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ABSTRACT. We consider the construction of confidence bands for survival
curves under the outcome-dependent stratified sampling. A main challenge
of this design is that data are a biased dependent sample due to stratification
and sampling without replacement. Most literature on regression approxi-
mates this design by Bernoulli sampling but variance is generally overesti-
mated. Even with this approximation, the limiting distribution of the inverse
probability weighted Kaplan-Meier estimator involves a general Gaussian pro-
cess, and hence quantiles of its supremum is not analytically available. In this
paper, we provide a rigorous asymptotic theory for the weighted Kaplan-Meier
estimator accounting for dependence in the sample. We propose the novel hy-
brid method to both simulate and bootstrap parts of the limiting process to
compute confidence bands with asymptotically correct coverage probability.
Simulation study indicates that the proposed bands are appropriate for prac-
tical use. A Wilms tumor example is presented.

Keywords. confidence band, Gaussian process, right censoring, sampling
without replacement, stratified sampling, survival curve.

1. INTRODUCTION

Outcome-dependent sampling is a widely used sampling method in epidemiologic
studies to study association between exposure and survival events. This design over-
samples cases and collects a random sample of controls from the study cohort. This
sampling method is highly cost-effective in conducting large scale studies because
covariates are measured only for much smaller subsamples from the full cohort.
Examples include case-cohort design Prentice (1986) and case-control design Pren-
tice and Pyke (1979). Instead of simple random sampling of controls, outcome-
dependent stratified sampling conducts stratified sampling to further reduce the
cost and effectively collect important exposures (see e.g. exposure stratified case-

cohort study Borgan et al. (2000) and stratified case-control study White (1986)).
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Because loss in statistical efficiency is generally small, this design has been suc-
cessfully adopted to study various statistical problems with the help of the inverse
probability weighting. Most applications are censored regression such as the ac-
celerated failure time model, Nan et al. (2006, 2009), the additive hazards model
Kulich and Lin (2000), the Cox proportional hazards model (Prentice, 1986; Self
and Prentice, 1988), and the transformation model Lu and Tsiatis (2006); Kong
et al. (2006); Zeng and Lin (2014) for different types of data such as clustered
correlated data Moger et al. (2008), interval censored data Li and Nan (2011); Sae-
gusa and Wellner (2013); Zhou et al. (2017, 2018), and data with competing risks
So rensen and Andersen (2000); Sun et al. (2004); Kang and Cai (2009).

Despite the extensive research on censored regression, the issue of confidence
bands for survival curves has been overlooked because of the challenging proba-
bilistic structure of the outcome dependent stratified design. Randomness in this
design comes from two sources: (1) sampling from the infinite population and (2)
subsequent sampling from strata without replacement. The resultant sample is a
dependent biased sample due to stratification and sampling without replacement. A
valid confidence band must address these qualitatively different types of randomness
simultaneously. In the regression setting, most research avoids the challenging issue
of dependence by assuming Bernoulli sampling where data are treated as an inde-
pendent sample with missing variables. Variance estimation for this i.i.d. sample is
then straightforward with weighted bootstrap Ma and Kosorok (2005) even for com-
plex semiparametric models Li and Nan (2011); Zhou et al. (2017, 2018). A price
of approximation by Bernoulli sampling is overestimation of asymptotic variance
Breslow and Wellner (2007) resulting in a statistically conservative conclusion in
regression settings. Approximate quantification of uncertainty, however, invalidates
confidence bands with correct coverage probability in our problem. Moreover, it is
not clear how weighted bootstrap behaves in our setting. The weighted bootstrap

is only valid for the average of zero-mean variables in the i.i.d. setting (see sections



SURVIVAL CURVES FROM OUTCOME-DEPENDENT STRATIFIED SAMPLES 3

2.9 and 3.6 of van der Vaart and Wellner (1996)). If applied to nonzero-mean vari-
ables, it estimates the second moment rather than variance. In our setting, data
do not have the i.i.d. structure and the Kaplan-Meier estimator of survival curves
Kaplan and Meier (1958) is a function of nonzero-mean averages.

A statistical challenge in the outcome-dependent stratified designs is not only
the difficulty in asymptotic theory for a biased dependent sample. In the i.i.d.
setting, the basic idea for confidence bands is to compute quantiles of the supre-
mum of the absolute difference between the Kaplan-Meier estimator and the true
function over an interval. The standard method for this purpose is to obtain analyt-
ical expressions of quantiles of the relatively simple limiting distribution. Various
methods along this line have been proposed Borgan and Liestg 1 (1990); Gillespie
and Fisher (1979); Hall and Wellner (1980); Hollander et al. (1997); Nair (1984)
with different transformations of the Kaplan-Meier estimator for better coverages
in the finite sample. Different transformations in fact reduce to the supremum of
either well-known Brownian motion or Brownian bridge processes thanks to the cel-
ebrated martingale theory. Their quantiles can be analytically obtained with ease.
In our setting, however, inverse probability weights depend on the survival event
which is not predictable. The lack of a martingale structure then yields a compli-
cated limiting Gaussian process with unknown parameters. Because this process
cannot be reduced to other well-known processes, quantiles of its supremum are
not analytically available. In fact, even finding a tight bound on the suprema of
general Gaussian processes is an important research question in probability theory
Chernozhukov et al. (2014); Harper (2013). An alternative method would be to
bootstrap the supremum of absolute difference explored by Akritas (1986) and Lo
and Singh (1986) in the analysis of the i.i.d. sample. For stratified samples, Bickel
and Krieger (1989) applied the specialized bootstrap method for a finite population
sampling to data without censoring. These bootstrap methods focus on random-
ness either from sampling from the infinite population or finite population sampling

from strata. To the best of our knowledge, there is no valid bootstrap procedure
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that simultaneously accounts for both randomness in our setting. Our statistical
challenge is to compute quantiles of the supremum of the general Gaussian process
without analytical computation nor bootstrap.

In this paper, we study nonparametric estimation of survival functions from
the outcome-dependent stratified samples with right censored data. The estimator
considered is the inverse probability weighted Kaplan-Meier estimator originally
proposed by Amato (1988) for the analysis of the sample from heterogeneous popu-
lations. We provide a rigorous asymptotic theory to derive the limiting distribution
of our estimator in our design. We then propose a novel procedure to construct
simultaneous confidence bands for the survival curves. We show that the pro-
posed bands have the correct coverage probability asymptotically. We illustrate
our methodology in a simulation study and a data example.

The weighted Kaplan-Meier estimator has been studied in various settings with
non-independent data. Existing methods focused on variance estimation at a fixed
time point but have never considered confidence bands due to its theoretical diffi-
culty. Amato (1988) and Williams (1995) who studied correlated survival data, both
proposed the same variance estimator based on Greenwood’s formula Greenwood
(1926). The validity of Greenwood’s formula is related to the martingale structure
as seen in Hall and Wellner (1980) and Shorack and Wellner (1986), and hence this
variance estimator is not consistent in our setting. Rebora and Valsecchi (2016)
studied a general complex sampling design including our setting but their limiting
distribution is different from our result. Winnett and Sasieni (2002) and Galim-
berti et al. (2002) studied the matched case-control design and proposed the plug-in
variance estimator and a bootstrap method. In contrast to the previous work, our
asymptotic theory is new and, more importantly, our proposed confidence band is
the first method for survival curves under outcome-dependent stratified sampling.

Instead of nonparametric estimation of survival curves, confidence bands for

baseline survival curves were proposed in the case-cohort study Huang (2014) and
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nested case-control study Cai and Zheng (2013) by exploiting the regression set-
tings with weighted bootstrap Ma and Kosorok (2005). Both research considered
sampling without replacement but treated dependent data as i.i.d. samples for dif-
ferent reasoning. Huang (2014) used the fact that although the entire sample is
dependent, the selected sample from simple random sampling is i.i.d. condition-
ally on the selection status. As combining non-selected cases with a simple random
sample creates a biased sample in the case-cohort study, stratification in our setting
breaks the i.i.d. structure in our data. Cai and Zheng (2013) used the equivalence
of Bernoulli sampling (i.e., selections are all independent) and sampling without
replacement because inverse probability weighting with estimated weights in the
former design has the same asymptotic variance in the latter. Using independence
from Bernoulli sampling, they used weighted bootstrap with the theoretical sup-
port from the uniform law of large numbers in the i.i.d. setting (see e.g. Pollard
(1984); van der Vaart and Wellner (1996)). In our setting, we cannot use the same
argument because our data are not independent nor identically distributed.

This paper is organized as follows. In Section 2, we provide a formal description
of the outcome-dependent stratified design and introduce the weighted Kaplan-
Meier estimator. Its weak convergence is presented in Section 3. We propose our
method to construct a simultaneous confidence band for the survival functions in
Section 4. Additional topics of variance estimation and applications to the exposure
stratified case-cohort study are discussed in Section 5. The finite sample perfor-
mance of the proposed method is evaluated through simulation studies in Section
6. The proposed method is applied to the national Wilms tumor study in Section
7. We conclude our paper in Section 8. Proofs are collected in the supplementary

material to this paper.

2. SAMPLING AND ESTIMATOR

Let T be a failure time and C' be a censoring time. For right censored data, we

observe a censored failure time T = min{T, C’} and a failure indicator A = I(T <
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(), where I(E) is the indicator of the event E. The parameter of interest is the

survival functions at each level of the exposure status X given by
S(tlz) = P(T > t|X = x).

Here the exposure status X is a discrete variable. In the outcome-dependent strat-
ified design, we observe O; = (Ti, A;,U;) for all n subjects in the entire cohort as
the i.i.d. sample from the infinite population. The variable U € U is an auxiliary
variable useful in creating strata for controls based on disjoints subsets U;s of U
with U = U;IZQZ/Ij. Each subject is classified into one of J strata consisting of all

cases §; = {O : A = 1} and stratified controls
S ={0:A=0,U€ls},...,Sy={0: A=0,U €Uy},

based on the values of O;. To obtain additional variables V', subsamples of size m;
are sampled from each stratum S; of size n; = |S;| without replacement. Since all
cases are selected, my = ng. The exposure status X is a part of V', for unweighted
Kaplan-Meier estimators suffice if X is a part of U. For a concrete example, consider
giving a physical exam to participants selected from stratified sampling by a certain
disease, age and residence. In this case, U is a vector of age and country of residence
to create strata So as controls aged 20-29 in North America, S3 as controls aged
30-39 in Europe, and so on. Once giving physical exams, lab results and medical
history are obtained as V. Among these, a certain gene is selected as the exposure
X to study the relationship between the gene and time T to the disease onset.
We denote sampling indicator for the ith subject by &; € {0,1} and the corre-

sponding sampling probability by
wi:P(gi:1|Ok,k:1,...,n)zmj/nj ifOiESj.

We denote the stratum membership probabilities by v; = P(O € S;). The ob-
served data are OF,i = 1,...,n, where Of = (TZ—,AZ-,UZ-,&-,VZ-) if the ith sub-

ject is selected (i.e., & = 1) and OF = (ﬂ-,Ai,Ui,&) otherwise. Note that
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0; = (T;,A;,U;),i = 1,...,n, are i.i.d. but the observed data Or,i=1,...,n,
are not because dependence is induced through the sampling indicators &;.

The proposed estimator builds on the estimation of the cumulative hazard func-
tion. This estimation reduces to estimating probabilities that one experiences the
event before or at time ¢ and that one is at risk at time ¢, respectively. Let
Ni(t,z) = AI(T; < t,X = z) and Y;(t,z) = I(T; > t,X = x) be the count-
ing process and at-risk indicator for the ith subject with exposure status X = =x.

The inverse probability weighted averages of these processes

n
i=1

reliably estimate N (t,z) = P(T <t,A =1,X = z) and Y(t,z) = P(T > t, X = z).

‘a3

e 1= & =
N (t7) = > %Ni(t,x), Y. (t,x) =
i=1""

LYt @),

S|
3

The cumulative hazard function A(t|z) = f(f{y(u, x)} N (du, x) at level z is then

estimated by the plug-in estimator given by

An(t) = /t L N(du)
o Y, (u,x)

If complete data are available and inverse probability weights are removed, this
estimator reduces to the well-known Nelson-Aalen estimator. Note that multiplying
and dividing by P(X = z) within the integral of A(¢|x) does not change A(t|z) and
hence this can be interpreted as the conditional cumulative hazard function given
X ==z

The survival function is the product limit integral of the cumulative hazard
function. In fact, the Kaplan—Meier estimator is the product limit integral of the
Nelson-Aalen estimator. Following the same idea, we obtain our estimator as the
product limit integral of A, given by

A R AN (u,x)
S (t|z) = = Ak, (ula) ) = _ LulVnw3) L
0= I {rmahinn) = 11 {1 Vo) }

0<u<t 0<u<t
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where A, f(x,y) is the jump f(z,y)— f(x—,y) of f at x for a fixed y throughout the
paper. This estimator is easily computed from standard software for the Kaplan—

Meier estimator with weights &; /m;.

3. LIMITING DISTRIBUTIONS

To construct confidence bands, we first compute limiting processes of A, and
S,,. Results in this section and Section 4 are presented in a general form in the
sense that we allow strata S;s to be arbitrarily formed by available variables for all
n subjects with different probabilities. Note that the definitions of N Z and ?Z also
change accordingly. For example, one can consider an outome independent stratum
S; = {0 : U € Uy} or stratified sampling of cases with S; = {0 : A =1,U € Uy}
for some k. This generality allows us to extend our results to the exposure stratified
case-cohort study discussed in Section 5.

To obtain limiting processes, we assume

Condition 1. (a) Survival time T and censoring time C are conditionally inde-

pendent given X .

(b) Sampling probabilities m;/n; converges to a constant p; >0 as n — 0.

(¢) There exists T > 0 such that P(T < 71,X = z) < 1 for all levels X = .

The first condition is standard with complete data. Sampling fractions m;/n; are
at the disposal of the study investigator and it is natural to assume the existence
of their limits as in Breslow and Wellner (2007). The third condition concerns a
range of confidence bands.

Because A, and S, are functions of N, and Y, we first compute their limiting

distributions.

Lemma 1. Under Condition 1, n'/*{N, (-,z) = N'(-,z),Y . (-,x) — Y(-, )} weakly

converges to Gaussian processes {GY (-, x), GY(-,z)} in (D0, 7])? where D0, 7] is
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the class of cadlag functions on [0,7] equipped with the uniform norm and each

process is a linear combination of zero-mean Gaussian processes of the form
)M
N N J N
& - ¥+ Z{ 2l ey,

G)}

y —bj v y
G +Z{ } GY.

Here pairs of Gaussian processes (GN,GY), (GY,GY),...,(GY,GY) are all inde-

pendent. The covariance function for (GN,GY) is
EGN (s,2)GN (t,2) = N(s A t,z) — N(s,2)N (¢, z),
EGY(s,2)GY (t,x) = V(s Vt,z) — V(s,z2)Y(t, z),
EGN(S,ZL’)Gy(t,{E) = {N(S, CU) - N(t_vx)}j(t < 8) - N(va)y(tvl')v
and covariance functions for ((GN Gy) j=1,....J, can be similarly obtained by

replacing the probability P(-, X = z) in N and Y above by the conditional probability

P(-, X =z|0O € S;) given stratum membership in S;.

In the setting of outcome dependent stratified sampling discussed in Section 2,
all cases are selected (i.e., p1 = 1) and Ss,..., S are characterized by A =0 (i.e.,
P(IT'<z,A=1,X=2z|0€S;)=0for j=2,...,J). Thus, the limiting processes

can be simplified to
GY = oV

1/2
y vi(l = pj y
G +Z{ } GY.

GLV

A straightforward application of the functional delta method (see, for example,
Section 3.9 of van der Vaart and Wellner (1996)) yields the following asymptotic

result.
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Theorem 1. Under Condition 1, n*/2{A,(-|z) — A(-|z)} converges weakly to the

zero-mean Gaussian process L in D0, 7] given by

i) = [ Gt - [ S ),

and n/2{S,(-|z) — S(-|z)} converges weakly to the zero-mean Gaussian process S

in D0, 7| given by _
st =5t [

4. SIMULTANEOUS CONFIDENCE BAND

The basic idea in constructing a confidence band is to obtain ¢;_, such that

P ( sup n'/? ‘S’n(ﬂx) - S(t|m)’ < q1a> —1—a, n— oo,
te(0,7]

from which the large sample 100(1 — «)% confidence band is obtained as

Su(tlz) —n~Y2q o < S(tx) < S, (t|lz) + n~Y2q o, allte[0,7].

Unlike the analysis of complete data, our complicated limiting process S cannot
be reduced to other well-known Gaussian processes, and hence the quantiles of
SUPyco,-] [S(t|z)| are not analytically available. An alternative method is approxi-
mate nl/Q(gn —5), but no bootstrap method is available for our setting.

To estimate g1_,, we propose to approximate the limiting process S through
simulation and bootstrap. This proposal is based on the observation that S can be
decomposed into two independent Gaussian processes. By Lemma 1 and Theorem 1,
the limiting process IL can be written as the sum of independent Gaussian processes

given by L(:|x) = L;(:|z) + La(-|z) where

GN du, )

o Y(u,x) /{yu:c}2 (du, ),

J N . y
lg) — v;(1—p;) " Gy (du, :1:) Gy (u, ) .
Lt = {5 3 { , wa o Doy )}'

Jj=1

L () =
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We can then write the limiting process S as the sum of two independent Gaussian

processes given by S(-|z) = S1(+|x) + Sa(+|x) where

" dLy(ulz " dLo(ulz

Sl = 510 [ TN sale) = s(le) [ D
The key idea is to directly simulate S; and to bootstrap certain quantity described
below to approximate So. Independence of S; and S; guarantees the validity of
separate approximation.

This decomposition reflects two sources of randomness. The process S; rep-
resents randomness due to sampling from the infinite population. In fact, this
process is the exactly the same as the limiting process of the Kaplan—Meier esti-
mator when complete data woud be obtained Breslow and Crowley (1974). The
process So thus represents randomness due to additional sampling from strata.
This interpretation leads to the decomposition in the estimator with the hypothet-
ically computed standard Kaplan—Meier estimator S,, from complete data of size
n. Since n'/2(S, — 8) = n*/2(S, — S) +n/2(S, — S,,), the process n*/2(S, — )
and n'/ Q(S'n — S,) weakly converge to S; and Sy respectively.

The well-studied process S; is the zero-mean Gaussian process with a covariance

function p(s,t|z) at times s and t given by

plovthe) = S(elo)Sei) [ Jm

This covariance function can be estimated by the consistent plug-in estimator

pn(s,t|z) = Sy (s]2)Sn (t]2) /O VWJZ)(?(Z)_ )

If we remove the inverse probability weights, this estimator reduces to the well-
known Greenwood’s formula. We generate a zero-mean Gaussian process Sn,l with
the estimated covariance function py (s, t|z).

Unlike S;, the process S, is not a Gaussian martingale in general, and its compli-
cated covariance function cannot be estimated by Greenwood’s formula. Instead,

we approximate Sy by bootstrapping n'/ Q(S’n — S,,) which weakly converges to Ss.
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The bootstrap procedure we use is the extension of Gross’ bootstrap Gross (1980)
by Bickel and Freedman (1984). There are other bootstrap methods (see e.g. Booth
et al. (1994); Chao and Lo (1985); Mashreghi et al. (2016); Sitter (1992)) for the
finite population but the weak convergence of bootstrap empirical process is only
proved for Gross’s bootstrap Saegusa (2015) which requires the theoretical prop-
erties of confidence bands. This bootstrap method concerns a finite population
sampling and is suitable for reproducing randomness only from stratified sampling
in our context. The basic idea of this bootstrap method is the following. If we
sample 50 subjects from 100 people without replacement, we double 50 selected
subjects to create a bootstrap population of size 100 from which 50 items are se-
lected without replacement into a bootstrap sample. The formal description is given
below.

Let W; be the count of how many times the ith subject is selected in a bootstrap
sample. For a subject with § = 0, W; = 0. For m; selected subjects in stratum
S;, suppose nj/m; is an integer k;. Then create a bootstrap population of size
n; = k;jm; consisting of k; copies of each selected subject in stratum S;. Select
m; subjects from the bootstrap population without replacement into a bootstrap
sample. This determines W; for the m; selected subjects. Suppose n; = mjk; +r;
where m; is a divisor and r; is a remainder. With probability s; = (1 —r;/m;){1—
rj/(n; — 1)}, create a bootstrap population of size k;jm; as before and sample
m; subjects without replacement. Otherwise, create a bootstrap population of
size (k; + 1)m; consisting of k; + 1 copies of each selected subjects and select
m; subjects without replacement. For the stratum &; in the outcome dependent
stratified design, all subjects are selected and hence W; = 1.

The bootstrap estimator of A and S are computed as

R ‘ 1 —b,
AZ(I$)=/ TNZ’ (du, ),
0Y, (u,x)

Sicley = T {1 auditulo} = TT {1_%(%@},

o<u<. o<u<-
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where

~b 1« i b, 1 — .
N, (t,z) = H;Wiiz\a(m), Y, " (t,z) = n;WiiYi(uw).
For bootstrapping nl/z(gn — Sp), we compute SnQ = nl/z(S’z — Sn)

The approximation of S by Sn71+§n,2 is asymptotically valid. However, sup,¢q ) [S(t|2)]
may have a jump at the lower end of the support of T' though S is sample continuous
Tsirelson (1975). To exclude the possibility that a jump occurs at g;_,, we assume
the following condition. A similar condition is imposed by Bickel and Krieger (1989)

for non-censored data.
Condition 2. The distribution of sup,¢c(o ;1 [S(t[x)| is continuous.

Theorem 2. Let ¢ > 0. Under Conditions 1 and 2,

P | sup
te(0,7]

We propose the following simulation-based procedure to construct confidence

Snyl(ﬂx) + Sng(t|x)‘ < q) - P ( sup [S(t|z)| < q) ,  asmn — oo.
tel0,7]

band.

Step 1. Generate Sml and Smg described above to obtain ¢1 ; = sup¢(g 1| |Sn71(t|x)+

Sn.a(t]|z)]-
Step 2. Repeat Step 1 B times and compute 100(1 —a)%tile §1—q o of ¢1 4, ... ,¢B 5.

Step 3. Compute our 100(1 — )% confidence band given by
(1) S(tlx) £n~ Y2 ., tel0,7].

The proposed confidence band achieves correct coverage probability asymptoti-

cally.

Theorem 3. Let o € (0,1). Under Conditions 1 and 2, as n — oo and B — oo,

P (Su(the) = 7241 a0 < S(ta) < Sultla) + 020 as tE[0,7]) 510
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The proposed confidence band has the same width at each time ¢ € [0,7]
but estimation of S is less reliable on the right tail. More desirable confidence
bands have smaller width for earlier time and larger width for later time. To
achieve this property, we can modify the proposed procedure by computing ¢ , =
SUPyc(o,7] {Sn.1(t|x) + S,o(t|z)}/f(t)] for a fixed positive and increasing function
f on [0,7] and obtain the corresponding 100(1 — a)%tile ¢i_,, ,. The resultant

100(1 — @)% confidence band of variable width is
(2) Su(tle) £n 2 ()3} 0 t€10,7].

In this paper, we use exponential functions for f in simulation and data analysis.
Choice of f possibly in an adaptive way deserves further investigation.

Note that n in the confidence band is the size of the entire cohort. In complete
data analysis, data are split by the exposure status X = x and n appearing in the
confidence bands is the size of split data. In our design, the inverse probability
weighting corrects for biased sampling and the size of the entire cohort appears in

the computation of the limiting distribution.

5. ADDITIONAL RESULTS

5.1. Variance Estimation. In the previous section, we develop the method of
constructing confidence bands for survival functions. The same idea naturally ap-
plies to a simpler question of variance estimation. Consider estimating a variance
of S, (t|z) at a fixed t € (0,7]. It follows by Theorem 1 and discussion in Section
4, n'/2(8(t|x) — S(t|x)) converges in distribution to the sum of independent vari-
ables Sy (t|x) and Sy(¢|z). The variance of Sy (¢|x) is p(t,t|z). This is estimated by
the weighted Greenwood’s formula py, (¢, ¢|x). For variance of Sa(t|x), we generate
bootstrap estimator n'/2 (S (t|z) — S, (t|x)) of n'/2(8,(t|z) — S, (t|z)) and compute
its sample variance. Adding these quantities and dividing them by n, we obtain

our variance estimator of S, (t|z).
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For two-phase cohort studies, Rebora and Valsecchi (2016) studied the variance
estimation of the weighted Kaplan-Meier estimator assuming the continuity of the
survival time. They computed the limiting process as S; for general complex sam-
pling, not S; + Ss, from which they considered two terms for variance estimator.
The first term is essentially the same as our weighted Greenwood’s formula derived
from S;. They instead used S; to obtain the second term as conditional variance
of the sampling indicators in A, given (T;,A;),i = 1...,n. Given the two-phase
framework in survey sampling Rubin-Bleuer and Schiopu Kratina (2005), this es-
timator that captures two sources of randomness seems reasonable. They also
proposed an alternative to the second term by the linearization Demnati and Rao
(2004, 2010). Both estimators for the second term is based on standard techniques
in survey sampling for the analysis of sums and totals. It is of a theoretical interest
to study asymptotic properties of their estimator because it is not straightforward

to see how those techniques behave when applying to random functions.

5.2. Exposure Stratified Case-Cohort Study. Our methodology is easily ex-
tended to the exposure stratified case-cohort study Borgan et al. (2000) with
the modification of strata. Data from the exposure stratified case-cohort study
are a stratified sample from the entire cohort and all other cases not selected
from stratified sampling. Borgan et al. (2000) considered three estimators for
the Cox model but one of those estimator (Estimator I) only uses a stratified
sample. In this case, one can view the exposure stratified case-cohort design
as stratified sampling without dependence on outcomes. Consider stratification
Si ={0 :U € Us},...,S85-1 = {0 : U € Uy with m;; = m;/n; if O; € S,
7 =1,...,J . Then we can compute the inverse probability weighted Kaplan-Meier
estimator in the same way as above. The limiting process takes the same form
with a modification of {GX (-, 2),GY (-, )} that only reflects different definitions of
strata in Lemma 1 and Theorem 1. The methodology for confidence bands and
variance estimation can be carried out in the same way as above. A limitation of

this approach which also holds for Estimator I of Borgan et al. (2000) is that we
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do not fully use all available data of cases. Especially when the event is rare, a
stratified sample may not contain enough cases so that resultant confidence bands
would be unstable. An extension that accommodates all cases is desired in the

future research.

6. SIMULATION STUDY

We performed a simulation study to evaluate the finite-sample performance of the
proposed methodology. The failure time T is generated from the Cox proportional
hazards model with two independent binary covariates (V, X') with same prevalence
30%. The auxiliary binary variable U is related to X with sensitivity and specificity
0.9. The baseline hazard functions corresponds to the Weibull distribution with
parameter o = 0.2 and 8 € {0.5,1,3}. The regression coefficients are both log 2.
The censoring variable C' follows the uniform distribution on [0, ¢] where ¢ is selected
to achieve heavy censoring proportion of 80%. Three strata are considered with
S ={0:A=1},85={0: A=0,U =0} and S3 ={0: A =0,U = 1}.
All cases are selected from S&; and 30 percent of subjects are selected without
replacement from Sy and S3 respectively. Confidence bands were constructed over
the interval [0, c—.2] 500 times where each was based on 3000 iterations to generate
SnJ and Sn,g. In addition to the equal-width band (1), we created an variable-width
band (2) with f(t) = exp(t).

Table 1 shows simulated coverage probabilities of the proposed confidence bands
at the nominal level 95%. The variable-width bands achieve accurate coverages even
for smaller sample sizes in general, showing superior performance over the equal-
width bands. The equal-width bands show reasonable performance in most settings
where coverage is improved with a larger sample size. The coverage probabilities
for this method are generally closer to the nominal level at X = 0 than X =1
because there are fewer cases for the group with X = 1 in the final sample. On
average, censoring proportions are about 60 percent and 45 percent for groups with

X =0 and X =1 in the final sample, which yields about 88 cases and 35 cases
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respectively when n = 500 and about 175 cases and 69 cases respectively when
n = 1000. When 8 = 3, a larger sample size is required for more accurate results
but relatively poor performance of equal precision bands compared to settings with
B =0.5 and g =1 indicates that this setting is most difficult among three.

Figure 1 presents four different confidence bands based on the data sets generated
with the Weibull distribution with 8 = 0.5 and 8 = 3. In addition to our method, we
consider Nair’s equal-precision bands Nair (1984) and Hall-Wellner bands Hall and
Wellner (1980) for the i.i.d. setting. For these methods, we additionally generated
the i.i.d. sample of size comparable to our final sample sizes. Note that we cannot
apply these methods to the same stratified data because unweighted Kaplan-Meier
curves are biased and do not lead to the fair and meaningful reference. All methods
contain true survival curves. The width of the equal-width bands are narrower than
all other methods on the right tail. The failure to account for increasing uncertainty
in estimation of the survival curves on the right leaves room for improvement to
the variable-width band. The variable-width bands are narrow on earlier time and
increase their width as time progresses. Both methods have reasonable shapes
compared to other two methods with complete data. For graphical representation,
upper limits of the bands, when exceeding 1, are reduced to 1. For the variable-
width bands, upper or lower limits may be increasing on some time intervals. Since
survival curves are decreasing, we force limits of the bands to be decreasing by

choosing smallest values on the left.

7. APPLICATION

We apply our method to analyze the the national Wilms tumor study Green
et al. (1998) where 3915 patients with Wilms tumor were followed until the disease
progression during 1980-1994. The outcome of interest is time to relapse of cancer
in years. Nine strata were formed based on case status defined by tumor relapse, age
at diagnosis (less than a year old or older), stage of cancer (I and II, or IIT and IV),

and histology measured at the hospital (favorable or unfavorable). All patients were
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selected except three strata with favorable histology. From the stratum of children
less than a year old with early stage of cancer, 120 patients were selected from 452
patients. From the stratum of children older than a year old with early stage of
cancer, 160 patients were selected from 1620 patients. From the stratum of children
older than a year old with advanced stage of cancer, 120 patients were selected
from 914 patients. In total, 1329 patients were selected consisting of 669 cases
and 660 controls, and their histology was measured again at the central reference
laboratory, which is considered as the gold standard. Owur goal is to construct
confidence bands of two relapse-free survival curves with favorable and unfavorable
histology measured at the second time. To determine confidence bands, we repeated
our simulation and bootstrap 1000 times. For the variable-width confidence bands,
we used f(t) = exp(t/22) based on the maximum censored time is 22 years.
Figure 2 shows inverse probability weighted Kaplan-Meier estimators and cor-
responding confidence bands. Both estimates show more relapse of cancer short
time after the first onset, and then reach a plateau. The drop in relapse-free sur-
vival probability is clearly larger for the group with unfavorable histology, which
indicates histology is an important predictor of cancer relapse. This finding was
confirmed by Breslow et al. (2009) in their proportional hazards regression analysis.
Our proposed confidence bands provide uncertainty of estimates in this graphical

comparison. Both bands are comparable due to a large sample size.

8. DiscussioN

In this paper, we propose the method of constructing the confidence bands for
the survival functions over the interval based on the inverse probability weighted
Kaplan-Meier curves. The proposed method is the first valid confidence bands in
survival analysis when data are collected from outcome-dependent sampling design
with sampling without replacement. Despite the simplicity of weighted Kaplan-
Meier curves, great challenges for constructing valid confidence bands are (1) the

difficulty in deriving the limiting distribution in the presence of dependence, and (2)
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the lack of analytical formulae for quantiles of the supremum of general Gaussian
processes. For the first issue, we apply the uniform central limit theorem and
the functional delta method from the special empirical process theory for two-
phase stratified samples Breslow and Wellner (2007); Saegusa and Wellner (2013)
(see the supplementary materials for the distinction in the meaning of two-phase
sampling in biostatistics and survey sampling). For the second issue, we separate
the limiting process according to different sampling phases. We then approximate
the limiting process corresponding to sampling from the infinite population by
simulating the estimated limiting process itself, while we adopted the specialized
bootstrap procedure in the finite population sampling for the rest of the limiting
process. The proposed procedure showed good coverage in simulation studies.

A limitation of our approach is computational costs arising from both simulat-
ing Gaussian processes and bootstrapping stratified samples. One potential way
to reduce computational costs is to omit one of the two extensive computations.
For example, if one constructs a new bootstrap method that reproduce randomness
from sampling from the infinite population and subsequent sampling from strata at
the same time, simulation on Gaussian processes can be omitted. Or if one analyti-
cally simplifies the linear combination of Gaussian processes to the single Gaussian
process, one have only to generate the resultant Gaussian processes. In this paper,
we provide a simple method to take care of distinct randomness separately, but
these directions are worthwhile to explore in the future research.

There are several other directions for further work. In the i.i.d. setting, the confi-
dence bands for the conditional hazard and survival functions have been extensively
studied when covariate are available (see Dobler et al. (2019) and reference therein).
Because regression modeling sheds further insight on survival data, constructing
similar confidence bands in our setting facilitates the use of cost-effective outcome-
dependent stratified designs in public health research. The limiting distribution of
the conditional hazard function was shown to be the linear combination of Gaussian

processes Breslow et al. (2015) as in our case. Our approach demonstrated in this



20 SAEGUSA AND NANDORI

paper with certain modifications is expected to address this challenging question.
Another direction of research is to consider different sampling designs. Because
our method counts on empirical process theory for outcome-dependent stratified
sampling, different designs require different empirical process theory. Furthermore,
our bootstrap method for sampling without replacement must be replaced by new
bootstrap methods specializing in different sampling designs.
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FI1GURE 1. Confidence bands for survival curves at X = 0 with
n = 1000 and B = 0.5 (left panel) and 8 = 3 (right panel).
Solid lines for true survival curves, wide dashed lines for the equal-
width bands, wide dotted lines for the variable-width bands, nar-
row dashed lines for the Hall-Wellner band, and narrow dotted
lines for Nair’s equal precision bands
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FIGURE 2. Weighted Kaplan-Meier estimators and confidence
bands for survival curves with favorable histology (left panel) and
unfavorable histology (right panel) based on data from the national
Wilms tumor study. Dashed lines for equal-width bands, dotted
lines for variable-width bands
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TABLE 1. Empirical coverages of 95% confidence bands in different

data generating mechanism.

X B | n m | equal wvariable
X=0/05]500 |[146]91.8% 93.6%
1000 | 292 | 94.8%  95.0%

1 500 |146[95.5% 96.6%

1000 | 293 | 95.8%  94.4%

3 500 |146[93.9% 95.1%

1000 | 291 | 93.8%  95.4%
X=1/05[500 |77 [93.6% 94.4%
1000 | 154 | 94.4%  94.8%

1 [500 [76 [93.8% 96.6%

1000 | 153 | 94.7%  94.6%

3 [500 |73 [91.0% 97.2%

1000 | 147 | 91.9%  95.4%
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