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Abstract. We consider the construction of confidence bands for survival

curves under the outcome-dependent stratified sampling. A main challenge
of this design is that data are a biased dependent sample due to stratification

and sampling without replacement. Most literature on regression approxi-
mates this design by Bernoulli sampling but variance is generally overesti-

mated. Even with this approximation, the limiting distribution of the inverse

probability weighted Kaplan-Meier estimator involves a general Gaussian pro-
cess, and hence quantiles of its supremum is not analytically available. In this

paper, we provide a rigorous asymptotic theory for the weighted Kaplan-Meier

estimator accounting for dependence in the sample. We propose the novel hy-
brid method to both simulate and bootstrap parts of the limiting process to

compute confidence bands with asymptotically correct coverage probability.

Simulation study indicates that the proposed bands are appropriate for prac-
tical use. A Wilms tumor example is presented.

Keywords. confidence band, Gaussian process, right censoring, sampling
without replacement, stratified sampling, survival curve.

1. Introduction

Outcome-dependent sampling is a widely used sampling method in epidemiologic

studies to study association between exposure and survival events. This design over-

samples cases and collects a random sample of controls from the study cohort. This

sampling method is highly cost-effective in conducting large scale studies because

covariates are measured only for much smaller subsamples from the full cohort.

Examples include case-cohort design Prentice (1986) and case-control design Pren-

tice and Pyke (1979). Instead of simple random sampling of controls, outcome-

dependent stratified sampling conducts stratified sampling to further reduce the

cost and effectively collect important exposures (see e.g. exposure stratified case-

cohort study Borgan et al. (2000) and stratified case-control study White (1986)).
1
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Because loss in statistical efficiency is generally small, this design has been suc-

cessfully adopted to study various statistical problems with the help of the inverse

probability weighting. Most applications are censored regression such as the ac-

celerated failure time model, Nan et al. (2006, 2009), the additive hazards model

Kulich and Lin (2000), the Cox proportional hazards model (Prentice, 1986; Self

and Prentice, 1988), and the transformation model Lu and Tsiatis (2006); Kong

et al. (2006); Zeng and Lin (2014) for different types of data such as clustered

correlated data Moger et al. (2008), interval censored data Li and Nan (2011); Sae-

gusa and Wellner (2013); Zhou et al. (2017, 2018), and data with competing risks

Sø rensen and Andersen (2000); Sun et al. (2004); Kang and Cai (2009).

Despite the extensive research on censored regression, the issue of confidence

bands for survival curves has been overlooked because of the challenging proba-

bilistic structure of the outcome dependent stratified design. Randomness in this

design comes from two sources: (1) sampling from the infinite population and (2)

subsequent sampling from strata without replacement. The resultant sample is a

dependent biased sample due to stratification and sampling without replacement. A

valid confidence band must address these qualitatively different types of randomness

simultaneously. In the regression setting, most research avoids the challenging issue

of dependence by assuming Bernoulli sampling where data are treated as an inde-

pendent sample with missing variables. Variance estimation for this i.i.d. sample is

then straightforward with weighted bootstrap Ma and Kosorok (2005) even for com-

plex semiparametric models Li and Nan (2011); Zhou et al. (2017, 2018). A price

of approximation by Bernoulli sampling is overestimation of asymptotic variance

Breslow and Wellner (2007) resulting in a statistically conservative conclusion in

regression settings. Approximate quantification of uncertainty, however, invalidates

confidence bands with correct coverage probability in our problem. Moreover, it is

not clear how weighted bootstrap behaves in our setting. The weighted bootstrap

is only valid for the average of zero-mean variables in the i.i.d. setting (see sections
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2.9 and 3.6 of van der Vaart and Wellner (1996)). If applied to nonzero-mean vari-

ables, it estimates the second moment rather than variance. In our setting, data

do not have the i.i.d. structure and the Kaplan-Meier estimator of survival curves

Kaplan and Meier (1958) is a function of nonzero-mean averages.

A statistical challenge in the outcome-dependent stratified designs is not only

the difficulty in asymptotic theory for a biased dependent sample. In the i.i.d.

setting, the basic idea for confidence bands is to compute quantiles of the supre-

mum of the absolute difference between the Kaplan-Meier estimator and the true

function over an interval. The standard method for this purpose is to obtain analyt-

ical expressions of quantiles of the relatively simple limiting distribution. Various

methods along this line have been proposed Borgan and Liestø l (1990); Gillespie

and Fisher (1979); Hall and Wellner (1980); Hollander et al. (1997); Nair (1984)

with different transformations of the Kaplan-Meier estimator for better coverages

in the finite sample. Different transformations in fact reduce to the supremum of

either well-known Brownian motion or Brownian bridge processes thanks to the cel-

ebrated martingale theory. Their quantiles can be analytically obtained with ease.

In our setting, however, inverse probability weights depend on the survival event

which is not predictable. The lack of a martingale structure then yields a compli-

cated limiting Gaussian process with unknown parameters. Because this process

cannot be reduced to other well-known processes, quantiles of its supremum are

not analytically available. In fact, even finding a tight bound on the suprema of

general Gaussian processes is an important research question in probability theory

Chernozhukov et al. (2014); Harper (2013). An alternative method would be to

bootstrap the supremum of absolute difference explored by Akritas (1986) and Lo

and Singh (1986) in the analysis of the i.i.d. sample. For stratified samples, Bickel

and Krieger (1989) applied the specialized bootstrap method for a finite population

sampling to data without censoring. These bootstrap methods focus on random-

ness either from sampling from the infinite population or finite population sampling

from strata. To the best of our knowledge, there is no valid bootstrap procedure
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that simultaneously accounts for both randomness in our setting. Our statistical

challenge is to compute quantiles of the supremum of the general Gaussian process

without analytical computation nor bootstrap.

In this paper, we study nonparametric estimation of survival functions from

the outcome-dependent stratified samples with right censored data. The estimator

considered is the inverse probability weighted Kaplan-Meier estimator originally

proposed by Amato (1988) for the analysis of the sample from heterogeneous popu-

lations. We provide a rigorous asymptotic theory to derive the limiting distribution

of our estimator in our design. We then propose a novel procedure to construct

simultaneous confidence bands for the survival curves. We show that the pro-

posed bands have the correct coverage probability asymptotically. We illustrate

our methodology in a simulation study and a data example.

The weighted Kaplan-Meier estimator has been studied in various settings with

non-independent data. Existing methods focused on variance estimation at a fixed

time point but have never considered confidence bands due to its theoretical diffi-

culty. Amato (1988) andWilliams (1995) who studied correlated survival data, both

proposed the same variance estimator based on Greenwood’s formula Greenwood

(1926). The validity of Greenwood’s formula is related to the martingale structure

as seen in Hall and Wellner (1980) and Shorack and Wellner (1986), and hence this

variance estimator is not consistent in our setting. Rebora and Valsecchi (2016)

studied a general complex sampling design including our setting but their limiting

distribution is different from our result. Winnett and Sasieni (2002) and Galim-

berti et al. (2002) studied the matched case-control design and proposed the plug-in

variance estimator and a bootstrap method. In contrast to the previous work, our

asymptotic theory is new and, more importantly, our proposed confidence band is

the first method for survival curves under outcome-dependent stratified sampling.

Instead of nonparametric estimation of survival curves, confidence bands for

baseline survival curves were proposed in the case-cohort study Huang (2014) and
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nested case-control study Cai and Zheng (2013) by exploiting the regression set-

tings with weighted bootstrap Ma and Kosorok (2005). Both research considered

sampling without replacement but treated dependent data as i.i.d. samples for dif-

ferent reasoning. Huang (2014) used the fact that although the entire sample is

dependent, the selected sample from simple random sampling is i.i.d. condition-

ally on the selection status. As combining non-selected cases with a simple random

sample creates a biased sample in the case-cohort study, stratification in our setting

breaks the i.i.d. structure in our data. Cai and Zheng (2013) used the equivalence

of Bernoulli sampling (i.e., selections are all independent) and sampling without

replacement because inverse probability weighting with estimated weights in the

former design has the same asymptotic variance in the latter. Using independence

from Bernoulli sampling, they used weighted bootstrap with the theoretical sup-

port from the uniform law of large numbers in the i.i.d. setting (see e.g. Pollard

(1984); van der Vaart and Wellner (1996)). In our setting, we cannot use the same

argument because our data are not independent nor identically distributed.

This paper is organized as follows. In Section 2, we provide a formal description

of the outcome-dependent stratified design and introduce the weighted Kaplan-

Meier estimator. Its weak convergence is presented in Section 3. We propose our

method to construct a simultaneous confidence band for the survival functions in

Section 4. Additional topics of variance estimation and applications to the exposure

stratified case-cohort study are discussed in Section 5. The finite sample perfor-

mance of the proposed method is evaluated through simulation studies in Section

6. The proposed method is applied to the national Wilms tumor study in Section

7. We conclude our paper in Section 8. Proofs are collected in the supplementary

material to this paper.

2. Sampling and Estimator

Let T be a failure time and C be a censoring time. For right censored data, we

observe a censored failure time T̃ = min{T,C} and a failure indicator ∆ = I(T ≤
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C), where I(E) is the indicator of the event E. The parameter of interest is the

survival functions at each level of the exposure status X given by

S(t|x) = P (T > t|X = x).

Here the exposure status X is a discrete variable. In the outcome-dependent strat-

ified design, we observe Oi = (T̃i,∆i, Ui) for all n subjects in the entire cohort as

the i.i.d. sample from the infinite population. The variable U ∈ U is an auxiliary

variable useful in creating strata for controls based on disjoints subsets Ujs of U

with U = ∪J
j=2Uj . Each subject is classified into one of J strata consisting of all

cases S1 = {O : ∆ = 1} and stratified controls

S2 = {O : ∆ = 0, U ∈ U2}, . . . ,SJ = {O : ∆ = 0, U ∈ UJ},

based on the values of Oi. To obtain additional variables V , subsamples of size mj

are sampled from each stratum Sj of size nj = |Sj | without replacement. Since all

cases are selected, m0 = n0. The exposure status X is a part of V , for unweighted

Kaplan-Meier estimators suffice ifX is a part of U . For a concrete example, consider

giving a physical exam to participants selected from stratified sampling by a certain

disease, age and residence. In this case, U is a vector of age and country of residence

to create strata S2 as controls aged 20-29 in North America, S3 as controls aged

30-39 in Europe, and so on. Once giving physical exams, lab results and medical

history are obtained as V . Among these, a certain gene is selected as the exposure

X to study the relationship between the gene and time T to the disease onset.

We denote sampling indicator for the ith subject by ξi ∈ {0, 1} and the corre-

sponding sampling probability by

πi = P (ξi = 1|Ok, k = 1, . . . , n) = mj/nj if Oi ∈ Sj .

We denote the stratum membership probabilities by νj = P (O ∈ Sj). The ob-

served data are Oπ
i , i = 1, . . . , n, where Oπ

i = (T̃i,∆i, Ui, ξi, Vi) if the ith sub-

ject is selected (i.e., ξi = 1) and Oπ
i = (T̃i,∆i, Ui, ξi) otherwise. Note that
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Oi = (T̃i,∆i, Ui), i = 1, . . . , n, are i.i.d. but the observed data Oπ
i , i = 1, . . . , n,

are not because dependence is induced through the sampling indicators ξi.

The proposed estimator builds on the estimation of the cumulative hazard func-

tion. This estimation reduces to estimating probabilities that one experiences the

event before or at time t and that one is at risk at time t, respectively. Let

Ni(t, x) = ∆iI(Ti ≤ t,X = x) and Yi(t, x) = I(T̃i ≥ t,X = x) be the count-

ing process and at-risk indicator for the ith subject with exposure status X = x.

The inverse probability weighted averages of these processes

N
π

n(t, x) =
1

n

n∑
i=1

ξi
πi

Ni(t, x), Y
π

n(t, x) =
1

n

n∑
i=1

ξi
πi

Yi(t, x),

reliably estimateN (t, x) = P (T ≤ t,∆ = 1, X = x) and Y(t, x) = P (T̃ ≥ t,X = x).

The cumulative hazard function Λ(t|x) =
∫ t

0
{Y(u, x)}−1N (du, x) at level x is then

estimated by the plug-in estimator given by

Λ̂n(t|x) =
∫ t

0

1

Y
π

n(u, x)
N

π

n(du, x).

If complete data are available and inverse probability weights are removed, this

estimator reduces to the well-known Nelson-Aalen estimator. Note that multiplying

and dividing by P (X = x) within the integral of Λ(t|x) does not change Λ(t|x) and

hence this can be interpreted as the conditional cumulative hazard function given

X = x.

The survival function is the product limit integral of the cumulative hazard

function. In fact, the Kaplan–Meier estimator is the product limit integral of the

Nelson-Aalen estimator. Following the same idea, we obtain our estimator as the

product limit integral of Λ̂n given by

Ŝn(t|x) =
∏

0<u≤t

{
1−∆uΛ̂n(u|x)

}
=

∏
0<u≤t

{
1− ∆uN

π

n(u, x)

Y
π

n(u, x)

}
,



8 SAEGUSA AND NANDORI

where ∆xf(x, y) is the jump f(x, y)−f(x−, y) of f at x for a fixed y throughout the

paper. This estimator is easily computed from standard software for the Kaplan–

Meier estimator with weights ξi/πi.

3. Limiting Distributions

To construct confidence bands, we first compute limiting processes of Λ̂n and

Ŝn. Results in this section and Section 4 are presented in a general form in the

sense that we allow strata Sjs to be arbitrarily formed by available variables for all

n subjects with different probabilities. Note that the definitions of N π

n and Yπ

n also

change accordingly. For example, one can consider an outome independent stratum

Sj = {O : U ∈ Uk} or stratified sampling of cases with Sj = {O : ∆ = 1, U ∈ Uk}

for some k. This generality allows us to extend our results to the exposure stratified

case-cohort study discussed in Section 5.

To obtain limiting processes, we assume

Condition 1. (a) Survival time T and censoring time C are conditionally inde-

pendent given X.

(b) Sampling probabilities mj/nj converges to a constant pj > 0 as n → ∞.

(c) There exists τ > 0 such that P (T̃ ≤ τ,X = x) < 1 for all levels X = x.

The first condition is standard with complete data. Sampling fractions mj/nj are

at the disposal of the study investigator and it is natural to assume the existence

of their limits as in Breslow and Wellner (2007). The third condition concerns a

range of confidence bands.

Because Λ̂n and Ŝn are functions of N
π

n and Y
π

n, we first compute their limiting

distributions.

Lemma 1. Under Condition 1, n1/2{Nπ

n(·, x)−N (·, x), Y π

n(·, x)−Y(·, x)} weakly

converges to Gaussian processes {GN
π (·, x),GY

π (·, x)} in (D[0, τ ])2 where D[0, τ ] is
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the class of càdlàg functions on [0, τ ] equipped with the uniform norm and each

process is a linear combination of zero-mean Gaussian processes of the form

GN
π = GN +

J∑
j=1

{
νj(1− pj)

pj

}1/2

GN
j ,

GY
π = GY +

J∑
j=1

{
νj(1− pj)

pj

}1/2

GY
j .

Here pairs of Gaussian processes (GN ,GY), (GN
1 ,GY

1 ), . . . , (GN
J ,GY

J ) are all inde-

pendent. The covariance function for (GN ,GY) is

EGN (s, x)GN (t, x) = N (s ∧ t, x)−N (s, x)N (t, x),

EGY(s, x)GY(t, x) = Y(s ∨ t, x)− Y(s, x)Y(t, x),

EGN (s, x)GY(t, x) = {N (s, x)−N (t−, x)}I(t ≤ s)−N (s, x)Y(t, x),

and covariance functions for (GN
j ,GY

j ), j = 1, . . . , J, can be similarly obtained by

replacing the probability P (·, X = x) in N and Y above by the conditional probability

P (·, X = x|O ∈ Sj) given stratum membership in Sj.

In the setting of outcome dependent stratified sampling discussed in Section 2,

all cases are selected (i.e., p1 = 1) and S2, . . . ,SJ are characterized by ∆ = 0 (i.e.,

P (T ≤ x,∆ = 1, X = x|O ∈ Sj) = 0 for j = 2, . . . , J). Thus, the limiting processes

can be simplified to

GN
π = GN ,

GY
π = GY +

J∑
j=2

{
νj(1− pj)

pj

}1/2

GY
j .

A straightforward application of the functional delta method (see, for example,

Section 3.9 of van der Vaart and Wellner (1996)) yields the following asymptotic

result.
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Theorem 1. Under Condition 1, n1/2{Λ̂n(·|x) − Λ(·|x)} converges weakly to the

zero-mean Gaussian process L in D[0, τ ] given by

L(·|x) =
∫ ·

0

GN
π (du, x)

Y(u, x)
−
∫ ·

0

GY
π (u, x)

{Y(u, x)}2
N (du, x),

and n1/2{Ŝn(·|x) − S(·|x)} converges weakly to the zero-mean Gaussian process S

in D[0, τ ] given by

S(·|x) = S(·|x)
∫ ·

0

L(du|x)
1−∆uΛ(u|x)

.

4. Simultaneous Confidence Band

The basic idea in constructing a confidence band is to obtain q1−α such that

P

(
sup

t∈[0,τ ]

n1/2
∣∣∣Ŝn(t|x)− S(t|x)

∣∣∣ ≤ q1−α

)
→ 1− α, n → ∞,

from which the large sample 100(1− α)% confidence band is obtained as

Ŝn(t|x)− n−1/2q1−α ≤ S(t|x) ≤ Ŝn(t|x) + n−1/2q1−α, all t ∈ [0, τ ].

Unlike the analysis of complete data, our complicated limiting process S cannot

be reduced to other well-known Gaussian processes, and hence the quantiles of

supt∈[0,τ ] |S(t|x)| are not analytically available. An alternative method is approxi-

mate n1/2(Ŝn − S), but no bootstrap method is available for our setting.

To estimate q1−α, we propose to approximate the limiting process S through

simulation and bootstrap. This proposal is based on the observation that S can be

decomposed into two independent Gaussian processes. By Lemma 1 and Theorem 1,

the limiting process L can be written as the sum of independent Gaussian processes

given by L(·|x) = L1(·|x) + L2(·|x) where

L1(·|x) =
∫ ·

0

GN (du, x)

Y(u, x)
−
∫ ·

0

GY(u, x)

{Y(u, x)}2
N (du, x),

L2(·|x) =
J∑

j=1

{
νj(1− pj)

pj

}1/2
{∫ ·

0

GN
j (du, x)

Y(u, x)
−
∫ ·

0

GY
j (u, x)

{Y(u, x)}2
N (du, x)

}
.
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We can then write the limiting process S as the sum of two independent Gaussian

processes given by S(·|x) = S1(·|x) + S2(·|x) where

S1(·|x) = S(·|x)
∫ ·

0

dL1(u|x)
1−∆uΛ(u|x)

, S2(·|x) = S(·|x)
∫ ·

0

dL2(u|x)
1−∆uΛ(u|x)

.

The key idea is to directly simulate S1 and to bootstrap certain quantity described

below to approximate S2. Independence of S1 and S2 guarantees the validity of

separate approximation.

This decomposition reflects two sources of randomness. The process S1 rep-

resents randomness due to sampling from the infinite population. In fact, this

process is the exactly the same as the limiting process of the Kaplan–Meier esti-

mator when complete data woud be obtained Breslow and Crowley (1974). The

process S2 thus represents randomness due to additional sampling from strata.

This interpretation leads to the decomposition in the estimator with the hypothet-

ically computed standard Kaplan–Meier estimator Sn from complete data of size

n. Since n1/2(Ŝn − S) = n1/2(Sn − S) + n1/2(Ŝn − Sn), the process n1/2(Sn − S)

and n1/2(Ŝn − Sn) weakly converge to S1 and S2 respectively.

The well-studied process S1 is the zero-mean Gaussian process with a covariance

function ρ(s, t|x) at times s and t given by

ρ(s, t|x) = S(s|x)S(t|x)
∫ s∧t

0

N (du, x)

Y(u, x)Y(u−, x)
.

This covariance function can be estimated by the consistent plug-in estimator

ρ̂n(s, t|x) = Ŝn(s|x)Ŝn(t|x)
∫ s∧t

0

N
π

n(du, x)

Y
π

n(u, x)Y
π

n(u−, x)
.

If we remove the inverse probability weights, this estimator reduces to the well-

known Greenwood’s formula. We generate a zero-mean Gaussian process Ŝn,1 with

the estimated covariance function ρ̂n(s, t|x).

Unlike S1, the process S2 is not a Gaussian martingale in general, and its compli-

cated covariance function cannot be estimated by Greenwood’s formula. Instead,

we approximate S2 by bootstrapping n1/2(Ŝn − Sn) which weakly converges to S2.
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The bootstrap procedure we use is the extension of Gross’ bootstrap Gross (1980)

by Bickel and Freedman (1984). There are other bootstrap methods (see e.g. Booth

et al. (1994); Chao and Lo (1985); Mashreghi et al. (2016); Sitter (1992)) for the

finite population but the weak convergence of bootstrap empirical process is only

proved for Gross’s bootstrap Saegusa (2015) which requires the theoretical prop-

erties of confidence bands. This bootstrap method concerns a finite population

sampling and is suitable for reproducing randomness only from stratified sampling

in our context. The basic idea of this bootstrap method is the following. If we

sample 50 subjects from 100 people without replacement, we double 50 selected

subjects to create a bootstrap population of size 100 from which 50 items are se-

lected without replacement into a bootstrap sample. The formal description is given

below.

Let Wi be the count of how many times the ith subject is selected in a bootstrap

sample. For a subject with ξi = 0, Wi = 0. For mj selected subjects in stratum

Sj , suppose nj/mj is an integer kj . Then create a bootstrap population of size

nj = kjmj consisting of kj copies of each selected subject in stratum Sj . Select

mj subjects from the bootstrap population without replacement into a bootstrap

sample. This determines Wi for the mj selected subjects. Suppose nj = mjkj + rj

where mj is a divisor and rj is a remainder. With probability sj = (1−rj/mj){1−

rj/(nj − 1)}, create a bootstrap population of size kjmj as before and sample

mj subjects without replacement. Otherwise, create a bootstrap population of

size (kj + 1)mj consisting of kj + 1 copies of each selected subjects and select

mj subjects without replacement. For the stratum S1 in the outcome dependent

stratified design, all subjects are selected and hence Wi = 1.

The bootstrap estimator of Λ and S are computed as

Λ̂b
n(·|x) =

∫ ·

0

1

Y
b,π

n (u, x)
N

b,π

n (du, x),

Ŝb
n(·|x) =

∏
0<u≤·

{
1−∆uΛ̂

b
n(u|x)

}
=

∏
0<u≤·

{
1− ∆uN

b,π

n (u, x)

Y
b,π

n (u, x)

}
,
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where

N
b,π

n (t, x) =
1

n

n∑
i=1

Wi
ξi
πi

Ni(t|x), Y
b,π

n (t, x) =
1

n

n∑
i=1

Wi
ξi
πi

Yi(t, x).

For bootstrapping n1/2(Ŝn − Sn), we compute Ŝn,2 = n1/2(Ŝb
n − Ŝn).

The approximation of S by Ŝn,1+Ŝn,2 is asymptotically valid. However, supt∈[0,τ ] |S(t|x)|

may have a jump at the lower end of the support of T though S is sample continuous

Tsirelson (1975). To exclude the possibility that a jump occurs at q1−α, we assume

the following condition. A similar condition is imposed by Bickel and Krieger (1989)

for non-censored data.

Condition 2. The distribution of supt∈[0,τ ] |S(t|x)| is continuous.

Theorem 2. Let q > 0. Under Conditions 1 and 2,

P

(
sup

t∈[0,τ ]

∣∣∣Ŝn,1(t|x) + Ŝn,2(t|x)
∣∣∣ ≤ q

)
→ P

(
sup

t∈[0,τ ]

|S(t|x)| ≤ q

)
, as n → ∞.

We propose the following simulation-based procedure to construct confidence

band.

Step 1. Generate Ŝn,1 and Ŝn,2 described above to obtain c1,x = supt∈[0,τ ] |Ŝn,1(t|x)+

Ŝn,2(t|x)|.

Step 2. Repeat Step 1 B times and compute 100(1−α)%tile q̂1−α,x of c1,x, . . . , cB,x.

Step 3. Compute our 100(1− α)% confidence band given by

(1) Ŝn(t|x)± n−1/2q̂1−α,x, t ∈ [0, τ ].

The proposed confidence band achieves correct coverage probability asymptoti-

cally.

Theorem 3. Let α ∈ (0, 1). Under Conditions 1 and 2, as n → ∞ and B → ∞,

P
(
Ŝn(t|x)− n−1/2q̂1−α,x ≤ S(t|x) ≤ Ŝn(t|x) + n−1/2q̂1−α,x, t ∈ [0, τ ]

)
→ 1− α.
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The proposed confidence band has the same width at each time t ∈ [0, τ ]

but estimation of S is less reliable on the right tail. More desirable confidence

bands have smaller width for earlier time and larger width for later time. To

achieve this property, we can modify the proposed procedure by computing c∗k,x =

supt∈[0,τ ] |{Ŝn,1(t|x) + Ŝn,2(t|x)}/f(t)| for a fixed positive and increasing function

f on [0, τ ] and obtain the corresponding 100(1 − α)%tile q̂∗1−α,x. The resultant

100(1− α)% confidence band of variable width is

(2) Ŝn(t|x)± n−1/2f(t)q̂∗1−α,x, t ∈ [0, τ ].

In this paper, we use exponential functions for f in simulation and data analysis.

Choice of f possibly in an adaptive way deserves further investigation.

Note that n in the confidence band is the size of the entire cohort. In complete

data analysis, data are split by the exposure status X = x and n appearing in the

confidence bands is the size of split data. In our design, the inverse probability

weighting corrects for biased sampling and the size of the entire cohort appears in

the computation of the limiting distribution.

5. Additional Results

5.1. Variance Estimation. In the previous section, we develop the method of

constructing confidence bands for survival functions. The same idea naturally ap-

plies to a simpler question of variance estimation. Consider estimating a variance

of Ŝn(t|x) at a fixed t ∈ (0, τ ]. It follows by Theorem 1 and discussion in Section

4, n1/2(Ŝ(t|x) − S(t|x)) converges in distribution to the sum of independent vari-

ables S1(t|x) and S2(t|x). The variance of S1(t|x) is ρ(t, t|x). This is estimated by

the weighted Greenwood’s formula ρ̂n(t, t|x). For variance of S2(t|x), we generate

bootstrap estimator n1/2(Ŝb
n(t|x)− Ŝn(t|x)) of n1/2(Ŝn(t|x)−Sn(t|x)) and compute

its sample variance. Adding these quantities and dividing them by n, we obtain

our variance estimator of Ŝn(t|x).
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For two-phase cohort studies, Rebora and Valsecchi (2016) studied the variance

estimation of the weighted Kaplan-Meier estimator assuming the continuity of the

survival time. They computed the limiting process as S1 for general complex sam-

pling, not S1 + S2, from which they considered two terms for variance estimator.

The first term is essentially the same as our weighted Greenwood’s formula derived

from S1. They instead used S1 to obtain the second term as conditional variance

of the sampling indicators in Λ̂n given (T̃i,∆i), i = 1 . . . , n. Given the two-phase

framework in survey sampling Rubin-Bleuer and Schiopu Kratina (2005), this es-

timator that captures two sources of randomness seems reasonable. They also

proposed an alternative to the second term by the linearization Demnati and Rao

(2004, 2010). Both estimators for the second term is based on standard techniques

in survey sampling for the analysis of sums and totals. It is of a theoretical interest

to study asymptotic properties of their estimator because it is not straightforward

to see how those techniques behave when applying to random functions.

5.2. Exposure Stratified Case-Cohort Study. Our methodology is easily ex-

tended to the exposure stratified case-cohort study Borgan et al. (2000) with

the modification of strata. Data from the exposure stratified case-cohort study

are a stratified sample from the entire cohort and all other cases not selected

from stratified sampling. Borgan et al. (2000) considered three estimators for

the Cox model but one of those estimator (Estimator I) only uses a stratified

sample. In this case, one can view the exposure stratified case-cohort design

as stratified sampling without dependence on outcomes. Consider stratification

S1 = {O : U ∈ U2}, . . . ,SJ−1 = {O : U ∈ UJ with πi = mj/nj if Oi ∈ Sj ,

j = 1, . . . , J . Then we can compute the inverse probability weighted Kaplan-Meier

estimator in the same way as above. The limiting process takes the same form

with a modification of {GN
π (·, x),GY

π (·, x)} that only reflects different definitions of

strata in Lemma 1 and Theorem 1. The methodology for confidence bands and

variance estimation can be carried out in the same way as above. A limitation of

this approach which also holds for Estimator I of Borgan et al. (2000) is that we
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do not fully use all available data of cases. Especially when the event is rare, a

stratified sample may not contain enough cases so that resultant confidence bands

would be unstable. An extension that accommodates all cases is desired in the

future research.

6. Simulation Study

We performed a simulation study to evaluate the finite-sample performance of the

proposed methodology. The failure time T is generated from the Cox proportional

hazards model with two independent binary covariates (V,X) with same prevalence

30%. The auxiliary binary variable U is related to X with sensitivity and specificity

0.9. The baseline hazard functions corresponds to the Weibull distribution with

parameter α = 0.2 and β ∈ {0.5, 1, 3}. The regression coefficients are both log 2.

The censoring variable C follows the uniform distribution on [0, c] where c is selected

to achieve heavy censoring proportion of 80%. Three strata are considered with

S1 = {O : ∆ = 1}, S2 = {O : ∆ = 0, U = 0}, and S3 = {O : ∆ = 0, U = 1}.

All cases are selected from S1 and 30 percent of subjects are selected without

replacement from S2 and S3 respectively. Confidence bands were constructed over

the interval [0, c− .2] 500 times where each was based on 3000 iterations to generate

Ŝn,1 and Ŝn,2. In addition to the equal-width band (1), we created an variable-width

band (2) with f(t) = exp(t).

Table 1 shows simulated coverage probabilities of the proposed confidence bands

at the nominal level 95%. The variable-width bands achieve accurate coverages even

for smaller sample sizes in general, showing superior performance over the equal-

width bands. The equal-width bands show reasonable performance in most settings

where coverage is improved with a larger sample size. The coverage probabilities

for this method are generally closer to the nominal level at X = 0 than X = 1

because there are fewer cases for the group with X = 1 in the final sample. On

average, censoring proportions are about 60 percent and 45 percent for groups with

X = 0 and X = 1 in the final sample, which yields about 88 cases and 35 cases
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respectively when n = 500 and about 175 cases and 69 cases respectively when

n = 1000. When β = 3, a larger sample size is required for more accurate results

but relatively poor performance of equal precision bands compared to settings with

β = 0.5 and β = 1 indicates that this setting is most difficult among three.

Figure 1 presents four different confidence bands based on the data sets generated

with theWeibull distribution with β = 0.5 and β = 3. In addition to our method, we

consider Nair’s equal-precision bands Nair (1984) and Hall-Wellner bands Hall and

Wellner (1980) for the i.i.d. setting. For these methods, we additionally generated

the i.i.d. sample of size comparable to our final sample sizes. Note that we cannot

apply these methods to the same stratified data because unweighted Kaplan-Meier

curves are biased and do not lead to the fair and meaningful reference. All methods

contain true survival curves. The width of the equal-width bands are narrower than

all other methods on the right tail. The failure to account for increasing uncertainty

in estimation of the survival curves on the right leaves room for improvement to

the variable-width band. The variable-width bands are narrow on earlier time and

increase their width as time progresses. Both methods have reasonable shapes

compared to other two methods with complete data. For graphical representation,

upper limits of the bands, when exceeding 1, are reduced to 1. For the variable-

width bands, upper or lower limits may be increasing on some time intervals. Since

survival curves are decreasing, we force limits of the bands to be decreasing by

choosing smallest values on the left.

7. Application

We apply our method to analyze the the national Wilms tumor study Green

et al. (1998) where 3915 patients with Wilms tumor were followed until the disease

progression during 1980-1994. The outcome of interest is time to relapse of cancer

in years. Nine strata were formed based on case status defined by tumor relapse, age

at diagnosis (less than a year old or older), stage of cancer (I and II, or III and IV),

and histology measured at the hospital (favorable or unfavorable). All patients were



18 SAEGUSA AND NANDORI

selected except three strata with favorable histology. From the stratum of children

less than a year old with early stage of cancer, 120 patients were selected from 452

patients. From the stratum of children older than a year old with early stage of

cancer, 160 patients were selected from 1620 patients. From the stratum of children

older than a year old with advanced stage of cancer, 120 patients were selected

from 914 patients. In total, 1329 patients were selected consisting of 669 cases

and 660 controls, and their histology was measured again at the central reference

laboratory, which is considered as the gold standard. Our goal is to construct

confidence bands of two relapse-free survival curves with favorable and unfavorable

histology measured at the second time. To determine confidence bands, we repeated

our simulation and bootstrap 1000 times. For the variable-width confidence bands,

we used f(t) = exp(t/22) based on the maximum censored time is 22 years.

Figure 2 shows inverse probability weighted Kaplan-Meier estimators and cor-

responding confidence bands. Both estimates show more relapse of cancer short

time after the first onset, and then reach a plateau. The drop in relapse-free sur-

vival probability is clearly larger for the group with unfavorable histology, which

indicates histology is an important predictor of cancer relapse. This finding was

confirmed by Breslow et al. (2009) in their proportional hazards regression analysis.

Our proposed confidence bands provide uncertainty of estimates in this graphical

comparison. Both bands are comparable due to a large sample size.

8. Discussion

In this paper, we propose the method of constructing the confidence bands for

the survival functions over the interval based on the inverse probability weighted

Kaplan-Meier curves. The proposed method is the first valid confidence bands in

survival analysis when data are collected from outcome-dependent sampling design

with sampling without replacement. Despite the simplicity of weighted Kaplan-

Meier curves, great challenges for constructing valid confidence bands are (1) the

difficulty in deriving the limiting distribution in the presence of dependence, and (2)
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the lack of analytical formulae for quantiles of the supremum of general Gaussian

processes. For the first issue, we apply the uniform central limit theorem and

the functional delta method from the special empirical process theory for two-

phase stratified samples Breslow and Wellner (2007); Saegusa and Wellner (2013)

(see the supplementary materials for the distinction in the meaning of two-phase

sampling in biostatistics and survey sampling). For the second issue, we separate

the limiting process according to different sampling phases. We then approximate

the limiting process corresponding to sampling from the infinite population by

simulating the estimated limiting process itself, while we adopted the specialized

bootstrap procedure in the finite population sampling for the rest of the limiting

process. The proposed procedure showed good coverage in simulation studies.

A limitation of our approach is computational costs arising from both simulat-

ing Gaussian processes and bootstrapping stratified samples. One potential way

to reduce computational costs is to omit one of the two extensive computations.

For example, if one constructs a new bootstrap method that reproduce randomness

from sampling from the infinite population and subsequent sampling from strata at

the same time, simulation on Gaussian processes can be omitted. Or if one analyti-

cally simplifies the linear combination of Gaussian processes to the single Gaussian

process, one have only to generate the resultant Gaussian processes. In this paper,

we provide a simple method to take care of distinct randomness separately, but

these directions are worthwhile to explore in the future research.

There are several other directions for further work. In the i.i.d. setting, the confi-

dence bands for the conditional hazard and survival functions have been extensively

studied when covariate are available (see Dobler et al. (2019) and reference therein).

Because regression modeling sheds further insight on survival data, constructing

similar confidence bands in our setting facilitates the use of cost-effective outcome-

dependent stratified designs in public health research. The limiting distribution of

the conditional hazard function was shown to be the linear combination of Gaussian

processes Breslow et al. (2015) as in our case. Our approach demonstrated in this
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paper with certain modifications is expected to address this challenging question.

Another direction of research is to consider different sampling designs. Because

our method counts on empirical process theory for outcome-dependent stratified

sampling, different designs require different empirical process theory. Furthermore,

our bootstrap method for sampling without replacement must be replaced by new

bootstrap methods specializing in different sampling designs.
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Figure 1. Confidence bands for survival curves at X = 0 with
n = 1000 and β = 0.5 (left panel) and β = 3 (right panel).
Solid lines for true survival curves, wide dashed lines for the equal-
width bands, wide dotted lines for the variable-width bands, nar-
row dashed lines for the Hall-Wellner band, and narrow dotted
lines for Nair’s equal precision bands
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Figure 2. Weighted Kaplan-Meier estimators and confidence
bands for survival curves with favorable histology (left panel) and
unfavorable histology (right panel) based on data from the national
Wilms tumor study. Dashed lines for equal-width bands, dotted
lines for variable-width bands
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Table 1. Empirical coverages of 95% confidence bands in different
data generating mechanism.

X β n m equal variable
X = 0 0.5 500 146 91.8% 93.6%

1000 292 94.8% 95.0%
1 500 146 95.5% 96.6%

1000 293 95.8% 94.4%
3 500 146 93.9% 95.1%

1000 291 93.8% 95.4%
X = 1 0.5 500 77 93.6% 94.4%

1000 154 94.4% 94.8%
1 500 76 93.8% 96.6%

1000 153 94.7% 94.6%
3 500 73 91.0% 97.2%

1000 147 91.9% 95.4%


