ′(t)V (t)−1+dV (t)−1

dt +V (t)−1C ′(t)
)
eC(t)

(169)
� −e2C(t),

(170)
where in the last inequality we used that C(t) is symmetric. Integrating from ε to t, we 
get

eC(t)V (t)−1eC(t) − eC(ε)V (ε)−1eC(ε) � −
t∫

ε

e2C(s) ds (171)

which can be rearranged to give, for every t ∈ [ε, tmax),

V (t)−1 � e−C(t)
(
eC(ε)V (ε)−1eC(ε) −

t∫
ε

e2C(s) ds
)
e−C(t). (172)

Since the right-hand side of (172) is finite for every t ∈ [ε, T ], we can take the limit 
t ↑ tmax to conclude that V (tmax) is positive definite, and hence tmax = T . Since the 
function A �→ A−1 is operator decreasing on positive definite matrices, this proves (167)
after some simple algebraic manipulations. Moreover, as a consequence of (172), the 
right-hand side of (167) is indeed positive definite. Similarly, integrating (170) from t to 
T and rearranging gives
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V (t)−1 � e−C(t)
(
eC(T )V (T )−1eC(T ) +

T∫
t

e2C(s) ds
)
e−C(t). (173)

However, since V (t)−1 is positive definite for every t ∈ [ε, T ] this is equivalent to

V (t) � eC(t)−C(T )
(
Idn + V (T )

T∫
t

e2C(s)−2C(T ) ds
)−1

V (T )eC(t)−C(T ), (174)

which concludes the proof of (166). �
Proof of Theorem 25. Fix T > 0, ε > 0, and x ∈ M. Let f : M → R be a smooth 
positive function with 

∫
M f dPT δx = 1 and let μ be the probability measure on M with 

dμ
dPT δx

= f . Without loss of generality, we can perturb f and assume that

vε
def= E

[(
∇hor logPT−εf(Ψε)

)⊗2] (175)

is a positive definite matrix. Following the terminology above, Lehec’s formula (126)
implies

H(μ‖PT δx)
(126)= 1

2E

⎡⎣ T∫
0

∣∣∇Ft(Xt)
∣∣2 dt

⎤⎦ = 1
2

n∑
i=1

T∫
0

E
[
HiFt(Ψt)2

]
dt = 1

2

T∫
0

tr
[
v(t)

]
dt.

(176)
Since v(ε) = vε is a positive definite matrix, Proposition 29 and Lemma 31 give

∀ t ∈ [ε, T ], v(t) � eC(t)−C(T )
(
Idn + vT

T∫
t

e2C(s)−2C(T ) ds
)−1

vT e
C(t)−C(T ) (177)

where C(t) = eγt

γ A + tB, for the matrices

⎧⎪⎪⎨⎪⎪⎩
A = −e−nκTJT

B =
( (n−1)κ

2 − cT
n

)
· Idn.

γ = nκ

(178)

By the perturbation above, we have thus established the validity of (177) for an ar-
bitrary smooth positive density f and for any ε > 0. Since vT = Eμ

(
∇ log f

)⊗2, the 
logarithmic Sobolev inequality of Theorem 25 follows by combining (176) and (177)
with ε → 0+. The reverse logarithmic Sobolev inequality follows by using (167) since 
v0 =

(
∇ logPT f(x)

)⊗2. �
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9.1. Intrinsic dimensional local logarithmic Sobolev inequalities in flat spaces

Our next goal is to prove the intrinsic dimensional local logarithmic Sobolev inequal-
ities in flat spaces, i.e., equations (29) and (30). In contrast to the proof of Theorem 25, 
which uses the weaker inequality (158), here we will use the stronger inequality (157)
which in flat space has an explicit clear solution.

Theorem 32. Fix T > 0 and x ∈ Rn. Let f : Rn → R be a smooth positive function with ∫
Rn f dPT δx = 1 and let μ be the probability measure on Rn with dμ

dPT δx
= f . Then, we 

have the local intrinsic dimensional logarithmic Sobolev inequality

H(μ‖PT δx) ≤
T

2 ΔPT f(x) + 1
2PT f(x) log det

(
Idn − T

PT (f∇2 log f(x))
PT f(x)

)
, (179)

and the reverse local intrinsic dimensional logarithmic Sobolev inequality

H(μ‖PT δx) ≥
T

2 ΔPT f(x) − 1
2PT f(x) log det

(
Idn + T∇2 logPT f(x)

)
. (180)

Proof. The inequality (179) follows by setting dμ
dλn

def= fPT δx
PT f(x) in (7). To prove (180), 

we may assume without loss of generality assume that −∇2 logPT f(x) is invertible. Set 
U(0) def= v(0) = (∇ logPT f(x))⊗2 and use the normalization assumption 

∫
Rn f dPT δx =

PT f(x) = 1 to conclude that

U(0) −∇2PT f(x) = (∇ logPT f(x))⊗2 − ∇2PT f(x)
PT f(x) = −∇2 logPT f(x) (181)

is invertible. In flat space, using κ = 0 and JT + cT
n · Idn = PT∇2f(x), equation (161)

becomes

dU(t)
dt = U(t)2 − PT∇2f(x)U(t) − U(t)PT∇2f(x) + (PT∇2f(x))2. (182)

The solution of (182) can be verified to be

∀ t ∈ (0, T ), U(t) =
(
[U(0) − PT∇2f(x)]−1 − t

)−1 + PT∇2f(x), (183)

where we used Hamilton’s matrix inequality (32) (see also Theorem 33 below) to justify 
the invertibility of [U(0) − PT∇2f(x)]−1 − t. Applying (163) of Theorem 30 yields

H(μ‖PT δx) ≥ −1
2

T∫
0

tr
[(

(∇2 logPT f(x))−1 + t
)−1]dt + T

2 PTΔf(x), (184)

where again we used normalization assumption PT f(x) = 1. To rewrite the right-hand 
side of (184) let {λi}ni=1 stand for the eigenvalues of ∇2 logPT f(x) so
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T∫
0

tr
[(

(∇2 logPT f(x))−1 + t
)−1]dt =

n∑
i=1

T∫
0

(λ−1
i + t)−1 dt =

n∑
i=1

log
(
λ−1
i + T

λ−1
i

)
= log det

(
Idn + T∇2 logPT f(x)

)
.

(185)

It follows that (184) reads

H(μ‖PT δx) ≥ T

2 ΔPT f(x) − 1
2 log det

(
Idn + T∇2 logPT f(x)

)
, (186)

so using again PT f(x) = 1, (186) is equivalent to

H(μ‖PT δx) ≥
T

2 ΔPT f(x) − 1
2PT f(x) log det

(
Idn + T∇2 logPT f(x)

) �
Semigroup vs. stochastic interpolation. The idea of writing the relative entropy as an 
integral of a gradient term goes back to the beginning of the Bakry–Émery theory of 
functional inequalities (see [8,4] or [9, Section 5.5]). Such gradient terms often satisfy 
differential inequalities à la Proposition 29 which allow for the use of comparison princi-
ples in the spirit of Lemma 31. For instance, Lehec in [45] considered the scalar-valued 
function α : [0, T ] → R given by

∀ t ∈ [0, T ], α(t) = E
[
|∇Ft(Xt)|2

]
(187)

and showed that

∀ t ∈ (0, T ), α′(t) ≥ 1
n

(
α(t) − cT

)2 + (n− 1)κα(t) ≥ α(t)
n

(
α(t) + n(n− 1)κ− 2cT

)
.

(188)
Applying a standard comparison principle to the latter inequality, he then derived a 
dimensional upper bound for the relative entropy, see [45, Equation (25)]. It is worth 
pointing out that (188) is also a consequence of (157) after taking traces and using the 

elementary inequality trC2 ≥ (trC)2
n which holds for all n × n positive semidefinite ma-

trices C. A close inspection of the arguments of this section reveals that the logarithmic 
Sobolev inequality of Theorem 25 is a strengthening of Lehec’s result for manifolds of 
constant sectional curvature.

By reasoning similar to (150), for every i ∈ {1, . . . , n}, we have

E
[
(HiFt(Ψt))2

]
= E

[ (HiGt(Ψt))2

Gt(Ψt)2
]

= E
[ (HiGt(Φt))2

(Gt(Φt))2
f(BT )

]
= E

[ (HiGt(Φt))2

Gt(Φt)

]
(189)

and thus

∀ t ∈ (0, T ), α(t) = Pt

[
|∇PT−tf |2

]
(x). (190)
PT−tf
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This semigroup representation of α(t) was used by Bakry, Bolley and Gentil in [6, p. 405]
to give an independent proof of inequality (188) for semigroups satisfying the curvature 
dimension condition CD(ρ, n), where ρ = (n − 1)κ (observe that α(t) is denoted by Λ′(t)
in their paper). Their main result [6, Theorem 2.2] improves upon [45, Equation (25)]
as they did not disregard the nonnegative constant in the second inequality of (188)
and thus get to apply a tighter comparison principle. One could implement a similar 
strategy in the matricial setting treated here, by replacing the matrix inequality (158)
with the stronger inequality (157) and solving the corresponding ordinary differential 
equation. However, solutions of this equation appear to be non-explicit, so we chose the 
comparatively simpler presentation of Theorem 25 for clarity of the exposition. If one 
were to implement this reasoning, it is clear from the proofs of this section that the 
resulting inequality would improve upon [6, Theorem 2.2].

10. Nonpositively curved space forms

The goal of this section is to prove Theorem 5 (section 10.1) and Theorem 6 (sec-
tion 10.2). We conclude with section 10.3 which discusses some of the ideas behind our 
proofs.

10.1. Matrix inequalities

The main result of this section is the following Hamilton-type matrix inequality, 
namely, Theorem 5.

Theorem 33. Let (M, g) be an n-dimensional Riemannian manifold with constant non-
positive sectional curvature κ ≤ 0. Then, for every T ≥ 0,

if, either κ = 0, or κ < 0 and 4
n2κ

ΔPT f(x)
PT f(x) = 1,

then −∇2 logPT f(x) � 1
T

Idn ∀x ∈ M.

(191)

Further,

if κ < 0 and 4
n2κ

ΔPT f(x)
PT f(x) ) > 1,

then −∇2 logPT f(x)

� nκ

2

{√
4

n2κ

ΔPT f(x)
PT f(x) − 1 cot

(
nκT

2

√
4

n2κ

ΔPT f(x)
PT f(x) − 1

)
− 1
}

Idn.

(192)

Remark 34. To put Theorem 5 in a larger context, and also to shed light on the conditions 
regarding 4

2
ΔPT f(x) , let us recall the improved Li-Yau inequality of Bakry, Bolley, and 
n κ PT f(x)
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Gentil [6, Corollaries 2.3,2.4]: Let (M, g) be an n-dimensional Riemannian manifold with 
lower bound (n −1)κ on its Ricci curvature. Let {Pt}t≥0 be the associated heat semigroup 
and let f : M → R be a positive function. Then, for every x ∈ M and every T ≥ 0,

4
n(n− 1)κ

ΔPT f(x)
PT f(x) < 1 + 4π2

(n− 1)2κ2T 2 (193)

and

− Δ logPT f(x) < (194)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n(n−1)κ
2

{√
4

n(n−1)κ
ΔPT f(x)
PT f(x) − 1 coth

(
(n−1)κT

2

√
4

n(n−1)κ
ΔPT f(x)
PT f(x) − 1

)
− 1
}

if 4
n(n−1)κ

ΔPT f(x)
PT f(x) ≤ 1

n(n−1)κ
2

{√
4

n(n−1)κ
ΔPT f(x)
PT f(x) − 1 cot

(
(n−1)κT

2

√
4

n(n−1)κ
ΔPT f(x)
PT f(x) − 1

)
− 1
}

if 1 ≤ 4
n(n−1)κ

ΔPT f(x)
PT f(x) < 1 + 4π2

(n−1)2κ2T 2 .

(195)

Hence, in the regime 1 + 1
n−1 ≤ 4

n(n−1)κ
ΔPT f(x)
PT f(x) < 1 + 4π2

(n−1)2κ2T 2 we are able to obtain 
in hyperbolic spaces a matrix version of the improved Li-Yau inequality.

Proof of Theorem 33. We start by showing that

m(t) def= E[−∇2 logPT−tf(Xt)] (196)

satisfies the following differential inequality.

Lemma 35. When κ ≤ 0,

∀ t ∈ [0, T ], dm(t)
dt � m(t)2 + nκm(t) + κΔPT f(x) · g. (197)

Proof. Define

u(t) def= e−nκ(T−t)JT + cT
n

· g (198)

where (JT )ij
def= PT∇2f(Φ0ei, Φ0ej)(x) − 1

nPTΔf(x) · δij and cT
def= PTΔf(x). By (148),

m(t) = v(t) − u(t), (199)

so, by (157),

dm(t)
dt = dv(t)

dt − nκe−nκ(T−t)JT = dv(t)
dt − nκu(t) + κcT · g (200)

� v(t)2 − u(t)v(t) − v(t)u(t) + u(t)2 + (n− 1)κv(t) − nκu(t) + κcT · g (201)
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= m(t)2 + nκm(t) − κv(t) + κcT · g (202)

� m(t)2 + nκm(t) + κcT · g (203)

where the last inequality uses that κ ≤ 0 and that v(t) � 0 (since it is a nonnegative 
sum of rank-one matrices). �

The following technical lemma on matrix differential inequalities will allow us to 
further control the matrix m(t).

Lemma 36. Fix T > 0 and let W (t) be a family of matrices for t ∈ [0, T ] satisfying the 
differential inequality

∀ t ∈ [0, T ], dW (t)
dt � W (t)2 + αW (t) + β · Idn (204)

for some constant α, β ∈ R. Fix θ ∈ Sn−1 and let φ(t) def= 〈W (t)θ, θ〉 for t ∈ [0, T ]. Then, 
fixing φ(0) = c we have

∀ t ∈ [0, T ], φ(t) ≥ ξλ(t) − α

2 (205)

where

ξλ(t) def=

⎧⎪⎪⎨⎪⎪⎩
√
λ tan(

√
λt + c1) if λ > 0

− 1
t+c2

if λ = 0
−
√
−λ tanh(

√
−λt + c3) if λ < 0,

(206)

with

λ
def= β − α2

4 , (207)

and

c1
def= arctan

(
1√
λ

(
c + α

2

))
, c2

def= − 2
2c + α

, c3
def= arctanh

(
− 1√

−λ

(
c + α

2

))
.

(208)

Proof. Since W (t) satisfies dW (t)
dt � W (t)2 +αW (t) +β · Idn for all t ∈ [0, T ], we get that

∀ t ∈ [0, T ], dφ(t)
dt =

〈
dW (t)

dt θ, θ

〉
≥ 〈W (t)2θ, θ〉 + α〈W (t)θ, θ〉 + β|θ|2

≥ 〈W (t)θ, θ〉2 + α〈W (t)θ, θ〉 + β|θ|2 = φ(t)2 + αφ(t) + β.

(209)

Hence, φ satisfies the ordinary differential inequality
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∀ t ∈ [0, T ], dφ(t)
dt ≥ φ(t)2 + αφ(t) + β. (210)

The solution of the ordinary differential equation

∀ t ∈ [0, T ], dσ(t)
dt = σ(t)2 + ασ(t) + β, σ(0) = c (211)

is

σ(t) = ξλ(t) − α

2

where

ξλ(t) def=

⎧⎪⎪⎨⎪⎪⎩
√
λ tan(

√
λt + c1) if λ > 0

− 1
t+c2

if λ = 0
−
√
−λ tanh(

√
−λt + c3) if λ < 0,

(212)

with

λ
def= β − α2

4 , (213)

and

c1
def= arctan

(
1√
λ

(
c + α

2

))
, c2

def= − 2
2c + α

, c3
def= arctanh

(
− 1√

−λ

(
c + α

2

))
.

(214)

Applying standard comparison theorems [49] we get that

∀ t ∈ [0, T ], φ(t) ≥ ξλ(t) − α

2 �
We are now ready for the proof of Theorem 33. Recall that Lemma 36 showed that 

the matrix m(t) satisfies (204) with α = nκ and β = κΔPT f(x). In the following we 

let φ(t) def= 〈m(t)θ, θ〉 for θ ∈ Sn−1. Let us distinguish between the flat and negatively 
curved cases.

When κ = 0 we need to show

φ(0) ≤ 1
T

(215)

since we can choose θ to be any normalized eigenvector of −∇2 logPT f(x). If φ(0) ≤ 0
then (215) is trivial so we may assume from now on that φ(0) > 0. As κ = 0 we have 
α = β = 0 so λ = β − α2

= 0. Hence, applying (205) we see that
4
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∀ t ∈ [0, T ], φ(t) ≥ φ(0)
1 − φ(0)t . (216)

In particular, (216) implies that the denominator 1 −φ(0)t never vanishes since, otherwise, 
the right-hand side of (216) is +∞ (as φ(0) > 0) while the left-hand side is finite (as 
φ(t) < +∞). The non-vanishing of 1 − φ(0)t, together with φ(0) > 0, implies that

0 < 1 − tφ(0) ⇐⇒ φ(0) ≤ 1
t
. (217)

Taking t = T establishes (215).
When κ < 0 we have α = κcT and β = nκ so λ = κΔPT f(x) − n2κ2

4 . If 4
n2kΔPT f(x) =

1, so that λ = 0, then the argument proceeds as in the case κ = 0. When 4
n2kΔPT f(x) <

1, so that λ > 0, applying (205) yields

∀ t ∈ [0, T ], φ(t) ≥
√
λ tan(

√
λt + c) − nκ

2 (218)

where

c
def= arctan

(
1√
λ

(
φ(0) + nκ

2

))
. (219)

In particular, as φ(t) is finite, it follows that tan(
√
λt + c) < +∞ for every t ∈ [0, T ]. At 

t = 0, c ∈
(
−π

2 ,
π
2
)

by (219) and the range of arctan. It follows that, for every t ∈ [0, T ],

π

2 >
√
λt + c =

√
λt + arctan

(
1√
λ

(
φ(0) + nκ

2

))
. (220)

Plugging in t = T into (220) and rearranging yields

φ(0) <
√
λ tan

(π
2 −

√
λT
)
− nκ

2 =
√
λ cot

(√
λT
)
− nκ

2 . (221)

Letting θ to be any normalized eigenvector of −∇2 logPT f(x) and recalling the definition 
of λ yields (192) upon rearrangement. �
Remark 37. We cannot address in Theorem 33 the regime 4

n2κ
ΔPT f(x)
PT f(x) < 1 since the tanh

function, which will replace in the proof the tan function, is well-defined everywhere. It 
remains to be seen whether this is an artifact of the proof or an inherent obstacle.

Remark 38. The proof of Theorem 33 was obtained by using the inequality (205) subject 
to fixing the value of φ(0). Analogously, we can fix the value of φ(T ) and use (205) (by 
reversing the time) to get different matrix inequalities. Indeed, our proof of Theorem 40
below makes use of the freedom to choose the initial (terminal) condition.
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10.2. Intrinsic dimensional local logarithmic Sobolev inequalities in hyperbolic spaces

In this section we prove local intrinsic dimensional logarithmic Sobolev inequalities for 
the hyperbolic space, namely, Theorem 6. The inequalities provided by Theorem 40 below 
will be obtained as a consequence of the differential inequality of Lemma 35 together 
with the following simple observation:

Lemma 39. Let f : M → R be such that 
∫
M

f dPT δx = 1 and let μ be the probability 
measure with dμ

dPT δx
= f . Then,

PT (f log f)(x) − PT f(x) logPT f(x) = H(μ|PT δx) = −PTΔf(x)
2 + 1

2

T∫
0

tr[m(t)] dt.

(222)

Proof. By Theorem 22, (143), and (199),

H(μ|PT δx) = 1
2

T∫
0

tr[v(t)] dt = 1
2

T∫
0

tr[m(t)] dt− 1
2

T∫
0

tr[u(t)] dt (223)

where we recall (198),

u(t) def= e−nκ(T−t)JT + PTΔf(x)
n

· g (224)

with (JT )ij
def= PT∇2f(Φ0ei, Φ0ej)(x) − 1

nPTΔf(x) · δij . The proof is complete since 
tr[JT ] = 0. �
Theorem 40. Let (M, g) be the n-dimensional hyperbolic space with sectional curvature 
κ < 0 with the associated heat semigroup {Pt}t≥0. Fix T > 0, x ∈ M, a smooth positive 
function f : M → R with 

∫
M

f dPT δx = 1, and let μ be the probability measure with 
dμ

dPT δx
= f . Then, with

λ
def= n2κ2

4

{
4

n2κ
ΔPT f(x) − 1

}
, αi

def=

⎧⎪⎪⎨⎪⎪⎩
arctan

(
1√
λ

(
σi + nκ

2
))

if λ < 0,

− 2
2σi+nκ if λ = 0,

arctanh
(
− 1√

−λ

(
σi + nκ

2
))

if λ > 0,
(225)

we have the local intrinsic dimensional logarithmic Sobolev inequality
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PT (f log f)(x) − PT f(x) logPT f(x)

≤ −PTΔf(x)
2 − n2κT

2 − 1
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑n
i=1 log

(
cos(αi)

cos(
√
λT+αi)

)
if λ > 0∑n

i=1 log
(

αi

T+αi

)
if λ = 0∑n

i=1 log
(

cosh(αi)
cosh(

√
−λT+αi)

)
if λ < 0

(226)

where {σi}ni=1 are the eigenvalues of Eμ[−∇2 log f ], and the reverse local intrinsic di-
mensional logarithmic Sobolev inequality

PT (f log f)(x) − PT f(x) logPT f(x)

≥ −PTΔf(x)
2 − n2κT

2 + 1
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑n
i=1 log

(
cos(αi)

cos(
√
λT+αi)

)
if λ > 0∑n

i=1 log
(

αi

T+αi

)
if λ = 0∑n

i=1 log
(

cosh(αi)
cosh(

√
−λT+αi)

)
if λ < 0

(227)

where {σi}ni=1 are the eigenvalues of −∇2 logPT f(x).

Proof. Given any basis {θi}ni=1 of Rn we have

∀ t ∈ [0, T ], tr[m(t)] =
n∑

i=1
φi(t) (228)

where φi(t) 
def= 〈m(t)θi, θi〉 for i = 1, . . . , n. It follows from Lemma 35 and Lemma 36

that

∀ t ∈ [0, T ], tr[m(t)] ≥
(

n∑
i=1

ξi,λ(t)
)

− n2κ

2 (229)

where

ξi,λ(t) def=

⎧⎪⎪⎨⎪⎪⎩
√
λ tan(

√
λt + ci,1) if λ > 0

− 1
t+ci,2

if λ = 0
−
√
−λ tanh(

√
−λt + ci,3) if λ < 0,

(230)

with

λ
def= κΔPT f(x) − n2κ2

4 , (231)

and
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ci,1
def= arctan

(
1√
λ

(
φi(0) + nκ

2

))
, ci,2

def= − 2
2φi(0) + nκ

,

ci,3
def= arctanh

(
− 1√

−λ

(
φi(0) + nκ

2

))
.

(232)

It follows from Lemma 39 that

PT (f log f)(x) − PT f(x) logPT f(x) ≥ −PTΔf(x)
2 − n2κT

2 + 1
2

n∑
i=1

T∫
0

ξi,λ(t) dt. (233)

Hence, taking {θi}ni=1 to be the eigenvectors of m(0) = −∇2 logPT f(x), and integrating 
{ξi,λ(t)}, yields (227).

To prove (226) we define φ̃i(t) := φi(T − t) which satisfies

∀ t ∈ [0, T ], φ̃(t) ≤ ξi,λ(T − t) − α

2 (234)

where now

ci,1
def= arctan

(
1√
λ

(
φi(T ) + nκ

2

))
, ci,2

def= − 2
2φi(T ) + nκ

,

ci,3
def= arctanh

(
− 1√

−λ

(
φi(T ) + nκ

2

))
.

(235)

The proof now proceeds as in the proof of (227). �
10.3. Discussion

We conclude this section by discussing the roles of matrix differential inequalities in 
our proofs.

Matrix differential inequalities. The master matrix differential inequality (157), which is 
at the core of all of our proofs, can be expressed either in terms of v(t),

dv(t)
dt � v(t)2 − u(t)v(t) − v(t)u(t) + u(t)2 + (n− 1)κv(t), (236)

or in terms of m(t),

dm(t)
dt � m(t)2 + nκm(t) − κv(t) + κcT · g. (237)

The inequalities (236) and (237) are equivalent and contain the same information. In 
particular, in flat space forms, where κ = 0, both inequalities are of the form dW (t)

dt �
W (t)2. In curved spaces, there are two different ways to proceed from (236) and (237):
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(1) Omit the term u(t)2 from (236) to get

v(t) � U(t) (238)

where

dU(t)
dt = U(t)2 − u(t)U(t) − U(t)u(t) + (n− 1)κU(t). (239)

The point of omitting u2(t) is that equation (239) can be solved explicitly, in contrast 
to the equation resulting if we keep the u2(t) term.1

(2) Omit the term −κv(t) from (237), which can be done only in negatively curved space 
forms to get

m(t) � U(t) (240)

where

dU(t)
dt = U(t)2 + nκU(t) + κcT · g. (241)

Again, the point of omitting −κv(t) is so that (241) can be solved explicitly. Note 
that in flat spaces, there is no loss in omitting −κv(t).

Matrix vs. trace differential inequalities. The proofs of Theorem 40 and Theorem 25
proceed along similar but different lines. Both proofs start by establishing an inequality 
of the form

dW (t)
dt � F(W (t)) (242)

for some quadratic functional F . The goal is to bound tr[W (t)] which can be achieved 
by two means. Letting {U(t)} be the solution to

dU(t)
dt = F(U(t)) (243)

we could:

(1) Argue that W (t) � U(t) and then take the trace on both sides to get

tr[W (t)] ≥ tr[U(t)]. (244)

1 If we take the trace in (236) then the equation with the u(t)2 term can be solved explicitly—see the 
end of section 9. However, if we do so we would get the ambient dimension n rather than the intrinsic 
dimension.
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This is the method used to prove Theorem 25 and Theorem 32 (with different func-
tionals F).

(2) When F has scalar (rather than matrix) coefficients, it holds that

〈F(W (t))θ, θ〉 ≥ F(〈W (t)θ, θ〉) (245)

with strict inequality unless θ is an eigenvector of W (t). We can then {θi} to be any 
basis and let φi,W (t) := 〈W (t)θi, θi〉, φi,U (t) := 〈U(t)θi, θi〉 so

dφi,W (t)
dt ≥ F(φi,W (t)), dφi,U (t)

dt = F(φi,U (t)), (246)

which shows φi,W (t) ≥ φi,U (t). Hence, for any basis {θi} we have

tr[W (t)] =
∑
i

φi,W (t) ≥
∑
i

φi,U (t) = tr[U(t)]. (247)

This is the method used to prove Theorem 40.

While both methods lead to the inequality

tr[W (t)] ≥ tr[U(t)], (248)

the second method is weaker since the inequality dφi,W (t)
dt ≥ F(φi,W (t)) is weaker in 

principle than dW (t)
dt � F(W (t)) unless θi is an eigenvector of W (t). However, for the 

purpose of proving an inequality for the trace, there is no loss since the trace is invariant 
under rotations so for each t we can introduce a rotation R(t) which takes {θi} to the 
eigenvectors of W (t) or U(t).
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No data was used for the research described in the article.
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