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ABSTRACT

Transfer learning has become an increasingly popular technique in
machine learning as a way to leverage a pretrained model trained
for one task to assist with building a finetuned model for a related
task. This paradigm has been especially popular for privacy in
machine learning, where the pretrained model is considered public,
and only the data for finetuning is considered sensitive. However,
there are reasons to believe that the data used for pretraining is still
sensitive, making it essential to understand how much information
the finetuned model leaks about the pretraining data. In this work
we propose a new membership-inference threat model where the
adversary only has access to the finetuned model and would like
to infer the membership of the pretraining data. To realize this
threat model, we implement a novel metaclassifier-based attack,
TMLI, that leverages the influence of memorized pretraining samples
on predictions in the downstream task. We evaluate TMI on both
vision and natural language tasks across multiple transfer learning
settings, including finetuning with differential privacy. Through
our evaluation, we find that TMI can successfully infer membership
of pretraining examples using query access to the finetuned model.

1 INTRODUCTION

Transfer learning has become an increasingly popular technique
in machine learning as a way to leverage a model trained for one
task to assist with building a model for a related task. Typically, we
begin with a large pretrained model trained with abundant data and
computation, and use it as a starting point for training a finetuned
model to solve a new task where data and computation is scarce.
This paradigm has been especially popular for privacy in machine
learning [1-6], because the data for pretraining is often considered
public and thus the pretrained model provides a good starting point
before we even have to touch sensitive data.

Although the data used to pretrain large models is typically
scraped from the Web and publicly accessible, there are several
reasons to believe that this data is still sensitive [7]. For example,
personal data could have been published without consent by a third
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party who they trusted to keep their data private, and even ubiqui-
tous and thoroughly examined pretraining datasets like ImageNet
contain sensitive content [8, 9]. Beyond the privacy risks associ-
ated with individuals in the pretraining set, companies who utilize
or sell finetuned models may also be at risk for privacy leakage.
Consider the following example:

Example 1.1. Companies have large, web scraped datasets that are
proprietary and remain internal (e.g., Google’s JFT-300 [10]). These
datasets are used to train models that can be finetuned by individual
teams within the company for their specific needs. These pretrained
models are also hosted as a service where smaller companies can
receive a finetuned model without ever seeing the pretrained model
itself. For example, Google’s Vertex Al [11] allows smaller compa-
nies and individuals to upload their data and receive access to query
the finetuned model as an endpoint. When these finetuned models
are hosted publicly, they may leak sensitive information about the
proprietary pretraining datasets on which they were trained.

Thus, a central question we attempt to understand in this work
is: How much sensitive information does a finetuned model reveal
about the data that was used for pretraining? We attempt to an-
swer this question in both the settings where privacy preserving
techniques have and have not been used to finetune the pretrained
model. Examining these two settings leads to another research prob-
lem: Given that pretraining datasets have been shown to contain
sensitive information [8, 9, 12], using the privacy preserving fine-
tuning techniques described in prior work [1-6] may not provide
meaningful privacy guarantees in practice.

Example 1.2. Using the thought experiment from [7], consider
a large, pretrained model, owned by Company A, that contains
an individual’s sensitive data record. Suppose that this pretrained
model is finetuned by Company B using differential privacy [13]
with (¢ = 0.5, § = 107°) on a sensitive downstream task. Consid-
ering that the open-source variants of these models’ pretraining
datasets can exceed 5 TB (over 1 trillion tokens) in size [14], it is
likely that any given individual’s data record can be present in both
the pretraining and finetuning datasets. Thus, because differential
privacy is not necessarily robust to preprocessing, the privacy guar-
antee from finetuning may not hold for individuals whose data
record is present in both datasets.
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To this end, we will also attempt to answer the following ques-
tion: Does using differential privacy during finetuning always provide
its stated privacy guarantee?

We study these questions via membership-inference (MI) attacks.
A MI attack allows an adversary with access to the model to deter-
mine whether or not a given data point was included in the training
data. These privacy attacks were first introduced by Homer et
al. [15] in the context of genomic data, formalized and analyzed
statistically by Sankararaman et al. [16] and Dwork et al. [17], and
later applied in machine learning applications by Shokri et al. [18].
MI attacks have been extensively studied in machine learning ap-
plications, such as computer vision [19], contrastive learning [20],
generative adversarial networks [21], and federated learning [22].
The success of MI attacks makes it clear that the pretrained model
will leak information about the pretraining data. However, the pro-
cess of finetuning the model will obscure information about the
original model, and there are no works that study MI attacks that
use the finetuned model to recover pretraining data.

We create a novel, metaclassifier-based membership-inference at-
tack, Transfer Membership Inference (TMI) to circumvent the chal-
lenges that arise when trying to adapt prior attacks to asses privacy
leakage in this new setting where the adversary has query access
only to the finetuned model. The goal of our new membership-
inference adversary is to infer whether or not specific individuals
were included in the pretraining set of the finetuned machine learn-
ing model. This setting stands in contrast to prior membership-
inference attacks, as it restricts the adversary from directly query-
ing the model trained on the specific dataset they wish to perform
membership-inference on. State-of-the-art, black-box MI attacks
rely on a model’s prediction confidence with respect to the ground
truth label, but the finetuned model does not necessarily have the
ground truth label in its range. Thus, our attack leverages how
individual samples from pretraining influence predictions on the
downstream task by observing entire prediction vectors from the
finetuned model. More concretely, TMI constructs a dataset of pre-
diction vectors from queries to finetuned shadow models in order
to train a metaclassifier that can infer membership.

We comprehensively evaluate TMI on pretrained CIFAR-100 [23]
and Tiny ImageNet [24] vision models, transferred to multiple
downstream tasks. In our experiments with Tiny ImageNet, we
evaluate the ability of TMI to infer membership on models fine-
tuned on Caltech 101 [25]. Our pretrained CIFAR-100 models are
finetuned on three downstream datasets of varying similarity to the
pretraining data. In order of similarity to CIFAR-100, we evaluate
TMI on models finetuned on a coarse-labeled version of CIFAR-
100, CIFAR-10 [23], and the Oxford-IIT Pet dataset [26]. We also
evaluate an extension of TMI on finetuned versions of publicly
available large language language models, which are pretrained on
WikiText-103 [27]. To measure the success of our attack we use
several metrics, such as AUC and true positive rates at low false
positive rates. To demonstrate the prevalence of privacy leakage
with respect to pretraining data in finetuned models, we run TMI
on target models with different finetuning strategies and settings
with limited adversarial capabilities. We compare our results to
both a simple adaptation of the likelihood ratio attack [19] to the
transfer learning setting and a membership inference attack that
has direct access to the pretrained model.

203

Proceedings on Privacy Enhancing Technologies 2024(3)

Our Contributions. We summarize our main contributions to the
study of membership-inference attacks as follows:

e We investigate privacy leakage in the transfer learning set-
ting, where machine learning models are finetuned on down-
stream tasks with and without differential privacy.

e We introduce a new threat model, where the adversary only
has query access to the finetuned target model.

e We propose a novel membership-inference attack, TMI, that
leverages all of the information available to the black-box
adversary to infer the membership status of individuals in
the pretraining set of a finetuned machine learning model.

e We provide theoretical results for membership-inference
attacks on mean estimation to support and explain our find-
ings.

e We evaluate our attack across four vision datasets of varying
similarity to the two pretraining tasks and several different
transfer learning strategies. We show that there is privacy
leakage even in cases where the pretraining task provides
little benefit to the downstream task or the target model was
finetuned with differential privacy. We also show that mem-
bership in the pretraining dataset can lead to unexpected
privacy leakage when finetuning with differential privacy.

e We study privacy leakage of finetuned models in the natural
language domain by evaluating our attack on two finetuned
versions of a publicly available foundation model.

2 BACKGROUND AND RELATED WORK

We provide the necessary background on machine learning, privacy
in machine learning, and related work on existing inference attacks.

2.1 Machine Learning Background and Notation

In our attacks, we assume that the target models are classifier neu-
ral networks trained in a supervised manner. A neural network
classifier with parameters 6 is a function, fy : X — [0,1]¥ that
maps data points x € X to a probability distribution over K classes.
In the supervised learning setting, we are given a dataset of labeled
(x, y) pairs D drawn from an underlying distribution D and a train-
ing algorithm 7. The parameters of the neural network are then
learned by running the training algorithm over the dataset, which
we will denote fy < 7 (D). A popular choice for the training algo-
rithm is stochastic gradient descent (SGD), which minimizes a loss
function £ over the labeled dataset D by iteratively updating the
models parameters 6:

Oiv1 < 0; — % Z Vo L(fo(x),y)
(x,y)eD

where m is the dataset size, n is a tunable parameter called the
learning rate. In our setting, we define the loss function £ to be
the cross-entropy loss:

K
Lfoxpy) = = ). Tij=yy log(p))

Jj=1

where p; is the model’s prediction probability for class j.
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2.1.1 Scaling Model Confidences.
The classifier models we consider output a vector of probabilities,
i, where each entry y; corresponds to the model’s prediction confi-
dence with respect to label, i. This is done by applying the sof tmax
activation function to the model’s final layer. Given a vector of logits,
Z (i.e. the model’s final layer), we define softmax(Z) : RK — (0, 1)K
e~i

K
Jj=1

y; = softmax(z); =
e%i
where K is the number of possible classes.

Prior work [19] has used the logit function, logit(p) = log( 1‘%, ),
to scale model confidences. This scaling yields an approximately
normally distributed statistic that can be used to perform a variety
of privacy attacks [19, 28, 29]. The logit function is obtained by
inverting the sigmoid activation function, o(x) = ﬁ, which is a
specific case of softmax being used for binary classification.

Following the lead of prior work, we use ¢ to perform our
model confidence scaling. We define model confidence scaling
$(3) : RK — RX for a prediction vector, 7, as

$() = (logit(y1),...,logit(yx))

2.1.2  Transfer Learning.

Feature extraction and updating a model’s pretrained weights
are popular transfer learning techniques used to improve a pre-
trained deep learning model’s performance on a specific task. In the
classification setting, feature extraction involves freezing a model’s
pretrained weights and using them to extract relevant features from
input data, which are then fed into a linear layer for classification.
This technique is useful when working with limited data or when
the pretrained model has learned generalizable features that are
useful for the target task. On the other hand, finetuning a model by
updating its pretrained weights involves taking a pretrained model
and training it on a new dataset, often with a smaller learning rate,
to adapt it to the new task. This kind of finetuning is more suited
for situations where the new task has similar characteristics, but
not a direct correspondence, to the original pretraining task.

2.1.3  Differential Privacy.

Differential Privacy [13] is a mathematical definition of privacy
that bounds the influence that any single individual in the training
data has on the output of the model. Specifically, an algorithm
satisfies differential privacy if for any two datasets that differ on
one individual’s training data, the probability of seeing any set of
potential models is roughly the same regardless of which dataset
was used in training.

Definition 2.1. A randomized algorithm M mapping datasets to
models satisfies (¢, 8)-differential privacy if for every pair of datasets
X and X’ differing on at most one training example and every set
of outputs E,

Pr{M(X) € E] < e“Pr[M(X’) € E]+6

2.2 Related Work

2.2.1  Privacy Attacks on Machine Learning Models.

Deep learning models have been shown to memorize entire in-
dividual data points, even in settings where the data points have
randomly assigned labels [30]. Prior work has demonstrated the
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ability of a wide class of deep learning models to perfectly fit train-
ing data while also achieving low generalization error [31]. In fact,
recent work [32-34] has shown that memorization of training data
may actually be necessary to achieve optimal generalization for
deep learning models. As a result of this memorization, deep learn-
ing models tend to have higher prediction confidence on training
data, which makes them highly susceptible to privacy attacks.

The most glaring violations of privacy in machine learning are
reconstruction and training data extraction attacks. Early work in
data privacy [35] showed that it is possible to reconstruct individu-
als’ data in statistical databases with access to noisy queries. More
recently, training data extraction attacks have been shown to be
successful when mounted on a variety of deep learning models,
including large language models [12] and computer vision mod-
els [36].

Other attacks on machine learning models, such as membership-
inference [18], property inference [37], and attribute inference [38]
attacks are more subtle privacy violations. These attacks exploit
vulnerabilities in machine learning models to learn whether or not
an individual was in the training set, global properties of the train-
ing dataset, and an individual’s sensitive attributes. respectively.
Recent versions of these attacks typically use a test statistic, such
as loss [39] and model prediction confidences [19, 28, 38], to extract
private information.

2.2.2  Membership-Inference Attacks.

Membership-inference attacks [15] aim to determine whether
or not a given individual’s data record was present in a machine
learning model’s training dataset. These attacks represent a funda-
mental privacy violation that has a direct connection to differential
privacy. Mounting these attacks and learning whether or not an
individual was part of a sensitive dataset can serve as the basis for
more powerful attacks. For example, prior work has used MI as a
step in extracting training data [12]. Because of their simplicity, MI
attacks are also a popular way to audit machine learning models
for privacy leakage [39-41].

These attacks been extensively studied with two types of adver-
sarial access: black-box query access and white-box access to the
machine learning model’s parameters [42]. The query access setting
has been more thoroughly studied, with attacks spanning several
different machine learning domains, such as classification [18, 19,
29, 38, 39], natural language generation [19, 29], and federated
learning [22]. Despite there being extensive work on black-box
attacks and prior work on MI attacks on pretrained encoders [20],
continuously updated models [43], and distilled models [44], there
are few works that explore MI in the transfer learning setting where
a pretrained model is finetuned on a new task. Zou et al. [45] study
MI attacks that target individuals in the finetuning dataset, and
Hidano et al. [46] explore ways in which an adversary can leverage
control over the transfer learning process to amplify the success
of MI attacks on the original model. No works have studied black-
box MI attacks on the pretraining dataset of a finetuned machine
learning model.

3 THREAT MODEL

Our problem is to determine how much information a finetuned
model reveals about the data used in the pretraining phase, and
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Figure 1: Our New Membership-Inference Threat Model.

whether or not the finetuned model reveals strictly less information
than the pretrained model. For this work we study this question
using the language of MI attacks [15-17]. In the standard MI ex-
periment and in our newly defined experiment, there is a machine
learning model trained on some dataset, and a challenge point
that is drawn from the same distribution as the training data. The
challenge point is either an element of the training data or an inde-
pendent point drawn from the same distribution. The attacker, who
has access to the model and the challenge point, and knowledge of
the distribution, tries to infer which of these two cases holds. In our
experiment we separate the construction of the machine learning
model into a pretraining phase and a finetuning phase, where the
finetuning phase is performed with different data, drawn from a
possibly different distribution. This finetuning phase introduces
another layer of indirection that prevents the attacker from query-
ing the original pretrained model, and thus potentially makes MI
more difficult. Formally, our threat model, visualized in Figure 1,
is described by the following game between a challenger C and an
adversary A:

MI Security Game with a Finetuned Target Model

(1) The challenger receives a dataset Dpr comprised of points
sampled i.i.d. from some distribution Dp7, and a pretrained
model gg < Tpr(Dpr).

(2) The challenger draws i.i.d. samples from another distribution
Dpr to create a dataset Dpr and finetunes the model on
Dpr using its pretrained weights, 0, to obtain a new model
Ip < Trr(DFr, g9)-

(3) The challenger randomly selects b € {0,1}. If b = 0, the
challenger samples a point (x,y) from Dpr uniformly at
random, such that (x,y) ¢ Dpr. Otherwise, the challenger
samples (x,y) from Dpr uniformly at random.

(4) The challenger sends the point, (x,y) to the adversary.

(5) The adversary, using the challenge point, sampling access
to Dpr and Dpr, and query access to fg, produces a bit b.

(6) The adversary wins if b = b and loses otherwise.

In our security game, we assume that the adversary has query
access to the finetuned target model fz and knowledge of the pre-
training data distribution Dpr. Because we will be training shadow
models [18] to perform our MI attack, the adversary also requires
knowledge of the underlying distribution from which the finetun-
ing dataset is sampled, Dpr, and knowledge of the target model’s
architecture and training algorithm. MI attacks vary in what they
assume about the distribution and training algorithm [17], and
some degree of knowledge is necessary. The knowledge we assume
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is the same as many other works on MI (e.g. [18-20, 29, 38, 44, 47]).
We also assume that the adversary’s queries to the target model
return numerical confidence scores for each label rather than just a
single label, similar to prior privacy attacks [18, 19, 29, 38].

It should be noted that the adversary considered in this work
is, in fact, a stronger adversary than some of these prior works
individually. For example, we require query access to both the
pretraining and finetuning data distributions, while [18] and [19]
only require access to one training distribution. Additionally, our
attack algorithm requires us to train shadow models, which can
be computationally expensive. Because we introduce the first MI
threat model in this setting, we consider this strong adversary as a
reasonable starting point.

4 METHODOLOGY

In this section, we will propose attacks that follow the threat model
defined in Section 3. First, we will motivate our attack with theo-
retical results for membership-inference attacks under distribution
shift. Then, we will provide a simple adaptation of an existing MI
attack and describe issues that arise when trying to incorporate
more information about target model queries into an attack imple-
mentation. Lastly, we will detail our metaclassifier-based approach
to performing black-box MI attacks on finetuned models.

Algorithm 1 train_shadow_models(x, b)

Our shadow model training procedure considers both the pretrain-
ing and finetuning phases to mimic the behavior of the target model
on a challenge point.

Require: Query access to both Dpr and Dp7 and a fixed dataset
size S = %|DPT|

: models « {}

: datasets « {}

: for N times do

Draw S ii.d. samples from Dp7 to construct Dpr

datasets < datasets U {Dpr}

g < 7(Dpr)

Sample Dpr i.i.d. using query access to Dpr

f < 7(g, Drr)

models «— models U {f}
return models, datasets

> Finetune g on f)pT

R A A

4.1 Membership Inference Under Distribution
Shift

To motivate a membership-inference attack on finetuned deep learn-
ing models, we will first consider the simplified setting of mean
estimation. A more detailed explanation, along with the proofs for
the statements in this section, can be found in Appendix A.

Consider two datasets, X id Ny Iz) and Y iid Nu+v, 1)
where |X| = n, |Y| = m such that n > m, and v is a parameter that
controls distribution shift. In this setting, the means of X and Y
are related, and we would like to estimate the mean of Y, which
has limited data, using the additional data from X. We define the
estimator of i + v as a combination of the empirical means of X
and Y:
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f=ax+(1-a)y

where a € [0,1] and %, 7 are the empirical means of X and Y,
respectively. Note that /i has expected value and covariance

E(@) =p+(1-a)v

2 2
Cov(j) = (0‘_ " M) )

n m

Suppose the challenger from the security game detailed in Sec-

tion 3 releases the statistic /i and we, as the adversary, would like
to learn samples’ membership statuses with respect to the auxiliary
(pretraining) data, X. One possible way to do this would be the fol-
lowing: Assume the adversary knows E(/1) and p. Then, for some
challenge point, ¢ the adversary can compute the test statistic

z=(p-E(A), c-E(c))

This specific choice of test statistic is motivated by prior work on
membership-inference attacks on published statistics [48]. Subtract-
ing the expectation of each term allows the adversary to observe
whether the noise from computing i is correlated with the noise
from sampling c. Thus, the test statistic z is a real number that mea-
sures the correlation between the challenge point and the published
statistic, /. The adversary can then choose a threshold 7 such that if
z > 7, they will predict that the challenge point was IN (i.e. ¢ € X).
Else, the adversary will predict that the challenge point was OUT
(ie.c~ N(p Iy)

We will now show the ability of our attack to determine the
membership status of the challenge point ¢ as a function of the
parameter a. To this end, we start by computing the expectation
and variance of the test statistic, z, when c is either OUT or IN.

Iy=a-1y

LeEmMA 4.1. Ifc is OUT, then

E(z) =0 and Var(z) =da,

and if ¢ is IN, then

2
E(z) = (x_d and Var(z) =da+ Zd—‘;
n n

This lemma tells us that as long as the noise scale doesn’t exceed
the difference in means, it is straightforward to determine whether
c is IN or OUT. When a — 0, the published statistic is no longer
encoding any information about X. Thus, the noise completely
masks the difference in means, as shown in Figure 2. Conversely,
as @ — 1, we observe higher separation between the distributions
of IN and OUT test statistics.

Using Lemma 4.1, we can analyze the performance (AUC) of the
adversary’s distinguishing test as a function of the parameter a. To
do this, we use the fact that the AUC of a classifier is equal to the
probability that the classifier’s prediction on a randomly chosen
positive (IN) sample is greater than the prediction on a randomly
chosen negative (OUT) sample [49]. Here, we use the assumption
that the test statistic is normal. Because z is the inner product of two
high dimensional Gaussian vectors, and thus the sum of many i.i.d.
Gaussian random variables, as d — oo, z is normally distributed.
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=20 0 20 =20 0 20

IN (Member) [ OUT (Non-Member)

Figure 2: Distribution of the Test Statistic, z, for Multiple
Values of o

LEMMA 4.2. Assume that the test statistic, z, is normally distributed.
Then, for a fixed a, the AUC of our membership-inference attack can
be written as

ad

1
AUC = - fl ———
2(1+er (2\/d(0~m2 +a2)))

While it seems as if the attack’s success is independent of the
magnitude of the distribution shift, ||v||2, it is important to note that
a should be set by the challenger such that the error on the new task
(namely, estimating the mean of the new dataset, Y) is minimized.
In this particular setting, & would be chosen to minimize the mean
squared error between /I and the mean of Y, y + v. The proof for
the optimal setting of a can be found in Appendix A.3.

[ et

Attack AUC
o
0
!

°
3
)

—— d =12000
d = 8000

—— d =3000

--- 0.9 AUC

0.5 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

0.6

Figure 3: AUC of our Membership-Inference Attack on Mean
Estimation as a Function of a.

Figure 3 visualizes the attack’s AUC from Lemma 4 as a function
of the parameter a. Here, the parameters n, m, and d are fixed. Our
choices of the data’s dimension, d, are motivated by the dimension
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of the data in our evaluation on vision models (Section 5.3). We
observe that there is a rapid increase in AUC as more information
about X is preserved in the public statistic (i.e. as « increases). In this
figure, the value for @ when d = 12,000 and ||v||2 = 5 that minimizes
the error on the new task, Y, is roughly 0.77. This a corresponds
to an AUC of 0.96. If we make the distribution shift larger, say
|[v]|2 = 10, the optimal value of « is 0.51, which corresponds to an
AUC of 0.78. This shows that the success of our attack on mean
estimation depends on the extent to which we combine the means
of X and Y using the parameter «, which is based on the similarity
of the "pretraining" data X and the "finetuning" data Y.

4.2 Adapting an Existing Attack

As a first attempt to create an effective membership-inference at-
tack on finetuned machine learning models, we can consider an
adaptation of the likelihood ratio attack (LiRA) proposed by Carlini
et al. [19]. In this attack (Algorithm 2), the adversary observes the
target model’s prediction confidence on a challenge point with
respect to the true label of the challenge point. Because the model’s
confidence with respect to a given label is approximately normally
distributed, Carlini et al. perform a likelihood ratio test to infer the
challenge point’s membership status, using a set of shadow models
to parameterize the IN and OUT distributions.

In our setting, these shadow models are first trained on datasets
drawn from Dpr, then finetuned on a dataset drawn from Dpr
(Algorithm 1). Because the ground truth label of the challenge point
drawn from Dpr is not necessarily in the range of our finetuned
target model we cannot perform the likelihood ratio test with re-
spect to the observed confidence on the point’s true label. Instead,
we can adapt the attack to use the label predicted by the target
model with the highest confidence, §. To do this, we store the en-
tire prediction vector for each query to our shadow models, and
only use the scaled model confidences at index §, denoted f(x) .
of the prediction vectors. We follow the lead of Carlini et al. [19]
and query each shadow and target model on M random augmen-
tations of the challenge point and fit M-dimensional multivariate
normal distributions to the scaled model confidences we aggregate
to improve attack success.

4.3 Issues with Adapting LiRA

While this adaptation of LiRA is somewhat effective at inferring
membership (Figures 5 and 6), it only captures how the pretraining
dataset influences model’s predictions with respect to a single label
in the downstream dataset. Because the purpose of pretraining is to
extract and learn general features that can be used in several down-
stream tasks, one would expect that the weights of a pretrained
model have some impact on all of a finetuned model’s prediction
confidences. For example, Figure 4 shows that the presence of a
specific image labeled as "dugong" in the training set makes fine-
tuned models, which cannot themselves predict the label "dugong”,
more confident on their downstream prediction of "elephant” and
"platypus". Meanwhile, the presence of this image in the training
dataset has little to no impact on the downstream label "scissors".
Furthermore, if we observe the distribution of scaled model con-
fidences over our shadow models, we see that it is approximately
normal regardless of the choice of label. This may lead one to believe
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Algorithm 2 Adapted LiRA

We adapt the MI attack shown in [19] by using the label which

the target model predicted most confidently instead of the ground

truth label.

Require: A finetuned target model fz, a challenge point
x < Dpr, and models and datasets (i.e. the output of
train_shadow_models() )

. preds;, < {}, preds,,; < {}

27obs — fﬁ(x)

confypg «— logit(max; Ughs ;)

: § < argmax; Uops ; > Store most confident predicted label

i—1 > Index for saved shadow models and datasets

> Query the target model on x
> Store max confidence score

: for N times do

if x € datasets; then
fin < models;
confiy « logit(fin(x)y) > Query fip on x
preds;, « preds;, U {confj,} » Aggregate confidences

else if x ¢ datasets; then
fout <= models;

13: confout logit(fout(x)g,)

14: preds,,; < preds,,; U {confoyt}

> If x is IN w.r.t. shadow model i

R A U ol

= e
[ )

15: flin < mean(preds;,), pout < mean(preds,)
2 var(preds;,), 02, < var(predsy,)

16: O-in
p(confyps| N (ins Uizn))
p(COnfobs|N(ﬂ0Ut’ aﬁznut))

17: return

that the correct adaptation of LiRA to our setting would be to fit
a multivariate normal distribution to the entire prediction vectors
output by our shadow models. The assumption that the adversary
only receives model confidences interferes with this seemingly bet-
ter adaptation because of the softmax activation function. When
softmax is applied, it converts the logit vector Z into a probability
distribution, i, over the labels. Thus, the entries of § can be written
as

§=(pr.pz.-..px) € (LD

where K is the number of classes and each p; denotes the model’s
confidence on class i. Because the entries of § necessarily sum up
to 1, any entry p; can be written as 1 — 3’ j4; pj. When we scale
model confidences to compute the individual logits, z;, any given
computed logit can be written as a combination of the others. This
means that our computed logits actually lie on a (K—1)-dimensional
subspace of the K-dimensional space where the model’s actual
logits lie, and we cannot fit a K-dimensional multivariate normal
distribution to all of our models’ logit scaled prediction vectors
without arbitrarily removing one of the entries in .

4.4 Our TMI Attack

Our Transfer Membership Inference (TMI) attack (Algorithm 3)
starts with the same shadow model training procedure as Algo-
rithm 2, where the adversary trains shadow models on datasets sam-
pled from Dpr and finetunes them on datasets sampled from Dpr.
The adversary then queries the challenge point on these shadow
models to construct a dataset, Dpeta, comprised of logits attained
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Figure 4: Scaled Model Confidences of Shadow Models Fine-
tuned on Caltech 101 at Multiple Labels when Queried on a
Sample from the "Dugong" Class in Tiny Imagenet

from scaling the prediction vectors as described in Section 2.1.1.
To construct a distinguishing test that circumvents the issues that
arise when attempting to parameterize the distribution of predic-
tion vectors, the adversary trains a metaclassifier on a collection
of labeled prediction vectors Dmeta, queries the target model on
the challenge point, and scales the target model’s prediction vector.
Lastly, the adversary queries this observed prediction vector on
their metaclassifier, which outputs a score in the interval [0, 1]
that indicates the predicted membership status of the challenge
point. Using a metaclassifier attack, TMI, is still able to leverage
the influence of memorized pretraining samples on predictions in
the downstream task while not having to arbitrarily discarding one
of the entries from the prediction vector.

In our implementation of TMI for computer vision models, we
train a metaclassifier per challenge point. Because we use a rela-
tively small number of shadow models (64 IN and 64 OUT in total),
we leverage random augmentations to construct a larger metaclas-
sifier dataset. Each time we query the target model or our local
shadow models, we query M times with different random augmen-
tations of the challenge point, including random horizontal flips
and random crops with padding. This yields M X 2 X 64 prediction
vectors for each challenge point. In total, our metaclassifiers are
trained on 1024 labeled prediction vectors, 512 labeled 0 to denote
"non-member" or OUT and 512 labeled 1 to denote "member" or IN.

Due to computational limitations, we do not pretrain any shadow
models for our attacks in the language domain. Rather, we use a
publicly hosted pretrained model and finetune it on a downstream
task. Without control over pretraining, we cannot produce a meta-
classifier dataset with prediction vectors from both IN and OUT
shadow models with respect to a single challenge point. This sce-
nario can be represented in Algorithm 1 by ommiting lines 4, 5 and
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Algorithm 3 TMI Metaclassifier Attack

We pretrain shadow models with and without the challenge point
and finetune them using query access to Dp7 to estimate the target
model’s prediction behavior. Using the prediction vectors of our
shadow models on the challenge point, we generate a dataset to
train a metaclassifier to determine the challenge point’s member-
ship status.

Require: A finetuned target model fg, a challenge point
x « Dp7, and models and datasets (i.e. the output of
train_shadow_models() )

1: preds;, « {}, preds,,; < {}

201 > Index for saved shadow models

3: for N times do

4: if x € datasets; then > If x is IN w.r.t. shadow model i

5: fin < models;

6: Uin — ¢(fin(x)) > Query IN model on x

7: preds;, « preds;, U {(Gjn,1)} > Store and label the
prediction vector

8: else if x ¢ datasets; then

9: fout <= models;

10: Gout < $(fout(x))

11: preds,,; < preds,y; U {(Dout, 0)}

12: ie—i+1

> Construct the metaclassifier
dataset

13: Dmeta = preds;, U predsg

14: M — T (Dreta)
15: Uobs = P(f(x))
16: Output M(Tgps)

> Train a binary metaclassifier
> Query the target model on x

6, where g refers to the publicly hosted pretrained language model.
As a result, we use a global metaclassifier, trained on a dataset con-
taining the prediction vectors of all challenge points, to produce
membership scores.

5 TMIEVALUATION

We evaluate the performance of our TMI attack on image mod-
els with two pretraining tasks and four downstream tasks and
public, pretrained language models with one pretraining task and
two downstream tasks. We evaluate the success of our attack as
a function of the number of updated parameters, and we choose
downstream tasks with differing similarity to the pretraining task
to show how attack success depends on the relevance of the pre-
training task to the downstream task. Additionally, we observe the
success of our attack when differential privacy [13] is used in the
finetuning process, which is an increasingly popular technique to
maintain utility while preserving the privacy of individuals in the
dataset of downstream task [2-6, 50].

This section presents the results of our evaluation of TMI and
addresses the following research questions with respect to the
datasets in our experiments:

Q1: Can finetuned models leak private information about their
pretraining datasets via black-box queries?

Q2: Does updating a model’s pretrained parameters instead of
freezing them prevent privacy leakage?
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Q3: Does the similarity between the pretraining and downstream
task affect the privacy risk of the pretraining set?
Can the attack be generalized to domains other than vision?
Is it feasible to mount our attack on finetuned models that
are based on publicly hosted foundation models?
Is privacy leakage present even when a model is finetuned

using differential privacy?

Q4:
Q5:

Qé6:

5.1 Datasets and Models

In this section we will discuss the datasets used in our evaluation
of TMI. We will also discuss our choices of pretraining and down-
stream tasks used in our evaluation.

5.1.1 Datasets. We pretrain our small vision models on CIFAR-
100 [23] and finetune them on a coarse-labeled version of CIFAR-
100, CIFAR-10 [23], and Oxford-IIIT Pet [26]. Our larger vision
models are pretrained on Tiny ImageNet [24] and finetuned on
Caltech 101 [25]. For our language tasks, we use publicly available
pretrained WikiText-103 [27] models and finetune them on DBpe-
dia [51] and Yahoo Answers [52] topic classification datasets. A
detailed description of the datasets used in our evaluation can be
found in Appendix C.1.

5.1.2  Models. For our vision tasks, we use the ResNet-34 [53] and
Wide ResNet-101 [54] architectures. The ResNet architecture has
been widely used in various computer vision applications due to
its superior performance and efficiency. ResNet is a convolutional
neural network architecture that uses residual blocks, allowing it
to effectively handle the complex features of images and perform
well on large-scale datasets.

For our language tasks, we use the Transformer-XL [55] model
architecture. In particular, we use the pretrained Transformer-XL
model from Hugging Face, which is trained on WikiText-103 [27],
as our initialization for the downstream tasks. We finetune our
pretrained language model architectures on the DBpedia ontology
classification and Yahoo Answers topic classification datasets.

5.1.3  Shadow Model Training.

Here, we describe the shadow model training procedure for our
vision tasks, which comprise the majority of our experiments. The
details for how we train shadow models for our language task
can be found in Section 5.3.3. A full description can be found in
Appendix C.2

Our shadow model training involves two phases: pretraining
and finetuning. In the pretraining phase, we train 129 models are
trained on random 50% splits of CIFAR-100 and Tiny ImageNet
using SGD with weight decay and cosine annealing for 100 epochs
(ResNet-34) or 200 epochs (Wide ResNet-101). Standard data aug-
mentations are applied during training and querying. In the second
phase, the shadow models have a subset of their weights frozen
and their classification layer swapped to match new task. Then,
they are finetuned on random subsets of downstream task datasets.
During pretraining, we designate a random set of challenge points
to evaluate the TMI attack. Because we train on 50% splits of the
pretraining data, approximately half of the challenge points are IN
and OUT for each shadow model. In each experiment, we select a
shadow model to be the target and use the remaining 128 to mount
our attack, yielding a total of 128 trials.
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5.2 Metrics

To evaluate the performance of TMI, we use a set of metrics that are
commonly used in the literature. The first metric is balanced attack
accuracy, which measures the percentage of samples for which our
attack correctly identifies membership status. Although balanced
accuracy is a common metric used to evaluate MI attacks [18, 38,
47, 56], prior work [19] argues that it is not sufficient by itself to
measure the performance of MI attacks as privacy is not an average
case metric [57]. Therefore, we also evaluate our attack using the
receiver operating characteristic (ROC) curve.

The ROC curve provides us with several additional metrics that
we can use to evaluate the performance of TMI. In our evaluation,
we plot the ROC curve on a log-log scale to highlight the true
positive rate (TPR) at low false positive rates (FPR), and we measure
the area under the curve (AUC) as a summary statistic. Additionally,
we report the TPR at low, fixed FPR of 0.1% and 1%. These metrics
give us a more complete picture of how well TMI performs in
different scenarios.

5.3 Experimental Results

In this section, we will discuss the performance of our attack on
a variety of target models with different finetuning streategies.
We consider models finetuned using feature extraction, models
finetuned by updating pretrained weights, models finetuned with
differential privacy, and publicly hosted pretrained models.

During training, we designate 1000 and 2000 samples to be chal-
lenge points for CIFAR-100 and Tiny ImageNet, respectively, and
we run our attack for each of these challenge points on 128 different
target models. We compare our results to performing LiRA [19]
directly on the pretrained model (i.e., the adversary has access to
the model before it was finetuned) to provide an upper bound on
our attack’s performance.

5.3.1
Q1: Can finetuned models leak private information about
their pretraining datasets via black-box queries?

To answer this research question, we evaluate the success of
our TMI attack on models finetuned without updating any of the
pretrained parameters (i.e. feature extraction). We consider three
tasks in our experiments where feature extraction is used to finetune
our target model: Coarse CIFAR-100, CIFAR-10, and Caltech 101.
Because feature extraction relies on the pretrained model being
relevant to the downstream task, we choose the two most similar
downstream tasks to pretraining. Our attack’s success depends
on the target model having high utility on its respective task, so
it is important to ensure that we choose downstream tasks that
are similar or relevant to the pretraining task when using feature
extraction to finetune models. To transfer the pretrained CIFAR-100
models to Coarse CIFAR-100 and CIFAR-10 and the pretrained Tiny
ImageNet models to Caltech 101, we remove the final classification
layer, and replace it with a randomly initialized classification layer
which has proper number of classes for the new downstream task.
The remaining weights are kept frozen throughout training.

As shown in Figure 5, we observe that TMI is able to achieve AUC
and balanced accuracy (0.78 and 69%) within 0.06 of the adversary
which has access to the pretrained model (0.83 and 75%) on the
Coarse CIFAR-100 downstream task. On this task, TMI also has a

Feature Extraction.
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TPR of 5.7% and 16.1% at 0.1% and 1% FPR, respectively. Despite
being constrained to only having query access to the finetuned
model, Figure 5 shows that the TPR of TMI is approximately equal
at higher FPR (about 5%) to that of running LiRA directly on the
pretrained model.

Furthermore, Table 1 also shows the performance of TMI on
target models finetuned on the CIFAR-10 and Caltech 101 down-
stream tasks. When we run TMI on the Tiny ImageNet models
which are finetuned on Caltech 101, our attack achieves an AUC
of 0.914, which is within 6% of the AUC achieved by LiRA directly
on the pretrained model. As shown in Table 1, TMI has a 207x
and 41x higher TPR than FPR when the FPR is fixed at 0.1% and
1%, respectively. On the CIFAR-10 finetuned models we observe
that TMI achieves a TPR of 2.0% and 8.0% at 0.1% and 1% FPR, re-
spectively. Figure 5 shows that TMI also achieves an AUC of 0.684
and a balanced accuracy of 62.4% when the downstream task is
CIFAR-10. The lower attack success may be due to the relevance of
the features learned during pretraining to the downstream task. For
all three tasks, using our adaptation of LiRA and not incorporating
information about all of the downstream labels yields significantly
lower performance by all of our metrics than TMI. For example,
at 0.1% FPR, our attack has a TPR 14.7X%, 8.1X, 6.7x higher than
adapted LiRA on Caltech 101, Coarse CIFAR-100 and CIFAR-10,
respectively. TMI also achieves an AUC about 1.3X higher than
adapted LiRA on the Coarse CIFAR-100 and CIFAR-10 tasks and an
AUC 1.7x higher on Caltech 101.

Q1 Answer: Yes, it is possible to infer the membership status of an
individual in a machine learning model’s pretraining set via query
access to the finetuned model.

Table 1: TPR at Fixed FPR of TMI and Our Adaptation of
LiRA when Pretrained Target Models are Finetuned Using
Feature Extraction (Figures 5 and 6 )

Task

TMI (CIFAR100 — Coarse CIFAR-100)

TMI (CIFAR100 — CIFAR-10)

TMI (Tiny ImageNet — Caltech 101)

Adapted LiRA (CIFAR100 — Coarse CIFAR-100)
Adapted LiRA (CIFAR100 — CIFAR-10)

Adapted LiRA (Tiny ImageNet — Caltech 101)
LiRA Directly on Pretrained Model (CIFAR-100)
LiRA Directly on Pretrained Model (Tiny ImageNet)

TPR @ 0.1% FPR TPR @ 1% FPR

5.7%
2.0%
20.7%
0.7%
0.3%
1.4%
15.6%
37.2%

16.1%
8.0%
41.5%
3.1%
1.5%
0.25%
22.9%
60.1%

5.3.2  Updating Model Parameters.
Q2: Does updating a model’s pretrained parameters instead
of freezing them prevent privacy leakage?

CIFAR-10. The ResNet models we pretrain on CIFAR-100 are
divided into ResNet blocks or layers, which each contain multiple
sub-layers. When finetuning pretrained ResNet models on CIFAR-
10, we unfreeze the weights in different subsets of these ResNet
layers. More concretely, we observe the performance of our attack
on ResNet models which have had their classification layer (feature
extraction), last 2 layers (62% of total parameters), and last 3 layers
(90% of parameters) finetuned on the downstream task.

In Figure 7, we observe that the AUC and accuracy of TMI
slightly decrease as we update an increasing number of parameters.
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We also observe a very slight decrease the TPR at a 1% FPR when
the number of finetuned parameters is increased from 2 layers to 3
layers, but TPR decreases at the FPR we consider when comparing
to the TPR of TMI on models finetuned with feature extraction.
Table 2 shows that updating the model’s parameters induces a
decrease in up to 0.8% at a 0.1% FPR and up to 3.3% at a 1% FPR.

Caltech 101. The Wide ResNet models we pretrain on Tiny Im-
ageNet have a similar architecure to the ResNets in the previous
experiments, where each block contains sub-layers. For this ar-
chitecture, we run our attack on models which have had their
classification layer (feature extraction), last 2 layers (34% of total
parameters), and last 3 layers (96% of parameters) finetuned on
Caltech 101. Figure 15, which corresponds to this experiment, can
be found in Appendix D. We observe a similar trend to the previ-
ous experiments on CIFAR-10 models, where the attack’s success
decreases as we increase the number of finetuned parameters. In
Table 2 we see that for a fixed FPR of 0.1%, TMI has a 20.7%, 11%,
and 7.7% TPR when the final, last two, and last three layers are
finetuned, respectively. At a 1% FPR, TMI has a 41.5%, 26.5% and
20.6% TPR for these three settings. Nevertheless, TMI achieves com-
parable AUC and balanced accuracy metrics to feature extraction
when we finetune the majority of model parameters in both the
CIFAR-10 and Caltech 101 experiments.

Prior work [58] has shown that samples used earlier in train-

ing are more robust to privacy attacks. Our theoretical results in
Section 4.1 substantiate this work and help provide an explanation
for the decrease in attack success. In our results, @ corresponds to
the fraction of training epochs spent on finetuning, but our anal-
ysis lacks a critical parameter from our experiments: the number
or fraction of tunable parameters in the published statistic. Our
analysis considers a vector (namely, the empirical mean) where all
of the parameters are being updated, thus providing a worst-case
situation for the adversary. In the feature extraction setting, the
information learned by the model during pretraining is essentially
frozen. Unlike feature extraction, we are updating the model’s pa-
rameters with information about the downstream samples when
finetuning.
Q2 Answer: Updating larger subsets of model parameters slightly
decreases the success of our TMI attack when compared to models
finetuned on downstream tasks using feature extraction, but we are
still able to infer the membership status of the majority of samples
in the pretraining dataset.

Table 2: TPR at Fixed FPR of TMI when Pretrained Target
Models are Finetuned on by Updating the Pretrained Weights
(Figures 7 and 15)

Task

Feature Extraction (CIFAR-100 — CIFAR-10)

Last 2 Layers (CIFAR-100 — CIFAR-10)

Last 3 Layers (CIFAR-100 — CIFAR-10)

Feature Extraction (Tiny ImageNet — Caltech 101)
Last 2 Layers (CIFAR-100 — CIFAR-10)

Last 3 Layers (CIFAR-100 — CIFAR-10)

TPR @ 0.1% FPR TPR @ 1% FPR

2.0%
1.1%
1.1%
20.7%
11.0%
7.7%

8.0%

5.6%
4.7%
41.5%
26.5%
20.6%

Q3: Does the similarity between the pretraining and down-
stream task affect the privacy risk of the pretraining set?
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Figure 6: TMI Attack Performance When Preterained Tiny
ImageNet Target Models are Finetuned Using Feature Extrac-
tion

Oxford-IIIT Pet. The Oxford-IIIT Pet dataset presents a unique
challenge for finetuning our pretrained ResNet models. To finetune
these models on the pet breeds classification task, it is necessary to
unfreeze all of the layers. Otherwise, the model would have little
to no utility with respect to the downstream task. Because the 37
pet breeds that appear in this dataset do not appear in and are not
similar to any of the classes in the pretraining data, freezing any
of the model’s weights is an innefective strategy for this task. In
this evaluation of TMI on models transferred from CIFAR-100 to
Oxford-IIIT Pet, we finetune for the same number of epochs with
the same hyperparameters as the models in our experiments with
CIFAR-10.

We observe in Figure 8 that the accuracy and AUC of our adap-
tation of LiRA becomes effectively as good as randomly guessing
membership status. In contrast, TMI is still able to achieve some
amount of success, with an AUC of 0.55 and a balanced accuracy
of 53.4% over 128 target models with 1000 challenge points each.
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Table 3: TPR at Fixed FPR of TMI when Target Models are
Finetuned on Oxford-IIIT Pet by Finetuning All Layers

Task TPR @ 0.1% FPR TPR @ 1% FPR
TMI (Oxford-IIT Pet) 0.5% 2.6%
Adapted LiRA (Oxford-IIIT Pet) 0.08% 1.0%

Additionally, our attack demonstrates a 2.6% true positive rate at a
1% false positive rate.

Q3 Answer: Even though the downstream task of pet breed classifi-
cation is dissimilar from the pretraining task and all of the model’s
parameters are finetuned for 20 epochs, TMI is able to achieve
non-trivial success metrics when inferring the membership status
of samples in the pretraining dataset.

5.3.3  Finetuning Pretrained Language Models.
Q4: Can the attack be generalized to domains other than
vision?
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To answer this research question, we evaluate the success of our
TMI attack in the natural language domain. In particular, we focus
on publicly available pretrained large language models (LLMs), or
foundation models [59], which we finetune on two text classification
tasks.

Due to computational limitations, we do not train LLMs from
scratch. As an alternative, we evaluate our attack on a widely used
pretrained foundation model, Transformer-XL [55], along with its
corresponding tokenizer, which are hosted by Hugging Face [60].
Only a limited number of organizations with sufficient computa-
tional resources possess the capability to train foundation models,
which are typically fine-tuned on specific tasks by smaller orga-
nizations [61-63]. Through our evaluation of TMI on finetuned
foundation models, we will additionally answer the following re-
search question:

Q5: Is it feasible to mount our attack on finetuned models
that are based on publicly hosted foundation models?

We chose this foundation model in particular because it uses
known training, validation, and testing splits from the WikiText-
103 [27] dataset, providing us with the exact partitions necessary
to evaluate TMI without having to train our own LLMs. Addition-
ally, although modest in comparison to contemporary foundation
models, the Transformer-XL architecture contains 283 million train-
able parameters. This makes it a powerful and expressive language
model that may be prone to memorizing individual data points.

We finetune Transformer-XL on DBpedia [51], modifying the
pretrained tokenizer to use a max length of 450, including both
truncation and padding. Using a training set of 10,000 randomly
sampled datapoints from DBpedia, we finetune the last third of the
parameters in our Tranformer-XL models for 1 epoch. We use the
AdamW [64] optimizer with a learning rate of 10~ and weight
decay with A = 107, With these hyperparameters, we are able to
achieve test accuracies of 97% and 60% on the 14 classes of DBpedia
and 10 classes of Yahoo Answers, respectively.

To prepare our membership-inference evaluation dataset, the
WikiText-103 is partitioned into contiguous blocks, separated each
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by Wikipedia subsections. We then perform the same tokeniza-
tion process as we do in finetuning before collecting their pre-
diction vectors. Because we do not pretrain our own LLMs, we
adapt TMI to train a single, global metaclassifier over the predic-
tion vectors of all challenge points rather than train a metaclas-
sifier per challenge point. In total, we use 2650 challenge points,
which corresponds to a metaclassifier dataset with size |Dieta| =
2560 * (number of shadow models).

We are unable to compare TMI to our adaptation of LiRA be-
cause we cannot pretrain our own LLMs. Our adaptation of LiRA
requires additional shadow models to be trained from scratch with
respect to every challenge point as detailed in Algorithm 2. In our
evaluation, we also find that k-nearest neighbors (KNN) signifi-
cantly outperforms a neural network as a global metaclassifier. We
believe this to be the case due to the additional variance incurred
in a (global) metaclassifier dataset containing prediction vectors
from all challenge points. In contrast, the metaclassifier datasets
used in our vision tasks only contained labeled prediction vectors
with respect to a single challenge point.

10°
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Figure 9: TMI Performance on a Publicly Available
Transformer-XL Model Finetuned on DBpedia-14 Topic Clas-
sification

We present the results of our evaluation on LLMs in Figures 9
and 16 and Tables 4 and 5. Figure 16 can be found in Appendix D.
Although it is common practice to use k = y/n neighbors in a KNN,
we also report results using k equal to the number of shadow models
as it appears to increase attack success. As shown in Table 4, we
observe that TMI using the highest number of shadow models
(64), is able to achieve a TPR of 3.4% and 8.8% at 0.1% and 1%
FPR, respectively. These results are comparable to our findings
on CIFAR-10 from Table 2 in the vision domain. Surprisingly, we
do not observe a notable difference in our summary statistics as
we increase the number of shadow models from 16 to 64, with an
increase of only 0.652 to 0.673 in AUC, and 60% to 61.3% in accuracy
as shown in Figure 9.

The results shown in Figure 16 and Table 5 are consistent with
our finding in Section 5.3.2 for similarity between the pretraining
and downstream task. We see a slight decrease in TMI’s success
when Transformer-XL is finetuned on a completely new task, Yahoo
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Answers, versus when it is finetuned on data from a similar distri-
bution to its pretraining, DBpedia-14. When the Transformer-XL
model is finetuned on the Yahoo Answers topic classification task,
TMI achieves a TPR of 2.6% and 4.2% at 0.1% and 1% FPR, respec-
tively. Compared to our previous language model experiments, the
TMI sees a decrease in AUC from 0.67 to 0.59 and a slight decrease
in accuracy from 61% to 56%.

Table 4: TPR at Fixed FPR of TMI on Pretrained WikiText-
103 Transformer-XL Finetuned on DBpedia-14 (Figure 9)

Task TPR @ 0.1% FPR TPR @ 1% FPR
16 Shadow Models (k = /|Dmetal) 1.6% 5.2%
16 Shadow Models (k = 16) 2.6% 7.0%
32 Shadow Models (k = \/|Dmetal) 2.0% 5.5%
32 Shadow Models (k = 32) 3.1% 8.1%
64 Shadow Models (k = +/|Dmetal) 2.2% 6.0%
64 Shadow Models (k = 64) 3.4% 8.8%

Q4 Answer: Yes, we are able to generalize TMI to domains other
than vision. In particular, we are able to show that our attack is ef-
fective against pretrained language models, and present our results
on the publicly hosted Transformer-XL foundation model without
the need to pretrain any additional large language models.

Q5 Answer: Yes, TMI continues to be effective in this situation
where we finetuned public foundation models. This reinforces the
need for understanding privacy leakage in the transfer learning
setting used for foundation models.

Table 5: TPR at Fixed FPR of TMI on Pretrained WikiText-103
Transformer-XL Finetuned on Yahoo Answers (Figure 16)

Task TPR @ 0.1% FPR TPR @ 1% FPR
16 Shadow Models (k = +/|Dmetal) 1.4% 3.8%
16 Shadow Models (k = 16) 1.1% 4.0%
32 Shadow Models (k = v/|Dmetal) 1.9% 3.7%
32 Shadow Models (k = 32) 2.0% 4.4%
64 Shadow Models (k = +/|Dmetal) 2.1% 3.8%
64 Shadow Models (k = 64) 2.6% 4.2%

5.3.4 Transfer Learning with Differential Privacy.
Q6:Is privacy leakage present even when a model is finetuned
using differential privacy?

We also discuss the performance of our attack on target models
that were finetuned with differential privacy. Because prior work
on transfer learning with differential privacy considers strategies
where an especially small percentage of parameters are trained on
the downstream task [1, 2, 4, 50], we freeze the pretrained model’s
weights and train only the final layer on the downstream task. In
our experiments, we perform feature extraction to finetune our
pretrained CIFAR-100 models on Coarse CIFAR-100 and CIFAR-10.
We train the final classification layer using DP-SGD [50] with target
privacy parameters ¢ = {0.5,1} and § = 107>, As these are strict
privacy parameters, we set the clipping norm equal to 5 to achieve
reasonable utility on the downstream tasks.

213

Proceedings on Privacy Enhancing Technologies 2024(3)

Figure 17 in Appendix D shows that the success of our attack
only decreases slightly when differential privacy is used to train the
final classification layer on a downstream task. We believe that the
slight decrease in attack accuracy can be attributed to loss in utility
with respect to the downstream task from training with DP-SGD.
When we finetune our models on Coarse CIFAR-100 with privacy
parameters ¢ = 0.5 and § = 107%, TMI has a TPR of 3.3% at a FPR
of 0.1% and a TPR of 10.7% at a FPR 1%. Additionally, our attack
maintains about 95% of the accuracy and AUC compared to the
setting where no privacy preserving techniques are used to finetune
models on Coarse CIFAR-100.

Prior work [19] has shown that state-of-the-art MI attacks, which
directly query the pretrained model, completely fail when the target
models are trained with a small amount of additive noise. For ex-
ample, when training target models using DP-SGD with a clipping
norm equal to 5 and privacy parameter ¢ = 8, LIRA has an AUC of
0.5. Through this evaluation, we reinforce the fact that transferring
pretrained models to downstream tasks with differential privacy
does not provide a privacy guarantee for the pretraining data.

While it may seem expected that finetuning on a disjoint dataset
with DP-SGD provides no privacy guarantee for individuals in
the pretraining set, the authors of [7] pose the following question:
What privacy guarantee should an individual expect if their data
was present in both pretraining and finetuning? This scenario is not
unlikely, as large models are trained on terabytes of data scraped
from the Web [10, 65]. Because manually inspecting these datasets
is infeasible, it is likely that an individual’s datapoint which was
included in private finetuning is also present in non-private pre-
training. Thus, their data does not enjoy the (¢, §) — DP guarantee
promised by finetuning, as the corresponding pretraining gradients
are unbounded in magnitude and exact in direction. Misusing DP-
SGD in this manner can leave these individuals at risk of privacy
attacks.

To support our claim that finetuning with DP-SGD is blatantly

non-private when Dpr N Dpr # 0, we run experiments on the
CIFAR-100 dataset. Similar to our prior experiments, we finetune
the final layer of ResNet-34 shadow models on the Coarse CIFAR-
100 dataset using DP-SGD [50] with target privacy parameters
£ €{0.5,1} and § = 10 and clipping norm equal to 5. The only
difference in this experiment is the fact that the finetuning set
contains some (~1000) individuals who were also present in the
pretraining task. We run our TMI attack on these individuals and
report the results in Figure 10 and Table 7. When we finetune with
DP-SGD and the challenge points are included in the finetuning set,
we see true positive rates that are comparable to our experiments
on models finetuned using feature extraction (Table 1). At a fixed
FPR of 0.1% and target privacy guarantees of ¢ = 0.5 and ¢ = 1, TMI
achieves a TPR 15.6X higher than the upper bound (end-to-end)
training with DP-SGD should provide.
Q6 Answer: Finetuning a pretrained model using DP-SGD provides
a privacy guarantee only for the downstream dataset. Therefore,
DP-SGD has little to no impact on privacy risk of the pretraining
dataset, and these downstream models leak the membership status
of individuals in the pretraining dataset.

In settings where the pretraining and finetuning data overlap,
the guarantee that differential privacy typically provides does not
hold. This happens because any given individual’s influence in the
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Figure 10: TMI Performance on Samples Present in Both Dpr and Drr when Finetuning Models with DP-SGD

pretraining process is unbounded and deterministic. Thus, pretrain-
ing can induce leakage of individuals in the finetuning set, even
when DP-SGD is used to finetune the model.

Table 6: TPR at Fixed FPR of TMI when Target Models are
Finetuned with DP-SGD (Figure 17)

Task TPR @ 0.1% FPR TPR @ 1% FPR
Coarse CIFAR-100 (¢ = o) 5.7% 16.1%
Coarse CIFAR-100 (¢ = 1.0, § = 107°) 3.2% 10.6%
Coarse CIFAR-100 (¢ = 0.5, § = 107°) 3.3% 10.7%
CIFAR-10 (¢ = c0) 2.0% 8.0%
CIFAR-10 (¢ = 1.0, § = 107) 1.6% 6.6%
CIFAR-10 (¢ = 0.5, § = 107) 2.1% 6.6%

Table 7: TPR at Fixed FPR of TMI Performance on Samples
Present in Both Dpr and Drr when Finetuning Models with
DP-SGD (Figure 10)

Task TPR @ 0.1% FPR TPR @ 1% FPR

TMI (6 = 0.5, § =107) 2.5% 8.5%
TMI (¢ = 1.0, § = 107%) 4.2% 12.6%
Theoretical Upper Bound (e = 0.5, § = 107%) 0.16% 1.7%
Theoretical Upper Bound (e = 1.0, § = 107%) 0.27% 2.7%

6 DISCUSSION AND CONCLUSION

We study the critical issue of privacy leakage in the transfer learning
setting by proposing a novel threat model and introducing TMI, a
metaclassifier-based membership-inference attack. In particular, we
explore how finetuned models can leak the membership status of
individuals in the pretraining dataset without an adversary having
direct access to the pretrained model. Instead, we rely on queries
to the finetuned model to extract private information about the
pretraining dataset.

Through our evaluation of TMI, we demonstrate privacy leak-
age in a variety of transfer learning settings. We demonstrate the
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effectiveness of our attack against a variety of models in both the
vision and natural language domains, highlighting the susceptibil-
ity of finetuned models to leaking private information about their
pretraining datasets. In the vision domain, we show that TMI is ef-
fective at inferring membership when the target model is finetuned
using various strategies, including differentially private finetuning
with stringent privacy parameters. We also demonstrate the success
of our attack on publicly hosted foundation models by adapting
TMI to use a global metaclassifier.

Other Privacy Attacks on Finetuned Models. We introduce the first
threat model that uses query access to a finetuned model to mount
a privacy attack on pretraining data. It remains an open question
as to whether other privacy attacks, such as property inference,
attribute inference, and training data extraction attacks can also see
success in this transfer learning setting. Given that MI attacks are
used as practical tools to measure or audit the privacy of machine
learning models [39-41], future work should consider efficiency
and simplicity when designing new privacy attacks in the transfer
learning setting.

Considerations for Private Machine Learning. Our evaluation
shows that the pretraining dataset of machine learning models
finetuned with differential privacy are still susceptible to privacy
leakage. This supports the argument made in [7] that "privacy-
preserving" models derived from large, pretrained models don’t
necessarily provide the privacy guarantees that consumers of ser-
vices backed by these finetuned models would expect. Prior works
that utilize public data to improve the utility of differentially private
machine learning models have made strides towards making dif-
ferential privacy practical for several deep learning tasks [1-6, 66],
but they do not address privacy risks external to model training
itself.

Using TMI as a measurement of privacy leakage in this setting,
we reinforce the fact that maintaining privacy depends on taking
a holistic approach to the way that training data is handled. As
stated in [7], privacy is not binary (i.e. not all data is either strictly
"private” or "public") and privacy in machine learning is not only
dependent on the model’s training procedure. To grapple with
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privacy risk in this increasingly popular transfer learning setting,
researchers and practitioners should explore new ways to sanitize
sensitive information from training datasets of machine learning
models, create ways to collect potentially sensitive Web data with
informed consent from individuals, and work towards end-to-end
privacy-preserving machine learning with high utility and privacy
guarantees.
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A MEMBERSHIP INFERENCE UNDER
DISTRIBUTION SHIFT

We analyze the success of membership inference attacks on Gauss-
ian mean estimation under distribution shift. While this setting is
simple compared to the finetuned deep learning models, it helps us
understand how repurposing one estimator for a new problem can
leak information about the original dataset.

A.1 Introduction

In this setting, the challenger has access to two datasets, X and
Y, where |X| > |Y|. The challenger uses these datasets to publish
a statistic that is a combination of the empirical means of each
dataset. This can be thought of as leveraging the the larger dataset,
X, to estimate a statistic that comes from a similar distribution.
The adversary’s goal is the following: Given a challenge point c,
determine the membership status of ¢ with respect to the dataset
X.

Let X = {x1,...,xp} and Y = {y1,...,ym} be datasets where
eachx; ~ N(p,Iy) andy; ~ N(p+v,1y), andlet i = ax+ (1 - )y
be the statistic released by the challenger.

Then,

E(@) =p+(1-a)v
and

Cov(i) = a®Var(z) + (1 - a)ZCOV(g)

|
Q. —
R,
+
~~
—
|
R
SN
[\"]
S—
=
QU

In this mean estimation setting, ||v||2 can be thought of as the
inversely proportional to the similarity between the pretraining
and finetuning tasks. If y is similar to the mean of the new data,
Y, ||v|l2 is small. The term, «, is analagous to the fraction of pre-
training epochs (i.e. number of pretraining epochs divided by the
total number of pretraining and finetuning epochs). For example if
there are 80 pretraining epochs and 20 finetuning epochs, the corre-
sponding « value would be 0.8. Note that as « — 0, the information
from the empirical mean of X is completely overshadowed by the
empirical mean of Y. Prior work on membership-inference attacks
on machine learning models has suggested that gradient updates (a
special case of mean estimation) that do not contain an individual
make membership-inference success decrease with respect to that
individual [58]. This is consistent with the results we present in this
section for the simplified setting of membership-inference attacks
on Gaussian mean estimation.

A.2 Threat Model and Attack Algorithm

Similar to prior work on membership inference-attacks on mean
estimation, we assume that the adversary has query access to the
aggregate statistic, /i, along with the true mean of this statistic, E(j).
The membership-inference security game between the challenger
and the adversary is defined as the following:

(1) Pick b ~ U{0,1})
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(2) If b = 0, sample the challenge point, ¢ ~ N (1), else
sample ¢ uniformly from X

(3) Compute z = (i-E(f) , c=E(c)) = (A= (u+(1-a)v) , c—p)

(4) If z > 7, output 1. Else, output 0

A.3 Results
Lemma A.1. Ifc is OUT (b = 0), then

E(z) =0 and Var(z) =da,

and ifc isIN (b = 1), then

2 2
E(z) = ﬁl and Var(z) =da+ —dg{
n n

Proor. We will begin by analyzing the OUT case, where ¢ ~
N(p1g)

E(2) = E((i— (u+ (1= a)v) , = 1))
= (B(i— (u+ (1 - ), E(c—p))
=0, 0)
=0

Next, we compute the variance in the OUT case:

Var(z) = Var({i = (u+ (1 - a)v) , ¢ = p))

d
= D Var((i= (u+ (1= a)), ¢~ p))
i=1

B((- (u+ (1= @))? - (e - w?)

B((a- e+ (1-0m)?) B - w?)

ST
—

MM I B

I
Q. o~
SN

Now, we will analyze the IN case, where ¢ is sampled uniformly
at random from the dataset, X. In this case, the published statistic,
/1 and the challenge point ¢ are not independent. For succinctness,
lett=(u+(1-a)v).
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Figure 11: Performance of the Membership Inference Attack on Mean Estimation

E(z) =E((fi—t, c—p)

d
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E(fi - ¢i) — piti

Since ¢ = x; € X for some i, without loss of generality suppose
¢; = x;,1 for all i. Then, E(j; - ¢;) becomes
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Plugging the above terms into the original expression for the ex-
pectation of E(z) and simplifying yields

d
Z E(fi - ¢i) — piti =
im1

|
S |3 1M
SR

Lastly, we compute the variance in the IN case:



TMI! Finetuned Models Leak Private Information from their Pretraining Data

Var(z) = Var((ﬁ —t,c—py)

- ZVar«u =i (e~ )

d
ZVar(ﬁi~ci—p'ﬁi—f'Ci)
i=1

Since ¢ = x; € X for some i, without loss of generality suppose
¢; = x; for all i. For succinctness, we drop the summation and
indices, i, since all of the dimensions are i.i.d. Expanding /i, we get

n
a
Var| x1 - (; ij +(1-a)g;) -
Jj=1
We will also use the shorthand f§ = j _, xj + (1 - a)7. Note that
S is normally distributed with mean y + (1 - a)v =t and variance

Zx]+(1—a)y) —t-x

% + (1_—,:)2. Pulling x; out of the summations yields
—Var( x1 +x1/3— — - x1— yﬁ—t-xl)
n
= Var(—x1 +x1(f———1t)— ,uﬁ)
n n

=E((Sxt+xi(8- % -0 -up)?)
~B(Ext - Lo - )

After algebraic manipulation and computing the individual ex-
pectations as in the OUT case, we arrive at

]

LEMMA A.2. The mean squared error of fi (as an estimator of the
mean of the finetuning data, i + v) is the following:

B(1lA - (u+ v)IP) = dd+ @201l
The choice of a that minimizes the mean-squared-error is
“ d

m([vIZ+ 4) +d

Proor. Consider the mean squared error of I as an estimator of
the mean of the finetuning data , y + v.

B(1li - e+ 1P

Note that Z = ji— (u+v) ~ N (—av, @l;) and for any multivariate
Gaussian random variable, X ~ N (y, ), we have

B(IXIZ) = Tr() + Ilull?
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Thus, the mean squared error is

B(1li = (u+ VI?) = ad + a2Vl

Suppose the challenger who is releasing /i wants to choose « (i.e. the
pretraining-to-finetuning split) such that the error on the finetuning
data, Y, is minimized. Computing the derivative of the mean squared
error with respect to « yields

1_
MSE'(a) = zd(% - a) + 2a|v]

Setting MSE’(«) = 0 and solving for &, we find that the optimal
parameter, ¥, is

N d

m(||v]|5 +

- d
ﬁ)+d
O

LEMMA A.3. Assume the test statistic, z, is normally distributed.
The AUC of our membership-inference attack can be written as the
probability the test statistic, z, for an IN sample exceeds z for an OUT
sample:

1
AUC = —(1+erf(

ad
2+/d(an? + a2 )))

Proor. The AUC of a classifier can be thought of as the probabil-
ity that the prediction value on a random positive example exceeds
the prediction value on a random negative example.

AUC =P(ziN > zouT)
2dUt

where z;y ~ N (42 ) and zoyT ~ N(0,da). Subtracting

the the two random Varlables we get
AUC =P(z1N > zouT)
=P(zour — 21N < 0)

ad

2 2
:P(N(—T 2da + da

n2

)<0)
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B ABLATIONS

In this section, we evaluate variations of TMI. We limit the ad-
versary’s access to the target model’s prediction outputs, consider
different choices of metaclassifier architecture, and study how the
number of challenge point queries affects the effectiveness of our
attack.

True Positive Rate

10-3 4

== All Labels, auc=0.777 acc=0.689
Top 5 Labels, auc=0.709 acc=0.638
=== Top 1 Label, auc=0.764 acc=0.678

7 = = Direct Access to Pretrained Model, auc=0.832 acc=0.745
-
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1073 10°

Figure 12: TMI Performance with Access to Prediction Confi-
dence on the Top-K Labels

B.1 Access to Top-k Predictions

In many realistic settings, an adversary who has query access to a
computer vision model may only receive predictions for top-k most
probable labels. Because our attack relies the information from a
combination of labels, we evaluate TMI with access to the top 1, top
5, and all labels in the downstream task. For this experiment, we use
the same pretrained and finetuned models as in our experiments
with Coarse CIFAR-100. This time, when we query the shadow
models and target model, we mask the prediction confidences on
all but the top-k labels. Because the prediction confidences always
sum up to 1, we take the remaining probability mass and divide
it amongst the remaining labels to construct the vectors for the
metaclassifier (e.g. if the top 5 predictions make up 0.90 of the total
probability mass, we divide 0.10 across the remaining 15 labels).

In Figure 12, we show the performance of TMI when the adver-
sary has access to the top 1, 5, and 20 labels in our Coarse CIFAR-100
task. Interestingly, TMI with access to a single label has higher
attack success than our adaptation of LiRA (Figures 5 and 6) even
though both adversaries are given the same amount of informa-
tion. This may be due to the fact that we create some additional
information about the other classes by constructing a prediction
vector using the labels that the adversary has access to, which is
only possible if the adversary knows all of the possible class labels
a priori.

B.2 Different Metaclassifier Architectures

Throughout our evaluation, we primarily use a neural network
as our metaclassifier to perform our membership-inference attack.
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In this ablation, we study how the choice of metaclassifier affects
the success of our attack. We use the following architectures: neural
network multilayer perceptron, support vector machine, logistic
regression, and k-nearest-neighbor (k = v/Dmeta). When using the
k-nearest-neighbor metaclassifier, we receive hard-label (binary)
predictions for membership status. This stands in contrast ot the
continuous scores that we receive from the three other metaclas-
sifier architectures. To obtain a membership score in the interval
[0, 1], we average the labels from the k-nearest-neighbor models
across the prediction vectors obtained from several different aug-
mented queries to the target model. Although we receive a continu-
ous score from each of the other metaclassifiers, we also average the
scores across all of the prediction vectors from augmented queries.

1071 4 e

True Positive Rate

10-3 4
Neural Network, auc=0.778 acc=0.690

- Support Vector Machine, auc=0.767 acc=0.688
Logistic Regression, auc=0.764 acc=0.683
K-Nearest Neighbors, auc=0.717 acc=0.650

1074

1072 107t

False Positive Rate

Figure 13: TMI Performance with Different Metaclassifier
Architectures

We observe that the overall impact on the effectiveness of our
attack is minimal, which indicates that TMI is relatively robust
to the choice of metaclassifier architecture. Figure 13 shows that
the AUC and accuracy slightly decrease when using metaclassifiers
other than a neural network. This suggests that an adversary could
potentially use faster metaclassifiers than neural networks, such as
logistic regression and k-nearest neighbors, without significantly
compromising the effectiveness of the attack.

B.3 Number of Augmented Queries

Our attack relies on several augmented queries of a single chal-
lenge point on a handful of local shadow models to construct a suffi-
ciently sized metaclassifier dataset. We also query the target model
on these augmentations and average the metaclassifier predictions.
In this experiment, we explore how the number of augmentations
of a challenge point affects the success of TMI.

Figure 14 shows that using more augmentations increases the
FPR, AUC, and balanced accuracy of our attack. Although TMI is
more effective with a higher number of augmented queries, training
metaclassifiers becomes increasingly computationally expensive
as Dmeta becomes large. For example, TMI runs 6X slower on our
hardware when using 16 augmentations of the challenge point
instead of 8. In all of our prior experiments, we use 8 augmentations
to strike a balance between attack effectiveness and efficiency.
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we downscale them to be 64x64 to reduce computational
complexity. We use the Caltech 101 dataset to finetune our
pretrained Tiny ImageNet models as it provides a difficult
task with many categories that can be solved by leveraging
the generic features learned during pretraining.

Oxford-IIT Pet: The Oxford-IIIT Pet Dataset [26] is made
up of about 7400 color images of cats and dogs. This dataset
contains 37 classes with roughly 200 images per class. In
our evaluation, this downstream task is the least similar

1074 16 Augmented Queries, auc=0.784, acc=0.696 to CIFAR-100 because it focuses on a specific category of
— i:ﬁgz:::g e e images that are mutually exclusive to the pretraining set
— = Direct Access to Pretrained Model, auc=0.832, acc=0.745 classes. For this task, we do not use feature extraction be-
0o 10-3 10-2 10 o0 cause the finetuned model have low utility. Rather, we use

False Positive Rate

Figure 14: TMI Performance with Different Numbers of Aug-
mented Queries

C DATASETS AND MODELS

In this section, we discuss each of the datasets and the training
procedures used in our evaluation of TML

C.1 Datasets

e CIFAR-100: The CIFAR-100 [23] dataset is a subset of the
Tiny Images dataset [67], provided by the Canadian Insti-
tute for Advanced Research. It is comprised of 60,000 32x32
color images from 100 classes, where each class contains 600
images (500 for training and 100 for testing). CIFAR-100 is
used as one of our pretraining tasks because it is a challeng-
ing dataset with a wide variety of classes, which allows our
models to learn very general features and patterns that can
be applied to several downstream tasks.

o Tiny ImageNet: Tiny ImageNet [24] is an image classifica-
tion dataset designed to be a smaller scale alternative to the
popular ImageNet [68] dataset. This dataset contains 110,000
64x64 color images from 200 classes, where each class con-
tains 550 images (500 for training and 50 for testing). We
use Tiny ImagenNet to pretrain the larger Wide ResNet ar-
chitecture because it provides a similarly general task to
CIFAR-100 at a larger scale. Additionally, the full-sized ver-
sion of ImageNet is a widely used dataset for pretraining
large image models, thus reinforcing the need to evaluate
our attack on a dataset like Tiny ImageNet.

o Coarse CIFAR-100: The classes in CIFAR-100 can be divided
into 20 superclasses. Each image in the dataset has a "fine"
label to indicate its class and a "coarse" label to indicate its
superclass. We construct this coarse dataset using the su-
perclass labels and use it as our downstream task with the
highest similarity to the pretraining task. In our experimen-
tation, we ensure that this downstream task does not contain
any of the pretraining samples from the standard CIFAR-100

the pretrained model as an initialization and update all of its
weights.

Caltech 101: In a similar fashion to CIFAR-100, the CIFAR-
10 [23] is comprised of 60,000 32x32 color images selected
from the Tiny Images dataset. This dataset includes 10 classes,
each containing 6000 points (5000 for training and 1000 for
testing) which are mutually exclusive to those seen in CIFAR-
100. In our evaluation, this downstream task is the second
most similar to CIFAR-100 because they are both derived
from the same distribution of web-scraped images, but they
are disjoint in their classes. Although the classes do not over-
lap, the features learned from pretraining on CIFAR-100 may
be useful in performing this task.

WikiText-103: WikiText-103 [27] is a large-scale language
dataset that is widely used for benchmarking language mod-
els. It contains over 100 million tokens and is derived from
several Wikipedia articles and contains a vast amount of
textual data. The language models we consider in this paper
have been pretrained on the train partition of WikiText-103
and are hosted on Hugging Face.

DBpedia: The DBpedia ontology (or topic) classification dataset [51]

is composed of 630,000 samples with 14 non-overlapping
classes from DBpedia, which is a project aiming to extract
structured content from the information on Wikipedia. For
each of the 14 topics, there are 40,000 training samples and
5000 testing samples. In our experiments with language mod-
els, we update a subset of the model’s weights on random
subsets of this dataset.

Yahoo Answers: The Yahoo Answers topic classification
dataset [52] is composed of 1.4 million training samples
and 60,000 testing samples with 10 classes. The training and
testing sets are divided evenly amongst the topics, such that
there are 140,000 training samples and 6000 testing samples
per class. Each sample contains both the title and content
of a question asked on Yahoo Answers. In our experiments
with language models, we update a subset of the model’s
weights on random subsets of this dataset, where the content
of each question is appended to the question title.

dataset.

e Caltech 101: Caltech 101 [25] is an image classification dataset C.2 Shadow Model Training
comprised of about 9000 color images from 101 classes, where Our shadow model training procedure for vision models is split
each class contains 40 to 800 images. Because the images into two phases: pretraining and finetuning. In the first phase, we
in this dataset vary in size and tend to be high resolution, train 129 randomly initialized ResNet models on random subsets of
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Tiny ImageNet and CIFAR-100, each containing half of the dataset
(50k and 25k points, respectively). The remaining samples are held
out for evaluation. We train each of the ResNet-34 models for 100
epochs (to 75-80% top-5 accuracy) using SGD with weight decay
(A = 107°) and cosine annealing [69] as our learning rate scheduler.
Using the same hyperparameters, we train the Wide ResNet-101
architecture for 200 epochs to 60% top-5 accuracy. When training
and querying any of our shadow models, we use standard data
augmentations, such as random crops and horizontal flips.

In the second phase, we finetune our shadow models on ran-
domly sampled subsets of our downstream task datasets. Before
we finetune each shadow model, we swap the classification layer
out with a randomly initialized one that has the proper dimension
for the downstream task. We then freeze a subset of the model’s
pretrained weights. When we use feature extraction to finetune
our pretrained models, we freeze all weights except for those in the
final classification layer. The weights that aren’t frozen are trained
using the same process as pretraining, but for 20% of the epochs.

When pretraining our shadow models, we designate a randomly
selected set of points to be the challenge points for our TMI attack.
Because each shadow model is trained on half of the dataset, all
of the points (including the challenge points) will be IN and OUT
for approximately half of the shadow models. In our experiments,
we select one shadow model to be the target model and run our
attack using the remaining 128 shadow models. Each time we run
our attack, we select the a different shadow model to be the target
model, yielding a total of 128 trials.

D ADDITIONAL FIGURES
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Classification.
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= = Direct Access to Pretrained Model, auc=0.832, acc=0.745
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