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1. Introduction

Our story begins with a quasihomogeneous polynomial in n variables with n terms,
n n
W:Ch—C,  W(ry,...,za) = [[ 25" (1.1)

where the exponent matrix A = (a;;) is invertible in GL(n, Q). In this case we say that
W is an invertible polynomial, and its dual polynomial WV is a polynomial of the same
type,

WY (21,...,20) = ZHZ;W (1.2)

with exponents determined by the transpose matrix A* = (a;;). These polynomials also
define a Pontryagin dual pair of finite abelian groups G and GV, to be defined below,
acting on C™ and for which W and WV, respectively, are invariant.

The study of such pairs of polynomials was initiated in [5], who conjectured a
mirror-symmetry relationship between them: the Landau-Ginzburg models (C™, W)
and (C™/GY,WV) (or, equivalently, (C"/G,W) and (C™,WV), if we had a better un-
derstanding of G-equivariant Floer theory) were expected to be dual in the sense of
homological mirror symmetry. In the past two and a half decades, features of this mirror
symmetry, especially the relevant cohomological field theories (of which the A-side the-
ory is the FJRW theory introduced in [12] and the genus-0 B-side theory is K. Saito’s
theory of primitive forms [40]) and their many relations to singularity theory, have been
studied in many individual cases. A statement of homological mirror symmetry for such
pairs, with all the equivariance on the B-side, may be stated as follows:

Conjecture 1.3. There is an equivalence

W(C™, W) = MF(C"/GY, W) (1.4)
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between the wrapped Fukaya category of the Liouville sector associated to Landau-
Ginzburg model (C™, W) and the category of G -equivariant matriz factorizations of
WY on C".

This theorem ought to be proved' using the now-familiar strategy in mirror symme-
try, pioneered by Seidel [41,43] and systematized by Sheridan [45,46,44], of studying the
complement of a divisor on the A-side, proving mirror symmetry there and then de-
forming the resulting category by a count of holomorphic disks. In this case, this means
beginning with the equivalence

W((C*)", W) = Coh(C"/G") (1.5)
and then finding WV as a count of disks passing through the divisor
D=A{xy- -z, =0}.

The fundamental fact which allows this trick to work is the observation that any
invertible polynomial W can be obtained from the basic case W = x1 + --- + z,, by
pulling back along the map

p:C" —C", (T1, .0y Tp) (Hm?l'j,...7Hx?"'j), (1.6)

which is a finite unramified cover away from the divisor D. The restriction of this map
to (C*)™ is thus a finite unramified cover everywhere, and by definition the group G is
its Galois group. The general case can be proven through an understanding of this much
simpler case.

We use the same fact in this paper, where our concern is not the “singular category”
W(C™, W) but rather the “nearby category,” the wrapped Fukaya category of the Milnor
fiber of C. The study of this category was initiated in [31], and it has been described
via explicit calculations in some special cases: for ADE singularities in [30], and for the
2-dimensional case in [23] and [8]. As in [22], our strategy of proof in this paper allows
us to treat all invertible polynomials in a uniform way.

Let V = W~1(n) be the Milnor fiber of W in C™. (Choosing the fiber over n as
a representative Milnor fiber is an irrelevant normalization we find helpful.) We study
V through its “very affine” part V = W=t(n) N (C*)". In analogy with the Landau-
Ginzburg case, we begin with a mirror symmetry isomorphism

W(V) = Coh(dC™/GY) (1.7)

between the wrapped Fukaya category of V and the coherent sheaf category of the toric
boundary

! The approach described here draws on unpublished work with Jack Smith.
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AC")GY = {2+ 2, =0}/GY

of the toric stack C™/GV, as described in [21,29]. As in the Landau-Ginzburg case, this
isomorphism owes its existence to the cover (1.6).

Finally, by understanding the geometry near the deleted divisor VN{zy - - -z, = 0}, we
are able to represent W(V) as a deformation of W(V). We state our result as conditional
on Conjecture 4.21: as we explain in §4.3, this is an expected property of the Fukaya
category, which in the setting at hand is possible to prove in many cases, but for which
a complete account would be outside the scope of this paper.

Theorem 1.8. Assuming Conjecture /.21, the wrapped Fukaya category W(V') is a defor-
mation of Coh(dC™/GY) by WV. In other words, there is an equivalence of 2-periodic
dg-categories

W(V) 2 MFS (C x C™ tay - an + WY). (1.9)

The Conjecture 4.21 on which the theorem is conditional describes a way of recon-
structing a Fukaya-Seidel category W(X, f), for a superpotential f whose only critical
value is 0, from its restriction to f=1(C \ {0}) together with its cap functor. The recon-
struction described by Conjecture 4.21 is known when none of the critical points of f
are “at infinity” in the fiber over zero, or when all of them are; the conjecture asserts
that this holds for intermediate cases as well. We highlight here examples of the extreme
cases where Theorem 1.8 is true unconditionally.

Example 1.10. Let W (x1,...,z,) = > x;". Then the equivalence of Theorem 1.8 is
a straightforward generalization of the main calculation of [35], as we explain in Sec-
tion 4.1. This calculation was the main inspiration for the present paper, whose goal is
to popularize the technique used in [35].

Example 1.11. Let W (z,y) = 2%y + y%x. Then the Milnor fiber V is equal to its very
affine part ‘Q/; as a result, the deformation by WV described in Theorem 1.8 is trivial,
and the right-hand side of (1.9) is equivalent to the right-hand side of (1.7). In other
words, the second term in the superpotential on the right-hand side of (1.9) has no effect
on the category.

Remark 1.12. The previous example highlights a subtle complication of (1.9) as opposed
to the traditional Berglund-Hiibsch mirror statement (1.4): namely, the fact that the
superpotential WV may be zero everywhere along the toric boundary of C™/GY; in this
case, as we have just seen, the mirror to the Milnor fiber V receives no contribution from
WV, and the category on the right-hand side of Equation (1.9) is just Coh(9C™/GVY).
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Comparing with [31]

The motivation for Theorem 1.8 was the paper [31], which conjectured a Z-graded
version of the theorem. Traditionally in the Berglund-Hiibsch theory, one considers a
“maximal symmetry group” for the quasihomogeneous polynomial WV: namely,

TVoi={(t1, ..ty tng1) € (C)" T WY (t121, .o tnzn) = tad WY (21, ..., 20) )

Observe that T'V has a natural map to C*, given by projection to the last factor, and
the kernel of this map is the finite group GV discussed above. The main conjecture of
[31] is the following:

Conjecture 1.13 (/31]). There is an equivalence of dg categories
W(V) 2 MF" (Cyy x C™, moxy -+ a0 + WY). (1.14)

Although non-equivariant matrix factorization categories are 2-periodic, the right-
hand side of (1.14) can be understood as a usual (Z-graded, not 2-periodic) dg category
using the extra grading coming from the homomorphism I'V — C*. (The trick of using
an extra C*-action to grade the category of matrix factorizations goes back to [38].) If we
only care about the Z/2-graded category, we may forget this C*-action, retaining only
the information of the finite symmetry group G. We conclude that after 2-periodicization,
the right-hand side of (1.14) becomes equivalent to MFS&’ (C x C™, zoxy - xp + WY),
which is the right-hand side of Theorem 1.8.

In other words, our Theorem 1.8 is the 2-periodic version of Conjecture 1.13, obtained
by forgetting the extra C*-action on the B-side and collapsing the Maslov index on the
A-side. In order to prove Conjecture 1.13 on the nose, one would have to equip the
Milnor fiber V' with symplectic grading data — namely, a trivialization of the bundle
(A(tCOpTV)‘X)Q, or equivalently a map LGr(V) — K(Z, 1) whose restriction to each fiber
represents the Maslov class — such that the induced Z-grading on the Fukaya category
matches the Z-grading on MFE’ (C x C",mox1 - Ty + W) coming from the extra C*
action. (See Appendix A for further remarks on grading data.) This is likely not too
difficult, but we omit it in this paper, whose aim is to highlight some other constructions
in symplectic geometry.

Calculating the deformation

In the proof sketch outlined above, the first step, the calculation of the Fukaya category
W(V) of the very affine part, has already been accomplished in [21]. As often happens,
the more difficult step consists in relating this category to the Fukaya category of the
partial compactification W(V).

However, we observe that, unlike in the situations normally considered by Seidel and
Sheridan, we are studying only a partial compactification, and the space V is itself a

Weinstein manifold, so its Fukaya category can be approached using the locality and
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other techniques developed in [34,20,19,18,36]. We will be inspired in particular by the
calculations of [35], as we will explain below.

Since the partially compactified manifold V' remains Weinstein, the relation of V and
1% may be studied within a neighborhood of the deleted divisor?

D::V\‘O/':Vﬂ Hx(ll”~-~xfl"120

J

As we will explain below, this can be understood as a question about the symplectic
geometry of the degenerating family

Vg [[at ot =ty (1.15)
j

as t varies in a small disk around 0. The results of [21] give a decomposition of a smooth
fiber in this family into simpler Liouville sectors, and we can analyze degenerations of
those sectors individually. We find that the total space of the degeneration of each such
sector is a copy of the Liouville sector studied in [35]. That paper calculated the category
of microlocal sheaves on the Lagrangian skeleton of this sector, and the papers [18,36]
now allow us to understand the results of [35] as a calculation in the wrapped Fukaya
category.

Perverse schobers
The key tool in understanding the deformation of categories discussed above is the
map

f:V—=C, (gcl,...,ajn)»—)thlllj--~x,‘?b“j. (1.16)
J

This map can be described very simply: it has only two critical values, one nondegenerate
critical value and one degenerate critical value at 0. The questions of deformation theory
take place around the latter; we want to relate the Fukaya categories of V' and V=
VA f7H0).

In other words, we are interested in the behavior of the symplectic geometry of V'
relative to the holomorphic map f, an approach again pioneered by Seidel [42] in the
case of Lefschetz fibrations; the non-Lefschetz behavior of f near its critical value 0
requires more sophisticated categorical tools. At the same time, the fact that the base
C of our fibration f is itself Stein helps to simplify much of our analysis, allowing us to
work locally on this base.

21t may seem more natural to write D = V N {z1---z, = 0}, but since we study V through the cover
(1.6), it will be important that D be the central fiber of the degenerating family (1.15).
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The appropriate language for encoding Fukaya-categorical structures relative to a base
is the theory of perverse schobers, as developed in [25,27,6]. A perverse schober on C
with two singularities, at the points 0,1 € C, is equivalent to the data of a diagram of
categories

F G
7)[0,1) — P(o,l) <~ P(O,l]a (1~17)

where F' and G are spherical functors. The notation is intended to suggest that Pg is
the category which P assigns to the Lagrangian £ C C.

In our situation, we can produce such a datum by taking a Liouville-sectorial cover
of the base by “left” and “right” sectors, each containing one critical value, and lifting
this decomposition to the total space. In this case, the central category P(g1) will be
equivalent to the Fukaya category of a general fiber f _1(%), and F,G are the spherical
“cap” or “boundary restriction” functors from the Fukaya categories of the two Liouville
sectors stopped at f~!(3).

The Fukaya category W(V') should then be calculated as the “global (co)sections” of
this perverse schober, defined as the homotopy colimit

. FL G*
W(V) = ,P[()J] = ll_H>1 P[O,l) -~ P(O,l) _— P(O,l] 5 (118)

where F'L'GL are the left adjoints of F' and G. (In the language of Fukaya categories,

these are the “cup functors™ corresponding to the inclusion of f ’1(%) as a stop in the
left- or right-hand Liouville sectors.)

Similarly, the category W(V) is computable from a perverse schober P on C*:
W) = PQCX = h_H)l ( 75% -~ 75(0,1) _— 75(%71] ) (1.19)

where the Lagrangian £¢x is the union of a small circle around 0 and a spoke connecting
the circle to the point 1, and the Lagrangian o— is the union of a small circle around 0
and a spoke emanating to the right (but not reaching the other critical value 1).

In fact, given a sectorial cover as stipulated above, the equivalences (1.18) and (1.19)
are immediate from the [19] theory of sectorial codescent.

Building on prior work [21] on mirror symmetry for hypersurfaces in (C*)", we can
identify all of the pieces in the latter decomposition. Let aCn /G Dbe the strict transform
of 9C™/GY under the blowup of C"/G" at the origin, and Pgv the exceptional divisor
of the blowup, which meets doCn /GY in its toric boundary OPgv.

3 In the literature, these are also sometimes referred to as “Orlov functors”; in this paper, we will prefer
the name “cup functor” for its descriptiveness and for the relation to its adjoint, the “cap functor.”
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Lemma 1.20 (Lemma 5.15 below). The diagram (1.19) is equivalent to a diagram of the
form

Coh(9C"/GY) 2 lim ( Coh® (OC") <—— Coh(dPgv) — Coh®" ({0}) ) . (1.21)

The right and middle pieces in the diagrams (1.18) and (1.19) are the same; the only
difference is in the left-hand category. We would like to relate the category Pjp,1) to the
category P appearing in the perverse schober on C*.

Extending a perverse schober

In other words, we would like to understand how ﬁ, which is a perverse schober on
C*, extends to a perverse schober on C. Our hope is that the local category Pjg 1) on
C can be recovered from the local category P, on C*, together with a small amount
of extra data.

As motivation, consider the situation which perverse schobers are expected to cate-
gorify, namely the theory of perverse sheaves. This theory admits a gluing formalism,
described in [52,33,4]; in the case of perverse sheaves on (C,0), this gluing result (which
can be found in various forms in [52,33,4]) reads as follows:

Theorem 1.22. A perverse sheaf on C may be reconstructed from a perverse sheaf F on
C*, a monodromic perverse sheaf G on the normal cone to 0, and an equivalence between
G and the specialization of F at 0.

We will not literally categorify the data of Theorem 1.22, but we will take it as a
suggestion that there should be a finite amount of “extension data” which can be used
to reconstruct P from P.

The fundamental ingredient which we will use in this extension procedure is the cap-
cup adjunction

F: P[O,l) = ,P(OJ) : FL. (123)

As we mentioned above, this adjunction is spherical: concretely, this means that the
category Pg,1) is equipped with an automorphism p € Aut(P(o,1), which we can under-
stand geometrically as induced by the monodromy around 0 of the map (1.16), and the
monad T := FF% € Alg(End(P(g,1))) admits a presentation as the cone

T = Cone( p=t ——~ idwre.ay) ) (1.24)

of a certain natural transformation s between the clockwise monodromy automorphism
1~ and the identity functor of the nearby category Po,1)-

In §4.3, we will explain how the element s can be used to produce an element of
HHC (75(0’1) ), which we denote by $; after collapsing to a Z/2-grading, s can be considered
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as an even-degree Hochschild element, which can be understood as a deformation class.
The following represents our proposal for a categorified analogue of Theorem 1.22.

Conjecture 1.25. After collapsing to Z/2-gradings, the category Pjo 1y is a deformation
of Po— with deformation class s.

In §4.3, we state a precise version of Conjecture 1.25 in the case where the perverse
schobers P, P come from the Fukaya categories of Liouville sectors, and we explain why
this statement is expected to follow from standard properties of the Fukaya category.
As explained in [1, §1.3], in the case where P is the perverse schober associated to the
wrapped Fukaya category of a Landau-Ginzburg model (X, f), the section s underlying
the cup-cap adjunction is a count of holomorphic sections of f over a disk containing 0.
These holomorphic disks are supposed to provide the deformation described in Conjec-
ture 1.25.

The basic calculation

As we will explain in more detail in §4.1, the inspiration for the calculations in this
paper is the perverse schober described in [35], associated to the Landau-Ginzburg model
f:C™ — C given by f(x1,...,2,) =21+ Zp. In fact, the fiber {1 - -2, =1} in that
case is enriched with an extra stop (an instance of the “completed LG triple” construction
we describe in Definition 2.4), so that the Fukaya category of the fiber equipped with
this new sectorial structure is equivalent to the category Coh(P"~1!) of coherent sheaves
on P 1,

In [35], it is shown that the monodromy automorphism p of this category is the
functor of tensoring with the line bundle Opn-1(—1), and the disk-counting natural
transformation s, which by definition is a map

O]P’nfl (71) — O]Pn—l,

can equivalently be understood as a generic section s € TI'(P"~!,O(1)), which after
rescaling coefficients can be written as s[zg,...,2n—1] = 20 + +** + 2Zn—_1.

Moreover, in this case, as shown in [35, §5], the cap functor — which in this case we
may understand as a functor W(C", zy - - - x,,) — Coh(P"~1) — is conservative, which
is related to the fact that C™ is contractible, and any interesting Lagrangian objects
in W(C™ 1 ---x,) must restrict to interesting Lagrangians on the boundary of this
sector, and therefore the cup-cap adjunction is monadic. From these facts one deduces
the main theorem of [35], the identification of Pjo 1) = W(C", 21 - - - z,,) with the category
of coherent sheaves on the zero locus of the section s.

To relate this to the discussion above, we may observe (see Lemma 5.15 below) that
the category P, in this case is equivalent to the category Coh(Tot(Opa-1(—1))) of
coherent sheaves on the total space of the line bundle Opr-1(—1). The section s can be
understood as a function on this line bundle, defining a class 5§ € HH®(Tot(Opn-1(—1))).
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As we recall in Example 4.19, a result of Orlov identifies the category of coherent sheaves
on {s = 0} with the category of matrix factorizations of 5§ on Tot(Opn-1(—1)). We may
therefore rephrase the main theorem of [35] as an instance of Conjecture 1.25:

Theorem 1.26. For the perverse schober P studied in [35], the category Pio 1y is a defor-
mation of the category Po by s.

We refer to §4 for more details.

As we shall see, in this paper we shall encounter a calculation very similar to that
in [35], but where the symplectic manifolds considered there have been replaced by G-
covers; correspondingly, the mirror space P"~! considered above will be replaced by a
GV-quotient, a stack which we denote Pgil. The natural transformation s discussed
above will now be a generic section of the line bundle’ Opn-1,v(1); up to scaling
by (C*)", s is therefore the function WV. We have now finally encountered the dual
superpotential WV through mirror symmetry, thus fulfilling the purpose of this paper.

Future directions

We have already suggested a natural framework for the deformation we consider, but
we conclude with some further suggestions on how the ad hoc constructions of this paper
might be encapsulated as part of a more systematic theory.

The simplicity of the deformation theory involved in this paper is due largely to the
fact that the coefficients of monomials in the deformation class WV are irrelevant, so
long as they are nonzero — and moreover, for grading reasons, these monomials are the
only ones which can appear. (The same phenomenon occurs also in the similar situation
treated in [22].)

This is in contrast to the situations usually considered by Seidel and Sheridan, where
one is ultimately interested in the Fukaya category of a compact symplectic manifold.
The situation here has been simplified considerably because the total space V is Stein
and the fiber D = V' \ V we delete is also Stein. The coefficients in the deformation
class should be sensitive to the symplectic area of the deleted divisor D, but since D is
not compact and does not have a well-defined symplectic area, we are free to scale these
coefficients however we like. It would be useful to have a more direct exposition of how
rescalings of Liouville structure in such a situation affect the deformation class.

Also, we note that in the situation considered in this paper, none of the coefficients
of WV was zero. This follows from an explicit check conducted in [35], but it would be
more satisfying to have a general criterion for when this occurs. From the perspective of
the base, this should fit into a more general theory of extensions of perverse schobers,
categorifying the theory of extensions of perverse sheaves.

4 Technically for the main calculation of this paper we will consider not the line bundle ©(1) on Pgil
but its restriction to the toric boundary 8]?3;1‘ As a result, the restriction of s = WV may be zero, in the
situation described in Remark 1.12. In this case the cup-cap adjunction will no longer be monadic, but on
the other hand the deformation by 0 is trivial, so monadicity is not required to understand it.
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Finally, we note that although we were able to reproduce the data of a perverse schober
as described in (1.17) using the theory of Liouville sectors, it would be more satisfying
to see this structure directly at the level of skeleta: for a perverse schober P obtained
as pushforward of a Fukaya category along a map f with Weinstein fibers, the category
which P assigns to a Lagrangian £ in the base should be the category associated to a
certain lift £ of £ to a Lagrangian in the total space. Heuristically, £ is obtained from
the Lagrangian skeleton IL of a fiber by parallel transport over £, collapsing vanishing
cycles in I when £ meets a critical value. Such a theory can be implemented “by hand”
in the case when f is a Lefschetz fibration with base C; for more general singularities,
or higher-dimensional bases (as considered for instance in [16]), a good general theory
does not yet exist and requires the development of a better understanding of how to lift
Liouville structures.

Conventions

Throughout this paper, we work with pretriangulated dg-categories over the field C,
in the homotopical context of derived Morita theory, as described in [51], or equivalently
stable C-linear oo-categories. In particular, by Coh(X) or W(X) we always mean the
corresponding pretriangulated dg category, and all limits, colimits, and equivalences
among these should be understood in the appropriate homotopical sense.

We will also want to collapse the Z-grading on dg categories to a Z/2-grading, or
equivalently to work over the field C((5)) where /5 is a degree-2 variable. (See [10, §5]
for the adaptation of the above homotopical formalism to the 2-periodic case.) For a
dg category C, we write Cz /o for the 2-periodic dg-category obtained from base change
along the map C — C((f)).

To simplify calculations, throughout this paper the wrapped Fukaya category W(X) of
a symplectic manifold or Liouville sector will always be taken with 2-periodic coefficients.
In Appendix A we recall the usual grading data used to define the Fukaya category and
explain the simplifications which occur in the Z/2-graded case.

Notation: In this paper, we will denote the Milnor fiber we study by V and its “very
affine” open subset by V. (In the basic case where W(z1,...,2,) = 21 + -+ + T, We
denote these spaces instead by P and P.) We write C™/GY for the toric boundary
of the toric stack C™/GV (which, as we shall see, will be the mirror to V) We will
also be interested in the blowup oCn /GY of the stack C™/GY at 0, and its exceptional
divisor, which we denote by Pgv. We will also find it useful to use the presentation of
this blowup as the total space of the line bundle Op_,, (—1). Finally, we will also study
the toric boundary doCn /G of the blowup, which we will think of as the total space of
the restricted line bundle Ogp,,, (—1).
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2. Geometric and categorical background

Here we collect some results from mirror symmetry, toric and tropical geometry which
will be necessary for some of the calculations in this paper. §2.1 is a review of wrapped
Fukaya categories of Liouville sectors and their computation, and in §2.2 we recall some
features of the symplectic geometry of hypersurfaces in (C*)™ and their toric mirrors.
Homological mirror symmetry equivalences for these spaces were established in [21] using
the tropical methods of Mikhalkin [32], and we will recall those tropical methods as well.

2.1. Microlocal sheaf methods

We begin by reviewing some of the results of [20,19,18,36] on calculation of Weinstein
Fukaya categories using microlocal sheaves. The key feature of Weinstein symplectic
geometry which makes computations tractable is locality: unlike in compact symplectic
geometry, the symplectic behavior of a Weinstein manifold can be reconstructed from
an open cover by simpler pieces, the (Weinstein) Liouville sectors defined in [20]. These
are Weinstein manifolds with boundary which are appropriate for Weinstein gluings
along their shared boundary. We refer to [20] for details on the definition and technical
properties of Weinstein sectors, and we will summarize here the ways in which Weinstein
sectors arise for us.

Definition 2.1. Let (X,w = d)\) be a Liouville domain with boundary 9X and completion
to a Liouville manifold X. We assume that X has in addition a Weinstein structure,
namely, a function f : X — R for which the Liouville flow is gradient-like. (We will
never discuss non-Weinstein Liouville manifolds in this paper.)

(1) Let F C 0X be a real hypersurface with boundary such that (F,\) is itself a
Weinstein domain. This is a Weinstein pair in the sense of [11], and we denote by
(X, F) the Liouville sector obtained from X by completing away from a standard
neighborhood of F'.

(2) Let A C 90X be a closed Legendrian (possibly singular, so that by “Legendrian”
we mean that A has a smooth Legendrian submanifold A° whose complement is of
strictly lower dimension). This is a stop in the sense of [49], and we write (X, A) for
the Liouville sector obtained by completing away from a standard neighborhood of
A.

(3) Let f: X — C be a Liouville Landau-Ginzburg model in the sense of [20, Example
2.20]: namely, we require that one can choose defining Liouville domains X for X and
F for a generic fiber F = f~!(z) such that F is contained in the contact boundary
O0X of X. (A construction of such F, X in the case where f is a polynomial function
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on algebraic variety X can be found in [24, Proposition 1].) Then we write (X f)
for the corresponding Liouville sector.

The above constructions are all essentially equivalent; for instance, from the third, one
can obtain the first by taking F' to be a general fiber of f, and the second by taking A to
be the skeleton of F'. Recall that the skeleton IL x of a Liouville manifold X is the set of
points in X which do not escape to infinity under the Liouville flow, and the skeleton (or
relative skeleton) of a Liouville sector (X, A) is the set of points which do not escape to
the complement of A under Liouville flow. In other words, the relative skeleton of (X, A)
is the union of the skeleton L x of X with the cone (under Liouville flow) of A.

One way to understand the skeleton Lx of a Weinstein manifold X is as recording
gluing data describing a cover of X by simpler Weinstein sectors. If (X, F1) and (Xs, F3)
are two Weinstein pairs equipped with an isomorphism F; & F5, and we write A C F
for the skeleton of this Weinstein manifold, then the Weinstein gluing X; Up Xo, for
which local models can be found in [11, §3.1] and [3, §2.6], will have glued skeleton
L(x,,F) YUa Lix,,m)-

One source of such gluing presentations is a splitting over the base of a Landau-
Ginzburg model.

Example 2.2. Let f: X — C be a Liouville Landau-Ginzburg model, and let (a,b) C R
be an interval so that the strip H = {z € C | ®(z) € (a,b)} does not contain any critical
values of f and such that the Liouville structure on the preimage f~!(H) is a product
Liouville structure for the presentation f~!'(H) = F x T*(a,b), where F is a fiber of f.
Then X has a presentation as a pair of sectors X, and Xp glued along sector F' x T*[a, b].

A generalization of sectorial gluings allowing for higher-codimensional strata is con-
tained in [19, §9.3] in terms of Liouville sectors with (sectorial) corners: these sectors
arise naturally when one tries to perform a variant of the above gluing construction where
sectors are glued not along boundary Weinstein manifolds but rather along boundary
Weinstein sectors. Cornered Liouville sectors often arise naturally via the following con-
struction.

Definition 2.3. Let f1, fo : X — C be a pair of Liouville Landau-Ginzburg models with
the same underlying space X, and write F1, F5 for general fibers of the functions f1, fo
and Fp5 for a general fiber of the function (f1, f2) : X — C2. Assume that Crit(f1|r,) C
Crit(f2), i.e., that restriction to F» does not introduce any new critical points on f;. Then
we call (X, f1, f2) an LG triple, and we associate to it the Liouville sectorial structure
on X with stop given by the glued Liouville sector (F, f2) Upy, (Fa, f1).

The reason for the asymmetry in the above definition is that we would like to think of
f1: X — C as the fundamental structure in an LG triple, where we have enhanced the
fibers of F} with the sectorial structure given by F5. In general, functions f1, fo may not
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satisfy the hypotheses of Definition 2.3, but that can be fixed by passing to a completion,
as in the following construction.

Definition 2.4. Let f1, fo : X — C be a pair of Liouville LG models on X. Let B C C be
a disk such that B contains all critical values of f, and all new critical values of fi|p,
lie outside of B. Then we write X := firH(B) for the fi-preimage of B, and ()?, 1, f2)
for the resulting LG triple in the sense of Definition 2.3. We call (X, f1, f2) a completed
LG triple.

Remark 2.5. LG triples (and generalizations with more superpotentials) play a funda-
mental role in the work [1] of Abouzaid-Auroux on mirror symmetry for hypersurfaces
in (C*)™. One may alternatively perform the cutoff construction of Definition 2.4 by
replacing fo with f§ := €fo; as € — 0, the new critical values of f; on the preimage
(£5)~(p) of a fixed point p in C will move far from 0 € C. The constructions of Defi-
nitions 2.3 and 2.4 are not strictly necessary for this paper, but they will be helpful in
conceptualizing the relation of our constructions to the calculations of [35].

The main achievement of [19] consists in using cornered Liouville sectors to estab-
lish a local-to-global principle for calculation of wrapped Fukaya categories of Liouville
manifolds. The wrapped Fukaya category W(S) of a Liouville sector S is defined in [20].
If the sectorial structure S = (X, A) comes from a stop, this can be understood as a
partially wrapped Fukaya category; if & = (X, f) is a Landau-Ginzburg sector, then
W(S) can be understood as a Fukaya-Seidel type category. The main results of [20,19]
are the following:

Theorem 2.6 (/20,19]). The wrapped Fukaya category W is covariant for inclusions
of Liouville sectors: if 8" — S is an inclusion of subsectors, then there is a functor
W(S') = W(S). Moreover, W satisfies codescent along sectorial covers: if X is a Wein-
stein. manifold or sector which admits a cover X = Uy U---UU, by subsectors U;, then
the natural map

lim W (ﬂ Ui> — W(X)
0#ICn] i€l

from the homotopy colimit of wrapped Fukaya categories of the U; to the wrapped Fukaya
category of X is an equivalence of dg categories.

This theory heavily reduces the difficulty of computation of the wrapped Fukaya
category W(X) — it remains only to compute the (hopefully much simpler) categories
associated to subsectors U;. In this paper, we will barely need to do those calculations,
since we will ultimately reduce to sectors U; whose Fukaya categories have already been
calculated. And these calculations can often be performed simply using the language of
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microlocal sheaves, as developed in [26]. In fact, we will find that the microlocal-sheaf-
theoretic calculations of interest to us have already been performed in [21,35]. We now
recall the main theorems comparing these calculations to wrapped Fukaya categories.

Theorem 2.7 ([47,56]). Let X be a stably polarized Weinstein sector with skeleton L.
There exists a cosheaf of dg categories push”Y on L. If U C X is an open subset with
an ezact equivalence U = T*M for some manifold M, equipped with the cotangent fiber
polarization, then push”Y agrees with the “wrapped microlocal sheaves cosheaf” defined in

34].

In Appendix A, we recall the polarization data necessary to define psh”Y and the
wrapped Fukaya category, and then we explain why working with Z/2-graded dg cate-
gories renders the precise choice of polarization data irrelevant; we will therefore mostly
suppress discussion of polarization data in the remainder of the paper.

Theorem 2.8 ([18, Theorem 1.4]). For X a stably polarized Weinstein sector with skeleton
L as above, then there is an equivalence of categories psh?V(IL)°P = W(X) between the

opposite of the wrapped microlocal sheaves category on 1L and the wrapped Fukaya category
of X.

Finally, we highlight one feature of the functoriality for Liouville sectors which plays
a major role in this paper.

Definition 2.9. Let S = (X, F) be a Weinstein Liouville sector, thought of as a Weinstein
pair. The inclusion of the subsector F' x T*R into S determines a functor

U: W(F x T*R) = W(F) = W(S), (2.10)
which is the (Orlov) cup functor associated to the pair (X, F'). Its right adjoint
N:W(S) - W(F)
s the cap functor.
A general theory of the cup and cap functors can be found in [48]. The most important
feature of these functors is that they are spherical, with twist given by the monodromy

automorphism. In other words, we have the following:

Theorem 2.11 (/48]). Let (X, F) be a Weinstein Liouville sector which can be presented
as a Landau-Ginzburg model (X, f),” and let = € Aut(W(F)) be the automorphism of

”»

5 This hypothesis enforces “swappability,
Liouville sectors we consider.

a technical condition in [48] which will be satisfied by all the
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the wrapped Fukaya category of the fiber induced by clockwise monodromy in the base of
f- Then the monad NU of the cup-cap adjunction admits a presentation

NU = Cone(p™" = idw(r)) (2.12)
as the cone on a natural transformation s : u=* — idyy(r)-

Example 2.13. Let (X, f1, f2) be the cornered Weinstein Landau-Ginzburg sector coming
from an LG triple as in Definition 2.3. Then the wrapped Fukaya category W(X, f1, f2)
receives Orlov functors from the Fukaya categories of its boundaries, the Landau-
Ginzburg sectors (F1, f2) and (Fy, f1), and these in turn receive Orlov functors from
the Fukaya category of their shared boundary, the Weinstein manifold Fjo. In other
words, we have a square of spherical functors

W(Fi2) W(F1, f2)

l l

W(Fy, f1) —= W(X, f1, f2).

Moreover, by the Weinstein codescent Theorem 2.6 and the sectorial gluing (X, f1, f2) =
(F1, f2) Upy, (Fa, f1), we see that the homotopy pushout of the two functors with do-
main W(F}s) is the category W(9(X, f1, f2)), the wrapped Fukaya category of the total
boundary sector of (X, f1, fo).

2.2. Very affine hypersurfaces

We will also need some results from [21] on skeleta of hypersurfaces in (C*)™. In fact,
we will only be interested in two such hypersurfaces (along with their G-covers): the
pants, and the mirror to the boundary of projective space. We begin by recalling the
abstract setup, and then we specialize to the cases of interest.

Definition 2.14. Let N be an n-dimensional lattice. To N we associate the following
spaces:

e The n-dimensional real vector space Ng = N ® R;

e The n-torus Ng1 = Ngr/N;

o The cotangent bundle T*Ng: = Ng /N x Ny of this torus, whose projections to the
base and fiber we denote by Arg and Log, respectively;

e The n-complex-dimensional split torus Ngx = N @ C*.

We also choose once and for all an inner product on NV in order to identify the cotangent
bundle T* Ng: with the complex torus N¢x (which is more naturally the tangent bundle
of Nsl )
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An algebraic hypersurface in N¢« determines a Newton polytope A C Ny, the convex
hull of the monomials in a function defining N¢x (under the standard identification of
characters of N¢x with lattice points in NV), and we require that 0 € A. We also choose
a triangulation 7 of this Newton polytope whose vertices are vertices(A) U {0}. For the
examples in this paper, we will always take 7 to be the triangulation whose simplices
are the cones on the faces of A (and 0). We can thus interpret 7 equivalently as the fan
> of cones on the faces of A.

Inside the cotangent bundle T, we specify a Lagrangian as follows:

Ly := | J ot x o C (Ng/N) x N§ =T"Ng:. (2.15)
eA<d)

The Lagrangian Ly, was first studied by Bondal in [7], then later studied extensively by
Fang-Liu-Treumann-Zaslow [14,13,15], for the relation between the category Sh_r (Ng1)
of constructible sheaves on Ng1 microsupported along —Ly. and the category QCoh(Ty)
of quasi-coherent sheaves on the toric stack Ty, with fan X. Following the above works,
a complete statement was first obtained in [28] (followed by another proof in many cases
in [53]). In modern language, the best statement reads as follows:

Theorem 2.16 (/28]). There is an equivalence
ush”Y (L) = Coh(Ty) (2.17)

between the dg category of wrapped microlocal sheaves on Ly, and the category of coherent
sheaves on the toric variety Ts.

This equivalence was explained in [21] by relating Ly to the Landau-Ginzburg model
(Ncx, Wyy,s), where the Hori-Vafa superpotential Wy » traditionally understood as
the mirror to the toric stack Ty is a Laurent polynomial with Newton polytope A.

Theorem 2.18 (/21]). Suppose that the fan ¥ is simplicial and that all generators of rays
in X lie on the boundary of the polytope A. Then the Lagrangian Ly is the skeleton
of the Landau-Ginzburg Liouville-sectorial structure defined on Ncx by the function
WHV,E : N(CX — C.

Let Ay = L be the Legendrian boundary of the conic Lagrangian Ls. The above
theorem follows from the following calculation, first performed for Wy = 14+x1+--- 2,
in [34] and generalized to a global statement in [21] (and partially expanded and corrected
in [54]):

Theorem 2.19 ([21,54]). With hypotheses as in 2.18, the Legendrian Ax, is a skeleton for
the hypersurface Hs, = {Wyv,s = 0}, which embeds as a Weinstein hypersurface inside
the contact boundary of T*Ng1.
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2.2.1. Tropical geometry

We will find it useful to recall an outline of the proof for the above theorem, although
we refer to [21] for details. The main ingredient is tropical geometry: we refer to [32]
for details but recall here that given a hypersurface H C N¢x whose Newton polytope
A is equipped with triangulation 7, one can define a PL complex Trop(H) C Ny, the
tropicalization of H, with the following properties:

o The amoeba Log(H) is “near” to Trop(H), in a sense to be discussed below.

e The complex Trop(H) is dual to the triangulation 7; in particular, if the triangula-
tion 7 comes from a complete fan X, then the complement NY \ Trop(H) will have
only one bounded component.

« The components of the complement NF \ Trop(H) correspond to monomials in a
defining equation for H, with the correspondence associating each region to the
monomial dominating there.

As we require that the triangulation 7 = X be simplicial, we can reduce to the case
of A = Ay the basic simplex in Ny, so that H = P is the (n — 1)-dimensional pants,
and the skeleton of this variety was calculated in [34]. The main technical tool involved
in the calculation is a symplectic isotopy of H, which we call “tailoring,” described first
in [32] and studied in detail in [2]:

Proposition 2.20 (/2, §4/). There is a symplectic isotopy {H®}o<s<1 given by

H® = { Z (1 = 8¢ (Log(2)))caz® = 0} )

a€ANNY

where co are constants and the function ¢, : N§ — R has the property that near a face
F of Trop(H), ¢o = 1 unless the monomial coz* dominates in a region of Ny \ Trop(H)
adjacent to F.

In other words, near a k-face F' in Trop(H) dual to a standard (n — k)-simplex in T,
the tailored hypersurface H' is equal to a product (C*)* x By 1_y of (C*)* with an
(n — 1 — k)-dimensional pants. (If F' is dual to a larger (n — k)-simplex in 7T, the second
factor in this product will be replaced by an abelian cover.) This means in particular that
sufficiently far in the interior of a k-face F', the amoeba A := Log(H') of the tailored
hypersurface agrees with Trop(H) in the directions tangent to F.

Now the strategy of proof of Theorem 2.19 can be roughly understood as follows. Draw
the fan ¥ superimposed on the amoeba A of the tailored hypersurface H', as illustrated
in Fig. 1. As mentioned above, the complement of A has a distinguished component,
dual to the origin of X, thought of as a vertex in the triangulation 7. We denote by
Ap the boundary of this region, and Trop(H ) for the corresponding subcomplex of the
tropical curve.
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Fig. 1. The fan of P? superimposed on the tailored amoeba of its mirror hypersurface H = {z+y+ ﬁ =0}.
Note how this tailored amoeba is precisely “tropical” away from the vertices.

Lemma 2.21 (/32]). Suppose the coefficients in the Laurent polynomial defining M are
real positive, except for the constant term which is real negative. Then the set

H, :=HnN(Rso)"
of positive real points of H map to Ay under the Log map.

Now, one computes that for each k-face F' in the polytope Trop(H )y, there corresponds
a single Morse-Bott critical point (indicated by the intersection of F' with its dual cone
in ) with critical locus an (n — k)-torus Tp. The Lagrangian skeleton of H can then be
described as a union, over cones ¢ in ¥ (dual to faces F, C Trop(H)o),

Ly = U Tr, x Log™ (o N Ay),
0#0€X

of the downward Liouville flows of these tori. This computation completes the proof of
Theorem 2.19.

Remark 2.22. Observe that the positive real locus Hy is a subset of L, presented as a
union of (n — 1)-simplices corresponding to the top-dimensional cones o of X. If the fan
¥ is complete, then H; will be a sphere S (or a disjoint union of spheres if the fan ¥ is
stacky).

2.2.2. Examples
Now, to simplify notation, we choose a basis N = Z", and we begin to consider the
cases of particular interest to us. The fundamental example is the following:

Example 2.23. Suppose that ¥ = Y4« is the standard fan of affine space, with rays
spanned by basis vectors eq,...,e, of Z". If n =1, then Ly, , is a “circle with spoke
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Fig. 2. The skeleta Ly;,, of the Liouville sectors mirror to A" for n =1, 2.

attached”: the union of S' with a single conormal direction at 1 € S, as pictured on
the left in Fig. 2. In general, Ly, = (Ls,,)"; the case n = 2 is pictured on the right in
Fig. 2.

The sector ((C*)™, 1+ x1 + -+ + x,,) described in 2.23 is mirror to affine space C”,
but we will be more interested in the boundary of this mirror symmetry.

Example 2.24. The boundary 0Ly, ,, of the skeleton described above is a skeleton for the
pants

P={x;+ -4z, =1}c (C",

which is mirror to the toric boundary OC™ of affine space. This toric boundary is a union
of closed pieces O,, where we write O, for the toric orbit corresponding to a nonzero
cone o in ¥. The closed piece O, is itself a toric variety, with quotient fan /0. Hence
in this case it is an affine space, with skeleton as described in Example 2.23.

The skeleton of P can thus be described as follows: consider an (n — 1)-simplex A
(which one can imagine as the “boundary” of the Newton polytope for 15, where any face
containing zero is considered part of the interior). The skeleton of P can be understood
topologically as a union of copies of T* x F for each nonempty (n — 1 — k)-dimensional
subsimplex F' C A (including A itself), attached according to the face poset of A. From
the perspective of each torus, the attachment is through conormal tori as described in
Example 2.23.

Example 2.25. Now consider the very affine Milnor fiber V = {W = 1} N (C*)™ of the
invertible polynomial W, which may be presented as an unramified G-cover V > P
of the pants described in the previous example. Its skeleton, which is a G-cover of the
skeleton OLy,,, of the pants 15, may be described in a similar way: let ¥4n gv be the fan
generated by the rays corresponding to monomials in the function W; as the notation
suggests, this is indeed a stacky fan for the quotient stack A”/G". Then 0Ly, Jov IS a

skeleton for V.

Example 2.26. The other main example of interest to us will be the mirror to the toric
1

T1Tn

boundary of P”, which is the hypersurface H = {x1 + -+ - x, + = n}. Once again,
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we can use the fact that JP" is a union of toric orbit closures to write the skeleton L g
of H as glued together from skeleta Ly, ,, of the mirrors to P* for k < n.

The resulting skeleton for H can be described just as in the second paragraph of
Example 2.24, except that instead of starting with an (n — 1)-simplex A, we start with
n + 1 copies of A, glued into the boundary of an n-simplex (this time, literally the
boundary of the Newton polytope for H), which we can understand as a triangulation
of the sphere S described in Remark 2.22. The tori and subtori in Ly are attached
according to the combinatorics of this complex, just as in Example 2.24.

Example 2.27. As in Example 2.25, we now consider the analogue of Example 2.26 for a
general invertible polynomial W. Consider the intersection

He:={W=n}n{[[a7+"™ =1}, (2.28)

J

which agrees with the space H defined in the previous example when (a;;) = (J;;) is
the identity matrix. By construction, Hs may be presented as an unramified G-cover
Hg — H, and as a result the skeleton L g, is a G-cover of the skeleton L g described in
the previous example. Note that in general, the space H¢, and therefore also the skeleton
L ., may have multiple components, due to the fact that the second component in the

intersection (2.28) is in general a disjoint union of copies of (C*)"~1.

3. Geometry of the Milnor fiber

In §5, we will compute the wrapped Fukaya category of the Milnor fiber V = {W =
1} € C™. As preparation, we describe in this section the symplectic geometry of the
space V. Ultimately, our goal is to decompose V into a union of several sectors such that
mirror symmetry equivalences for these local pieces, and their relations to each other,
are already understood explicitly.

In order to simplify the exposition in this section, we begin by descending along the
ramified G-cover p : C™ — C™ defined at (1.6) in §1, so that we may reduce to the study
of the simpler Milnor fiber

P:={z1+4+ -z, =n}.

The map p restricts to an unramified G-cover (C*)™ — (C*)™ and an unramified cover
of the (n — 1)-dimensional pants P,

Vo Pi={oy 4+ @0 =n} C (CX).

For most of §3, we will content ourselves with studying the spaces P, P instead of V,V
— i.e., we restrict ourselves to the case W = x1 + -+ + z,,. In §3.3, we will explain how
to return to the general case.
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3.1. Sectors from a fibration
We will study the manifolds P, P through the map
CcC" —— C, (1 .., Tp) ——>= X1 Ty - (3.1)

The restriction of (3.1) to P we will denote by f, and the further restriction to P we
will denote by fo, or possibly also by f in cases where this will not cause confusion.
(In §3.3, we will study V, V using the restrictions of the map obtained from (3.1) by
precomposition with the G-cover p. We will also denote these restricted maps by f, f 2
We will need the following facts about this map.

Lemma 3.2.

(1) The map f has unique critical value {1} C C*, corresponding to a single nondegen-

erate critical point at (1,...,1).

(2) The general fiber of f or f is a hypersurface in Cct ={xy-2, = c}. In
coordinates 1, . ..,x,_1 on this (C*)"~1  this hypersurface is defined by the equation
1+ -+ Tpo1+ ﬁ =n.

Proof. Part (3) is clear. For parts (1) and (2), we parametrize P by z1,...,2z,—_1, so that
the map f becomes

n—1 n—1
(X1, Tp_1) — ij n—z,rj , (3.3)
j=1 j=1

and hence the ith derivative of this map is given by

n—1
83: Hx] —z; — Z x| . (3.4)
i J=1

J#i

These derivatives all vanish simultaneously only if all x; = 0, or if all z; = 1, and the
latter point (unlike the former) has a nondegenerate Hessian. O

The map f is compatible with a Liouville-sectorial decomposition of the hypersurface
P:

Lemma 3.5. Let F' = f_l(%) be a general fiber of f, let I C R be a closed interval, and
let D be a closed (n—1)-disk. Then the Weinstein mam’fold P (resp. P) can be presented
via a Liouville-sectorial gluing P = Pr, Up1 Pg (resp. P UP1 Pr) where P1 is equivalent
to the sector T*I x F' and Pg is equwalent to the sector T* ]D
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Proof. Let )\% be a Liouville form on the fiber F' (obtained for instance by restricting
the standard Stein potential > |z;|? from C™) and let A¢ (resp. Acx) be a Liouville
form on C (resp. C*) whose skeleton is the interval [0, 1] (resp. the union of a radius-r
circle about 0 and the interval [r, 1], where 0 < r < 3.) Above a small ball B about
1 € C, the manifold P (or P) is equivalent to a product F x B, and AL+ f*(AclB) (or
)\% + f*(Acx|B)) can be used to equip this space with Weinstein sectorial structure of
FxT*I.

We would like to extend this to a Weinstein structure on the whole space P (or
]3), which requires explaining what happens over the critical values of the map f. The
critical value 1 corresponds to a Lefschetz critical point, which entails a single handle
attachment to F' xT*I. Extending Weinstein structure across such a handle is a standard
construction — see for instance [17, §6]. The result will be a Weinstein sector Pr whose
potential function has a single critical point at the center of the handle D to be attached,
and as a result this sector will be equivalent to T*D.

For P we are now done (since the Liouville structure extends without problems to
the left-hand sector Pp, where f is a fibration), but for P we still need to extend the
Liouville structure over the critical value at 0. To do this, we add to our Stein potential
a term coming from the function (e) >0 | |z;]%, where € € R is a constant satisfying
0 < e < 1 and 9 is a bump function which is 1 near the preimage of a ball around
0 € C and 0 elsewhere. This gives a Weinstein structure near the preimage of 0, and
in the region where 1 is nonconstant, assuming we have chosen e sufficiently small, the
contribution of this term to the Weinstein structure is negligible with respect to the

other terms )\% + f*Ac, so this extends to a Weinstein structure on P. O

From Lemma 3.5, we see that the sector Pr represents a single Weinstein disk attach-
ment to the Weinstein manifold P% , and the only further information we need in order
to understand Pg as a subsector of P is a description of how this disk is attached: we
need to identify the Lagrangian sphere S = 0D inside the skeleton of P%.

The attachment of the disk D, or in other words the degeneration of the fiber of f over
1 € C, can be most easily described using tropical geometry. Recall that the complement
of the amoeba A); has a single bounded region, whose boundary is the diffeomorphic
image of the real positive locus M inside M.

Lemma 3.6. The boundary of the Lagrangian disk D attached at {1} is the real positive
locus My C M.

Proof. As explained above, the Lagrangian disk D is the handle attached to the product
B x F, where B is a disk in C and F = f‘l(%) is a general fiber, by a single Weinstein
handle attachment, corresponding to the Leschetz singularity of the function f: P — C
over the critical value 1 € C. The Legendrian sphere in F' along which this handle is
attached is precisely the vanishing cycle of F' corresponding to this Lefschetz singularity;
the whole Lagrangian handle D is the Lefschetz thimble for this singularity.
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Fig. 3. The degeneration of the tropical hypersurface of M as it approaches the critical value 1. In the figure
on the left, the collapsing region where the disk is to be attached is shaded.

Therefore, we need to find the vanishing cycle for this Lefschetz singularity. Parallel
transport to the fiber over 1 collapses the Lagrangian sphere M, = S"~2 C F to the
point (1,...,1), so we conclude that M is the vanishing cycle associated to the critical
point over 1. This can be seen most clearly from a tropical perspective: the degeneration
of the amoeba A, illustrated in Fig. 3 should be read as a movie depicting the Lefschetz
thimble filling in the interior of M. O

In other words, the disk D is attached to the skeleton L of a general fiber along

the sphere S corresponding to the top-dimensional cones in tﬁe fan Yp, as described in
Remark 2.22.

3.2. The sector around 0

As with the sector Pg, the left-hand sector P can be understood by studying a
map Pr — CERg% with a single critical value. However, unlike in the case of Pg, the
critical value of f|p, does not correspond to a Picard-Lefschetz singularity; in fact, the
singularity above 0 is not isolated, nor is it Morse-Bott; it is built out of the normal-
crossings degenerations we shall discuss in §4.1.

By contrast, the punctured sector P is significantly simpler to understand than Pp,
since the map f \ p, has no critical points. Let Pr. be the fibers over this map over +e for
some € € (0, 1), and write ¢4 : P. ~ P_. for the two identifications of these fibers, given
by parallel transport above and below 0, respectively. Also write As for the Liouville
sector given by a disk with three stops on the boundary.

Proposition 3.7. The sector Py is obtained from the product sector P. x As by gluing
together two of the ends using the identification (¢_)~ o ¢, .

Proof. The sector P, has a map f to the sector given by an annulus with one stop on
its boundary, and this map has no critical points. Hence this sector admits a Liouville
form by adding Liouville forms on the base and on the fiber P.. If we choose a Liouville
structure on the base with skeleton the “lollipop” o—, then the sector P will have a
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Fig. 4. The Lagrangians L, (left) and I (right) for n = 3. Note that the R¥ x T™~#~2 pieces of L ; become
copies of R* x T" %=1 after being swept out by the parallel transport around 0.

skeleton living over the lollipop, which has one As singularity with two of its ends glued
together; in the fiber, the identifications on these two ends with P, will differ by the
half-monodromies ¢+. O

Remark 3.8. We can use the above description of Py to understand a Lagrangian skeleton
for the space P.In fact, Pisan (n—1)-dimensional pants, and we have already described
its skeleton L 5 in Example 2.24. But the relation of this skeleton to ]3L is interesting.

Recall that IL » has a sectorial cover indexed by the face poset of an (n — 1)-simplex,
where a k-face of P, corresponds to the sector with FLTZ skeleton Ly, , , X T*R¥,
with the interior of the simplex corresponding to sector T*R™~!, which has skeleton a
disk . Write I for the complement L p \ D of this disk in the skeleton of P.

Then L is precisely the Lagrangian swept out in P by parallel transport of the
skeleton of a general fiber L around 0, as illustrated in Fig. 4. This is the Lagrangian

2

skeleton of the Liouville subdomain ffl(ID)) above a small punctured disk I around
0. The total skeleton L 5 of the space P is obtained from this by the disk attachment
indicated by the critical value in ]53, which attaches the interior disk to the skeleton.

3.8. Covering spaces

Thus far we have described the geometry only of the space P, and its open locus ]5,
rather than the more general Milnor fiber V' (and its very affine part V) However, as
we now explain, the case of general V' immediately follows from this one.

The pants P C (C*)™ is defined by the Laurent polynomial 21 + - - - + x,, — n, which
has Newton polytope

Newt(zy + -+ x, —n) = A, := Conv(0,ey,...,e,) CR"

the standard simplex. The key fact we use, which played an essential role in the con-
structions of [21], is that the Newton polytope of the function W —n is the larger simplex
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Newt(W —n) = Ay := Conv O,Zalj,...,Zanj C R™,
J J

where as usual we write

n n

W:le_[lxj”

Jj=

The matrix A = (a;;) defines a linear map R™ — R™ taking A,, to Ay, hence a map
p: (C*)™ = (C*)™ which restricts to an unramified G-cover V' — P, as described in
the Introduction. This extends to a ramified G-cover

p:C"—C",

restricting to a map V' — P which is a G-cover over its image, with no ramification
outside the fiber over 0.

Passing along the cover VP (resp. V — P), we can immediately lift our description
of the sectorial decomposition of P (resp. P) to the space V (resp. V). Consider the fan
of cones on the faces of Ay, and write Xy for its image in the quotient R™ /R by the
diagonal copy of R™. Then the G-cover of the sectorial decompositions for P, P described
above are as follows.

Proposition 3.9. The space V (resp. V) can be presented as a sectorial gluing V = Vi Uy,
2
Vg (resp. V =V Uy, VR)
2

o The central sector V% is a product F'x T*I, where I is an interval and F is a fiber of
f, admitting a Lagrangian skeleton given by the boundary FLTZ Lagrangian OLs,,, .

o The right-hand sector Vg is a disjoint union |_|L§'1 T*D of |G| copies of the cotangent
bundle of a closed disk, attached to the |G| lifts in f/% of the real positive sphere S in
By

o The left-hand sector Vi can be obtained from \0/% by taking a product with the As
sector and gluing two ends together by the monodromy isomorphism.

4. Fukaya categories from deformation theory

In the previous section, we gave detailed descriptions of the sectors ‘D/'L, V% , and Vg,
which can (and will in §5) be used to compute the wrapped Fukaya categories of these
sectors and ultimately their gluing, the wrapped Fukaya category W(V) of V. However,
we saw that the partially compactified sector V; was more complicated than Vi in
general.

Ideally, we would like to compute W(Vy) using our knowledge of W(VL) and a small
amount of extra data. In §4.1, we will explain how this was accomplished for Pr, Py
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in [35]; afterward, we will reconceptualize this argument as a general principle about
Fukaya categories, which we will summarize as Conjecture 4.21.

4.1. Mirrors to normal crossings

Following the constructions of [35], we now discuss a proof of homological mirror
symmetry for the (n — 2)-dimensional pair of pants, which is now understood as living
on the B-side.

Definition 4.1. We denote by .7, the Liouville sector corresponding to the Landau-
Ginzburg model (C™, z1,...,z,).

The general fiber F; of the function z - - - x,, is a complex (n — 1)-torus, which degen-
erates to {1 ---x, = 0} over the unique critical value 0 of this map.

T={x1-zp=1]z1| = = |z,]}

be the unit torus in the fiber over 1. As discussed in [35], the skeleton LL & of this sector
is the parallel transport of T" over the real half-line [0, c0), which collapses T to a point
in the fiber over 0. In other words, L& is the cone over the compact (n — 1)-torus 7',

The wrapped Fukaya category W(.¥)) of this sector is computed in [35] by studying
the spherical “cap” functor

psh™ (Ly;) = psh™Y (T)

and realizing this functor as mirror to the pushforward along the inclusion of a linear
hypersurface in Fy/ := (C*)"~1.
Before we explain this calculation, we will replace the sector .7 by a related Liouville

sector.

Definition 4.2. We denote by ., the cornered Liouville sector corresponding to the
completed LG triple (C?,zy -+ -y, x1 + -+ - + @) as in Definition 2.4.

Observe that if we restrict the polynomial 1 +- - - x,, to the fiber F} = {x; --- 2, = 1},
1

we obtain the function 21+ -4+x,-1+ on F; = (C*); as we have seen, this is the

Hori-Vafa superpotential of the mirror tzlpﬁil. As we shall see, passing from .7, to .7,
has the effect on the mirror of replacing the linear hypersurface P,_y C FY & (C*)—1
with its compactification in P*~1 o (C*)"~1.

The definition of completed LG triple is set up to ensure that the skeleton L .o is
straightforward to compute from knowledge of the sectors (C™, 1 ...,x,) and (Fy,z1 +
-+« +xy,): it is given by parallel transport, over a ray emanating from 0, of the skeleton
Ly, , of the LG model (F1, 71+ +xy). As described in Example 2.13, the boundary

sector of the cornered LG triple ., has its own sectorial decomposition:
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0, = 8h5ﬂn Ug2.o, 8v5ﬂm

where the horizontal boundary 0".7, is the LG Liouvile sector (Fy,z1 + - - - + x,,) with
skeleton Ly, , ; the vertical boundary, obtained by equipping a subdomain of {14+ -+
Zn =n} (on which z; - - -z, has no critical values outside 0) with the potential z1 - - -z,

has skeleton given by taking the parallel transport of 0Ly to 0 in the z1 - - - x,-plane;

pn—1
and the corner 8%2.7, is their intersection, which has skeleton 8]LERM71.

Example 4.3. When n = 2, the Lagrangian Ly, is the union of the circle T" with the
conormal rays to 1 € T'. Hence the total skeleton L &, is obtained from the degenerating
circle L & by attaching a half-plane.

Remark 4.4. In the previous example, the attached half-plane does not contribute to
the calculation of the category ush” (L ,), since it is not affected by the degeneration
at 0. (This is mirror to the fact that a general hyperplane in P! does not intersect its
boundary. In fact, the sector .#, was introduced in [35] precisely to prove the second
assertion of Lemma 4.7 below.) In higher dimensions, the corner skeleton contains tori
which will degenerate over 0 and hence affect the computation of W(.#,). Nevertheless,
those components of the corner skeleton which do not contribute to W(.#,) still play a
role in Lemma 4.7.

Remark 4.5. The vertical boundary sector 9¥.%, is easily seen to be equivalent to the
sector Py, described in Lemma 3.5: by definition, each of these sectors is obtained by
beginning with a fiber of z1 + -+ - + x,,; passing to a region which does not contain the
extraneous critical value of z7 - - - x,,; and then adding a stop given by a fiber of 1 - - - x,,.

The space C™ — and ultimately also the sectors constructed from it — is equipped
with a polarization coming from its presentation as a cotangent bundle T*R"™. Concretely,
this means that exact Lagrangians in C”, such as the Lagrangian skeleton L s , may
be lifted to conic Lagrangians in T*(R™*!), where microlocal sheaves are defined, and
this is how the computations in [35] are accomplished. Thanks to Theorems 2.7 and
2.8, we can now understand those calculations in terms of Fukaya categories of sectors
rather than microlocal sheaves on the skeleta of those sectors, and we will now use that
language to discuss them. The first of these results is the computation of the monodromy
automorphism on the Fukaya category of the horizontal boundary sector, W(9".7,,).

Proposition 4.6 (/35, Corollary 4.24]). The mirror symmetry equivalence
W(9".#,) = Coh(P" 1)

identifies the clockwise monodromy automorphism pu~" with the functor — @ Opn-1(—1)
of tensoring with the invertible sheaf Opn-1(—1).
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The calculation from [35] now proceeds via the following lemma:
Lemma 4.7 ([35]).
(1) The horizontal cap functor
N W(S,) = WS,

is spherical and monadic. Under the identification W(0".#,) = Coh(P"~1), this
monad is therefore given by tensoring with the cone of a morphism

S O]pn—l(—l) — Opn-1.

(2) The morphism s is generic: there exist coordinates z; on P™~1 in which s is given
by the section z1 + -+ + z, € T(P"™1, O(1)).

The above lemma establishes that the monad associated to the spherical “horizontal
cap” functor N” is equivalent to the monad for the pushforward functor

i : Coh(P™?) — Coh(P" 1)

for the inclusion of a generic hyperplane in P!, This leads directly to the main result
of [35]:

Corollary 4.8 ([35, Theorem 1.5]). There is a commutative diagram with horizontal equiv-
alences

W(,) —— Coh(H) (4.9)

| l

W(d"#,) —— Coh(P™ 1),
where H = P"2 js the hypersurface
H:={zx+ - +2,=0}cP"
and the right vertical map is the pushforward along the inclusion i : H — P~ 1,
These equivalences form one face of a commutative cube, but we will be more inter-

ested in the other face, which can be obtained from the diagram (4.9) by restricting to
the vertical boundary on the A-side, and restricting to the toric boundary on the B-side:
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Corollary 4.10. There is a commutative diagram with horizontal equivalences

W(8".7,)) —— Coh(H NaP" 1) (4.11)

l l

W(9%.7,) ——= Coh(dP"1).

Remark 4.12. Instead of taking the diagram (4.11) as obtained from (4.9) by restriction,
one could also obtain (4.11) by gluing together lower-dimensional copies of the equiva-
lence from (4.9), by extending the sectorial cover described in Example 2.26 to a sectorial
cover .%;,.

4.2. Matriz factorizations

We will now reinterpret the categorical computation described above, so that we can
understand the category W(9".%,) as a matrix factorization category.

Traditionally, the matrix factorization category MF(X, f) is defined from the input
data of a scheme X and a global function f € O(X). As explained in [50, Appendix]
and [39, §5], this category can be understood as a deformation of the 2-periodicized
category Coh(X)z /o by the Hochschild class gf € HH2(COh(X)Z/2), where (3 is the
2-periodicity element. This construction can be performed for a more general category C
with an element f € HH?(C), and indeed, we would like to discuss this construction in
general, without necessarily assuming the category C is a category of coherent sheaves
(although ultimately the categories considered below will be of this form). We therefore
make the following definition:

Definition 4.13. Let C be a category and f € HH?(C) specifying deformation class
Bf € HH*(Cz/2). We write MF(C, f) for the 2-periodic category obtained from this
deformation: namely, MF(C, f) has objects given by 2-periodic complexes ¢y & ¢; whose
differentials square to the respective images of f in Ende¢(c;), and morphisms given by
maps of complexes.

When C = Coh(X) and f € O(X), we will abbreviate this category as MF (X, f).

If X is smooth and f € O(X), then the category MF(Coh(X), f) described above is
equivalent to the traditional category of matrix factorizations of f on X, justifying our
notation. However, even if X is not smooth, we can nevertheless relate MF(Coh(X), f)
to a traditional matrix factorization category, using Orlov’s equivalence from [37], which
we can phrase as follows:

Lemma 4.14 ([37]). Let X be a hypersurface in a smooth stack'Y cut out by a function
f € O(Y). Suppose moreover that WY € O(X) is the restriction to X of a function g
on Y with no nonzero critical values. Then the category MF(Coh(X), WV) defined in
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Definition 4.15 is equivalent to the category MF(Cy X Y, g +1tf) of matriz factorizations
on'Y for the function g +tf.

Example 4.15. Let X = 0C™ C C™ =Y. Then the above lemma gives us an equivalence
MF(Coh(dC™/GY),WY) = MFS (Cy x C™, W +tay - 2p). (4.16)

Note that the undeformed category Coh® (0C™)z/2 = MF¢’ (Coh(9C™),0) is equivalent
to the matrix factorization category MFC’ (Cy x C™,txq -+ - x). The category (4.16) is
related to this one as a deformation by WV, and the main result of this paper will be to
see that deformation in symplectic geometry.

Lemma 4.14 remains true in a twisted form, when the function f defining X exists
only locally. In the case where g = 0, this reads as follows:

Lemma 4.17. Let X be a hypersurface in a smooth stack Y cut out by a section s €
L(Y,L7Y) for the inverse of some line bundle L on Y. Write s € O(Tot(L)) for the
function on the total space of L obtained by extending s to a function linear on fibers of
L. Then there is an equivalence of 2-periodic dg-categories

Coh(X)z 2 & MF(Coh(Tot(L)),3) (4.18)

between the 2-periodicized category Coh(X)z o of coherent sheaves on X and the category
of matriz factorizations for s on Tot(L).

Proof. The category of matrix factorizations is local in the Zariski topology. We may
therefore compute the right-hand side of (4.18) on the preimages of an open cover of
Y where the section is given by an actual function. Locally on this cover, we are then
reduced to the situation of Lemma 4.14. O

We can apply Lemma 4.17 to understand the categories discussed in the previous
section as deformations.

Example 4.19. Let Y = P2, !, and WY € I'(Opn-1(1)) a generic section. Then there is
aV
an equivalence

Coh({W" = 0})z,2 = MF(Tot(Opn-1(—1)), W) (4.20)

between the 2-periodicized category of coherent sheaves on the hypersurface in ]Pg;l
defined by WV and the matrix factorization category of the fiberwise-linear extension of
WY to a function on the total space of Opn-1(—1).

G
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4.3. Deforming the Fukaya category

We now formalize the main calculation of [35] into a general procedure for computing
the Fukaya-Seidel category of an LG model with a single critical value. We state this
procedure as Conjecture 4.21 although, as we will explain, it is expected to hold in
general and easy to prove in several of the cases of interest to us.

Let (X, f: X — C) be a Landau-Ginzburg Weinstein sector where f has no critical
values outside the origin 0 € C, and let F' be a general fiber of f.

Recall that the cap functor associated to LG model (X, f) is a spherical functor

N:W(X, f) = W(F),

with left adjoint U, whose monad NU can be presented as the cone on a natural trans-
formation from the clockwise monodromy automorphism to the identity on W(F'):

NU = Cone(u~' 2 idyy(ry)-

The natural transformation s can be treated as an element of HH°(W(X, f| )
as we shall see in §5.1, the category W(X,f\x) can be understood as the category
whose objects are a pair (L, uL < L), where L is an element in (an Ind-completion of)
W(F) and v is a p-twisted endomorphism of L. Therefore, we may define an element of
HH'W(X, fl%)) which acts on an object (L,v) by the composition

) S )

We denote this element of HHO(W(X, fl%)) by s.
Conjecture 4.21. There is an equivalence
W(X, ) = MEW(X, flx).5)-

As explained in [1, §1.3], the natural transformation s is a count of holomorphic
disks living over a disk containing 0 in the base of the LG model. Conjecture 4.21
would therefore follow immediately from a sufficiently robust theory of deformations of
Fukaya categories by holomorphic disks: objects in the category W(X fle) (at least
those avoiding a neighborhood of the deleted fiber) ought to give objects of W(X, f)
(possibly after being equipped with a weak bounding cochain), with the A, structure
of the category deformed by the new count of disks, encoded by s, passing through the
deleted fiber.

There are technical obstacles to making the discussion of the previous paragraph
rigorous, but it is not difficult to establish Conjecture 4.21 in some generality, as we now
explain.
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Lemma 4.22. Suppose the cap functor N: W(X, f) = W(F) is conservative. Then Con-
jecture 4.21 holds. More generally, Conjecture /.21 holds for the image of the cup functor
U: W(F) = W(X, f): If we write C for the image of the cup functor in W(X, f) and C
for the image in W(X, flx) of the corresponding cup functor W(F) — VV(X7 fls), then
C = MF(C,3).

Proof. If the cap functor is conservative, we may compute the category W(X, f) monad-
ically, as the category of NU-algebras in Ind(W(F')): by the presentation of the monad
as NU = Cone(u~! — idyy(r)), we see that this category is precisely MF(W(X, fl%),35).
Equivalently (by a version of Lemma 4.17), as explained in [1, §1.3], this is the category
with the same objects as W(F') but with Hom between L and L’ given by

Hom(L, L") = Cone(Homyy g (L, p~ (L") = Homyy g (L, L')).

For the second part of the lemma, we use the fact that the restriction of N to the
image of U will be conservative. O

Example 4.23.Let X = C" f(z1,...,2,) = 21---2n. Then X = (C*)", and
W(X,f|X) ~ Coh((C*)"~1 x C); under this isomorphism, § € O((C*)"~! x C) =
ClzE, ...,z |, t] is shown in [35] to be the function ¢(z; 4 - - - 4 z,_1). This calculation
underlies the main theorem of [35], namely the mirror symmetry equivalence

W(X, f) =~ MF((C*)"'xC,t(214 - +2,_1)) =~ Coh{z € (C*)" 7! | 2+ 42,_1 = 0},
where the first equivalence is of the form described in Conjecture 4.21.

In some sense, the only obstruction to the failure of the hypothesis of Lemma 4.22
is the possibility that the LG model (X, f) will have critical points “at infinity” over
the zero-fiber — i.e., that the change in the topology of the fiber over zero is not due
to degeneration but rather to parts of the fiber vanishing; such contributions to the
topology of X will contribute to the kernel of the cap functor. (This is the phenomenon
mentioned in Remark 1.12.) The extreme case of this situation is where the whole fiber
vanishes over 0. In this case, the proof Conjecture 4.21 is trivial:

Lemma 4.24. Suppose that X = X. Then Conjecture 4.21 holds.
Proof. In this case, the section-counting transformation s is equal to 0, so that
MF(W()Q(,f\X),E) is just equivalent to the category W(X,f|X) By assumption, this

is equivalent to the category W(X, f). O

A complete proof of Conjecture 4.21 would involve treating these two situations —
the image of the cup functor and the kernel of the cap functor — on equal footing.
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4.4. Deformation data for the Milnor fiber

We will want to apply Conjecture 4.21 to the left-hand sector Vj, of the Berglund-
Hiibsch Milnor fiber (which may be understood as an LG model with superpotential
f). We will therefore need to gather together the necessary data about this situation:
namely, the Fukaya category W(F') of the fiber of f, together with its monodromy
1 € Aut(W(F)) and the natural transformation s : p=* — idyy() underlying the monad
of the cup-cap adjunction for the sector Vr.

In the basic case where W (x1, ..., x,) = ©1+- - -+x,, this is precisely the computation
accomplished in [35]. We now recall the result in that case before generalizing it to V.
The following was already stated as Lemma 4.7 above, but now we reformulate it in light
of Conjecture 4.21.

Lemma 4.25 ([35]). Let X be the subdomain of {x1+---+x, = n} obtained by restricting
to {|z1 - xn| <€}, and let f: X — C be given by f(x1,...,2n) = X1+ Zp, s0 (X, f)
is equivalent to the sector 0", = Py ; (X, f) is equivalent to the sector 15L; and a fiber
F of f is equivalent to the corner 8%.%,. Then u=' € Aut(OW(F)) = Aut(Coh(9P"1))
is given by — @ O(—=1), and s : O(=1) = O is a generic linear function.

Corollary 4.26. There is an equivalence of categories
W(PL) = MF(W(Py),3)

Proof. The conservativity of the cap functor in this case implies (by Lemma 4.22) that
the conclusion of Conjecture 4.21 holds. 0O

Except for conservativity of the cap functor, the above statements all remain true
when we generalize from P, to V. We will describe the data (W(VL), i € Aut(W(F)), s :
p~t — 1) in the next section, where we will use it to compute the category W(V1).

5. Homological mirror symmetry

Having already presented the spaces V, V as covered by recognizable Liouville sectors,
it remains for us only to recall the calculations of the wrapped Fukaya categories of those
sectors, and then to glue the resulting categories together. We begin with V: although

we already understand the Fukaya category W(V') from the results of [21], we give here
a different presentation as preparation for the calculation of W(V).

5.1. The very affine Milnor fiber

The space V is an unramified G-cover of 15, and the mirror VV is obtained from the
mirror PV = C" by passing to a GV-quotient. In other words:
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Proposition 5.1 (/21]). There is an equivalence of categories
W(V) = Coh€” (aC™) (5.2)

between the wrapped Fukaya category of V and the category of GV -equivariant coherent
sheaves on the toric boundary of C™.

The proof of Proposition 5.1 proceeds by matching the closed cover of the stack C™/GY
by toric orbit closures to a Liouville-sectorial cover of V. But we would like to express
the category (5.2) in terms of a different Liouville-sectorial decomposition of f/, namely
the cover by left- and right-hand sectors V1, Vg discussed in §3. We begin with VL.

Definition 5.3. Let p : Blg C™ — C™ be the blowup of C™ at the origin. We write aCn
for the strict transform of the toric boundary C™ under this blowup, and

P:=p t(0) =P !

for the exceptional divisor. Similarly, we write Pgv for the exceptional divisor of the
blowup at 0 of C"/G".

Remark 5.4. The stack Pgv is a GY-quotient of the projective space P™~!, through the
induced action of G on the exceptional divisor of the blowup. If GV has a nontrivial
subgroup H which acts diagonally on C”, this subgroup will act trivially on P"~!, so
that Pgv will be an Artin stack with generic stabilizer H. In terms of mirror symmetry,
this will manifest itself as the fact that the mirror to Pgv (discussed in Example 2.27)
will have |H| components.

Note that OC™ intersects P in its toric boundary dP. This boundary divisor plays the
role of mirror to the central Liouville sector V% in our decomposition of V:

Proposition 5.5. The wrapped Fukaya category W(V%) of the Liouville sector W(V%) 18
equivalent to the category Coh(OPgv) of coherent sheaves on the toric boundary of the
projective stack Pg;l.

Proof. This is a corollary of the results in [21], proved by matching the closed cover
of OPgv by toric orbit closures to a Liouville-sectorial cover of f/% . Alternatively, one
can recall from Example 2.27 the description of the skeleton L 1 of V% as an unramified
G-cover of the skeleton OLLx
G-cover of P% ). The effect of taking this G-cover is mirror to imposing a GV quotient on
Coh(0P) = W(P%) O

pn_1 (coming from the presentation of V% as an unramified

In fact, the category W(V%) of a general fiber of the map f comes equipped with
extra structure.
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Definition 5.6. We write =1 € Aut(W(f/% )) for the clockwise monodromy automorphism
of the category f/%, obtained from parallel transport of the general fiber of f around 0.

The automorphism p~! admits a geometric description on the mirror space OP.

L is given by

Lemma 5.7. As an automorphism of the category Coh€” (OP), the functor u~
tensor product with the line bundle Opp,,, (=1), the restriction to OP of the line bundle

Op,qv(—1) on the projective stack Pgv.

Proof. The space V is given by an unramified G-cover of P, which as we have seen
is mirror to the quotient projection dC™/GY <« OC™, and this cover restricted to an
unramified G-cover \0/% — 13% , mirror to the GV-quotient OPgv <+ OP. We have seen
that ]5% is the corner 9.7, of a sector whose horizontal boundary 9".7, is the LG
model ((C*)" Y @y + - + 2,1 + m, whose skeleton is the FLTZ Lagrangian
Lyg,. ., C Tt

The calculation of [35, Corollary 4.24] establishes that the monodromy p~* on 9".7,, is
given by convolution by an object which is mirror to O(—1) on Coh(P™~!); on the bound-
ary 02, = 15%, this monodromy autoequivalence is mirror to tensoring by Ogp(—1)
on Coh(0P"~1). Now when we pass to the G-covers of the previous paragraph, we find
that the monodromy on V% comes from convolution with an object mirror to Ogp,, , as
desired. O

We can use the monodromy automorphism ;! to give a new method for computation
of the wrapped Fukaya category W(V7,).

Proposition 5.8. There is an equivalence

o

W(V1,) = Coh®’ (9Cn)

between the wrapped Fukaya category W(VL) and the category of GV -equivariant coherent
sheaves on the proper transform of OC under the blowup at 0.

Proof. The space oCn /GY is a toric stack, so one possible proof proceeds following [21]
as usual, matching toric orbit closures with Liouville subsectors. But we will give here
a different proof, more closely associated to the description of the skeleton Ly, given in
Proposition 3.7.

From the description in Proposition 3.7, we can see that the category W(VL) is equiv-
alent to the compact objects in the category of pairs

{(X € Ind(W(V1)), uX — X)}
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of an object X in an Ind-completion® of the Fukaya category of the nearby fiber and a
p-twisted endomorphism of X, where p € Aut (W(V% )) is the counterclockwise mon-

odromy map. Since W(V% ) & Coh(0P¢v ) with p given by the functor of tensor product
— ® O(1), we thus have an equivalence

W(VL) = {(F € IndCoh(dPgv ), v : F(1) — F)}. (5.9)

Now note that 9C™ is the total space Tot(Ogp(—1)) of the bundle O(—1) on IP, so
that it can be described equivalently as the relative Spec

oCm™ = SpecaPSymoapO(l),
and hence the category Coh®’ (07(\?/”) is equivalent to the category of coherent sheaves F
in Coh(0P¢v ) equipped with the additional data of a map F®Ogp,,, (1) — F describing
the action of the generators of this symmetric algebra. This agrees with the description

of the category W(VL) given in (5.9). O

Now recall from Example 2.24 that the space ]5, the (n — 1)-dimensional pants, is
mirror to the toric boundary dC™, and there is an equivalence of categories

W(P) = Coh(dC™).

Accordingly, the wrapped Fukaya category of the space V, which is an unramified G-
cover of P (and is called the “G-pants” in [21]) admits a presentation as

W(V) = Coh®” (aC™). (5.10)

This is not obviously identical with the presentation of V via the Liouville-sectorial cover
which we have been discussing so far:

Lemma 5.11. The wrapped Fukaya category W(V ) of Vs equivalent to the colimit
lim (cthv (OC™) < Coh(dPgv) — cthv({o})) : (5.12)

where the maps are given by pushforwards along the inclusion Pgv — 5(63/"/6?v and the
projection Pgv — {0}/GY, respectively.

8 It is often necessary to pass to Ind-completions while computing a colimit, and then to return to small
categories afterward by passing to compact objects. The Ind-completion remains in the final description
here because an object of W(Vy) will often have infinite-dimensional “underlying object” in W(Vl ); this
is analogous to the fact that coherent sheaves on SpecR are not in general finite R-modules, but pbssibly
infinite-dimensional R-modules which have a finiteness condition on their generation as R-modules.
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Proof. This colimit presentation corresponds to the Liouville-sectorial decomposition we
have been studying in this paper. We have already proven that the categorles in (5.12)
match the wrapped Fukaya categories of the sectors VL,Vl and VR, respectively, so
we only need to check that the functors induced by the Llouville—sectorial inclusions
of f/% x T*R into KD/L and ‘O/R are as described in the lemma. (Actually, we will check
agreement on the left adjoints of these functors, which are easier to understand. And for
simplicity, we note that it is sufficient to check the case where V= ]5, since the G-cover
applies uniformly to all of the Liouville sectors involved and hence the GV equivariance
applies uniformly to all the categories involved in (5.12).)
Consider first the left cap functor

W(PL) = W(Py).

Under the description in Proposition 5.8, this functor is given by the map which takes
a pair (X,v: uX — X) to the object Cone(v). But in the B-side description from that
proposition, the cone on F(—1) — F is the pullback of F under the inclusion of the
zero-section

OP — Spec,,Symp,, O(1)
Now consider the right cap functor

W(Pg) — W(P:). (5.13)

%
The wrapped category W(}BR) of sector P is equivalent to the category Perfc of finite-
dimensional vector spaces, and we need to show that (5.13) sends the 1-dimensional
vector space to the structure sheaf Ogp € Coh(OP) = W(P%)

Recall that JODR describes a disk attachment to 103% with boundary sphere S C Lp .

2
We therefore need to check that the Lagrangian sphere S, equipped with trivial local
system, represents the structure sheaf Ogp under the mirror symmetry equivalence

W(Py) = Coh(IP). (5.14)

The equivalence (5.14) describes Coh(9P) as a colimit of categories of coherent sheaves
on the toric orbit closures of 0P, corresponding to a cover of P% by Liouville sectors.

The basic sectors in this cover are of the form (T*T"’2, Ax and in each case the

pr—z)s
Lagrangian mirror to the structure sheaf Opn -2 is the cotangent fiber at 1 € T2, These
cotangent fibers glue together to form the sphere S, matching the gluing of structure

sheaves Opn—» into the structure sheaf Op,-1 of P"~1. O

By comparing the equivalence (o 10) with Lemma 5.11, we can deduce a new colimit
presentation of the category Coh®” (0C™). In fact, it is possible to prove this directly,
without any reference to mirror symmetry:
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Lemma 5.15. There is an equivalence of categories
@ : Coh® (9C™) 5 lim (cthv(a’@c‘%) « Coh(dPgv) — cthv({o})) . (5.16)
Proof. The functor ® is induced from the pullback functor
p* : Coh®’ (AC™) — Coh®” (OCM).

This functor is fully faithful, hence ® is also, and we need only to prove that & is
essentially surjective. In other words, we need to check that every object of the colimit
in (5.16) can be identified with an object in Coh®” (876;’) which is pulled back from
Coh®" (aC™).

So let F be an object of Coh€” (0C™). By using the map p*p.F — F, we can reduce
to the case that F is supported on the exceptional locus Pgv. But the colimit in (5.16)
identifies any such object with the pullback of some sheaf on dC"/GY supported at
{0}/GY, as desired. O

5.2. Deformation theory

We are ready at last to proceed to the calculation of the wrapped Fukaya category
W(V) of the Milnor fiber V. On the B-side, the geometric fact we will need is the
deformation of (5.16) by the function WV.

Lemma 5.17. There is an equivalence of 2-periodic categories

® : MF® (9C™, W) = lim (MFGV (OCP, W) < Coh(dPgv)z/2 — Cthv({O})Z/g) .
(5.18)

Proof. This statement is proved in exactly the same manner as Lemma 5.15: the pullback
map p* : Coh® (9C™) — Coh® (AC™) induces a fully-faithful embedding

p*W I MF(OC™/GY,WY) = MF(0C/GY, W)

on matrix factorization categories, and every object of MF(Z?,(C\?/" /GV) is identified in the
colimit with one obtained through this deformed pullback. (Note that the function WV
finishes at 0 € 9C™, hence also on the exceptional divisor 0Pgv, and therefore the middle
and right-hand categories in the colimit in (5.18) could also be written as MF(9Pgv, WV)
and MFGV({O}, WVY), respectively.) O

On the A-side, we will need one final piece of data in order to make contact with the
description from the previous lemma. Recall that the presentation of V% as a boundary
sector of V;, induces a monad NU on W(V%).
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Lemma 5.19. Under the mirror symmetry equivalence described in Proposition 5.5, the
monad NU is the endofunctor of Coh(OPgv) given by tensoring with the cone of s, where
s is the restriction to OPgv of the function WY € T'(Pgv, O(1)).

Proof. We have already computed in Lemma 5.7 that the clockwise monodromy au-
tomorphism p~t of W(Vi) = Coh(dPgv) is given by tensoring with the line bundle
Oap, (—1), and we saw in Theorem 2.11 that the cap-cup monad admits a presentation
as Cone(p™t — idyy(r)), which in our case is therefore a natural transformation between
the functor of tensoring with Opp,, (—1) and the identity functor (which is tensoring
with Ogp,,. ), or in other words (after tensoring with O(1)), a map

Osp,y — Oop,. (1),

i.e., a section on OPgv of the bundle Ogp,,, (1). Moreover, this section is generic: this
can be seen as in [35, Theorem 5.1] (the case of Py, discussed in the previous section)
by observing that the monad acts as 0 on the components of Ly, which are mirror to

0-dimensional toric strata of OPgv; alternatively, one can recall (2cf. [1, §1.3]) that s is

a count of holomorphic disks, and that each of the n disks it counts in .#,, will lift to a
disk in the G-cover.

Finally, we note that any generic section of Pgv can be made equal to WV after a
rescaling of its coefficients. 0O

Corollary 5.20. Assuming Conjecture /.21, there is an equivalence of categories W(Vr) =
MFY" (aCn, WV).

Proof. This is a straightforward application of Conjecture 4.21, bringing together our

results from earlier in this section: In Proposition 5.8, we computed that W(Vy) =
v

Coh®" (9Cm); in Proposition 5.5, we computed W(V1) = Coh(0Pgv); in Lemma 5.7, we

1

described the clockwise monodromy automorphism p~" as tensoring with Ogp,, (—1),

and in Lemma 5.19, we saw that the disk-counting section s : p~! — idyy(v, ) was the
2

function WV.
We conclude that, assuming Conjecture 4.21, we have an equivalence of categories
W(VL) = MF(W(VL),:SV) = MF(a}ng,WV). O

We now reach the main theorem of this paper.
Theorem 5.21. Assuming Conjecture /.21, the wrapped Fukaya category W(V') is the

deformation of the 2-periodic dg-category Cthv(aC")Z/g by the function WV €
(C[@C”}GV. In other words, there is an equivalence of 2-periodic dg categories

W(V) = MF&" (C™ 2021 2y + WY)
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between the wrapped Fukaya category of the Milnor fiber V. and the category of matriz
factorizations on C™*1 for the function zgzy -z, + WV.

Proof of Theorem 5.21. The proof of Theorem 5.21 begins from the equivalence
Coh®’ (9C™) = limy (cthv (AC™) « Coh(dPgv) — cthv({o})) . (5.22)

proved in Lemma 5.15. The right-hand- 51de of (5.22) corresponds to the colimit descrip-
tion of the wrapped Fukaya category W( ) given by the cover of 1% by subsectors sectors
VL, VR, and their intersection V1 x T*R.

We have seen that the Wemstem manifold V' has an analogous Liouville-sectorial
decomposition, and in fact the right and middle subsectors f/R,f/% of V are equal to
the corresponding subsectors Vg, V% of V. Hence the category W(V') admits a colimit
presentation as in (5.22), but with the category W(V5) = Coh®” (9C™) replaced by its
deformation

W(VL,) = MFS (9Cn, W), (5.23)

where the equivalence in (5.23) comes from Corollary 5.20 (conditional on Conjec-
ture 4.21). O

Appendix A. Maslov data and 2-periodicity

In this section, we recall the data needed to define either the wrapped Fukaya category
of a Liouville sector or the cosheaf of wrapped microlocal sheaves, mostly following the
exposition in [18, §5.3] and [36, §10] (to which we refer the reader interested in a more
detailed discussion), and then we will explain the simplifications that occur in the 2-
periodic case.

Grading data

Let X be a Weinstein manifold. Traditionally (cf. [42, §§11e-111]), the data necessary
to define the Fukaya category with Z coefficients has been understood to be a choice of
class H%(X;Z/2) together with a trivialization of the complex line bundle (ASPTX)®2,
which can be understood as a choice of class in H(LGr(X); Z) whose restriction to each
fiber LGr,(X) represents the Maslov class.

This data can be better encapsulated, and generalized to coefficients in a general ring
R, as follows: the stable tangent bundle of X is classified by a map X — BU, and the
stable Lagrangian Grassmannian LGr(X) is classified by the composition X — BU —
B(U/O) = B*(Z x BO). The delooped J-homomorphism gives a map B%(Z x BO) B,
B?Pic(S) to the delooping of the spectrum of invertible modules for the sphere spectrum
S. For any ring R, there is a map Pic(S) — Pic(R) induced by the map S — R.
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Definition A.1. Grading/orientation data for X with R coefficients is a trivialization of
the composition
LGr 2 B*J, pop: 2p;
X —= B(U/O) = B*(Z x BO) —= B*Pic(S) — B“Pic(R). (A.2)

When R = Z, the space of invertible Z-modules is Pic(Z) = Z x BZ/2: there are Z
distinct classes of invertible Z-modules, namely the homological shifts Z[n] of the rank
1 free module, and they have automorphism group Z/2 generated by multiplication by
—1.

Grading/orientation data with Z coefficients is therefore given by a nulhomotopy of
the map

X — B%*Z x B3(Z/2),

where it can be shown that the first factor (“grading data”) classifies (/\fCOpTX )®2 and the
second factor (“orientation data”) admits a canonical trivialization (giving a correspon-
dence between choices of nulhomotopy for the second factor and maps X — B%(Z/2)).
We therefore see that grading/orientation data for Z coefficients agrees with the tradi-
tional data used to define the Fukaya category.

In practice, there is a universal way of constructing grading/orientation data for a
symplectic manifold.

Definition A.3. A stable polarization of X is a trivialization of the map X — B(U/O)
classifying the Lagrangian Grassmannian bundle LGr(X).

It is clear that a stable polarization induces grading/orientation data for any ring R,
since a trivialization of X — B(U/O) trivializes the whole composition (A.2).

As LGr = U/O is an infinite loop space, a trivialization of the stable Lagrangian
Grassmannian bundle LGr(X) is the same as a section of it, or equivalently a section o
of the Lagrangian Grassmannian of the stable symplectic normal bundle of X (which is
the negative of the stable tangent bundle).

In [47,36] it is explained that if X is a Weinstein manifold with skeleton L, then X
admits a possibly high-codimension embedding into a cosphere bundle S*M, and the
data of a section o as above is precisely the data necessary to thicken LL to a Legendrian
L7 in S*M and therefore to define microlocal sheaves on L. In [18] it is shown that
the category so defined agrees (up to passage to opposite categories) with the wrapped
Fukaya category of X, defined using grading/orientation data coming from the stable
polarization o. These are the results we have summarized as Theorems 2.7 and 2.8 above.

Gluing Fukaya categories

At various points in this paper, we will study a Weinstein manifold or sector X
whose skeleton L admits a cover . = U; U Us by two open sets U, intersecting in
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Uiz := U; NUs, and we would like to present the wrapped Fukaya category of X as a
gluing of the categories ush"Y(Uy), ush?v(Us) along ush”V(U;z). We may compute each
of these categories with locally chosen grading/orientation data o1, 09,012, but in order
to ensure that these categories glue into a global Fukaya category of X, we must show
that the restrictions of o; to Uys are both homotopic to o12, so that, up to homotopy,
this data glues into a global choice of grading/orientation data on X.

All of the symplectic manifolds studied in this paper are complete intersections in
C™ or (C*)™, and their grading/orientation data is induced from the standard polariza-
tions of C™ = T*R"™ and (C*)™ = T*((S*)"). To establish that our gluings of Fukaya
categories are sensible, it is therefore sufficient to check that grading/orientation data
coming from these polarizations agree, which we will now do. (We will see that making
the grading data for these two polarizations agree will require altering our coefficient

ring.)

Orientation data
As described above, grading/orientation data with integral coefficients is a nulhomo-
topy of the map

X — B*7Z x B*(Z/2),

where the second factor admits a canonical trivialization. A stable polarization o is one
way to trivialize this map, but the trivialization on the second factor may not agree with
the canonical one. Indeed, as explained in [9, Lemma 3.9], the difference between these
two trivializations is measured by the second Stiefel-Whitney class wa (o).

If X =T*M is a cotangent bundle and o is its cotangent fiber polarization, this means
that the orientation data determined by o differs from the canonical trivialization of the
map X — B3(Z/2) if and only if wa(M) is nonzero. We conclude that the cotangent
fiber trivialization on C™ or on (C*)™ induces the canonical orientation data.

Grading data and 2-periodicity

In contrast to the situation for orientation data, the grading data (with integral co-
efficients) for the cotangent fiber polarizations on C™ and (C*)™ does not agree. The
discrepancy between the two trivializations of the map to B2Z is measured by a map
to QB2Z = BZ. As a map C* — BZ, this is homotopic to the map S* — S! of de-
gree 2, corresponding to the fact that traversing the Maslov cycle in LGr acts by the
automorphism [2] of degree-shift by 2.

However, the discrepancy vanishes if we work with coefficients in Z((8)), where 3 is a
variable of homological degree 2. Grading/orientation data for Z((3)) is a trivialization
of the composite map

X — B*(Pic(Z)) = B*(Z x BZ/2) — B*(Z/2 x BZ/2) = Pic(Z((B))),
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where the quotient Z — Z/2 reflects the fact that the n-shifted invertible modules
Z((B))[n] of the same parity are all isomorphic to each other.

We conclude that the cotangent fiber polarizations of C and C* induce the same
grading data with Z((3)) coefficients. Dg-categories linear over Z((f)) may equivalently
be thought of as 2-periodic (Z-linear) dg-categories, with 2-periodicity element 8. In
other words, we have shown that so long as we work with 2-periodic dg-categories,
all the restrictions of the grading and orientation data used in this paper agree up to
homotopy.
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