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Abstract—Unsupervised domain adaptation (UDA) has become
an appealing approach for knowledge transfer from a labeled
source domain to an unlabeled target domain. However, when
the classes in source and target domains are imbalanced, most
existing UDA methods experience significant performance drop,
as the decision boundary usually favors the majority classes.
Some recent class-imbalanced domain adaptation (CDA) methods
aim to tackle the challenge of biased label distribution by exploit-
ing pseudo-labeled target samples during the training process.
However, these methods suffer from the issues with unreliable
pseudo labels and error accumulation during training. In this
paper, we propose a pairwise adversarial training approach
for class-imbalanced domain adaptation. Unlike conventional
adversarial training in which the adversarial samples are ob-
tained from the ¢, ball of the original samples, we generate
adversarial samples from the interpolated line of the aligned
pairwise samples from source and target domains. The pairwise
adversarial training (PAT) is a novel data-augmentation method
which can be integrated into existing unsupervised domain
adaptation (UDA) models to tackle the CDA problem. Inspired
by the noise injection, we also extend the pairwise adversarial
training to noisy pairwise adversarial training (nPAT), in which
the random noise is injected into the generation of the adversarial
samples. In our study, we evaluate our proposed methods as well
as the baselines on three major benchmark datasets, namely
Office-Home, DomainNet and Office-31. For Office-Home and
Office-31, we sample the data according to the Reversely-
unbalanced Source and Unbalanced Target (RS-UT) protocol
so that the class distribution can be imbalanced. The extensive
experimental results show that UDA models integrated with our
proposed nPAT can achieve prominent improvements on most
tasks compared to the baseline methods as well as the state-of-
the-art CDA methods. The average accuracy of our nPAT can
achieve 66.56% and 80.22% on Office-Home and DomainNet,
respectively, which are higher than that of the second-best
methods. Besides, Experiments also show that our method is
robust to the unreliability of the pseudo labels.

Index Terms—Imbalanced domain adaptation; adversarial
training; semantic alignment

I. INTRODUCTION

Domain adaptation (DA) aims to alleviate the domain gap
between source and target domains. Recent years have wit-
nessed the significant progress of DA based on deep neural
networks [1]-[10]. Most of existing DA methods are belong
to unsupervised domain adaptation (UDA) which targets to
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Fig. 1: Mlustration of label distribution shift in DomainNet.

achieve knowledge transfer from a labeled source domain to
an unlabelled target domain. These methods usually assume
that only covariate shift occurs in the source and target
domains, while the label distributions in two domains are
identical. However, this assumption may not hold in real-world
applications. For instance, in wild-life pictures, the commonly
seen animals such as rabbit and deer appear more frequently
than the rare animal such as panda and crocodile. Public
datasets such as DomainNet [11] and and MSCOCO [12]
exhibit imbalanced class distribution. Figure 1 illustrates the
imbalanced label distributions in the Real domain and Sketch
domain from the DomainNet dataset [11].

To address the issue of imbalanced label distributions in
domain adaptation, some recent studies [13]-[15] try to jointly
model the conditional feature distribution shift and label
distribution shift (LDS). This problem is referred to as Class-
imbalanced Domain Adaptation (CDA). Let z and y denote the
samples and labels, respectively. p and g separately represent
the probability distributions of source and target domains.
The common assumptions in UDA involve the covariate shift
(ie., p(x) # q(z)) and identical label distribution (i.e.,
p(y) = q(y))- In CDA, however, apart from the covariate
shift, both the conditional feature shift and label shift exist,
ie, p(z | y) # a(z | y), p(y) # q(y). Obviously, CDA is
more challenging than UDA.

Recent studies [14] have demonstrated that the mainstream
UDA methods suffer significant performance drop, as the
classifier favors the majority classes. Only a few CDA ap-
proaches have been proposed by far. According to the previ-
ous work [14], the negative effect of label shift is reduced
by exploiting the pseudo labelled target samples via self-
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training. The previous work [15] used an implicit sampling
method based on pseudo labels to align the joint distribution
between features and labels. The previous work [14], [15]
that aims to solve the class-imbalanced domain adaptation
commonly adopted the pseudo labels for the data from target
domain. However, one critical problem of these methods is
that the pseudo labels are likely to suffer from ill-calibrated
probabilities [16], especially in the early beginning of the
training process. And thus the unreliable pseudo labels cause
error accumulation during the training process, which largely
degrades the model performance. In our proposed method,
the pseudo labeling technique is also adopted. However, since
the target data with pseudo labels is not directly utilized in
our training procedure, the problem of the error accumulation
caused by the pseudo labels can be alleviated considerably.
Augmenting training data has been proven as an effective
strategy to tackle the issue of biased label distributions in
class-imbalance learning [17], [18]. In addition to the tra-
ditional data augmentation techniques, adversarial training is
also capable of generating semantically meaningful synthetic
samples that help enhance the robustness of models. However,
these approaches only consider a single domain, and they
cannot be directly applied to solve the CDA problem. In
the previous study, Shi et al. [19] proposed a pairwise ad-
versarial training (PAT) approach that augments training data
for class-imbalanced domain adaptation. Unlike conventional
adversarial training in which the adversarial samples are
obtained from the £, ball of the original samples, the semantic
adversarial samples are generated by convex combinations of
the aligned pair-wise samples from source and target domains
to alleviate the gap between the two domains. Recently, Xu
et. al. [20] proposed the Noisy Feature Mixup (NFM) [20] in
which the synthetic data is generated by the noise-perturbed
convex combinations of pairs of data points and suggested that
NFM [20] can achieve a better regularization effect than that of
mixup [21]. Inspired by the NFM [20], in our study we propose
the noisy pairwise training (nPAT) in which the random noise
is injected in the generation of the interpolated adversarial
sample to tackle the class-imbalanced domain adaptation prob-
lem. Due to the noise injection during the data augmentation
process, the new synthetic data show a better regularization
effect than that of PAT [19] on the biased decision boundary
in CDA problem and extensive experimental results suggest
that our proposed nPAT can achieve better performance than
that of PAT [19] on most tasks. At last, a class-imbalanced
semantic centroid alignment strategy is designed to explicitly
align the source and target domains in the feature space.
This paper is a substantial extension of our previous
work [19]. In our work, we propose a novel noisy pairwise
adversarial training (nPAT) approach to generate the noisy in-
terpolated adversarial samples to alleviate the gap between the
imbalanced source domain and target domain. In addition, The
experiments on multiple benchmark datasets are performed
and the experimental results reveal the superiority of our
nPAT over the previous PAT [19] method. Overall, the main
contributions of this paper are four-fold. (1) We propose a
novel pairwise adversarial training approach that generates ad-
versarial samples from pairs of samples across the source and

TABLE I: Primary notations used in the paper

Notation | Definition
Dy the labeled source domain
Dr the unlabeled target domain
N2 (NY) the number of the source data (target data)
z° (z%) the original source data (target data)
y° the ground-truth label of source data
gt the pseudo label of target data
gadv a interpolated adversarial sample (IAS)
gnadv a noisy interpolated adversarial sample (nIAS)

A the learnable mixup ratio

é the perturbation added on the original data
gmult (gaddy the random multiplicative (additive) noise
Ot (0a44) | the pre-specified multiplicative (additive) noise level

ce source centroids
Ct target centroids
Ps probability threshold for generation of synthetic data
Ny the number of samples from kth class
Lypa loss function of existing UDA methods

Leg cross-entropy loss function
Lras loss function for generation of IAS
Loaras loss function for generation of nIAS
Loa centroid alignment loss function
a, 3 coefficients of loss functions

target domains, and further exploits these samples to augment
training data. When dealing with imbalanced training data, the
PAT can be integrated into existing domain adaptation models
to improve the performance. (2) A new optimization algorithm
is proposed to solve the pairwise adversarial training problem.
(3) We extend the pairwise adversarial training by injecting
the noise in the generation of the interpolated adversarial
samples. (4) We conduct extensive evaluations on benchmark
datasets, and results show that our approach obtains competing
performance compared with the original models and state-of-
the-art CDA methods. Besides, experiments also show that our
approach is robust to the unreliability of the pseudo labels.
The paper is organized as follows. In Section II we talk
about the related work. In Section III we thoroughly discuss
our PAT and nPAT methods, the relevant algorithm and the
corresponding theoretical explanation. The experimental re-
sults and the ablation study are illustrated in Section IV.

II. RELATED WORK

In this section, we first give a brief description about unsu-
pervised domain adaptation. Then, we introduce the existing
work in class-imbalanced domain adaptation. Last, we review
the relevant topic, i.e., adversarial training.

A. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) aims to transfer
the knowledge learned from a labeled source domain to an
unlabeled target domain. As UDA is very useful when label
information of target domain is unavailable in new application
scenarios, it has received increasing attention in recent years.
We roughly divide the UDA techniques into two groups:
discrepancy-based methods and adversarial-based methods,
and review them respectively.

The discrepancy-based methods usually aim to align source
and target feature distributions in the embedding space by
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using various statistical distance metrics, e.g., Maximum
Mean Discrepancy (MMD) [22], [23], Correlation Alignment
(CORAL) [24], [25], and Wasserstein Distance (WD) [26].
[27], to explicitly minimizing different statistical divergences.
The deep adaptation network (DAN) [28] maps both source
and target deep features into reproducing kernel Hilbert spaces
(RKHS) and minimizes the MMD to reduce the discrep-
ancy between both domains. The joint adaptation networks
(JAN) [29] aligns source and target domains under multiple
domain-specific layers with a joint MMD criterion. The deep
CORAL [30] extends CORAL to deep neural networks and
minimizes the difference in second-order statistics between
source and target distributions. The Wasserstain distance
guided representation learning (WDGPL) [31] minimizes the
estimated WD between the source and target deep features in
an adversarial manner. Wang et al. [32] theoretically reveals
the relationship between the MMD [22], [23] and discrim-
inative distances to each other. And degradation of feature
discriminability induced by the MMD can be mitigated by the
proposed discriminative MMD method [32].

The adversarial-based methods [33], [34] focus on learning
domain invariant features via domain adversarial training. The
intuitive idea is that the learned source and target features
should be indistinguishable for the domain classifier. The
adversarial-based methods [35] have shown advanced adapta-
tion ability over discrepancy-based methods. The adversarial
discriminative domain adaptation (ADDA) [36] utilizes two
feature extractors for source and target domains, respectively,
to learn discriminative target features by fooling the domain
discriminator. The conditional domain adversarial network
(CDAN) [37] exploits discriminative information provided
by the classifier to help adversarial adaptation under multi-
modal distributions. Recently, the margin disparity discrepancy
(MDD) [38] proposes a novel measurement under the rigor-
ous generalization to bridge the gaps between theories and
algorithms for domain adaptation, which can be seamlessly
integrated into adversarial-based methods. Adversarial entropy
optimization (AEO) [39] learned domain-invariant features by
jointly unifying the minimax entropy with the conditional ad-
versarial network. In the AEO framework, the feature extractor
and the domain discriminator are trained through the mini-
mization of the independent samples and maximization of the
combined samples. Chen et al. [40] proposed domain adversar-
ial reinforcement learning (DARL) framework to address the
partial domain adaptation problem. In the DARL framework,
deep Q-learning is employed for the selection of the proper
source samples to ensure the positive transfer from the source
domain to the target domain. Yu et al. [41] suggested that the
decision boundary generated by bi-classifier paradigm would
favor the source domain. To tackle this problem, the uneven
bi-classifier learning [41] is proposed to refine the decision
boundary by leveraging the F-norm of classifier predictions.
Mei et al. [42] proposed an automatic loss function search
for adversarial domain adaptation (ALSDA) [42] to mitigate
the degradation of the domain discriminators caused by the
dominating gradients of aligned target samples during training.
In the new loss an adjustable hyper-parameter is introduced to
re-weight the gradients assigned to target samples.

Li et al. [43] tackle the unsupervised domain adaptation
problem from the perspective of adversarial learning and argue
that the samples from the target domain can be regarded as the
visually limitless, naturally occurring adversarial samples from
the source domain. By incorporating the adversarial examples
into the training, the model could achieve better generalization
ability on the target domain. Though the adversarial examples
are both adopted in the previous work and ours, our method is
distinct from the previous one. First, conventional adversarial
examples are typically £,-bounded, while our noisy interpo-
lated adversarial samples (nIAS) are generated on the line
between the perturbed source data and target data. Compared
to the conventional f,-bounded adversarial examples, our
nIAS can be regarded as the transitional data between source
domain and target domain. Our new synthetic data could better
fuse the semantic information from the target data and bridge
the gap between the source domain and target domain. Second,
in our work we focus on unsupervised class imbalance domain
adaptation in which the class distribution in either source
domain or target domain is biased. To tackle the imbalance
issue, a dynamic data generation technique is adopted in our
work to alleviate the bias. While the previous works focus
on the conventional UDA problem, and there is no relevant
method to deal with the imbalance issue in these works.

Apart from the traditional domain adaptation methods that
assume that both domains share the same class space, recent
works [44]-[46] consider some more realistic settings such
as open-set domain adaptation (OSDA) and universal domain
adaptation (UniDA). In OSDA the target domain includes the
unique categories which are unseen in the source domain
while in UniDA both domains contain the private classes.
Li et al. [44] pointed out the limitation of current open-set
recognition benchmarks and suggested that the ambiguous
definitions of semantic classes in the current datasets hinder
the progress in this field. As a result, the fine-grained visual
categorization (FGVC) [44] datasets that provide more clear
definitions of semantic classes are proposed. Furthermore, Li
et al. [44] proposed the weighted discriminative adversarial
network with dual classifiers (WDAN) framework [44] which
aims to recognize unknown classes by learning the domain-
specific discriminative information via adversarial training. To
tackle the challenges in universal domain adaptation, a simple
GAN-based architecture [45] is proposed to transform features
into the latent representations that contain domain-relevant
information. Besides, Lv et al. [45] proposed new objectives to
enable the discriminator to distinguish the representations of
common classes and private classes in both domains. Different
from the works aforementioned, our work focused on class-
imbalanced unsupervised domain adaptation in which the class
distributions of both domains are imbalanced and we proposed
new adversarial training to generate the synthetic samples to
refine the biased decision boundary during the training.

B. Class-imbalanced Unsupervised Domain Adaptation

As a branch of domain adaptation, the class-imbalanced
unsupervised domain adaptation (CDA) aims to deal with data
with biased class distribution. This task is more challenging
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Fig. 2: Illustration of Pairwise Adversarial Training (PAT). Proposed PAT consists of a feature extractor G and an optimal
classifier F'. It also includes four losses: interpolated adversarial samples loss L7 45, centroid alignment loss L 4, cross-entropy
loss Lo, and unsupervised domain adaptation loss Ly p 4 which represents existing unsupervised domain adaptation methods.
A is the learnable hyper-parameter in Eq. 2 which controls the generation of the adversarial samples and dynamically updated

by maximizing Lras.

than conventional unsupervised domain adaptation (UDA)
since it is more difficult to align the minority classes from
two domains than that of majority classes. One of the first
CDA methods [14] is proposed by exploiting the pseudo
labelled target samples to reduce the negative effect of label
shift. Wu et al. [13] proposed the asymmetrically-relaxed
distance as replacement of the standard one under biased label
distribution. Jiang et al. [15] adopted the implicit sampling
strategy to ensure class alignment at the minibatch level.
The previous work [47] avoided the use of highly unreliable
pseudo labels by assessing the reliability of target samples with
predictive consistency under random image transformations.
Apart from the prior generalization bounds theory [48] on
the unsupervised domain adaptation, The early works [1],
[49], [50] separately provided the generalization bound for
the CDA problem. Specifically, the former work [1] is the first
to propose the generalization bound for the class-imbalanced
unsupervised domain adaptation. Their generalization bound
theory suggests that the error bound only depends on the
complexity of the function class. Another work [49] suggested
there exists a domain-invariant feature representation between
source and target domains under generalized label shift (GLS).
Under the GLS condition, the error bound can be decomposed
into the sum of balanced error rate and conditional error
gap. Lipton et al. [50] further proposed e Black Box Shift
Estimation (BBSE) to detect the unknown label distribution
of the target data and adjust the model accordingly.

C. Adversarial Training

Adversarial training (AT) [51]-[53] is an effective regular-
ization method for enhancing the robustness and generalization
ability of deep learning models. In particular, adversarial
samples are incorporated in the model training process, which
are intentionally designed to deceive the deep learning model
by adding small perturbation on the original samples. How-
ever, extensive research [54]-[57] has revealed that adversarial
training may compromise the generalization accuracy of the
neural network and is also susceptible to overfitting. Recently,
some work has made some modifications to the conventional

adversarial training proposed by [53]. For instance, PAT [58]
attempted to alleviate the harm of adversarial training to the
generalization ability of the models by putting an early stop
to the search of the adversarial examples. TRADES [56]
resolved the conflict between natural accuracy and robustness
by making a trade-off between the classification error and
boundary error.

Apart from the application of the adversarial training in
supervised learning, some work [59], [60] extend the adversar-
ial training to unsupervised training. The previous work [59]
suggested that both the natural accuracy and the robustness
can be improved by learning from more unlabelled data
and they proposed the RST framework to jointly combine
the adversarial training with the self-training method. Virtual
adversarial training (VAT) [60] seeks the adversarial direction
for regularization without using label information. Both AT
and VAT have been employed to tackle the standard UDA
problems [61]. However, to the best of our knowledge, our
work is the first attempt to address the class-imbalanced
domain adaptation problem using adversarial training.

III. PROPOSED APPROACH

In this section, we start by introducing the CDA problem
and presenting notations used throughout the paper as summa-
rized in Table I in Section III-A. Then, we introduce the pair-
wise adversarial training (PAT) in Section III-B, including the
interpolated adversarial sample generation in Section III-B1,
centroid alignment in Section IT1I-B2 and the loss function of
PAT in Section III-B3. In Section III-C we introduce the noisy
pairwise adversarial training (nPAT), which is an extended
version of the original PAT. Finally, we theoretically analyse
the proposed method in Section III-D.

A. Problem Definition

In class-imbalanced domain adaptation, both the source
and target domains suffer from label distribution shift. We
are given a source domain Dg = {(zf,yf)}N, with N*
labelled samples and a target domain Dy = {z!},", with N*
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Fig. 3: (a) Nlustration of interpolated adversarial samples, which lies on the interpolated line of the source and target samples
with the same semantic information. Adversarial samples can alleviate the bias of the decision boundary. (b) Without centroid
alignment, adversarial samples may easily violate the decision boundary. (c) With centroid alignment. the problem of violating

the decision boundary can be alleviated.

unlabelled samples. Each domain contains K classes, and the
class label is denoted as y* € {1,2, ..., K'}. Let p and ¢ denote
the probability distributions of the source and target domains,
respectively. We assume that both the covariate shift (ie.,
p(x) # q(z)) and label distribution shift (i.e., p(y) # q(y) and
p(z | y) # q(z | y)) exist in two domains. The model typically
consists of a feature extractor ¢ : X — Z and a classifier
f:Z — Y. The predicted label § = f(g(z)) and empirical
risk is defined as e = Pr,.p(4§ # y), where y is ground-truth
label. The source error and target error are denoted as eg and
er, respectively. Our goal is to train a model that can reduce
gap between source and target domains and minimize eg and
er under label distribution shift.

B. Pairwise Adversarial Training (PAT)

We investigate how to mitigate the challenging issue of label
distribution shift in CDA, as illustrated in Figure 1. Previous
study [14] finds that the performance of the model on the target
domain significantly drops when the source and target domains
are imbalanced. An intuitive solution is to augment the training
data in two domains, such that the model training would not be
dominated by the majority classes in either domain. However,
this task is not trivial, considering the mixed effects of domain
gap and imbalanced class distributions.

Inspired by adversarial training, we aim to alleviate the im-
balanced problem in source and target domains by generating
adversarial samples. In adversarial training [51], [52], the ad-
versarial samples are exploited to enhance the robustness and
generalization of the model. The loss function of adversarial
training is:

Lee(z + 6*,9;6)
where §* := argmax L. (z + 6, y;6), (1
ll8llp<e
where z is the original sample, y is the ground-truth label
of z, 8 refers to model parameters, and ¢ is the perturbation
added to .

However, directly applying adversarial training to address
the CDA problem is not feasible. First, existing methods [51],
[52] only generate adversarial samples from the neighborhood
of the original samples without considering the domain gap
between source and target domains. Second, these methods

fail to handle the class imbalance issue without regard to
the ratio of majority classes to minority classes. In this
paper, we propose pairwise adversarial training (PAT), as
shown in Figure 2, to jointly alleviate the class imbalance
problem by dynamically generating adversarial samples from
the linear interpolation of source and target pairwise samples
(Section I1I-B1), and reduce domain discrepancy by explicitly
aligning the conditional feature distributions of source and
target domains (Section III-B2).

However, directly applying adversarial training to address
the CDA problem is not feasible. First, existing methods [51],
[52] only generate adversarial samples from the neighborhood
of the original samples without considering the domain gap
between source and target domains. Second, these methods
fail to handle the class imbalance issue without regard to
the ratio of majority classes to minority classes. In this
paper, we propose pairwise adversarial training (PAT) and its
extended version noisy pairwise adversarial training (nPAT),
as shown in Figure 2, to jointly alleviate the class imbalance
problem by dynamically generating adversarial samples from
the linear interpolation of source and target pairwise samples
(Section I1I-B1), and reduce domain discrepancy by explicitly
aligning the conditional feature distributions of source and
target domains (Section III-B2).

1) Interpolated Adversarial Samples Generation: As
shown in Figure 3 (a), we generate adversarial samples by
linearly interpolating pairwise source and target samples from
the same class. The interpolated adversarial samples (IAS)
should have the same semantic meaning as its corresponding
source and target samples. We explicitly address the data im-
balance issue in the source domain by dynamically exploiting
interpolated adversarial samples. As a result, the generalization
of the unbiased model is improved and the data imbalance
issue in the target domain could be implicitly addressed. For
the k-th class, the interpolated adversarial samples can be
defined as:

X000 = {2 | 2 = 2 + Mt — 29), A € [0,1),

yi =4 =k},

(2)
where z; € RE*HXW =\ is the learnable hyper-parameter
measuring the contributing weights of the source and target

samples from the same class. §¢ is the pseudo label of the
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target sample assigned by the optimal classifier F. It is used
for the match of the corresponding source sample. Although
we adopt pseudo labels to generate adversarial samples, the
proposed PAT is robust to the potential error accumulation
issue as it is robust to unreliability of pseudo labels from
two aspects: (1) The misclassified target samples often exist
at the decision boundary. Even though the pairwise source
and target samples are not actually correct, the generated
adversarial samples still maintain the same semantic infor-
mation as corresponding source samples. (2) The generated
adversarial samples are dynamically produced, as the model
gradually converges, the adverse effect of bad adversarial
samples could be mitigated. In our method, unlike the previous
work [14], [15] in which the pseudo labels of the data are
not directly utilized in the training pipeline, the pseudo labels
of the target data is implicitly utilized for generation of our
noisy interpolated adversarial examples (nIAS).The primary
concern for the pseudo labels is the mismatch of the semantic
information assigned by pseudo labels with that of the ground-
truth labels of the data. However, since our nIAS incorporates
partial semantic information from the source data. As a result,
the mismatch can be diminished and errors can be considerably
alleviated. Besides, We have proven the robustness of PAT in
terms of unreliable pseudo labels in ablation studies. Note that
in our method, not all the classes have equal chance to generate
the adversarial samples. We adopt the probability threshold P
to control the generation of the adversarial sample from a pair
of source and target samples of kth class. The details of the
probability threshold are discussed in Section III-B2.

When the label distribution of the data is imbalanced, the
previous works [62] suggest that one of the heuristic and effec-
tive methods is data augmentation. However, these methods,
such as SMOTE [62]-[65], might not be effective when there
is a domain gap between the source data and target data.
Compared to the previous data augmentation methods [62]-
[65], Our proposed method possesses some advantages for
the class-imbalanced domain adaptation. First, similar to the
previous methods [62], [63], our method can augment the
data from the minority classes and make the label distribution
of the training data less biased. As a result, the biased
decision boundary can be refined with more balanced training
data. Second, since our synthetic data contains the semantic
information from both source domain and target domain. the
complexity of our training data could be boosted and the
decision boundary could also benefit from the enhanced data
complexity. Last, by smoothing the output distribution of the
interpolated synthetic data,the domain gap between source data
and target data can be minimized and the model can achieve
better generalization on the target domain.

The generation of interpolated adversarial samples can be
achieved by solving the following optimization problem:

Lras = Lop(2°%,y;60)
dv

where 3% = argmax L5 (%%, y;0). ©)

padv g Yadv

The outer minimization problem involves the standard cross-
entropy loss Leog, i.e.,

Lop (i, y;0) = —log(oy(f(9(2*™)))), )

Algorithm 1 Optimization Algorithm for Eq. 3

N .
i—q.target samples with

probability threshold for each

Input: Source samples {(zf,y{)}
pseudo labels {(zf,§)},,
class {Py}E .

Output: Adversarial samples {739V} Nedv
for Each source sample z§ do

if rand() > Pi(k = ) then
Randomly select a target sample £ where g} = y¢.
Initialize A and generate %% by Eq. 2.
repeat
Apply Eq. 5 to get gy = VaLLp (2, ys; 0).
Update A < A+ aga.
Apply Eq. 2 to update %" with new A.
until the optimization converges
end if
end for

adv

where o is the softmax function.

For the inner maximization problem in Eq. 3, we use
a modified cross-entropy loss L, proposed by [66]. The
modified loss can alleviate the problem of gradient exploding
or vanishing when the entropy loss is maximized. It is written
as:

cu(@®®,y;0) =log(1 — oy (f(g(z"™))). (5)

Several optimization algorithms, such as the fast gradient
sign method [52] and projected gradient descent [53], have
been proposed for adversarial training. However, these algo-
rithms aim to obtain the adversarial samples in the £, ball of
the original samples, which cannot be directly applied to solve
our problem. In our case, the generated adversarial samples
are confined by the interpolated line of source and target
samples. We propose a new optimization algorithm to solve
the inner maximization optimization in Eq. 3 by initializing the
interpolated adversarial samples with random XA and updating
A by back propagation in each iteration. The main procedures
are summarized in Algorithm 1.

2) Class-Imbalanced Semantic Centroid Alignment: With-
out careful control of the generation mechanism, the inter-
polated adversarial samples may not alleviate the issue of
imbalanced class distribution. Moreover, although the interpo-
lated adversarial samples bridge the source and target domains
to some extent, the discrepancy between source and target
domains is not explicitly reduced. To address these issues,
we propose to explicitly align the source and target domains
with imbalanced class distributions using two strategies.

First, we propose a strategy to guide the generation of inter-
polated adversarial samples. For training samples in each mini-
batch from the source domain, they should not have the equal
opportunity to generate interpolated adversarial samples. Since
the decision boundary usually favors the majority classes,
the probability of generating adversarial samples for minority
classes should be larger than that for majority classes. For the
k-th class, we set a probability threshold Py as follows:

ng

?
Mmaz + T

P, = (6)
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where ny is the number of the samples from the kth class.
Nmaz = maxg{ng }X_,, and 7 is the bias. For a specific class,
if a random number r € [0, 1) is larger than the corresponding
threshold, the adversarial sample is generated, as shown in
Algorithm 1. We also adopt class-balanced sampling on the
source samples to alleviate the biased occurrence of the
majority classes. Specifically, each class is selected with an
equal chance, in order to reduce the model prediction bias
towards the majority classes.

Second, we incorporate the moving average centroid align-
ment [67] to align the conditional feature distributions of
source and target domains by explicitly matching the centroids
of two domains. As illustrated in Figure 3b, without centroid
alignment, the adversarial samples may be generated from a
pair of samples in which one of the samples is misaligned
to other classes, thus making the embedding of adversarial
samples fall out of the decision boundary. With centroid
alignment as illustrated in Figure 3c, we can eliminate the
occurrence of such out-of-bound adversarial samples, and
the interpolated adversarial samples could provide meaningful
support for the minority class in the target domain. The loss
function of moving average centroid alignment is defined as

K
Loa=Y  dist(CE,Ch), )
k=1
where Ci and C. denote the centroids of the kth class in
the source and target domains, respectively. dist() can be
implemented by the Euclidean distance or cosine distance.

3) PAT for Class Imbalanced Domain Adaptation: The
proposed PAT approach can be integrated with many exist-
ing unsupervised domain adaptation (UDA) frameworks to
enhance their performance on the class-imbalanced domain
adaptation (CDA) problem. In this paper, we adopt CDAN-
E [37], MDD [38] and Sentry [47] as the UDA models, re-
spectively. As shown in Figure 2, the PAT framework includes
a feature extractor G and an optimal classifier F. There are
four losses: (1) interpolated adversarial samples loss Lrag
which aims to dynamically generate adversarial samples to
alleviate imbalance issue, (2) centroid alignment loss Lga
is designed to align the conditional feature distributions of
source and target, (3) standard cross-entropy loss Lo, and (4)
unsupervised domain adaptation loss L£7pa which is adopted
from existing UDA methods, e.g., CDAN-E [37], MDD [38],
and Sentry [47]. The overall loss function is defined as:

Lpar = Lupa+ Lce +alras+ BLca, (8)

where o and 3 are two trade-off parameters.

C. Noisy Pairwise Adversarial Training (nPAT)

Generating interpolated samples has been explored in litera-
ture, such as mix-up [18] and its variants [68], [69]. However,
Our interpolated strategy is significantly different from mix-
up and its variants. First, our method addresses the imbalance
problem in domain adaptation which is hardly touched by mix-
up based methods. Second, our generated adversarial samples
are based on pairwise source and target samples with same
semantic information and the interpolated ratio is adaptively

® B source sample
target sample

noisy source sample

e TG

[ e © - noisy targat sample
@ [ ] H
— -, %, 0 1AS
L) @ niAS
L . ® o u
o ® o

(a) (b}
Fig. 4: The generation of (a) interpolated adversarial samples
(IAS) and (b) noisy interpolated adversarial samples (nIAS).
The nIAS is built on the convex combination of a pair of
noise-perturbed input samples.

updated. While mix-up based methods generate new samples
by randomly merging two samples from the same domain with
a fixed interpolated ratio.

As one of the latest follow-up work of mixup [18], Noisy
Feature Mixup (NFM) [20] was recently proposed to introduce
the noise injection scheme in the generation of the interpolated
samples, In this work the new synthetic data is generated from
convex combinations of pairs of noise-perturbed inputs and
embedding features. With the effect of regularization from
both mixup [18] and noise injection, NFM [20] is supposed
to improve the generalization and robustness of the model.
Inspired by this method, we propose noisy pairwise adver-
sarial training (nPAT) in which the interpolated adversarial
samples (IAS) are replaced by noisy interpolated adversarial
samples (nIAS). The main difference between nIAS and
IAS is illustrated in Figure 4. It is evidently illustrated that
noisy interpolated adversarial samples are not confined in the
linear interpolation space of pairs of raw inputs. Compared
to IAS, the nIAS can provide more diversity of the semantic
meaningful adversarial samples, which is supposed to better
refine the biased decision boundary.

Specifically, the nIAS can be generated by two steps. First,
we generate the intermediate samples z™™*-%9" from the pairs
of source and target samples.

int_adv __ ~int_adv int_adv __ .8 b .8
xprt-adv = {x} | =} =z} + Mz} — =),

9

AG[O,].)C,yf:ﬁE:k}, ®

where z; and A are the same as Eq. 2. Note that this generation

method is equivalent to adding noise on the pairs of input

data and then performing the mixup operation on the noise-
perturbed input data.

Then we add the noisy perturbation on the intermediate

samples to generate the initial noisy interpolated adversarial

samples.

X;mdv — {I?adv | I;‘mdv — (]I + Jmu!t&?u“) ® :L.::nt_adv

+Jadd£:dd})

(10)
where @ denotes Hadamard product, I denotes the vector with
all components equal to one. £ and £29¢ are random
variables that model the multiplicative and additive noise,
respectively. omqyir and o.q4q are pre-specified noise levels for
multiplicative additive and additive noise.
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The final interpolated adversarial samples can also be
achieved by solving the same optimization problem as Eq. 3.

Lnras = Lop(E™™,y;6),

anadv __ ’ nadv
T = argmax Lgg(r u; 6),

gradv g Ynadv

(n

where Log and L5 are cross-entropy loss and modified
cross-entropy loss defined in Eq. 4 and Eq. 5, respectively.
And the overall loss function for noisy pairwise adversarial
training (nPAT) is defined as:

Lnpar = Lupa + Lee + aLnras + BLca, (12)

where o and 3 are two trade-off parameters.

D. Theoretical Justifications

In this subsection, we adopt the generalization bound theory
proposed in [49] to justify why our method would be able to
address the CDA problem. First, we introduce two definitions:
Balanced Error Rate and Conditional Error Gap. Then we
present the error decomposition theorem and discuss how
our method helps in reducing the error with some theoretical
insights.

Definition 1: (Balanced Error Rate) [49]. The balanced error
rate of the classifier on Dg is

BERp,(glly) == l}}eajgci'?s(ﬁ #yly=7).

Definition 2: (Conditional Error Gap) [49]. Given a joint
distribution D, the conditional error gap of a classifier is

(13)

Aop(i) = max | Ds(i=i|y=1)-Dr(=ily=1)|

(14)

Theorem 1: (Error Decomposition Theorem) [49]. For any
classifier § = (f o g)(z),

|es(fog) —er(fog) < ||D§—Dilli - BERp(illy)

+2(K — 1)Ace(9),

a1s)
where DY and DY represent label distribution on source and
target domains, respectively. | D% — D%y := i, | Ds(y =

i) — Dr(y =1i) | is the L; distance between D% and DY..
The upper bound in Theorem 1 suggests the error gap can
be decomposed into two terms: the weighted L, distance of
source and target marginal label distributions and conditional
error gap. Since ||D%—D%||; is only determined by the dataset
itself, the error gap is only affected by the balanced error rate
and conditional error gap. When the label shift occurs on the
source and target domains, the upper bound will be increased
for two reasons. First, the classifier favors the majority classes,
which causes higher error rates on minority classes. Second,
the label shift makes it hard to align the conditional features
between source and target domains, which induces a larger
conditional error gap. Our PAT method helps obtain a tight
upper bound in Eq. (15) and reduce such errors from two
aspects. First, PAT augments the source training data and
thus makes the marginal label distribution less biased. Conse-
quently, it can lower the balanced error rate. Second, to tackle
the misalignment issue, we adopt semantic centroid alignment

strategy to align the conditional features from source and
target domains, which can further reduce the conditional error
gap. Thus, by incorporating PAT to an existing UDA method,
the integrated model would have an improved capability on
dealing with data with label shift across the source and target
domains.

Similar to the previous work [43], apart from the original
source domain Dg, the augmented data generated either by
our method or £,-based augmented method (e.g., FGSM [52]
and PGD [70]) can be regarded as a new source domain (i.e.,
Dgaay)- Given a hypothesis function h = f o g, suppose the
number of total source domains (including the original source
domain and the augmented domain) is NP, the empirical p-
weighted empirical risk over the multiple source domain can
be formulated as:

NP NP
tulh) =Y mies(h) =Y w5 D [hx) —wil,  (16)
i=1 i=1

i peD;

where p is the coefficient and NP denotes the number of
samples in ith domain. According to the previous work [71],
the generalization error bound of the hypothesis function & on
multiple source domain can be formulated as following,

Theorem 2: (Generalization bound with multiple source
domains) [71]. Let H be a hypothesis space of VC dimension
d. For each j € {1,2,....,,NP}let D; be labeled sample
of size ~y;m generated by drawing ~;m points from D; and
labeling them according to f;. If h € H is the empirical
minimizer of €,(h) for a fixed weight vector x on these
samples and h* = minp ¢y ex(h) is the target error minimizer,
then for any § € (0, 1), with probability at least 1 — 4,

NP 9
. 2 Jlog(2m) — log(6
er(h) < en(hg) + 4| (3 1) Lol ’”’;) og(%),
= " 17
- a7)
+ Z,uj(?nj +dnan(Dj, Dr)),
j=1

D
where 7; = minpep{er(h) + ¢;(h)}. m = Y3~ NP and
D

N .
v = - The dyay denotes the HAH-divergence of two
domains and it is expressed as:

dyan(Ds,Dr) =2 sup |Ppps(h(z) # b (z))—
h.h'eH

Py, (h(z) # B (2))]-

(18)

According to Theorem 2, the generalization error of the
hypothesis k on the target domain is associated with the diver-
gence of the source domain and the target domain. Compared
to the £p-based augmentation methods that generate the new
data within the £,,-ball of the source data, the augmented data
synthesized by our method would incorporate the semantic
information from the target data. As a result, the HAH-
divergence between our data and the target data is smaller than
that of the data generated by £,-based augmentation methods.
Thus, under the same condition, our method could achieve a
smaller error gap than that of /,-based augmentation methods.
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TABLE II: Per-class average accuracy(%) on Office-Home dataset with RS—UT label shift. nPAT is the method proposed in
this paper. Each task is repeated 5 times for PAT and nPAT. The average and the variance are reported.

Method Rw—Pr Rw—Cl Pr—Rw Pr—Cl Cl—Rw Cl—Pr AVG
source | 70.74 44.24 67.33 38.68 53.51 51.85 54.39
BSP [ICML 2019] [72] T 72.80 23.82 66.19 20.05 32.59 30.36 40.97
F-DANN [ICML 2019] [13] | 58.56 40.57 67.32 37.33 55.84 53.67 53.88
COAL [ECCV 2020] [14] f 73.65 42.58 73.26 40.61 59.22 57.33 58.40
InstaPBM [Arxiv 2020] [73] 75.56 42.93 70.30 39.32 61,87 63.40 58.90
CDAN-E [NeurIPS 2018] [37] T 70.78 45.94 69.72 40.40 53.82 54.86 55.92
CDAN-E+PAT [KDD 2022] [19] 78.00 (1500 46.01 (0.77) 75.36 (0.43) 41.84 (1.75) 63.10 (0.66) 63.64 (0.68) 61.32
CDAN-E+nPAT (Ours) 79.34 (0.66) 49.86 (0.37) 75.51 (1.21) 44.25(092) 63.89 (1.24) 64.46 (0.74) 6288
MDD [ICML 2019] [38] T T1.21 44.78 69.31 42.56 52.10 52.70 55.44
MDD+implicit [ICML 2020] [15] 76.08 50.04 74.21 45.38 61.15 63.15 61.67
MDD+PAT [KDD 2022] [19] 79.30 (0D.64) 54.10 (0.33) 76.87 (0.46) 49.92 (0.72) 67.38 (0.18) 67.23 (0.71) 65.80
MDD+nPAT (Ours) 80.12 (0.34) 5540 (0.67) 78.00 (0.24)  50.58 (1.19) 6643 (0.76)  68.86 (0.84) 66.56
Sentry [ICCV 2021] [47] T 76.12 56.80 73.60 54.75 65.94 64.29 65.25
Sentry+PAT [KDD 2022] [19] 79.32 (0.91) 63.44 (0.56) 78.11 (1.08) 63.07 (1.24) 69.17 (0.46) 70.30 (0.70) 70.56
Sentry+nPAT (Ours) 84.44 (0.16)  67.39 (0.52)  79.63 (0.96) 64.37 (0.80) 7252 (0.80) 73.78 (0.92) 73.68

T Data of the baseline methods are cited from [19]

TABLE III: Per-class average accuracy(%) on minority classes from imbalanced Office-Home (Cl—Pr).

Method Batteries  Bed Bike  Bottle Calculator Chair Clipboards AVG
MDD 7 45.16 0.0 93.18  50.00 70.37 72.91 0.0 47.37
MDD+PAT ' 51.61 65.11 9545 66.66 81.48 72.91 6.17 62.77
MDD+nPAT 62.90 7209 97.02 70.00 83.33 72.91 8.69 66.70

 Data of the baseline methods are cited from [19]

TABLE 1IV: Per-class average accuracy(%) on DomainNet dataset. nPAT is the method proposed in this paper. Each task is
repeated 5 times for PAT and nPAT. The average and the variance are reported.

Method R—C R—P R—5§ C—R C—P C—8 P—R P—C P—S S—R §5—C S—P AVG
source | 65.75 68.84 59.15 T1.71 60.60 57.87 84.45 62.35 65.07 77.10 63.00 59.72 66.80
F-DANN [ICML 2019] [13] 7 66.15 T80 61.53 8185 60.06 61.22 84.46 66.81 62.84 81.38 69.62 66.50 69.52
BSP [ICML 2019] [72] * 67.29 7347 69.31 86.50 67.52 70.90 86.83 7033 68.75 84.34 7240 7147 74.09
COAL [ECCV 2020] [14] * 73.58 75.37 70.50 89.63 69.98 71.29 80.81 68.01 70.49 8§7.97 7321 70.53 75.89
InstaPBM [Amiv 2020] [73] §0.10 75.87 70.84 89.67 70.21 7276 89.60 7441 72.19 §7.00 79.66 7175 T7.84
CDAN-E [NeurIPS 2018] [37] 7 75.95 75.82 73.60 85.55 7017 70.50 86.06 68.91 T1.51 86.44 7828 7034 76.09
CDAN-E+PAT [KDD 2022] [19]  77.81 (13s 7636 (ossy 73.04 (osm  88.53 (Lm 7136 (assy 7637 (13sy 8987 (usmy  79.80 (am 7377 (Lsey  89.79 (s 83.04 (newy 7519 (15 7958
CDAN-E+nPAT (Ours) TO83 (zimy 7658 (1osy 7490 (o3s 8897 (osn 7355 (Lom  75.87 (oewy 8997 (Lom 7996 (Lim 7702 (n7e)  L60 (nzn 8321 (i 7491 (o 8044
MDD [ICML 20197 [38] 7 T1.89 1247 66.92 86.18 66.55 66.71 86.20 67.41 68.37 84.96 T1.97 68.22 73.16
MDD+implicit [ICML 2020] [15] * 7554 74.30 70.02 88.17 70.50 70.30 87.94 72.03 72.29 88.85 76.12 7121 76.44
MDD+PAT [KDD 2022] [19] 7959 (o 76.99 (nsny 7620 (non 8880 (nas 7236 (Lo 75.52 (nemy  BRT0 (pam  79.18 (Lom 76,42 (n3n  89.02 (osn  BO6S (nemy 7541 (s 79.91
MDD+nPAT (Ours) T79.64 (nosy  T7.07 (misy 7641 {o7zy  89.15 (osey  72.06 (p7y  76.66 (n29) 8896 (n3s)  TES52 (nosy  T7.84 (nagy  859.42 (nrey 8069 (o7 76.33 (o7 8022
Sentry [ICCV 20217 [47] T 83.80 T6.72 7443 90.61 T6.02 To.47 90.27 8201 75.60 90.41 82.40 7398 81.39
Sentry+PAT [KDD 2022] [19] 86.94 (os;y  T8.64 (nssy 8047 (nesy  9L13 (o T7.97 (mim  B1.21 (psny 9151 (esm  B3.55 (nesy 7974 (Lewy 9194 (non  B4.97 (osyy 7771 (o= B398
Sentry+nPAT (Ours) 87.61 (neyy  B036 (12oy  79.55 (s 90.80 (nagy  79.09 (oam 8291 (ovmy 9156 (n3m  86.66 (nzny  BLOT (1Lvey 9188 (oany 8738 (04 TRE9 (oemy 8536

* Data of the haseline methods are cited from [19]

IV. EXPERIMENTS
A. Experimental Settings

Datasets: We leverage three datasets from the domain
adaptation field. (1) Office-31 is a widely used benchmark
image dataset for domain adaptation [74]. It contains 31
classes in three domains: Amazon (A), Dslr (D) and Webcam
(W). The standard Office-31 doesn’t exhibit obvious label
distribution shift (LDS), so a new imbalanced Office-31 is
created by sampling from standard one as suggested by [14].
The distribution conforms to Paredo distribution [75] and
follows the Reversely-unbalanced Source and Unbalanced
Target (RS-UT) protocol. Both the source and target domains
have shifted label distributions, and the label distribution of
source domain is a reversed version of that of target domain.
(2) Office-Home is a large benchmark dataset containing
65 classes of objects commonly found in office and home
scenarios [76]. It has four domains: Real-World (Rw), Clipart
(Cl), Product (Pr) and Art (Ar). In our experiments, we use the
existing imbalanced Office-Home with RS-UT distributions
generated in [14] to train and test our approach. Since there
are very limited samples in the art (Ar) domain, we only

conduct domain adaptation tasks on the other three domains.
(3) DomainNet is a large-scale benchmark dataset for domain
adaptation [11]. Since there are mislabeled samples in some
classes and domains, we follow [14] and adopt only 40
common classes from four domains: Real (R), Clipart (C),
Painting (P), and Sketch (S). Different from Office-31 and
Office-Home, the selected samples in DomainNet already
exhibit obvious label distribution shift in the source and target
domains. So there is no need to sample this dataset again.
Figure 6 illustrates the label distribution of imbalanced Office-
31 datasets.

Baselines: We choose three UDA models: CDAN-E [37],
MDD [38] and Sentry [47] and integrate them with our nPAT.
We compare with two main streams of the state-of-the-art
methods: (1) Class-imbalanced domain adaptation methods,
namely Sentry [47], MDD+implicit [15], COAL [14], and F-
DANN [13]. (2) Unsupervised Domain Adaptation methods,
namely InstaPBM [73] and BSP [72]. We also compare our
nPAT with the previous PAT [19] in the experiment.

Evaluation Metric: We adopt per-class average accuracy
to evaluate the performance of all methods.
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TABLE V: Per-class average accuracy(%) on Office-31 with RS—UT label shift. nPAT is the method proposed in this paper.
Each task is repeated 5 times for PAT and nPAT. The average and the variance are reported.

Method AW D—+W W=D A—D D—A W—A AVG
source | T1.77 90.86 93.06 72.25 59.03 58.34 74.21
F-DANN [ICML 2019] [13] T 69.83 93.56 93.95 76.45 58.57 58.11 75.07
COAL [ECCV 2020] [14] 81.18 91.12 95.46 81.67 66.08 66.60 80.35
CDAN-E [NeurIPS 2018] [37] T 76.25 95.78 04.85 79.92 64.04 58.69 78.25
CDAN-E+PAT [KDD 2022] [19] 84.04 (0.68) 94.90 (1.26) 94.59 (1.e6) 83.53 (1.65) 67.97 (1.59) 65.60 (1.05) 81.77
CDAN-E+nPAT (Ours) 85.99 (042) 94.50 (0.95) 95.95 (1.58) 85.09 (1.80) 6937 (0.58) 67.92 (0.45) 83.13
MDD [ICML 2019] [38] 7 83.99 96.69 %96.71 83.94 67.23 61.36 81.65
MDD-+implicit [ICML 2020] [15] ¥ 85.79 96.20 97.40 84.25 68.11 66.63 83.06
MDD+PAT [KDD 2022] [19] 89.25 (1.14)  95.87 (0.78) 96.89 (0.17)  86.79 (0.82) 71.66 (0.57) 70.26 (1.13) 85.12
MDD+nPAT (Ours) 90.42 (0.61) 96.27 (0.28) 97.13 (0.12)  87.68 (0.57) 73.93 (0.83) 69.92 (1.02) 85.89
Sentry [ICCV 2021] [47] 7 81.77 90.95 93.50 83.91 62.72 64.00 79.48
Sentry+PAT [KDD 2022] [19] 87.35 (0.54) 94.30 (1.41) 9522 (0.26) 84.49 (1.83) 68.98 (0.47) 67.41 (0.29) 82.95
Sentry+nPAT (Ours) 89.80 (0.68)  94.90 (1.41) 9530 (0.28) 89.02 (1.76) 7230 (0.40) 69.04 (1.73) 85.06

T Data of the baseline methods are cited from [19]

TABLE VI: Per-class average accuracy(%) of MDD, MDD+nPAT w/o nIAS, MDD+nPAT w/o CA, and MDD+nPAT on

imbalanced Office-Home dataset.

Method Rw—Pr Rw—(Cl Pr—Rw Pr—Cl Cl—-Rw Cl—»Pr AVG
MDD T 75.96 47.38 71.56 4273 5746 58.76 58.97
MDD+nPAT w/o nIAS T 76.59 52.32 76.33 49.59 64.95 65.39  64.19
MDD+nPAT w/o CA | 17.54 51.15 76.70 47.24 67.24 6440 6404
MDD+nPAT 1 79.57 55.53 78.00 50.40 66.21 69.05  66.46
T We adopt class-balanced source sampling on all these methods.
TABLE VII: Per-class average accuracy(%) of MDD,
MDD+nPAT w/o nlAS, MDD+nPAT w/o CA, and our full - ;
MDD+nPAT on three tasks from DomainNet dataset. 2o 2
H H ————
Method RSC C5P CSRAVG e T e
MDD ¥ 7530 7038 87.94 7187 g* g
——— e —_— e
MDD+nPAT wio nIAS T 7661 7025 88.13 7833 i R L. .
MDD-+nPAT w/o CA f 7342 7234 8863 T8.13 3. —— C>R g —— C>R
MDD-+nPAT (full) 7819 7195 89.20  79.78 ¢” — AW Lo — AW
" We adopt class-balanced source sampling on all these meth- B0 O ety v © 7 hunberd eatons T
ods. (
a) (b)
TABLE VIII: Per-class average accuracy(%) of MDD, S0 —— Pr>cl Feo — pr>a
MDD+nPAT w/o nIAS, MDD+nPAT w/o CA, and our full gﬁ gﬁ
MDD+nPAT on imbalanced Office-31 dataset. : :
g£'so M 250 ..—-—-""‘“\-_.“___.____.
Method A—-W W=D WA AVG g_ﬁ : .
MDD F 85.86 9612 6520 8239 ¥ ¥
%&E§i¥ :::2 ?:[AAST ! gggi g?gﬁ gggi ggig * 050 0.75 1.00 1.25 1.50 1.75 2.00 225 250 ‘wﬂ.lﬂ 0.150.20 0.25 ﬂ;ﬂ 035 0.40 045 0.50
MDD-+nPAT (full) ' 90.53 97.02 69.65 85.73

 We adopt class-balanced source sampling on all these methods.

Implementation Details: We use PyTorch to implement our
approach. We train our model with the mini-batch SGD with
a Nesterov momentum of 0.9 and a weight decay of 0.0005.
The learning rate of classifiers is 10 times larger than that
of feature extractor, and all the learning rates are adjusted by
every iteration. In order to obtain the interpolated adversarial
sample from a pair of source and target samples from the same
class, we utilize a memory pool to store the pseudo labels of
all the target samples. The pseudo labels are updated in every
iteration. Note that we utilize a class-balanced sampler on the
source samples, which can be referred to as N-way (number
of classes per batch) and K-shot (number of examples per
class). The coefficient « is set to 1.0 and S is set to 0.2 for

(c) (d)

Fig. 5: Per-class average accuracy (%) of MDD+nPAT with
different probability thresholds for pseudo labels: (a) on Rw
— Pr, C -+ R and A — W; (b) with different numbers of
iterations in the inner maximization of nPAT on Rw — Pr, C
— R and A — W; (c) with varying o when 8 = 0.1 on Pr
—Cl; (d) with varying S when a = 0.5 on Pr —CL

all models.For nPAT, the o,,,,;; and 0,44 are initialized as 0.2
and 0.4, respectively. All the experiments are implemented on
Nvidia RTX A5000 platform.

B. Experimental Results

Table II shows the per-class average accuracy and overall
average accuracy of our approach and baselines on the imbal-
anced Office-Home dataset. First, The experiments show that
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Fig. 6: The biased label distribution shift on Amazon —
Webcam from imbalanced Office-31.
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Fig. 7: The t-SNE figure of source only, CDAN, MDD and
our method on Rw — Pr task from Office-Home. Circle and
triangle represent the source data and target data, respectively.
Different colors represent data of different classes.

our method (CDAN-E+PAT(nPAT), MDD+PAT(nPAT) and
Sentry+PAT(nPAT)) outperforms their original UDA models
on all tasks. The average performance of our method is ap-
proximately 8%, 11% and 8% higher than that of their original
UDA methods. Besides, the results of nPAT method are better
than that of the PAT method. Among them, the Sentry+nPAT
achieves best performance and the average accuracy can reach
73.77%. Besides, the results of our method are also higher than
that of other standard domain adaptation and CDA specific
methods. For instance, the average accuracy of MDD+nPAT
is on average 5% higher than that of MDD+implicit [15].
The experimental results validate the effectiveness of our
method in dealing with the CDA problem. As we suggest, the
improvement comes from the reduced balanced error rate and
conditional error gap. To validate our idea, we investigate the
accuracy of our MDD+nPAT model on each class and compare
the results with the pure MDD [38] and MDD+PAT [19]. Table
III shows that our nPAT method has better performance than

target ”‘:c. :::::
&y A
w s e
) i 1
-!i L
(a) (b)

Fig. 8: The t-SNE figure of (a) £,-based augmentation method
and (b) our method on Rw — Pr task from Office-Home.
Circle and triangle represent the source data and target data, re-
spectively. Different colors represent data of different classes.

that of MDD and MDD+PAT on the minority classes from the
imbalanced Office-Home dataset.

Table IV shows the per-class average accuracy and overall
average accuracy of our approach and baselines on the Do-
mainNet dataset. Our method also shows better performance
than the baseline methods. The average performance improve-
ment from our method can reach about 4%, 7% and 3% on
CDAN-E+nPAT, MDD+nPAT and Sentry+nPAT compared to
their original UDA models, respectively. Still the nPAT method
outperforms the PAT method on the majority of the tasks. The
Sentry+nPAT achieves the best result and can reach 84.83%.

We manually sample the standard Office-31 dataset and
construct the imbalanced Office-31 dataset, in which the label
distribution conforms to the Paredo distribution [75]. Table V
shows the experimental results on the imbalanced Office-
31 dataset, which demonstrate that our method still achieves
better performance than the baseline models. The improvement
can reach an average of 5%, 4% and 6% for CDAN-E+nPAT
(nPAT), MDD+nPAT (nPAT) and Sentry+nPAT (nPAT) com-
pared to their original UDA models. The best result on the
imbalanced Office-31 comes from MDD+PAT, which can
achieve 85.79%.

C. Ablation Studies

We further investigate the performance of our approach
from several aspects. First, we evaluate the contribution of
each component in the loss function. Second, we investigate
how the unreliable pseudo labels affect the performance of our
method by varying the probability threshold when selecting the
pseudo labels. We also evaluate the sensitivity of the model
to the change of the hyper-parameters and the effect of the
number of the iterations in the inner maximization of nPAT.

The proposed noisy pairwise adversarial training approach
includes two major components, i.e., noisy interpolated adver-
sarial samples (nIAS) and centroid alignment (CA). We choose
six tasks from Office-Home and three tasks from DomainNet
and Office-31, respectively. Table VI, Table VII and Table
VIII show the performance of MDD [38], MDD+nPAT w/o
nIAS, MDD+nPAT w/o CA, and our full MDD+nPAT model
on the imbalanced Office-Home, DomainNet and imbalanced
Office-31. MDD+nPAT w/o nlAS and MDD+nPAT w/o CA
consistently achieve better performance than the baseline
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model MDD [38], which validates the effectiveness of both
components in dealing with the biased label distribution. Our
full MDD+nPAT model further improves the classification
accuracy, demonstrating the complementary roles of pairwise
adversarial samples and centroid alignment in our approach.

Next, We investigate how reliability of the pseudo labels
affect our method. For previous methods [14], [15], to ensure
the reliability of the pseudo labels, they choose the pseudo
labels with high confidence. In our study, we choose pseudo
labels with various probability thresholds ranging from 0.0 to
0.9. Figure 5a illustrates the performance of MDD+nPAT on
Rw — Pr, C —+ R and A — W with different probability
thresholds for pseudo labels. The results show that on Office-
Home and DomainNet, the performance is not very sensitive to
the probability threshold. Even if we utilize unreliable pseudo
labels under a low probability threshold, the performance of
our method still remains. The results validate the robustness
of our method to the unreliability of the pseudo labels.

Then, we evaluate the sensitivity of our model to the change
of two hyperparameters o and $. In particular, we first set 3
to 0.2 and choose o from [0.5,2.5]. Then, « is set to 1.0,
and 3 is chosen from [0.1,0.5]. Figure 5c¢ and Figure 5d show
the mean average precision of MDD+nPAT on Pr — CI when
varying the hyper-parameter values. Figure 5c shows that the
best result is achieved when the « is 1.0 or 2.0 when S is
fixed. When « is fixed, Figure 5d shows that the best results
are achieved when S is 1.0 and Then the accuracy gradually
declines as 3 increases.

Finally, We evaluate the effect of the number of iterations
of the inner maximization in our MDD+nPAT model. We
choose Rw — Pr from Office-Home, C — R from DomainNet
and A — W from Office-31 as our evaluation tasks. The
results are illustrated in Figure 5b. It shows that on average
the performance would be slightly improved along with more
iterations that generate the synthetic data on all datasets.
Though performance reaches the maximum value at iteration
of 12, it is relatively time-consuming in the training process.

D. Visualization

For better illustration of our proposed method against the
baselines, the tsne figures of the features of the source data and
target data are plotted, as shown in Figure 7. We choose the
source only, CDAN [37] and MDD [38] for comparison..The
experiment is performed on Rw — Pr task from Office-
Home dataset. The illustration suggests that compared to the
baselines, our method can achieve better alignment of the
source data and target data in the feature space. On one hand,
our synthetic data generated by nPAT contains both semantic
information from source data and target data and can reduce
the domain gap accordingly during the training. Besides, the
conditional centroid alignment can further make the features
of the data from the same classes more compact. As a result,
our proposed method can achieve better performance on the
CDA problem.

To compare our adversarial example generation method
with the £,-based augmentation method, the tsne figures of
the features of the source data and target data are plotted,

as shown in Figure 8. The experiment is performed on Rw
— Pr task from Office-Home dataset. In the experiment, our
nPAT is replaced with the /,-based augmentation method and
other conditions such as hyper-parameters remain the same.
The illustration shows that both the {,-based augmentation
method and ours can achieve good alignment on most classes.
However, as for the £,-based augmentation method, since the
augmented data is generated within the ball of £, space, there
is a chance that the augmented data violates the decision
boundary and training with such data would make the model
yield less discriminative features for the data from different
classes. Thus, the performance would be lowered in this case.
As for our method, the direction of the generation of the
augmented data is pointed to the data from the same class
in the target domain. The chance that generates the synthetic
data that violates the decision boundary would be considerably
diminished.

V. CONCLUSION

In this paper, we propose a pairwise adversarial training ap-
proach to address the class-imbalanced unsupervised domain
adaptation (CDA) problem. Our approach generates interpo-
lated adversarial samples across source and target domains. In
order to alleviate the biased label distribution issue, we use the
noisy interpolated adversarial samples to augment the training
data (especially the minority classes) and meanwhile adopt
the centroid alignment strategy to explicitly align source and
target domains. Experimental results on three CDA benchmark
datasets show that, when integrated with our PAT or nPAT
method, the integrated models can yield considerable improve-
ment on performance compared with the original models and
other state-of-the-art CDA methods. Though our proposed
approach can achieve promising performance on different
benchmark datasets in the CDA problem. it takes multiple
inner iterations to generate the synthetic data and as a result
the additional computational overhead is inevitable. The more
time-efficient method to generate the synthetic data can be
explored in the future.
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