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1. Introduction

Our story begins with a quasihomogeneous polynomial in n variables with n terms,

W : Cn → C, W (x1, . . . , xn) =
n∑

i=1

n∏

j=1

x
aij

j (1.1)

where the exponent matrix A = (aij) is invertible in GL(n, Q). In this case we say that 

W is an invertible polynomial, and its dual polynomial W ∨ is a polynomial of the same 

type,

W ∨(z1, . . . , zn) :=
n∑

i=1

n∏

j=1

z
aji

j (1.2)

with exponents determined by the transpose matrix At = (aji). These polynomials also 

define a Pontryagin dual pair of finite abelian groups G and G∨, to be defined below, 

acting on Cn and for which W and W ∨, respectively, are invariant.

The study of such pairs of polynomials was initiated in [5], who conjectured a 

mirror-symmetry relationship between them: the Landau-Ginzburg models (Cn, W )

and (Cn/G∨, W ∨) (or, equivalently, (Cn/G, W ) and (Cn, W ∨), if we had a better un-

derstanding of G-equivariant Floer theory) were expected to be dual in the sense of 

homological mirror symmetry. In the past two and a half decades, features of this mirror 

symmetry, especially the relevant cohomological field theories (of which the A-side the-

ory is the FJRW theory introduced in [12] and the genus-0 B-side theory is K. Saito’s 

theory of primitive forms [40]) and their many relations to singularity theory, have been 

studied in many individual cases. A statement of homological mirror symmetry for such 

pairs, with all the equivariance on the B-side, may be stated as follows:

Conjecture 1.3. There is an equivalence

W(Cn, W ) ∼= MF(Cn/G∨, W ∨) (1.4)
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between the wrapped Fukaya category of the Liouville sector associated to Landau-

Ginzburg model (Cn, W ) and the category of G∨-equivariant matrix factorizations of 

W ∨ on Cn.

This theorem ought to be proved1 using the now-familiar strategy in mirror symme-

try, pioneered by Seidel [41,43] and systematized by Sheridan [45,46,44], of studying the 

complement of a divisor on the A-side, proving mirror symmetry there and then de-

forming the resulting category by a count of holomorphic disks. In this case, this means 

beginning with the equivalence

W((C×)n, W ) ∼= Coh(Cn/G∨) (1.5)

and then finding W ∨ as a count of disks passing through the divisor

D = {x1 · · · xn = 0}.

The fundamental fact which allows this trick to work is the observation that any 

invertible polynomial W can be obtained from the basic case W = x1 + · · · + xn by 

pulling back along the map

ρ : Cn → Cn, (x1, . . . , xn) �→
(∏

x
a1j

j , . . . ,
∏

x
anj

j

)
, (1.6)

which is a finite unramified cover away from the divisor D. The restriction of this map 

to (C×)n is thus a finite unramified cover everywhere, and by definition the group G is 

its Galois group. The general case can be proven through an understanding of this much 

simpler case.

We use the same fact in this paper, where our concern is not the “singular category” 

W(Cn, W ) but rather the “nearby category,” the wrapped Fukaya category of the Milnor 

fiber of C. The study of this category was initiated in [31], and it has been described 

via explicit calculations in some special cases: for ADE singularities in [30], and for the 

2-dimensional case in [23] and [8]. As in [22], our strategy of proof in this paper allows 

us to treat all invertible polynomials in a uniform way.

Let V = W −1(n) be the Milnor fiber of W in Cn. (Choosing the fiber over n as 

a representative Milnor fiber is an irrelevant normalization we find helpful.) We study 

V through its “very affine” part V̊ = W −1(n) ∩ (C×)n. In analogy with the Landau-

Ginzburg case, we begin with a mirror symmetry isomorphism

W(V̊ ) ∼= Coh(∂Cn/G∨) (1.7)

between the wrapped Fukaya category of V̊ and the coherent sheaf category of the toric 

boundary

1 The approach described here draws on unpublished work with Jack Smith.
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∂Cn/G∨ = {z1 · · · zn = 0}/G∨

of the toric stack Cn/G∨, as described in [21,29]. As in the Landau-Ginzburg case, this 

isomorphism owes its existence to the cover (1.6).

Finally, by understanding the geometry near the deleted divisor V ∩{x1 · · · xn = 0}, we 

are able to represent W(V ) as a deformation of W(V̊ ). We state our result as conditional 

on Conjecture 4.21: as we explain in §4.3, this is an expected property of the Fukaya 

category, which in the setting at hand is possible to prove in many cases, but for which 

a complete account would be outside the scope of this paper.

Theorem 1.8. Assuming Conjecture 4.21, the wrapped Fukaya category W(V ) is a defor-

mation of Coh(∂Cn/G∨) by W ∨. In other words, there is an equivalence of 2-periodic 

dg-categories

W(V ) ∼= MFG∨

(C × Cn, tx1 · · · xn + W ∨). (1.9)

The Conjecture 4.21 on which the theorem is conditional describes a way of recon-

structing a Fukaya-Seidel category W(X, f), for a superpotential f whose only critical 

value is 0, from its restriction to f−1(C \ {0}) together with its cap functor. The recon-

struction described by Conjecture 4.21 is known when none of the critical points of f

are “at infinity” in the fiber over zero, or when all of them are; the conjecture asserts 

that this holds for intermediate cases as well. We highlight here examples of the extreme 

cases where Theorem 1.8 is true unconditionally.

Example 1.10. Let W (x1, . . . , xn) =
∑

xai
i . Then the equivalence of Theorem 1.8 is 

a straightforward generalization of the main calculation of [35], as we explain in Sec-

tion 4.1. This calculation was the main inspiration for the present paper, whose goal is 

to popularize the technique used in [35].

Example 1.11. Let W (x, y) = x2y + y2x. Then the Milnor fiber V is equal to its very 

affine part V̊ ; as a result, the deformation by W ∨ described in Theorem 1.8 is trivial, 

and the right-hand side of (1.9) is equivalent to the right-hand side of (1.7). In other 

words, the second term in the superpotential on the right-hand side of (1.9) has no effect 

on the category.

Remark 1.12. The previous example highlights a subtle complication of (1.9) as opposed 

to the traditional Berglund-Hübsch mirror statement (1.4): namely, the fact that the 

superpotential W ∨ may be zero everywhere along the toric boundary of Cn/G∨; in this 

case, as we have just seen, the mirror to the Milnor fiber V receives no contribution from 

W ∨, and the category on the right-hand side of Equation (1.9) is just Coh(∂Cn/G∨).
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Comparing with [31]

The motivation for Theorem 1.8 was the paper [31], which conjectured a Z-graded 

version of the theorem. Traditionally in the Berglund-Hübsch theory, one considers a 

“maximal symmetry group” for the quasihomogeneous polynomial W ∨: namely,

Γ∨ := {(t1, . . . , tn, tn+1) ∈ (C×)n+1 | W ∨(t1z1, . . . , tnzn) = tn+1W ∨(z1, . . . , zn)}.

Observe that Γ∨ has a natural map to C×, given by projection to the last factor, and 

the kernel of this map is the finite group G∨ discussed above. The main conjecture of 

[31] is the following:

Conjecture 1.13 ([31]). There is an equivalence of dg categories

W(V ) ∼= MFΓ∨

(Cx0
× Cn, x0x1 · · · xn + W ∨). (1.14)

Although non-equivariant matrix factorization categories are 2-periodic, the right-

hand side of (1.14) can be understood as a usual (Z-graded, not 2-periodic) dg category 

using the extra grading coming from the homomorphism Γ∨ → C×. (The trick of using 

an extra C×-action to grade the category of matrix factorizations goes back to [38].) If we 

only care about the Z/2-graded category, we may forget this C×-action, retaining only 

the information of the finite symmetry group G. We conclude that after 2-periodicization, 

the right-hand side of (1.14) becomes equivalent to MFG∨

(C × Cn, x0x1 · · · xn + W ∨), 

which is the right-hand side of Theorem 1.8.

In other words, our Theorem 1.8 is the 2-periodic version of Conjecture 1.13, obtained 

by forgetting the extra C×-action on the B-side and collapsing the Maslov index on the 

A-side. In order to prove Conjecture 1.13 on the nose, one would have to equip the 

Milnor fiber V with symplectic grading data — namely, a trivialization of the bundle 

(Λtop
C

TV )⊗2, or equivalently a map LGr(V ) → K(Z, 1) whose restriction to each fiber 

represents the Maslov class — such that the induced Z-grading on the Fukaya category 

matches the Z-grading on MFG∨

(C × Cn, x0x1 · · · xn + W ∨) coming from the extra C×

action. (See Appendix A for further remarks on grading data.) This is likely not too 

difficult, but we omit it in this paper, whose aim is to highlight some other constructions 

in symplectic geometry.

Calculating the deformation

In the proof sketch outlined above, the first step, the calculation of the Fukaya category 

W(V̊ ) of the very affine part, has already been accomplished in [21]. As often happens, 

the more difficult step consists in relating this category to the Fukaya category of the 

partial compactification W(V ).

However, we observe that, unlike in the situations normally considered by Seidel and 

Sheridan, we are studying only a partial compactification, and the space V is itself a 

Weinstein manifold, so its Fukaya category can be approached using the locality and 
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other techniques developed in [34,20,19,18,36]. We will be inspired in particular by the 

calculations of [35], as we will explain below.

Since the partially compactified manifold V remains Weinstein, the relation of V and 

V̊ may be studied within a neighborhood of the deleted divisor2

D := V \ V̊ = V ∩

⎧
⎨
⎩

∏

j

x
a1j

1 · · · xanj
n = 0

⎫
⎬
⎭ .

As we will explain below, this can be understood as a question about the symplectic 

geometry of the degenerating family

V ∩

⎧
⎨
⎩

∏

j

x
a1j

1 · · · xanj
n = t

⎫
⎬
⎭ , (1.15)

as t varies in a small disk around 0. The results of [21] give a decomposition of a smooth 

fiber in this family into simpler Liouville sectors, and we can analyze degenerations of 

those sectors individually. We find that the total space of the degeneration of each such 

sector is a copy of the Liouville sector studied in [35]. That paper calculated the category 

of microlocal sheaves on the Lagrangian skeleton of this sector, and the papers [18,36]

now allow us to understand the results of [35] as a calculation in the wrapped Fukaya 

category.

Perverse schobers

The key tool in understanding the deformation of categories discussed above is the 

map

f : V → C, (x1, . . . , xn) �→
∏

j

x
a1j

1 · · · xanj
n . (1.16)

This map can be described very simply: it has only two critical values, one nondegenerate 

critical value and one degenerate critical value at 0. The questions of deformation theory 

take place around the latter; we want to relate the Fukaya categories of V and V̊ =

V \ f−1(0).

In other words, we are interested in the behavior of the symplectic geometry of V

relative to the holomorphic map f , an approach again pioneered by Seidel [42] in the 

case of Lefschetz fibrations; the non-Lefschetz behavior of f near its critical value 0 

requires more sophisticated categorical tools. At the same time, the fact that the base 

C of our fibration f is itself Stein helps to simplify much of our analysis, allowing us to 

work locally on this base.

2 It may seem more natural to write D = V ∩ {x1 · · · xn = 0}, but since we study V through the cover 
(1.6), it will be important that D be the central fiber of the degenerating family (1.15).
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The appropriate language for encoding Fukaya-categorical structures relative to a base 

is the theory of perverse schobers, as developed in [25,27,6]. A perverse schober on C

with two singularities, at the points 0, 1 ∈ C, is equivalent to the data of a diagram of 

categories

P[0,1)
F

P(0,1) P(0,1],
G

(1.17)

where F and G are spherical functors. The notation is intended to suggest that PL is 

the category which P assigns to the Lagrangian L ⊂ C.

In our situation, we can produce such a datum by taking a Liouville-sectorial cover 

of the base by “left” and “right” sectors, each containing one critical value, and lifting 

this decomposition to the total space. In this case, the central category P(0,1) will be 

equivalent to the Fukaya category of a general fiber f−1(1
2 ), and F, G are the spherical 

“cap” or “boundary restriction” functors from the Fukaya categories of the two Liouville 

sectors stopped at f−1(1
2 ).

The Fukaya category W(V ) should then be calculated as the “global (co)sections” of 

this perverse schober, defined as the homotopy colimit

W(V ) ∼= P[0,1] := lim
−−→

(
P[0,1) P(0,1)

GLF L

P(0,1]

)
, (1.18)

where F L, GL are the left adjoints of F and G. (In the language of Fukaya categories, 

these are the “cup functors”3 corresponding to the inclusion of f−1(1
2 ) as a stop in the 

left- or right-hand Liouville sectors.)

Similarly, the category W(V̊ ) is computable from a perverse schober P̊ on C×:

W(V̊ ) ∼= P̊L
C×

:= lim
−−→

(
P̊ � P̊(0,1) P̊( 1

2 ,1]

)
(1.19)

where the Lagrangian LC× is the union of a small circle around 0 and a spoke connecting 

the circle to the point 1, and the Lagrangian �is the union of a small circle around 0 

and a spoke emanating to the right (but not reaching the other critical value 1).

In fact, given a sectorial cover as stipulated above, the equivalences (1.18) and (1.19)

are immediate from the [19] theory of sectorial codescent.

Building on prior work [21] on mirror symmetry for hypersurfaces in (C×)n, we can 

identify all of the pieces in the latter decomposition. Let ∂̃Cn/G∨ be the strict transform 

of ∂Cn/G∨ under the blowup of Cn/G∨ at the origin, and PG∨ the exceptional divisor 

of the blowup, which meets ∂̃Cn/G∨ in its toric boundary ∂PG∨ .

3 In the literature, these are also sometimes referred to as “Orlov functors”; in this paper, we will prefer 
the name “cup functor” for its descriptiveness and for the relation to its adjoint, the “cap functor.”
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Lemma 1.20 (Lemma 5.15 below). The diagram (1.19) is equivalent to a diagram of the 

form

Coh(∂Cn/G∨) ∼= lim
−−→

(
CohG∨

(∂̃Cn) Coh(∂PG∨) CohG∨

({0})

)
. (1.21)

The right and middle pieces in the diagrams (1.18) and (1.19) are the same; the only 

difference is in the left-hand category. We would like to relate the category P[0,1) to the 

category P̊ �appearing in the perverse schober on C×.

Extending a perverse schober

In other words, we would like to understand how P̊, which is a perverse schober on 

C×, extends to a perverse schober on C. Our hope is that the local category P[0,1) on 

C can be recovered from the local category P̊ �on C×, together with a small amount 

of extra data.

As motivation, consider the situation which perverse schobers are expected to cate-

gorify, namely the theory of perverse sheaves. This theory admits a gluing formalism, 

described in [52,33,4]; in the case of perverse sheaves on (C, 0), this gluing result (which 

can be found in various forms in [52,33,4]) reads as follows:

Theorem 1.22. A perverse sheaf on C may be reconstructed from a perverse sheaf F on 

C×, a monodromic perverse sheaf G on the normal cone to 0, and an equivalence between 

G and the specialization of F at 0.

We will not literally categorify the data of Theorem 1.22, but we will take it as a 

suggestion that there should be a finite amount of “extension data” which can be used 

to reconstruct P from P̊.

The fundamental ingredient which we will use in this extension procedure is the cap-

cup adjunction

F : P[0,1) � P(0,1) : F L. (1.23)

As we mentioned above, this adjunction is spherical: concretely, this means that the 

category P(0,1) is equipped with an automorphism μ ∈ Aut(P(0,1)), which we can under-

stand geometrically as induced by the monodromy around 0 of the map (1.16), and the 

monad T := FF L ∈ Alg(End(P(0,1))) admits a presentation as the cone

T ∼= Cone( μ−1 s
idW(P(0,1)) ) (1.24)

of a certain natural transformation s between the clockwise monodromy automorphism 

μ−1 and the identity functor of the nearby category P(0,1).

In §4.3, we will explain how the element s can be used to produce an element of 

HH0(P̊(0,1)), which we denote by s̃; after collapsing to a Z/2-grading, s̃ can be considered 
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as an even-degree Hochschild element, which can be understood as a deformation class. 

The following represents our proposal for a categorified analogue of Theorem 1.22.

Conjecture 1.25. After collapsing to Z/2-gradings, the category P[0,1) is a deformation 

of P̊ �with deformation class s̃.

In §4.3, we state a precise version of Conjecture 1.25 in the case where the perverse 

schobers P, P̊ come from the Fukaya categories of Liouville sectors, and we explain why 

this statement is expected to follow from standard properties of the Fukaya category. 

As explained in [1, §1.3], in the case where P is the perverse schober associated to the 

wrapped Fukaya category of a Landau-Ginzburg model (X, f), the section s underlying 

the cup-cap adjunction is a count of holomorphic sections of f over a disk containing 0. 

These holomorphic disks are supposed to provide the deformation described in Conjec-

ture 1.25.

The basic calculation

As we will explain in more detail in §4.1, the inspiration for the calculations in this 

paper is the perverse schober described in [35], associated to the Landau-Ginzburg model 

f : Cn → C given by f(x1, . . . , xn) = x1 · · · xn. In fact, the fiber {x1 · · · xn = 1} in that 

case is enriched with an extra stop (an instance of the “completed LG triple” construction 

we describe in Definition 2.4), so that the Fukaya category of the fiber equipped with 

this new sectorial structure is equivalent to the category Coh(P n−1) of coherent sheaves 

on P n−1.

In [35], it is shown that the monodromy automorphism μ of this category is the 

functor of tensoring with the line bundle OP n−1(−1), and the disk-counting natural 

transformation s, which by definition is a map

OP n−1(−1) → OP n−1 ,

can equivalently be understood as a generic section s ∈ Γ(P n−1, O(1)), which after 

rescaling coefficients can be written as s[z0, . . . , zn−1] = z0 + · · · + zn−1.

Moreover, in this case, as shown in [35, §5], the cap functor — which in this case we 

may understand as a functor W(Cn, x1 · · · xn) → Coh(P n−1) — is conservative, which 

is related to the fact that Cn is contractible, and any interesting Lagrangian objects 

in W(Cn, x1 · · · xn) must restrict to interesting Lagrangians on the boundary of this 

sector, and therefore the cup-cap adjunction is monadic. From these facts one deduces 

the main theorem of [35], the identification of P[0,1) = W(Cn, x1 · · · xn) with the category 

of coherent sheaves on the zero locus of the section s.

To relate this to the discussion above, we may observe (see Lemma 5.15 below) that 

the category P̊ �in this case is equivalent to the category Coh(Tot(OP n−1(−1))) of 

coherent sheaves on the total space of the line bundle OP n−1(−1). The section s can be 

understood as a function on this line bundle, defining a class s̃ ∈ HH0(Tot(OP n−1(−1))). 
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As we recall in Example 4.19, a result of Orlov identifies the category of coherent sheaves 

on {s = 0} with the category of matrix factorizations of s̃ on Tot(OP n−1(−1)). We may 

therefore rephrase the main theorem of [35] as an instance of Conjecture 1.25:

Theorem 1.26. For the perverse schober P studied in [35], the category P[0,1) is a defor-

mation of the category P̊ �by s̃.

We refer to §4 for more details.

As we shall see, in this paper we shall encounter a calculation very similar to that 

in [35], but where the symplectic manifolds considered there have been replaced by G-

covers; correspondingly, the mirror space P n−1 considered above will be replaced by a 

G∨-quotient, a stack which we denote P n−1
G∨ . The natural transformation s discussed 

above will now be a generic section of the line bundle4 OP n−1/G∨(1); up to scaling 

by (C×)n, s is therefore the function W ∨. We have now finally encountered the dual 

superpotential W ∨ through mirror symmetry, thus fulfilling the purpose of this paper.

Future directions

We have already suggested a natural framework for the deformation we consider, but 

we conclude with some further suggestions on how the ad hoc constructions of this paper 

might be encapsulated as part of a more systematic theory.

The simplicity of the deformation theory involved in this paper is due largely to the 

fact that the coefficients of monomials in the deformation class W ∨ are irrelevant, so 

long as they are nonzero – and moreover, for grading reasons, these monomials are the 

only ones which can appear. (The same phenomenon occurs also in the similar situation 

treated in [22].)

This is in contrast to the situations usually considered by Seidel and Sheridan, where 

one is ultimately interested in the Fukaya category of a compact symplectic manifold. 

The situation here has been simplified considerably because the total space V is Stein 

and the fiber D = V \ V̊ we delete is also Stein. The coefficients in the deformation 

class should be sensitive to the symplectic area of the deleted divisor D, but since D is 

not compact and does not have a well-defined symplectic area, we are free to scale these 

coefficients however we like. It would be useful to have a more direct exposition of how 

rescalings of Liouville structure in such a situation affect the deformation class.

Also, we note that in the situation considered in this paper, none of the coefficients 

of W ∨ was zero. This follows from an explicit check conducted in [35], but it would be 

more satisfying to have a general criterion for when this occurs. From the perspective of 

the base, this should fit into a more general theory of extensions of perverse schobers, 

categorifying the theory of extensions of perverse sheaves.

4 Technically for the main calculation of this paper we will consider not the line bundle O(1) on P n−1
G∨

but its restriction to the toric boundary ∂P
n−1
G∨ . As a result, the restriction of s = W ∨ may be zero, in the 

situation described in Remark 1.12. In this case the cup-cap adjunction will no longer be monadic, but on 
the other hand the deformation by 0 is trivial, so monadicity is not required to understand it.
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Finally, we note that although we were able to reproduce the data of a perverse schober 

as described in (1.17) using the theory of Liouville sectors, it would be more satisfying 

to see this structure directly at the level of skeleta: for a perverse schober P obtained 

as pushforward of a Fukaya category along a map f with Weinstein fibers, the category 

which P assigns to a Lagrangian L in the base should be the category associated to a 

certain lift L̃ of L to a Lagrangian in the total space. Heuristically, L̃ is obtained from 

the Lagrangian skeleton L of a fiber by parallel transport over L, collapsing vanishing 

cycles in L when L meets a critical value. Such a theory can be implemented “by hand” 

in the case when f is a Lefschetz fibration with base C; for more general singularities, 

or higher-dimensional bases (as considered for instance in [16]), a good general theory 

does not yet exist and requires the development of a better understanding of how to lift 

Liouville structures.

Conventions

Throughout this paper, we work with pretriangulated dg-categories over the field C, 

in the homotopical context of derived Morita theory, as described in [51], or equivalently 

stable C-linear ∞-categories. In particular, by Coh(X) or W(X) we always mean the 

corresponding pretriangulated dg category, and all limits, colimits, and equivalences 

among these should be understood in the appropriate homotopical sense.

We will also want to collapse the Z-grading on dg categories to a Z/2-grading, or 

equivalently to work over the field C((β)) where β is a degree-2 variable. (See [10, §5]

for the adaptation of the above homotopical formalism to the 2-periodic case.) For a 

dg category C, we write CZ/2 for the 2-periodic dg-category obtained from base change 

along the map C → C((β)).

To simplify calculations, throughout this paper the wrapped Fukaya category W(X) of 

a symplectic manifold or Liouville sector will always be taken with 2-periodic coefficients. 

In Appendix A we recall the usual grading data used to define the Fukaya category and 

explain the simplifications which occur in the Z/2-graded case.

Notation: In this paper, we will denote the Milnor fiber we study by V and its “very 

affine” open subset by V̊ . (In the basic case where W (x1, . . . , xn) = x1 + · · · + xn, we 

denote these spaces instead by P and P̊ .) We write ∂Cn/G∨ for the toric boundary 

of the toric stack Cn/G∨ (which, as we shall see, will be the mirror to V̊ ). We will 

also be interested in the blowup ∂̃Cn/G∨ of the stack Cn/G∨ at 0, and its exceptional 

divisor, which we denote by PG∨ . We will also find it useful to use the presentation of 

this blowup as the total space of the line bundle OPG∨
(−1). Finally, we will also study 

the toric boundary ∂̃Cn/G∨ of the blowup, which we will think of as the total space of 

the restricted line bundle O∂PG∨
(−1).
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2. Geometric and categorical background

Here we collect some results from mirror symmetry, toric and tropical geometry which 

will be necessary for some of the calculations in this paper. §2.1 is a review of wrapped 

Fukaya categories of Liouville sectors and their computation, and in §2.2 we recall some 

features of the symplectic geometry of hypersurfaces in (C×)n and their toric mirrors. 

Homological mirror symmetry equivalences for these spaces were established in [21] using 

the tropical methods of Mikhalkin [32], and we will recall those tropical methods as well.

2.1. Microlocal sheaf methods

We begin by reviewing some of the results of [20,19,18,36] on calculation of Weinstein 

Fukaya categories using microlocal sheaves. The key feature of Weinstein symplectic 

geometry which makes computations tractable is locality: unlike in compact symplectic 

geometry, the symplectic behavior of a Weinstein manifold can be reconstructed from 

an open cover by simpler pieces, the (Weinstein) Liouville sectors defined in [20]. These 

are Weinstein manifolds with boundary which are appropriate for Weinstein gluings 

along their shared boundary. We refer to [20] for details on the definition and technical 

properties of Weinstein sectors, and we will summarize here the ways in which Weinstein 

sectors arise for us.

Definition 2.1. Let (X, ω = dλ) be a Liouville domain with boundary ∂X and completion 

to a Liouville manifold X. We assume that X has in addition a Weinstein structure, 

namely, a function f : X → R for which the Liouville flow is gradient-like. (We will 

never discuss non-Weinstein Liouville manifolds in this paper.)

(1) Let F ⊂ ∂X be a real hypersurface with boundary such that (F, λ) is itself a 

Weinstein domain. This is a Weinstein pair in the sense of [11], and we denote by 

(X, F ) the Liouville sector obtained from X by completing away from a standard 

neighborhood of F .

(2) Let Λ ⊂ ∂X be a closed Legendrian (possibly singular, so that by “Legendrian” 

we mean that Λ has a smooth Legendrian submanifold Λ◦ whose complement is of 

strictly lower dimension). This is a stop in the sense of [49], and we write (X, Λ) for 

the Liouville sector obtained by completing away from a standard neighborhood of 

Λ.

(3) Let f : X → C be a Liouville Landau-Ginzburg model in the sense of [20, Example 

2.20]: namely, we require that one can choose defining Liouville domains X for X and 

F for a generic fiber F = f−1(z) such that F is contained in the contact boundary 

∂X of X. (A construction of such F, X in the case where f is a polynomial function 
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on algebraic variety X can be found in [24, Proposition 1].) Then we write (X, f)

for the corresponding Liouville sector.

The above constructions are all essentially equivalent; for instance, from the third, one 

can obtain the first by taking F to be a general fiber of f , and the second by taking Λ to 

be the skeleton of F . Recall that the skeleton LX of a Liouville manifold X is the set of 

points in X which do not escape to infinity under the Liouville flow, and the skeleton (or 

relative skeleton) of a Liouville sector (X, Λ) is the set of points which do not escape to 

the complement of Λ under Liouville flow. In other words, the relative skeleton of (X, Λ)

is the union of the skeleton LX of X with the cone (under Liouville flow) of Λ.

One way to understand the skeleton LX of a Weinstein manifold X is as recording 

gluing data describing a cover of X by simpler Weinstein sectors. If (X1, F1) and (X2, F2)

are two Weinstein pairs equipped with an isomorphism F1
∼= F2, and we write Λ ⊂ F

for the skeleton of this Weinstein manifold, then the Weinstein gluing X1 ∪F X2, for 

which local models can be found in [11, §3.1] and [3, §2.6], will have glued skeleton 

L(X1,F1) ∪Λ L(X2,F2).

One source of such gluing presentations is a splitting over the base of a Landau-

Ginzburg model.

Example 2.2. Let f : X → C be a Liouville Landau-Ginzburg model, and let (a, b) ⊂ R

be an interval so that the strip H = {z ∈ C | 
(z) ∈ (a, b)} does not contain any critical 

values of f and such that the Liouville structure on the preimage f−1(H) is a product 

Liouville structure for the presentation f−1(H) = F × T ∗(a, b), where F is a fiber of f . 

Then X has a presentation as a pair of sectors XL and XR glued along sector F ×T ∗[a, b].

A generalization of sectorial gluings allowing for higher-codimensional strata is con-

tained in [19, §9.3] in terms of Liouville sectors with (sectorial) corners: these sectors 

arise naturally when one tries to perform a variant of the above gluing construction where 

sectors are glued not along boundary Weinstein manifolds but rather along boundary 

Weinstein sectors. Cornered Liouville sectors often arise naturally via the following con-

struction.

Definition 2.3. Let f1, f2 : X → C be a pair of Liouville Landau-Ginzburg models with 

the same underlying space X, and write F1, F2 for general fibers of the functions f1, f2

and F12 for a general fiber of the function (f1, f2) : X → C2. Assume that Crit(f1|F2
) ⊂

Crit(f2), i.e., that restriction to F2 does not introduce any new critical points on f1. Then 

we call (X, f1, f2) an LG triple, and we associate to it the Liouville sectorial structure 

on X with stop given by the glued Liouville sector (F1, f2) ∪F12
(F2, f1).

The reason for the asymmetry in the above definition is that we would like to think of 

f1 : X → C as the fundamental structure in an LG triple, where we have enhanced the 

fibers of F1 with the sectorial structure given by F2. In general, functions f1, f2 may not 
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satisfy the hypotheses of Definition 2.3, but that can be fixed by passing to a completion, 

as in the following construction.

Definition 2.4. Let f1, f2 : X → C be a pair of Liouville LG models on X. Let B ⊂ C be 

a disk such that B contains all critical values of f1, and all new critical values of f1|F2

lie outside of B. Then we write X̂ := f−1
1 (B) for the f1-preimage of B, and (X̂, f1, f2)

for the resulting LG triple in the sense of Definition 2.3. We call (X̂, f1, f2) a completed 

LG triple.

Remark 2.5. LG triples (and generalizations with more superpotentials) play a funda-

mental role in the work [1] of Abouzaid-Auroux on mirror symmetry for hypersurfaces 

in (C×)n. One may alternatively perform the cutoff construction of Definition 2.4 by 

replacing f2 with f ε
2 := εf2; as ε → 0, the new critical values of f1 on the preimage 

(f ε
2)−1(p) of a fixed point p in C will move far from 0 ∈ C. The constructions of Defi-

nitions 2.3 and 2.4 are not strictly necessary for this paper, but they will be helpful in 

conceptualizing the relation of our constructions to the calculations of [35].

The main achievement of [19] consists in using cornered Liouville sectors to estab-

lish a local-to-global principle for calculation of wrapped Fukaya categories of Liouville 

manifolds. The wrapped Fukaya category W(S) of a Liouville sector S is defined in [20]. 

If the sectorial structure S = (X, Λ) comes from a stop, this can be understood as a 

partially wrapped Fukaya category; if S = (X, f) is a Landau-Ginzburg sector, then 

W(S) can be understood as a Fukaya-Seidel type category. The main results of [20,19]

are the following:

Theorem 2.6 ([20,19]). The wrapped Fukaya category W is covariant for inclusions 

of Liouville sectors: if S ′ ↪→ S is an inclusion of subsectors, then there is a functor 

W(S ′) → W(S). Moreover, W satisfies codescent along sectorial covers: if X is a Wein-

stein manifold or sector which admits a cover X = U1 ∪ · · · ∪ Un by subsectors Ui, then 

the natural map

lim
−−→

∅
=I⊂[n]

W

(⋂

i∈I

Ui

)
→ W(X)

from the homotopy colimit of wrapped Fukaya categories of the Ui to the wrapped Fukaya 

category of X is an equivalence of dg categories.

This theory heavily reduces the difficulty of computation of the wrapped Fukaya 

category W(X) – it remains only to compute the (hopefully much simpler) categories 

associated to subsectors Ui. In this paper, we will barely need to do those calculations, 

since we will ultimately reduce to sectors Ui whose Fukaya categories have already been 

calculated. And these calculations can often be performed simply using the language of 
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microlocal sheaves, as developed in [26]. In fact, we will find that the microlocal-sheaf-

theoretic calculations of interest to us have already been performed in [21,35]. We now 

recall the main theorems comparing these calculations to wrapped Fukaya categories.

Theorem 2.7 ([47,36]). Let X be a stably polarized Weinstein sector with skeleton L. 

There exists a cosheaf of dg categories μshW on L. If U ⊂ X is an open subset with 

an exact equivalence U ∼= T ∗M for some manifold M , equipped with the cotangent fiber 

polarization, then μshW agrees with the “wrapped microlocal sheaves cosheaf” defined in 

[34].

In Appendix A, we recall the polarization data necessary to define μshW and the 

wrapped Fukaya category, and then we explain why working with Z/2-graded dg cate-

gories renders the precise choice of polarization data irrelevant; we will therefore mostly 

suppress discussion of polarization data in the remainder of the paper.

Theorem 2.8 ([18, Theorem 1.4]). For X a stably polarized Weinstein sector with skeleton 

L as above, then there is an equivalence of categories μshW(L)op ∼= W(X) between the 

opposite of the wrapped microlocal sheaves category on L and the wrapped Fukaya category 

of X.

Finally, we highlight one feature of the functoriality for Liouville sectors which plays 

a major role in this paper.

Definition 2.9. Let S = (X, F ) be a Weinstein Liouville sector, thought of as a Weinstein 

pair. The inclusion of the subsector F × T ∗R into S determines a functor

∪ : W(F × T ∗R) = W(F ) → W(S), (2.10)

which is the (Orlov) cup functor associated to the pair (X, F ). Its right adjoint

∩ : W(S) → W(F )

s the cap functor.

A general theory of the cup and cap functors can be found in [48]. The most important 

feature of these functors is that they are spherical, with twist given by the monodromy 

automorphism. In other words, we have the following:

Theorem 2.11 ([48]). Let (X, F ) be a Weinstein Liouville sector which can be presented 

as a Landau-Ginzburg model (X, f),5 and let μ−1 ∈ Aut(W(F )) be the automorphism of 

5 This hypothesis enforces “swappability,” a technical condition in [48] which will be satisfied by all the 
Liouville sectors we consider.
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the wrapped Fukaya category of the fiber induced by clockwise monodromy in the base of 

f . Then the monad ∩∪ of the cup-cap adjunction admits a presentation

∩∪ = Cone(μ−1 s
−→ idW(F )) (2.12)

as the cone on a natural transformation s : μ−1 → idW(F ).

Example 2.13. Let (X, f1, f2) be the cornered Weinstein Landau-Ginzburg sector coming 

from an LG triple as in Definition 2.3. Then the wrapped Fukaya category W(X, f1, f2)

receives Orlov functors from the Fukaya categories of its boundaries, the Landau-

Ginzburg sectors (F1, f2) and (F2, f1), and these in turn receive Orlov functors from 

the Fukaya category of their shared boundary, the Weinstein manifold F12. In other 

words, we have a square of spherical functors

W(F12) W(F1, f2)

W(F2, f1) W(X, f1, f2).

Moreover, by the Weinstein codescent Theorem 2.6 and the sectorial gluing ∂(X, f1, f2) =

(F1, f2) ∪F12
(F2, f1), we see that the homotopy pushout of the two functors with do-

main W(F12) is the category W(∂(X, f1, f2)), the wrapped Fukaya category of the total 

boundary sector of (X, f1, f2).

2.2. Very affine hypersurfaces

We will also need some results from [21] on skeleta of hypersurfaces in (C×)n. In fact, 

we will only be interested in two such hypersurfaces (along with their G-covers): the 

pants, and the mirror to the boundary of projective space. We begin by recalling the 

abstract setup, and then we specialize to the cases of interest.

Definition 2.14. Let N be an n-dimensional lattice. To N we associate the following 

spaces:

• The n-dimensional real vector space NR = N ⊗ R;

• The n-torus NS1 = NR/N ;

• The cotangent bundle T ∗NS1 = NR/N × N∨
R

of this torus, whose projections to the 

base and fiber we denote by Arg and Log, respectively;

• The n-complex-dimensional split torus NC× = N ⊗ C×.

We also choose once and for all an inner product on N in order to identify the cotangent 

bundle T ∗NS1 with the complex torus NC× (which is more naturally the tangent bundle

of NS1).
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An algebraic hypersurface in NC× determines a Newton polytope Δ ⊂ N∨
R

, the convex 

hull of the monomials in a function defining NC× (under the standard identification of 

characters of NC× with lattice points in N∨), and we require that 0 ∈ Δ. We also choose 

a triangulation T of this Newton polytope whose vertices are vertices(Δ) ∪ {0}. For the 

examples in this paper, we will always take T to be the triangulation whose simplices 

are the cones on the faces of Δ (and 0). We can thus interpret T equivalently as the fan 

Σ of cones on the faces of Δ.

Inside the cotangent bundle T , we specify a Lagrangian as follows:

LΣ :=
⋃

σ∈Σ

σ⊥ × σ ⊂ (NR/N) × N∨
R = T ∗NS1 . (2.15)

The Lagrangian LΣ was first studied by Bondal in [7], then later studied extensively by 

Fang-Liu-Treumann-Zaslow [14,13,15], for the relation between the category Sh−LΣ
(NS1)

of constructible sheaves on NS1 microsupported along −LΣ and the category QCoh(TΣ)

of quasi-coherent sheaves on the toric stack TΣ with fan Σ. Following the above works, 

a complete statement was first obtained in [28] (followed by another proof in many cases 

in [53]). In modern language, the best statement reads as follows:

Theorem 2.16 ([28]). There is an equivalence

μshW(LΣ) ∼= Coh(TΣ) (2.17)

between the dg category of wrapped microlocal sheaves on LΣ and the category of coherent 

sheaves on the toric variety TΣ.

This equivalence was explained in [21] by relating LΣ to the Landau-Ginzburg model 

(NC× , WHV,Σ), where the Hori-Vafa superpotential WHV,Σ traditionally understood as 

the mirror to the toric stack TΣ is a Laurent polynomial with Newton polytope Δ.

Theorem 2.18 ([21]). Suppose that the fan Σ is simplicial and that all generators of rays 

in Σ lie on the boundary of the polytope Δ. Then the Lagrangian LΣ is the skeleton 

of the Landau-Ginzburg Liouville-sectorial structure defined on NC× by the function 

WHV,Σ : NC× → C.

Let ΛΣ = L∞
Σ be the Legendrian boundary of the conic Lagrangian LΣ. The above 

theorem follows from the following calculation, first performed for WHV = 1 +x1 + · · · xn

in [34] and generalized to a global statement in [21] (and partially expanded and corrected 

in [54]):

Theorem 2.19 ([21,54]). With hypotheses as in 2.18, the Legendrian ΛΣ is a skeleton for 

the hypersurface HΣ = {WHV,Σ = 0}, which embeds as a Weinstein hypersurface inside 

the contact boundary of T ∗NS1 .
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2.2.1. Tropical geometry

We will find it useful to recall an outline of the proof for the above theorem, although 

we refer to [21] for details. The main ingredient is tropical geometry: we refer to [32]

for details but recall here that given a hypersurface H ⊂ NC× whose Newton polytope 

Δ is equipped with triangulation T , one can define a PL complex Trop(H) ⊂ N∨
R

, the 

tropicalization of H, with the following properties:

• The amoeba Log(H) is “near” to Trop(H), in a sense to be discussed below.

• The complex Trop(H) is dual to the triangulation T ; in particular, if the triangula-

tion T comes from a complete fan Σ, then the complement N∨
R

\ Trop(H) will have 

only one bounded component.

• The components of the complement N∨
R

\ Trop(H) correspond to monomials in a 

defining equation for H, with the correspondence associating each region to the 

monomial dominating there.

As we require that the triangulation T = Σ be simplicial, we can reduce to the case 

of Δ = Δstd the basic simplex in N∨
R

, so that H = P̊ is the (n − 1)-dimensional pants, 

and the skeleton of this variety was calculated in [34]. The main technical tool involved 

in the calculation is a symplectic isotopy of H, which we call “tailoring,” described first 

in [32] and studied in detail in [2]:

Proposition 2.20 ([2, §4]). There is a symplectic isotopy {Hs}0≤s≤1 given by

Hs =

{ ∑

α∈∆∩N∨

(1 − sφα(Log(z)))cαzα = 0

}
,

where cα are constants and the function φα : N∨
R

→ R has the property that near a face 

F of Trop(H), φα ≡ 1 unless the monomial cαzα dominates in a region of N∨
R

\Trop(H)

adjacent to F .

In other words, near a k-face F in Trop(H) dual to a standard (n − k)-simplex in T , 

the tailored hypersurface H1 is equal to a product (C×)k × P̊n−1−k of (C×)k with an 

(n − 1 − k)-dimensional pants. (If F is dual to a larger (n − k)-simplex in T , the second 

factor in this product will be replaced by an abelian cover.) This means in particular that 

sufficiently far in the interior of a k-face F , the amoeba A := Log(H1) of the tailored 

hypersurface agrees with Trop(H) in the directions tangent to F .

Now the strategy of proof of Theorem 2.19 can be roughly understood as follows. Draw 

the fan Σ superimposed on the amoeba A of the tailored hypersurface H1, as illustrated 

in Fig. 1. As mentioned above, the complement of A has a distinguished component, 

dual to the origin of Σ, thought of as a vertex in the triangulation T . We denote by 

A0 the boundary of this region, and Trop(H)0 for the corresponding subcomplex of the 

tropical curve.
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Fig. 1. The fan of P 2 superimposed on the tailored amoeba of its mirror hypersurface H = {x + y + 1
xy = 0}. 

Note how this tailored amoeba is precisely “tropical” away from the vertices.

Lemma 2.21 ([32]). Suppose the coefficients in the Laurent polynomial defining M are 

real positive, except for the constant term which is real negative. Then the set

H+ := H ∩ (R>0)n

of positive real points of H map to A0 under the Log map.

Now, one computes that for each k-face F in the polytope Trop(H)0, there corresponds 

a single Morse-Bott critical point (indicated by the intersection of F with its dual cone 

in Σ) with critical locus an (n − k)-torus TF . The Lagrangian skeleton of H can then be 

described as a union, over cones σ in Σ (dual to faces Fσ ⊂ Trop(H)0),

LH =
⋃

0
=σ∈Σ

TFσ
× Log−1(σ ∩ A0),

of the downward Liouville flows of these tori. This computation completes the proof of 

Theorem 2.19.

Remark 2.22. Observe that the positive real locus H+ is a subset of LH , presented as a 

union of (n − 1)-simplices corresponding to the top-dimensional cones σ of Σ. If the fan 

Σ is complete, then H+ will be a sphere S (or a disjoint union of spheres if the fan Σ is 

stacky).

2.2.2. Examples

Now, to simplify notation, we choose a basis N ∼= Zn, and we begin to consider the 

cases of particular interest to us. The fundamental example is the following:

Example 2.23. Suppose that Σ = ΣAn is the standard fan of affine space, with rays 

spanned by basis vectors e1, . . . , en of Zn. If n = 1, then LΣ
A1 is a “circle with spoke 
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Fig. 2. The skeleta LΣAn of the Liouville sectors mirror to A
n for n = 1, 2.

attached”: the union of S1 with a single conormal direction at 1 ∈ S1, as pictured on 

the left in Fig. 2. In general, LΣAn = (LΣ
A1 )n; the case n = 2 is pictured on the right in 

Fig. 2.

The sector ((C×)n, 1 + x1 + · · · + xn) described in 2.23 is mirror to affine space Cn, 

but we will be more interested in the boundary of this mirror symmetry.

Example 2.24. The boundary ∂LΣAn of the skeleton described above is a skeleton for the 

pants

P̊ = {x1 + · · · + xn = 1} ⊂ (C×)n,

which is mirror to the toric boundary ∂Cn of affine space. This toric boundary is a union 

of closed pieces Oσ, where we write Oσ for the toric orbit corresponding to a nonzero 

cone σ in Σ. The closed piece Oσ is itself a toric variety, with quotient fan Σ/σ. Hence 

in this case it is an affine space, with skeleton as described in Example 2.23.

The skeleton of P̊ can thus be described as follows: consider an (n − 1)-simplex Δ

(which one can imagine as the “boundary” of the Newton polytope for P̊ , where any face 

containing zero is considered part of the interior). The skeleton of P̊ can be understood 

topologically as a union of copies of T k × F for each nonempty (n − 1 − k)-dimensional 

subsimplex F ⊂ Δ (including Δ itself), attached according to the face poset of Δ. From 

the perspective of each torus, the attachment is through conormal tori as described in 

Example 2.23.

Example 2.25. Now consider the very affine Milnor fiber V̊ = {W = 1} ∩ (C×)n of the 

invertible polynomial W , which may be presented as an unramified G-cover V̊ → P̊

of the pants described in the previous example. Its skeleton, which is a G-cover of the 

skeleton ∂LΣAn of the pants P̊ , may be described in a similar way: let ΣAn/G∨ be the fan 

generated by the rays corresponding to monomials in the function W ; as the notation 

suggests, this is indeed a stacky fan for the quotient stack An/G∨. Then ∂LΣAn/G∨
is a 

skeleton for V̊ .

Example 2.26. The other main example of interest to us will be the mirror to the toric 

boundary of P n, which is the hypersurface H = {x1 + · · · xn + 1
x1···xn

= n}. Once again, 
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we can use the fact that ∂P n is a union of toric orbit closures to write the skeleton LH

of H as glued together from skeleta LΣ
Pk

of the mirrors to P k for k < n.

The resulting skeleton for H can be described just as in the second paragraph of 

Example 2.24, except that instead of starting with an (n − 1)-simplex Δ, we start with 

n + 1 copies of Δ, glued into the boundary of an n-simplex (this time, literally the 

boundary of the Newton polytope for H), which we can understand as a triangulation 

of the sphere S described in Remark 2.22. The tori and subtori in LH are attached 

according to the combinatorics of this complex, just as in Example 2.24.

Example 2.27. As in Example 2.25, we now consider the analogue of Example 2.26 for a 

general invertible polynomial W . Consider the intersection

HG := {W = n} ∩

⎧
⎨
⎩

∏

j

x
∑

k akj

j = 1

⎫
⎬
⎭ , (2.28)

which agrees with the space H defined in the previous example when (aij) = (δij) is 

the identity matrix. By construction, HG may be presented as an unramified G-cover 

HG → H, and as a result the skeleton LHG
is a G-cover of the skeleton LH described in 

the previous example. Note that in general, the space HG, and therefore also the skeleton 

LHG
may have multiple components, due to the fact that the second component in the 

intersection (2.28) is in general a disjoint union of copies of (C×)n−1.

3. Geometry of the Milnor fiber

In §5, we will compute the wrapped Fukaya category of the Milnor fiber V = {W =

1} ⊂ Cn. As preparation, we describe in this section the symplectic geometry of the 

space V . Ultimately, our goal is to decompose V into a union of several sectors such that 

mirror symmetry equivalences for these local pieces, and their relations to each other, 

are already understood explicitly.

In order to simplify the exposition in this section, we begin by descending along the 

ramified G-cover ρ : Cn → Cn defined at (1.6) in §1, so that we may reduce to the study 

of the simpler Milnor fiber

P := {x1 + · · · xn = n}.

The map ρ restricts to an unramified G-cover (C×)n → (C×)n and an unramified cover 

of the (n − 1)-dimensional pants P̊ ,

V̊ → P̊ := {x1 + · · · + xn = n} ⊂ (C×).

For most of §3, we will content ourselves with studying the spaces P, P̊ instead of V, ̊V

— i.e., we restrict ourselves to the case W = x1 + · · · + xn. In §3.3, we will explain how 

to return to the general case.
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3.1. Sectors from a fibration

We will study the manifolds P, P̊ through the map

Cn C, (x1 . . . , xn) x1 · · · xn . (3.1)

The restriction of (3.1) to P we will denote by f , and the further restriction to P̊ we 

will denote by f̊ , or possibly also by f in cases where this will not cause confusion. 

(In §3.3, we will study V, ̊V using the restrictions of the map obtained from (3.1) by 

precomposition with the G-cover ρ. We will also denote these restricted maps by f, f̊ .) 

We will need the following facts about this map.

Lemma 3.2.

(1) The map f̊ has unique critical value {1} ⊂ C×, corresponding to a single nondegen-

erate critical point at (1, . . . , 1).

(2) The general fiber of f or f̊ is a hypersurface in (C×)n−1 = {x1 · · · xn = c}. In 

coordinates x1, . . . , xn−1 on this (C×)n−1, this hypersurface is defined by the equation 

x1 + · · · + xn−1 + c
x1...xn−1

= n.

Proof. Part (3) is clear. For parts (1) and (2), we parametrize P by x1, . . . , xn−1, so that 

the map f becomes

(x1, . . . , xn−1) �→

⎛
⎝

n−1∏

j=1

xj

⎞
⎠

⎛
⎝n −

n−1∑

j=1

xj

⎞
⎠ , (3.3)

and hence the ith derivative of this map is given by

∂f

∂xi
= (

∏

j 
=i

xj)

⎛
⎝n − xi −

n−1∑

j=1

xj

⎞
⎠ . (3.4)

These derivatives all vanish simultaneously only if all xi = 0, or if all xi = 1, and the 

latter point (unlike the former) has a nondegenerate Hessian. �

The map f is compatible with a Liouville-sectorial decomposition of the hypersurface 

P :

Lemma 3.5. Let F = f−1(1
2) be a general fiber of f , let I ⊂ R be a closed interval, and 

let D be a closed (n −1)-disk. Then the Weinstein manifold P (resp. P̊ ) can be presented 

via a Liouville-sectorial gluing P = PL ∪P 1
2

PR (resp. P̊L ∪P 1
2

PR) where P 1
2

is equivalent 

to the sector T ∗I × F and PR is equivalent to the sector T ∗D.
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Proof. Let λ 1
2

be a Liouville form on the fiber F (obtained for instance by restricting 

the standard Stein potential 
∑n

i=1 |xi|
2 from Cn) and let λC (resp. λC×) be a Liouville 

form on C (resp. C×) whose skeleton is the interval [0, 1] (resp. the union of a radius-r

circle about 0 and the interval [r, 1], where 0 < r 
 1
2 .) Above a small ball B about 

1
2 ∈ C, the manifold P (or P̊ ) is equivalent to a product F × B, and λ 1

2
+ f∗(λC|B) (or 

λ 1
2

+ f∗(λC× |B)) can be used to equip this space with Weinstein sectorial structure of 

F × T ∗I.

We would like to extend this to a Weinstein structure on the whole space P (or 

P̊ ), which requires explaining what happens over the critical values of the map f . The 

critical value 1 corresponds to a Lefschetz critical point, which entails a single handle 

attachment to F ×T ∗I. Extending Weinstein structure across such a handle is a standard 

construction — see for instance [17, §6]. The result will be a Weinstein sector PR whose 

potential function has a single critical point at the center of the handle D to be attached, 

and as a result this sector will be equivalent to T ∗D.

For P̊ we are now done (since the Liouville structure extends without problems to 

the left-hand sector P̊L, where f̊ is a fibration), but for P we still need to extend the 

Liouville structure over the critical value at 0. To do this, we add to our Stein potential 

a term coming from the function (εψ) 
∑n

i=1 |xi|
2, where ε ∈ R is a constant satisfying 

0 < ε 
 1 and ψ is a bump function which is 1 near the preimage of a ball around 

0 ∈ C and 0 elsewhere. This gives a Weinstein structure near the preimage of 0, and 

in the region where ψ is nonconstant, assuming we have chosen ε sufficiently small, the 

contribution of this term to the Weinstein structure is negligible with respect to the 

other terms λ 1
2

+ f∗λC, so this extends to a Weinstein structure on P . �

From Lemma 3.5, we see that the sector PR represents a single Weinstein disk attach-

ment to the Weinstein manifold P 1
2
, and the only further information we need in order 

to understand PR as a subsector of P is a description of how this disk is attached: we 

need to identify the Lagrangian sphere S = ∂D inside the skeleton of P 1
2
.

The attachment of the disk D, or in other words the degeneration of the fiber of f over 

1 ∈ C, can be most easily described using tropical geometry. Recall that the complement 

of the amoeba AM has a single bounded region, whose boundary is the diffeomorphic 

image of the real positive locus M+ inside M .

Lemma 3.6. The boundary of the Lagrangian disk D attached at {1} is the real positive 

locus M+ ⊂ M .

Proof. As explained above, the Lagrangian disk D is the handle attached to the product 

B × F , where B is a disk in C and F = f−1(1
2) is a general fiber, by a single Weinstein 

handle attachment, corresponding to the Leschetz singularity of the function f : P → C

over the critical value 1 ∈ C. The Legendrian sphere in F along which this handle is 

attached is precisely the vanishing cycle of F corresponding to this Lefschetz singularity; 

the whole Lagrangian handle D is the Lefschetz thimble for this singularity.
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Fig. 3. The degeneration of the tropical hypersurface of M as it approaches the critical value 1. In the figure 
on the left, the collapsing region where the disk is to be attached is shaded.

Therefore, we need to find the vanishing cycle for this Lefschetz singularity. Parallel 

transport to the fiber over 1 collapses the Lagrangian sphere M+
∼= Sn−2 ⊂ F to the 

point (1, . . . , 1), so we conclude that M+ is the vanishing cycle associated to the critical 

point over 1. This can be seen most clearly from a tropical perspective: the degeneration 

of the amoeba AM illustrated in Fig. 3 should be read as a movie depicting the Lefschetz 

thimble filling in the interior of M+. �

In other words, the disk D is attached to the skeleton LP̊ 1
2

of a general fiber along 

the sphere S corresponding to the top-dimensional cones in the fan ΣP , as described in 

Remark 2.22.

3.2. The sector around 0

As with the sector PR, the left-hand sector PL can be understood by studying a 

map PL → C�≤ 1
2

with a single critical value. However, unlike in the case of PR, the 

critical value of f |PL
does not correspond to a Picard-Lefschetz singularity; in fact, the 

singularity above 0 is not isolated, nor is it Morse-Bott; it is built out of the normal-

crossings degenerations we shall discuss in §4.1.

By contrast, the punctured sector P̊L is significantly simpler to understand than PL

since the map f̊ |P̊L
has no critical points. Let P±ε be the fibers over this map over ±ε for 

some ε ∈ (0, 1), and write φ± : Pε � P−ε for the two identifications of these fibers, given 

by parallel transport above and below 0, respectively. Also write A2 for the Liouville 

sector given by a disk with three stops on the boundary.

Proposition 3.7. The sector P̊L is obtained from the product sector Pε × A2 by gluing 

together two of the ends using the identification (φ−)−1 ◦ φ+.

Proof. The sector P̊L has a map f̊ to the sector given by an annulus with one stop on 

its boundary, and this map has no critical points. Hence this sector admits a Liouville 

form by adding Liouville forms on the base and on the fiber Pε. If we choose a Liouville 

structure on the base with skeleton the “lollipop” �, then the sector P̊L will have a 
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Fig. 4. The Lagrangians LM (left) and ̊L (right) for n = 3. Note that the Rk ×T n−k−2 pieces of LM become 
copies of Rk × T n−k−1 after being swept out by the parallel transport around 0.

skeleton living over the lollipop, which has one A2 singularity with two of its ends glued 

together; in the fiber, the identifications on these two ends with Pε will differ by the 

half-monodromies φ±. �

Remark 3.8. We can use the above description of P̊L to understand a Lagrangian skeleton 

for the space P̊ . In fact, P̊ is an (n −1)-dimensional pants, and we have already described 

its skeleton LP̊ in Example 2.24. But the relation of this skeleton to P̊L is interesting.

Recall that LP̊ has a sectorial cover indexed by the face poset of an (n − 1)-simplex, 

where a k-face of PL corresponds to the sector with FLTZ skeleton LΣ
An−1−k

× T ∗Rk, 

with the interior of the simplex corresponding to sector T ∗Rn−1, which has skeleton a 

disk D. Write L̊ for the complement LP̊ \ D of this disk in the skeleton of P̊ .

Then L̊ is precisely the Lagrangian swept out in P̊L by parallel transport of the 

skeleton of a general fiber LP̊ 1
2

around 0, as illustrated in Fig. 4. This is the Lagrangian 

skeleton of the Liouville subdomain f̊−1(D̊) above a small punctured disk D̊ around 

0. The total skeleton LP̊ of the space P̊ is obtained from this by the disk attachment 

indicated by the critical value in P̊R, which attaches the interior disk to the skeleton.

3.3. Covering spaces

Thus far we have described the geometry only of the space P , and its open locus P̊ , 

rather than the more general Milnor fiber V (and its very affine part V̊ ). However, as 

we now explain, the case of general V immediately follows from this one.

The pants P̊ ⊂ (C×)n is defined by the Laurent polynomial x1 + · · · + xn − n, which 

has Newton polytope

Newt(x1 + · · · + xn − n) = Δn := Conv(0, e1, . . . , en) ⊂ Rn

the standard simplex. The key fact we use, which played an essential role in the con-

structions of [21], is that the Newton polytope of the function W −n is the larger simplex
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Newt(W − n) = ΔW := Conv

⎛
⎝0,

∑

j

a1j , . . . ,
∑

j

anj

⎞
⎠ ⊂ Rn,

where as usual we write

W =
n∑

i=1

n∏

j=1

x
aij

j .

The matrix A = (aij) defines a linear map Rn → Rn taking Δn to ΔW , hence a map 

ρ : (C×)n → (C×)n which restricts to an unramified G-cover V̊ → P̊ , as described in 

the Introduction. This extends to a ramified G-cover

ρ : Cn → Cn,

restricting to a map V → P which is a G-cover over its image, with no ramification 

outside the fiber over 0.

Passing along the cover V̊ → P̊ (resp. V → P ), we can immediately lift our description 

of the sectorial decomposition of P̊ (resp. P ) to the space V̊ (resp. V ). Consider the fan 

of cones on the faces of ΔW , and write ΣW for its image in the quotient Rn/R∆ by the 

diagonal copy of Rn. Then the G-cover of the sectorial decompositions for P̊ , P described 

above are as follows.

Proposition 3.9. The space V (resp. V̊ ) can be presented as a sectorial gluing V = VL∪V 1
2

VR (resp. V̊ = V̊L ∪V 1
2

VR).

• The central sector V 1
2

is a product F ×T ∗I, where I is an interval and F is a fiber of 

f , admitting a Lagrangian skeleton given by the boundary FLTZ Lagrangian ∂LΣW
.

• The right-hand sector VR is a disjoint union �|G|
i=1 T ∗D of |G| copies of the cotangent 

bundle of a closed disk, attached to the |G| lifts in V̊ 1
2

of the real positive sphere S in 

P̊ 1
2
.

• The left-hand sector V̊L can be obtained from V̊ 1
2

by taking a product with the A2

sector and gluing two ends together by the monodromy isomorphism.

4. Fukaya categories from deformation theory

In the previous section, we gave detailed descriptions of the sectors V̊L, V 1
2
, and VR, 

which can (and will in §5) be used to compute the wrapped Fukaya categories of these 

sectors and ultimately their gluing, the wrapped Fukaya category W(V̊ ) of V̊ . However, 

we saw that the partially compactified sector VL was more complicated than V̊L in 

general.

Ideally, we would like to compute W(VL) using our knowledge of W(V̊L) and a small 

amount of extra data. In §4.1, we will explain how this was accomplished for PL, P̊L
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in [35]; afterward, we will reconceptualize this argument as a general principle about 

Fukaya categories, which we will summarize as Conjecture 4.21.

4.1. Mirrors to normal crossings

Following the constructions of [35], we now discuss a proof of homological mirror 

symmetry for the (n − 2)-dimensional pair of pants, which is now understood as living 

on the B-side.

Definition 4.1. We denote by S ′
n the Liouville sector corresponding to the Landau-

Ginzburg model (Cn, x1, . . . , xn).

The general fiber F1 of the function x1 · · · xn is a complex (n − 1)-torus, which degen-

erates to {x1 · · · xn = 0} over the unique critical value 0 of this map.

T = {x1 · · · xn = 1, |x1| = · · · = |xn|}

be the unit torus in the fiber over 1. As discussed in [35], the skeleton LS ′
n

of this sector 

is the parallel transport of T over the real half-line [0, ∞), which collapses T to a point 

in the fiber over 0. In other words, LS ′
n

is the cone over the compact (n − 1)-torus T .

The wrapped Fukaya category W(S ′
n) of this sector is computed in [35] by studying 

the spherical “cap” functor

μshW(LS ′
n
) → μshW(T )

and realizing this functor as mirror to the pushforward along the inclusion of a linear 

hypersurface in F ∨
1 := (C×)n−1.

Before we explain this calculation, we will replace the sector S ′
n by a related Liouville 

sector.

Definition 4.2. We denote by Sn the cornered Liouville sector corresponding to the 

completed LG triple (Ĉn, x1 · · · xn, x1 + · · · + xn) as in Definition 2.4.

Observe that if we restrict the polynomial x1 +· · · xn to the fiber F1 = {x1 · · · xn = 1}, 

we obtain the function x1 + · · ·+xn−1 + 1
x1···xn

on F1
∼= (C×); as we have seen, this is the 

Hori-Vafa superpotential of the mirror to P n−1. As we shall see, passing from S ′
n to Sn

has the effect on the mirror of replacing the linear hypersurface P̊n−2 ⊂ F ∨
1

∼= (C×)n−1

with its compactification in P n−1 ⊃ (C×)n−1.

The definition of completed LG triple is set up to ensure that the skeleton LSn
is 

straightforward to compute from knowledge of the sectors (Cn, x1 . . . , xn) and (F1, x1 +

· · · + xn): it is given by parallel transport, over a ray emanating from 0, of the skeleton 

LΣ
Pn−1 of the LG model (F1, x1 + · · ·+xn). As described in Example 2.13, the boundary 

sector of the cornered LG triple Sn has its own sectorial decomposition:
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∂Sn = ∂h
Sn ∪∂2Sn

∂v
Sn,

where the horizontal boundary ∂hSn is the LG Liouvile sector (F1, x1 + · · · + xn) with 

skeleton LΣ
Pn−1 ; the vertical boundary, obtained by equipping a subdomain of {x1+· · ·+

xn = n} (on which x1 · · · xn has no critical values outside 0) with the potential x1 · · · xn, 

has skeleton given by taking the parallel transport of ∂LΣ
Pn−1 to 0 in the x1 · · · xn-plane; 

and the corner ∂2Sn is their intersection, which has skeleton ∂LΣ
Pn−1 .

Example 4.3. When n = 2, the Lagrangian LΣ
P1 is the union of the circle T with the 

conormal rays to 1 ∈ T . Hence the total skeleton LS2
is obtained from the degenerating 

circle LS ′

2
by attaching a half-plane.

Remark 4.4. In the previous example, the attached half-plane does not contribute to 

the calculation of the category μshW(LS2
), since it is not affected by the degeneration 

at 0. (This is mirror to the fact that a general hyperplane in P 1 does not intersect its 

boundary. In fact, the sector Sn was introduced in [35] precisely to prove the second 

assertion of Lemma 4.7 below.) In higher dimensions, the corner skeleton contains tori 

which will degenerate over 0 and hence affect the computation of W(Sn). Nevertheless, 

those components of the corner skeleton which do not contribute to W(Sn) still play a 

role in Lemma 4.7.

Remark 4.5. The vertical boundary sector ∂vSn is easily seen to be equivalent to the 

sector PL described in Lemma 3.5: by definition, each of these sectors is obtained by 

beginning with a fiber of x1 + · · · + xn; passing to a region which does not contain the 

extraneous critical value of x1 · · · xn; and then adding a stop given by a fiber of x1 · · · xn.

The space Cn — and ultimately also the sectors constructed from it — is equipped 

with a polarization coming from its presentation as a cotangent bundle T ∗Rn. Concretely, 

this means that exact Lagrangians in Cn, such as the Lagrangian skeleton LSn
, may 

be lifted to conic Lagrangians in T ∗(Rn+1), where microlocal sheaves are defined, and 

this is how the computations in [35] are accomplished. Thanks to Theorems 2.7 and 

2.8, we can now understand those calculations in terms of Fukaya categories of sectors 

rather than microlocal sheaves on the skeleta of those sectors, and we will now use that 

language to discuss them. The first of these results is the computation of the monodromy 

automorphism on the Fukaya category of the horizontal boundary sector, W(∂hSn).

Proposition 4.6 ([35, Corollary 4.24]). The mirror symmetry equivalence

W(∂h
Sn) ∼= Coh(P n−1)

identifies the clockwise monodromy automorphism μ−1 with the functor − ⊗ OP n−1(−1)

of tensoring with the invertible sheaf OP n−1(−1).
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The calculation from [35] now proceeds via the following lemma:

Lemma 4.7 ([35]).

(1) The horizontal cap functor

∩h : W(Sn) → W(∂h
Sn)

is spherical and monadic. Under the identification W(∂hSn) ∼= Coh(P n−1), this 

monad is therefore given by tensoring with the cone of a morphism

s : OP n−1(−1) → OP n−1 .

(2) The morphism s is generic: there exist coordinates zi on P n−1 in which s is given 

by the section z1 + · · · + zn ∈ Γ(P n−1, O(1)).

The above lemma establishes that the monad associated to the spherical “horizontal 

cap” functor ∩h is equivalent to the monad for the pushforward functor

i∗ : Coh(P n−2) → Coh(P n−1)

for the inclusion of a generic hyperplane in P n−1. This leads directly to the main result 

of [35]:

Corollary 4.8 ([35, Theorem 1.5]). There is a commutative diagram with horizontal equiv-

alences

W(Sn)
∼

Coh(H)

W(∂hSn)
∼

Coh(P n−1),

(4.9)

where H ∼= P n−2 is the hypersurface

H := {z1 + · · · + zn = 0} ⊂ P n−1,

and the right vertical map is the pushforward along the inclusion i : H ↪→ P n−1.

These equivalences form one face of a commutative cube, but we will be more inter-

ested in the other face, which can be obtained from the diagram (4.9) by restricting to 

the vertical boundary on the A-side, and restricting to the toric boundary on the B-side:



30 B. Gammage / Advances in Mathematics 443 (2024) 109563

Corollary 4.10. There is a commutative diagram with horizontal equivalences

W(∂vSn)
∼

Coh(H ∩ ∂P n−1)

W(∂2Sn)
∼

Coh(∂P n−1).

(4.11)

Remark 4.12. Instead of taking the diagram (4.11) as obtained from (4.9) by restriction, 

one could also obtain (4.11) by gluing together lower-dimensional copies of the equiva-

lence from (4.9), by extending the sectorial cover described in Example 2.26 to a sectorial 

cover Sn.

4.2. Matrix factorizations

We will now reinterpret the categorical computation described above, so that we can 

understand the category W(∂vSn) as a matrix factorization category.

Traditionally, the matrix factorization category MF(X, f) is defined from the input 

data of a scheme X and a global function f ∈ O(X). As explained in [50, Appendix]

and [39, §5], this category can be understood as a deformation of the 2-periodicized 

category Coh(X)Z/2 by the Hochschild class βf ∈ HH2(Coh(X)Z/2), where β is the 

2-periodicity element. This construction can be performed for a more general category C

with an element f ∈ HH0(C), and indeed, we would like to discuss this construction in 

general, without necessarily assuming the category C is a category of coherent sheaves 

(although ultimately the categories considered below will be of this form). We therefore 

make the following definition:

Definition 4.13. Let C be a category and f ∈ HH0(C) specifying deformation class 

βf ∈ HH2(CZ/2). We write MF(C, f) for the 2-periodic category obtained from this 

deformation: namely, MF(C, f) has objects given by 2-periodic complexes c0 � c1 whose 

differentials square to the respective images of f in EndC(ci), and morphisms given by 

maps of complexes.

When C = Coh(X) and f ∈ O(X), we will abbreviate this category as MF(X, f).

If X is smooth and f ∈ O(X), then the category MF(Coh(X), f) described above is 

equivalent to the traditional category of matrix factorizations of f on X, justifying our 

notation. However, even if X is not smooth, we can nevertheless relate MF(Coh(X), f)

to a traditional matrix factorization category, using Orlov’s equivalence from [37], which 

we can phrase as follows:

Lemma 4.14 ([37]). Let X be a hypersurface in a smooth stack Y cut out by a function 

f ∈ O(Y ). Suppose moreover that W ∨ ∈ O(X) is the restriction to X of a function g

on Y with no nonzero critical values. Then the category MF(Coh(X), W ∨) defined in 
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Definition 4.13 is equivalent to the category MF(Ct × Y, g + tf) of matrix factorizations 

on Y for the function g + tf .

Example 4.15. Let X = ∂Cn ⊂ Cn = Y . Then the above lemma gives us an equivalence

MF(Coh(∂Cn/G∨), W ∨) ∼= MFG∨

(Ct × Cn, W ∨ + tx1 · · · xn). (4.16)

Note that the undeformed category CohG∨

(∂Cn)Z/2 = MFG∨

(Coh(∂Cn), 0) is equivalent 

to the matrix factorization category MFG∨

(Ct × Cn, tx1 · · · xn). The category (4.16) is 

related to this one as a deformation by W ∨, and the main result of this paper will be to 

see that deformation in symplectic geometry.

Lemma 4.14 remains true in a twisted form, when the function f defining X exists 

only locally. In the case where g = 0, this reads as follows:

Lemma 4.17. Let X be a hypersurface in a smooth stack Y cut out by a section s ∈

Γ(Y, L−1) for the inverse of some line bundle L on Y . Write s̃ ∈ O(Tot(L)) for the 

function on the total space of L obtained by extending s to a function linear on fibers of 

L. Then there is an equivalence of 2-periodic dg-categories

Coh(X)Z/2
∼= MF(Coh(Tot(L)), s̃) (4.18)

between the 2-periodicized category Coh(X)Z/2 of coherent sheaves on X and the category 

of matrix factorizations for s̃ on Tot(L).

Proof. The category of matrix factorizations is local in the Zariski topology. We may 

therefore compute the right-hand side of (4.18) on the preimages of an open cover of 

Y where the section is given by an actual function. Locally on this cover, we are then 

reduced to the situation of Lemma 4.14. �

We can apply Lemma 4.17 to understand the categories discussed in the previous 

section as deformations.

Example 4.19. Let Y = P n−1
G∨ , and W ∨ ∈ Γ(O

P
n−1
G∨

(1)) a generic section. Then there is 

an equivalence

Coh({W ∨ = 0})Z/2
∼= MF(Tot(OP n−1(−1)), W̃ ∨) (4.20)

between the 2-periodicized category of coherent sheaves on the hypersurface in P n−1
G∨

defined by W ∨ and the matrix factorization category of the fiberwise-linear extension of 

W ∨ to a function on the total space of O
P

n−1
G∨

(−1).
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4.3. Deforming the Fukaya category

We now formalize the main calculation of [35] into a general procedure for computing 

the Fukaya-Seidel category of an LG model with a single critical value. We state this 

procedure as Conjecture 4.21 although, as we will explain, it is expected to hold in 

general and easy to prove in several of the cases of interest to us.

Let (X, f : X → C) be a Landau-Ginzburg Weinstein sector where f has no critical 

values outside the origin 0 ∈ C, and let F be a general fiber of f .

Recall that the cap functor associated to LG model (X, f) is a spherical functor

∩ : W(X, f) → W(F ),

with left adjoint ∪, whose monad ∩∪ can be presented as the cone on a natural trans-

formation from the clockwise monodromy automorphism to the identity on W(F ):

∩∪ = Cone(μ−1 s
−→ idW(F )).

The natural transformation s can be treated as an element of HH0(W(X̊, f |X̊)): 

as we shall see in §5.1, the category W(X̊, f |X̊) can be understood as the category 

whose objects are a pair (L, μL 
ν
−→ L), where L is an element in (an Ind-completion of) 

W(F ) and ν is a μ-twisted endomorphism of L. Therefore, we may define an element of 

HH0(W(X̊, f |X̊)) which acts on an object (L, ν) by the composition

L
sµL

μL
ν

L.

We denote this element of HH0(W(X̊, f |X̊)) by s̃.

Conjecture 4.21. There is an equivalence

W(X, f) ∼= MF(W(X̊, f |X̊), s̃).

As explained in [1, §1.3], the natural transformation s is a count of holomorphic 

disks living over a disk containing 0 in the base of the LG model. Conjecture 4.21

would therefore follow immediately from a sufficiently robust theory of deformations of 

Fukaya categories by holomorphic disks: objects in the category W(X̊, f |X̊) (at least 

those avoiding a neighborhood of the deleted fiber) ought to give objects of W(X, f)

(possibly after being equipped with a weak bounding cochain), with the A∞ structure 

of the category deformed by the new count of disks, encoded by s, passing through the 

deleted fiber.

There are technical obstacles to making the discussion of the previous paragraph 

rigorous, but it is not difficult to establish Conjecture 4.21 in some generality, as we now 

explain.
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Lemma 4.22. Suppose the cap functor ∩ : W(X, f) → W(F ) is conservative. Then Con-

jecture 4.21 holds. More generally, Conjecture 4.21 holds for the image of the cup functor 

∪ : W(F ) → W(X, f): If we write C for the image of the cup functor in W(X, f) and C̊

for the image in W(X̊, f |X̊) of the corresponding cup functor W(F ) → W(X̊, f |X̊), then 

C ∼= MF(C̊, ̃s).

Proof. If the cap functor is conservative, we may compute the category W(X, f) monad-

ically, as the category of ∩∪-algebras in Ind(W(F )): by the presentation of the monad 

as ∩∪ = Cone(μ−1 → idW(F )), we see that this category is precisely MF(W(X̊, f |X̊), ̃s). 

Equivalently (by a version of Lemma 4.17), as explained in [1, §1.3], this is the category 

with the same objects as W(F ) but with Hom between L and L′ given by

Hom(L, L′) = Cone(HomW(F )(L, μ−1(L′)) → HomW(F )(L, L′)).

For the second part of the lemma, we use the fact that the restriction of ∩ to the 

image of ∪ will be conservative. �

Example 4.23. Let X = Cn, f(x1, . . . , xn) = x1 · · · xn. Then X̊ = (C×)n, and 

W(X̊, f |X̊) � Coh((C×)n−1 × C); under this isomorphism, s̃ ∈ O((C×)n−1 × C) =

C[z±
1 , . . . , z±

n−1, t] is shown in [35] to be the function t(z1 + · · · + zn−1). This calculation 

underlies the main theorem of [35], namely the mirror symmetry equivalence

W(X, f) � MF((C×)n−1×C, t(z1+· · ·+zn−1)) � Coh{z ∈ (C×)n−1 | z1+· · ·+zn−1 = 0},

where the first equivalence is of the form described in Conjecture 4.21.

In some sense, the only obstruction to the failure of the hypothesis of Lemma 4.22

is the possibility that the LG model (X, f) will have critical points “at infinity” over 

the zero-fiber — i.e., that the change in the topology of the fiber over zero is not due 

to degeneration but rather to parts of the fiber vanishing; such contributions to the 

topology of X will contribute to the kernel of the cap functor. (This is the phenomenon 

mentioned in Remark 1.12.) The extreme case of this situation is where the whole fiber 

vanishes over 0. In this case, the proof Conjecture 4.21 is trivial:

Lemma 4.24. Suppose that X = X̊. Then Conjecture 4.21 holds.

Proof. In this case, the section-counting transformation s is equal to 0, so that 

MF(W(X̊, f |X̊), ̃s) is just equivalent to the category W(X̊, f |X̊). By assumption, this 

is equivalent to the category W(X, f). �

A complete proof of Conjecture 4.21 would involve treating these two situations — 

the image of the cup functor and the kernel of the cap functor — on equal footing.
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4.4. Deformation data for the Milnor fiber

We will want to apply Conjecture 4.21 to the left-hand sector VL of the Berglund-

Hübsch Milnor fiber (which may be understood as an LG model with superpotential 

f). We will therefore need to gather together the necessary data about this situation: 

namely, the Fukaya category W(F ) of the fiber of f , together with its monodromy 

μ ∈ Aut(W(F )) and the natural transformation s : μ−1 → idW(F ) underlying the monad 

of the cup-cap adjunction for the sector VL.

In the basic case where W (x1, . . . , xn) = x1+· · ·+xn, this is precisely the computation 

accomplished in [35]. We now recall the result in that case before generalizing it to VL. 

The following was already stated as Lemma 4.7 above, but now we reformulate it in light 

of Conjecture 4.21.

Lemma 4.25 ([35]). Let X be the subdomain of {x1 + · · ·+xn = n} obtained by restricting 

to {|x1 · · · xn| < ε}, and let f : X → C be given by f(x1, . . . , xn) = x1 · · · xn, so (X, f)

is equivalent to the sector ∂hSn
∼= PL; (X̊, f) is equivalent to the sector P̊L; and a fiber 

F of f is equivalent to the corner ∂2Sn. Then μ−1 ∈ Aut(W(F )) ∼= Aut(Coh(∂P n−1))

is given by − ⊗ O(−1), and s : O(−1) → O is a generic linear function.

Corollary 4.26. There is an equivalence of categories

W(PL) ∼= MF(W(P̊L), s̃)

Proof. The conservativity of the cap functor in this case implies (by Lemma 4.22) that 

the conclusion of Conjecture 4.21 holds. �

Except for conservativity of the cap functor, the above statements all remain true 

when we generalize from PL to VL. We will describe the data (W(V̊L), μ ∈ Aut(W(F )), s :

μ−1 → 1) in the next section, where we will use it to compute the category W(VL).

5. Homological mirror symmetry

Having already presented the spaces V, ̊V as covered by recognizable Liouville sectors, 

it remains for us only to recall the calculations of the wrapped Fukaya categories of those 

sectors, and then to glue the resulting categories together. We begin with V̊ : although 

we already understand the Fukaya category W(V̊ ) from the results of [21], we give here 

a different presentation as preparation for the calculation of W(V ).

5.1. The very affine Milnor fiber

The space V̊ is an unramified G-cover of P̊ , and the mirror V̊ ∨ is obtained from the 

mirror P̊ ∨ = ∂Cn by passing to a G∨-quotient. In other words:
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Proposition 5.1 ([21]). There is an equivalence of categories

W(V̊ ) ∼= CohG∨

(∂Cn) (5.2)

between the wrapped Fukaya category of V̊ and the category of G∨-equivariant coherent 

sheaves on the toric boundary of Cn.

The proof of Proposition 5.1 proceeds by matching the closed cover of the stack Cn/G∨

by toric orbit closures to a Liouville-sectorial cover of V̊ . But we would like to express 

the category (5.2) in terms of a different Liouville-sectorial decomposition of V̊ , namely 

the cover by left- and right-hand sectors V̊L, ̊VR discussed in §3. We begin with V̊L.

Definition 5.3. Let p : Bl0 Cn → Cn be the blowup of Cn at the origin. We write ∂̃Cn

for the strict transform of the toric boundary ∂Cn under this blowup, and

P := p−1(0) ∼= P n−1

for the exceptional divisor. Similarly, we write PG∨ for the exceptional divisor of the 

blowup at 0 of Cn/G∨.

Remark 5.4. The stack PG∨ is a G∨-quotient of the projective space P n−1, through the 

induced action of G∨ on the exceptional divisor of the blowup. If G∨ has a nontrivial 

subgroup H which acts diagonally on Cn, this subgroup will act trivially on P n−1, so 

that PG∨ will be an Artin stack with generic stabilizer H. In terms of mirror symmetry, 

this will manifest itself as the fact that the mirror to PG∨ (discussed in Example 2.27) 

will have |H| components.

Note that ∂̃Cn intersects P in its toric boundary ∂P . This boundary divisor plays the 

role of mirror to the central Liouville sector V̊ 1
2

in our decomposition of V̊ :

Proposition 5.5. The wrapped Fukaya category W(V̊ 1
2
) of the Liouville sector W(V̊ 1

2
) is 

equivalent to the category Coh(∂PG∨) of coherent sheaves on the toric boundary of the 

projective stack P n−1
G∨ .

Proof. This is a corollary of the results in [21], proved by matching the closed cover 

of ∂PG∨ by toric orbit closures to a Liouville-sectorial cover of V̊ 1
2
. Alternatively, one 

can recall from Example 2.27 the description of the skeleton L 1
2

of V 1
2

as an unramified 

G-cover of the skeleton ∂LΣ
Pn−1 (coming from the presentation of V 1

2
as an unramified 

G-cover of P 1
2
). The effect of taking this G-cover is mirror to imposing a G∨ quotient on 

Coh(∂P ) ∼= W(P 1
2
). �

In fact, the category W(V̊ 1
2
) of a general fiber of the map f̊ comes equipped with 

extra structure.
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Definition 5.6. We write μ−1 ∈ Aut(W(V̊ 1
2
)) for the clockwise monodromy automorphism 

of the category V̊ 1
2
, obtained from parallel transport of the general fiber of f̊ around 0.

The automorphism μ−1 admits a geometric description on the mirror space ∂P .

Lemma 5.7. As an automorphism of the category CohG∨

(∂P ), the functor μ−1 is given by 

tensor product with the line bundle O∂PG∨
(−1), the restriction to ∂P of the line bundle 

OP/G∨(−1) on the projective stack PG∨.

Proof. The space V̊ is given by an unramified G-cover of P̊ , which as we have seen 

is mirror to the quotient projection ∂Cn/G∨ ← ∂Cn, and this cover restricted to an 

unramified G-cover V̊ 1
2

→ P̊ 1
2
, mirror to the G∨-quotient ∂PG∨ ← ∂P . We have seen 

that P̊ 1
2

is the corner ∂2Sn of a sector whose horizontal boundary ∂hSn is the LG 

model ((C×)n−1, x1 + · · · + xn−1 + 1
x1···xn−1

, whose skeleton is the FLTZ Lagrangian 

LΣ
Pn−1 ⊂ T ∗T n−1.

The calculation of [35, Corollary 4.24] establishes that the monodromy μ−1 on ∂hSn is 

given by convolution by an object which is mirror to O(−1) on Coh(P n−1); on the bound-

ary ∂2Sn = P̊ 1
2
, this monodromy autoequivalence is mirror to tensoring by O∂P (−1)

on Coh(∂P n−1). Now when we pass to the G-covers of the previous paragraph, we find 

that the monodromy on V 1
2

comes from convolution with an object mirror to O∂PG∨
, as 

desired. �

We can use the monodromy automorphism μ−1 to give a new method for computation 

of the wrapped Fukaya category W(V̊L).

Proposition 5.8. There is an equivalence

W(V̊L) ∼= CohG∨

(∂̃Cn)

between the wrapped Fukaya category W(V̊L) and the category of G∨-equivariant coherent 

sheaves on the proper transform of ∂C under the blowup at 0.

Proof. The space ∂̃Cn/G∨ is a toric stack, so one possible proof proceeds following [21]

as usual, matching toric orbit closures with Liouville subsectors. But we will give here 

a different proof, more closely associated to the description of the skeleton LV̊L
given in 

Proposition 3.7.

From the description in Proposition 3.7, we can see that the category W(V̊L) is equiv-

alent to the compact objects in the category of pairs

{(
X ∈ Ind(W(V̊ 1

2
)), μX → X

)}
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of an object X in an Ind-completion6 of the Fukaya category of the nearby fiber and a 

μ-twisted endomorphism of X, where μ ∈ Aut
(

W(V̊ 1
2
)
)

is the counterclockwise mon-

odromy map. Since W(V̊ 1
2
) ∼= Coh(∂PG∨) with μ given by the functor of tensor product 

− ⊗ O(1), we thus have an equivalence

W(V̊L) ∼= {(F ∈ IndCoh(∂PG∨), ν : F(1) → F)} . (5.9)

Now note that ∂̃Cn is the total space Tot(O∂P (−1)) of the bundle O(−1) on ∂P , so 

that it can be described equivalently as the relative Spec

∂̃Cn = Spec
∂P

SymO∂P
O(1),

and hence the category CohG∨

(∂̃Cn) is equivalent to the category of coherent sheaves F

in Coh(∂PG∨) equipped with the additional data of a map F ⊗O∂PG∨
(1) → F describing 

the action of the generators of this symmetric algebra. This agrees with the description 

of the category W(V̊L) given in (5.9). �

Now recall from Example 2.24 that the space P̊ , the (n − 1)-dimensional pants, is 

mirror to the toric boundary ∂Cn, and there is an equivalence of categories

W(P̊ ) ∼= Coh(∂Cn).

Accordingly, the wrapped Fukaya category of the space V̊ , which is an unramified G-

cover of P̊ (and is called the “G-pants” in [21]) admits a presentation as

W(V̊ ) ∼= CohG∨

(∂Cn). (5.10)

This is not obviously identical with the presentation of V̊ via the Liouville-sectorial cover 

which we have been discussing so far:

Lemma 5.11. The wrapped Fukaya category W(V̊ ) of V̊ is equivalent to the colimit

lim
−−→

(
CohG∨

(∂̃Cn) ← Coh(∂PG∨) → CohG∨

({0})
)

, (5.12)

where the maps are given by pushforwards along the inclusion PG∨ ↪→ ∂̃Cn/G∨ and the 

projection PG∨ → {0}/G∨, respectively.

6 It is often necessary to pass to Ind-completions while computing a colimit, and then to return to small 
categories afterward by passing to compact objects. The Ind-completion remains in the final description 
here because an object of W(V̊L) will often have infinite-dimensional “underlying object” in W(V̊ 1

2
); this 

is analogous to the fact that coherent sheaves on SpecR are not in general finite R-modules, but possibly 
infinite-dimensional R-modules which have a finiteness condition on their generation as R-modules.
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Proof. This colimit presentation corresponds to the Liouville-sectorial decomposition we 

have been studying in this paper. We have already proven that the categories in (5.12)

match the wrapped Fukaya categories of the sectors V̊L, ̊V 1
2
, and V̊R, respectively, so 

we only need to check that the functors induced by the Liouville-sectorial inclusions 

of V̊ 1
2

× T ∗R into V̊L and V̊R are as described in the lemma. (Actually, we will check 

agreement on the left adjoints of these functors, which are easier to understand. And for 

simplicity, we note that it is sufficient to check the case where V̊ = P̊ , since the G-cover 

applies uniformly to all of the Liouville sectors involved and hence the G∨ equivariance 

applies uniformly to all the categories involved in (5.12).)

Consider first the left cap functor

W(P̊L) → W(P̊ 1
2
).

Under the description in Proposition 5.8, this functor is given by the map which takes 

a pair (X, ν : μX → X) to the object Cone(ν). But in the B-side description from that 

proposition, the cone on F(−1) → F is the pullback of F under the inclusion of the 

zero-section

∂P ↪→ Spec
∂P

SymO∂P
O(1)

Now consider the right cap functor

W(P̊R) → W(P̊ 1
2
). (5.13)

The wrapped category W(P̊R) of sector P̊R is equivalent to the category PerfC of finite-

dimensional vector spaces, and we need to show that (5.13) sends the 1-dimensional 

vector space to the structure sheaf O∂P ∈ Coh(∂P ) ∼= W(P̊ 1
2
).

Recall that P̊R describes a disk attachment to P̊ 1
2

with boundary sphere S ⊂ LP̊ 1
2

. 

We therefore need to check that the Lagrangian sphere S, equipped with trivial local 

system, represents the structure sheaf O∂P under the mirror symmetry equivalence

W(P̊ 1
2
) ∼= Coh(∂P ). (5.14)

The equivalence (5.14) describes Coh(∂P ) as a colimit of categories of coherent sheaves 

on the toric orbit closures of ∂P , corresponding to a cover of P̊ 1
2

by Liouville sectors. 

The basic sectors in this cover are of the form (T ∗T n−2, ΛΣ
Pn−2 ), and in each case the 

Lagrangian mirror to the structure sheaf OP n−2 is the cotangent fiber at 1 ∈ T n−2. These 

cotangent fibers glue together to form the sphere S, matching the gluing of structure 

sheaves OP n−2 into the structure sheaf OP n−1 of P n−1. �

By comparing the equivalence (5.10) with Lemma 5.11, we can deduce a new colimit 

presentation of the category CohG∨

(∂Cn). In fact, it is possible to prove this directly, 

without any reference to mirror symmetry:



B. Gammage / Advances in Mathematics 443 (2024) 109563 39

Lemma 5.15. There is an equivalence of categories

Φ : CohG∨

(∂Cn)
∼
−→ lim

−−→

(
CohG∨

(∂̃Cn) ← Coh(∂PG∨) → CohG∨

({0})
)

. (5.16)

Proof. The functor Φ is induced from the pullback functor

p∗ : CohG∨

(∂Cn) → CohG∨

(∂̃Cn).

This functor is fully faithful, hence Φ is also, and we need only to prove that Φ is 

essentially surjective. In other words, we need to check that every object of the colimit 

in (5.16) can be identified with an object in CohG∨

(∂̃Cn) which is pulled back from 

CohG∨

(∂Cn).

So let F be an object of CohG∨

(∂Cn). By using the map p∗p∗F → F , we can reduce 

to the case that F is supported on the exceptional locus PG∨ . But the colimit in (5.16)

identifies any such object with the pullback of some sheaf on ∂Cn/G∨ supported at

{0}/G∨, as desired. �

5.2. Deformation theory

We are ready at last to proceed to the calculation of the wrapped Fukaya category 

W(V ) of the Milnor fiber V . On the B-side, the geometric fact we will need is the 

deformation of (5.16) by the function W ∨.

Lemma 5.17. There is an equivalence of 2-periodic categories

Φ : MFG∨

(∂Cn, W ∨)
∼
−→ lim

−−→

(
MFG∨

(∂̃Cn, W ∨) ← Coh(∂PG∨)Z/2 → CohG∨

({0})Z/2

)
.

(5.18)

Proof. This statement is proved in exactly the same manner as Lemma 5.15: the pullback 

map p∗ : CohG∨

(∂Cn) → CohG∨

(∂̃Cn) induces a fully-faithful embedding

p∗,W ∨

: MF(∂Cn/G∨, W ∨) → MF(∂̃Cn/G∨, W ∨)

on matrix factorization categories, and every object of MF(∂̃Cn/G∨) is identified in the 

colimit with one obtained through this deformed pullback. (Note that the function W ∨

finishes at 0 ∈ ∂Cn, hence also on the exceptional divisor ∂PG∨ , and therefore the middle 

and right-hand categories in the colimit in (5.18) could also be written as MF(∂PG∨ , W ∨)

and MFG∨

({0}, W ∨), respectively.) �

On the A-side, we will need one final piece of data in order to make contact with the 

description from the previous lemma. Recall that the presentation of V 1
2

as a boundary 

sector of VL induces a monad ∩∪ on W(V 1
2
).
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Lemma 5.19. Under the mirror symmetry equivalence described in Proposition 5.5, the 

monad ∩∪ is the endofunctor of Coh(∂PG∨) given by tensoring with the cone of s, where 

s is the restriction to ∂PG∨ of the function W ∨ ∈ Γ(PG∨ , O(1)).

Proof. We have already computed in Lemma 5.7 that the clockwise monodromy au-

tomorphism μ−1 of W(V 1
2
) ∼= Coh(∂PG∨) is given by tensoring with the line bundle 

O∂PG∨
(−1), and we saw in Theorem 2.11 that the cap-cup monad admits a presentation 

as Cone(μ−1 → idW(F )), which in our case is therefore a natural transformation between 

the functor of tensoring with O∂PG∨
(−1) and the identity functor (which is tensoring 

with O∂PG∨
), or in other words (after tensoring with O(1)), a map

O∂PG∨
→ O∂PG∨

(1),

i.e., a section on ∂PG∨ of the bundle O∂PG∨
(1). Moreover, this section is generic: this 

can be seen as in [35, Theorem 5.1] (the case of PL, discussed in the previous section) 

by observing that the monad acts as 0 on the components of LV 1
2

which are mirror to 

0-dimensional toric strata of ∂PG∨ ; alternatively, one can recall (cf. [1, §1.3]) that s is 

a count of holomorphic disks, and that each of the n disks it counts in Sn will lift to a 

disk in the G-cover.

Finally, we note that any generic section of ∂PG∨ can be made equal to W ∨ after a 

rescaling of its coefficients. �

Corollary 5.20. Assuming Conjecture 4.21, there is an equivalence of categories W(VL) ∼=

MFG∨

(∂̃Cn, W ∨).

Proof. This is a straightforward application of Conjecture 4.21, bringing together our 

results from earlier in this section: In Proposition 5.8, we computed that W(VL) ∼=

CohG∨

(∂̃Cn); in Proposition 5.5, we computed W(V 1
2
) ∼= Coh(∂PG∨); in Lemma 5.7, we 

described the clockwise monodromy automorphism μ−1 as tensoring with O∂PG∨
(−1), 

and in Lemma 5.19, we saw that the disk-counting section s : μ−1 → idW(V 1
2

) was the 

function W ∨.

We conclude that, assuming Conjecture 4.21, we have an equivalence of categories 

W(VL) ∼= MF(W(V̊L), ̃s) ∼= MF(∂PG∨ , W ∨). �

We now reach the main theorem of this paper.

Theorem 5.21. Assuming Conjecture 4.21, the wrapped Fukaya category W(V ) is the 

deformation of the 2-periodic dg-category CohG∨

(∂Cn)Z/2 by the function W ∨ ∈

C[∂Cn]G
∨

. In other words, there is an equivalence of 2-periodic dg categories

W(V ) ∼= MFG∨

(Cn+1, z0z1 · · · zn + W ∨)
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between the wrapped Fukaya category of the Milnor fiber V and the category of matrix 

factorizations on Cn+1 for the function z0z1 · · · zn + W ∨.

Proof of Theorem 5.21. The proof of Theorem 5.21 begins from the equivalence

CohG∨

(∂Cn) ∼= lim
−−→

(
CohG∨

(∂̃Cn) ← Coh(∂PG∨) → CohG∨

({0})
)

. (5.22)

proved in Lemma 5.15. The right-hand-side of (5.22) corresponds to the colimit descrip-

tion of the wrapped Fukaya category W(V̊ ) given by the cover of V̊ by subsectors sectors 

V̊L, ̊VR, and their intersection V̊ 1
2

× T ∗R.

We have seen that the Weinstein manifold V has an analogous Liouville-sectorial 

decomposition, and in fact the right and middle subsectors V̊R, ̊V 1
2

of V̊ are equal to 

the corresponding subsectors VR, V 1
2

of V . Hence the category W(V ) admits a colimit 

presentation as in (5.22), but with the category W(V̊L) ∼= CohG∨

(∂̃Cn) replaced by its 

deformation

W(VL) ∼= MFG∨

(∂̃Cn, W ∨), (5.23)

where the equivalence in (5.23) comes from Corollary 5.20 (conditional on Conjec-

ture 4.21). �

Appendix A. Maslov data and 2-periodicity

In this section, we recall the data needed to define either the wrapped Fukaya category 

of a Liouville sector or the cosheaf of wrapped microlocal sheaves, mostly following the 

exposition in [18, §5.3] and [36, §10] (to which we refer the reader interested in a more 

detailed discussion), and then we will explain the simplifications that occur in the 2-

periodic case.

Grading data

Let X be a Weinstein manifold. Traditionally (cf. [42, §§11e-11l]), the data necessary 

to define the Fukaya category with Z coefficients has been understood to be a choice of 

class H2(X; Z/2) together with a trivialization of the complex line bundle (∧top
C

TX)⊗2, 

which can be understood as a choice of class in H1(LGr(X); Z) whose restriction to each 

fiber LGrx(X) represents the Maslov class.

This data can be better encapsulated, and generalized to coefficients in a general ring 

R, as follows: the stable tangent bundle of X is classified by a map X → BU , and the 

stable Lagrangian Grassmannian LGr(X) is classified by the composition X → BU →

B(U/O) = B2(Z ×BO). The delooped J-homomorphism gives a map B2(Z ×BO) 
B2J
−−−→

B2Pic(S) to the delooping of the spectrum of invertible modules for the sphere spectrum 

S. For any ring R, there is a map Pic(S) → Pic(R) induced by the map S → R.
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Definition A.1. Grading/orientation data for X with R coefficients is a trivialization of 

the composition

X
LGr
−−→ B(U/O) = B2(Z × BO)

B2J
−−−→ B2Pic(S) → B2Pic(R). (A.2)

When R = Z, the space of invertible Z-modules is Pic(Z) = Z × BZ/2: there are Z

distinct classes of invertible Z-modules, namely the homological shifts Z[n] of the rank 

1 free module, and they have automorphism group Z/2 generated by multiplication by 

−1.

Grading/orientation data with Z coefficients is therefore given by a nulhomotopy of 

the map

X → B2Z × B3(Z/2),

where it can be shown that the first factor (“grading data”) classifies (∧top
C

TX)⊗2 and the 

second factor (“orientation data”) admits a canonical trivialization (giving a correspon-

dence between choices of nulhomotopy for the second factor and maps X → B2(Z/2)). 

We therefore see that grading/orientation data for Z coefficients agrees with the tradi-

tional data used to define the Fukaya category.

In practice, there is a universal way of constructing grading/orientation data for a 

symplectic manifold.

Definition A.3. A stable polarization of X is a trivialization of the map X → B(U/O)

classifying the Lagrangian Grassmannian bundle LGr(X).

It is clear that a stable polarization induces grading/orientation data for any ring R, 

since a trivialization of X → B(U/O) trivializes the whole composition (A.2).

As LGr = U/O is an infinite loop space, a trivialization of the stable Lagrangian 

Grassmannian bundle LGr(X) is the same as a section of it, or equivalently a section σ

of the Lagrangian Grassmannian of the stable symplectic normal bundle of X (which is 

the negative of the stable tangent bundle).

In [47,36] it is explained that if X is a Weinstein manifold with skeleton L, then X

admits a possibly high-codimension embedding into a cosphere bundle S∗M , and the 

data of a section σ as above is precisely the data necessary to thicken L to a Legendrian 

Lσ in S∗M and therefore to define microlocal sheaves on Lσ. In [18] it is shown that 

the category so defined agrees (up to passage to opposite categories) with the wrapped 

Fukaya category of X, defined using grading/orientation data coming from the stable 

polarization σ. These are the results we have summarized as Theorems 2.7 and 2.8 above.

Gluing Fukaya categories

At various points in this paper, we will study a Weinstein manifold or sector X

whose skeleton L admits a cover L = U1 ∪ U2 by two open sets Ui intersecting in 
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U12 := U1 ∩ U2, and we would like to present the wrapped Fukaya category of X as a 

gluing of the categories μshW(U1), μshW(U2) along μshW(U12). We may compute each 

of these categories with locally chosen grading/orientation data σ1, σ2, σ12, but in order 

to ensure that these categories glue into a global Fukaya category of X, we must show 

that the restrictions of σi to U12 are both homotopic to σ12, so that, up to homotopy, 

this data glues into a global choice of grading/orientation data on X.

All of the symplectic manifolds studied in this paper are complete intersections in 

Cn or (C×)n, and their grading/orientation data is induced from the standard polariza-

tions of Cn = T ∗Rn and (C×)n = T ∗((S1)n). To establish that our gluings of Fukaya 

categories are sensible, it is therefore sufficient to check that grading/orientation data 

coming from these polarizations agree, which we will now do. (We will see that making 

the grading data for these two polarizations agree will require altering our coefficient 

ring.)

Orientation data

As described above, grading/orientation data with integral coefficients is a nulhomo-

topy of the map

X → B2Z × B3(Z/2),

where the second factor admits a canonical trivialization. A stable polarization σ is one 

way to trivialize this map, but the trivialization on the second factor may not agree with 

the canonical one. Indeed, as explained in [9, Lemma 3.9], the difference between these 

two trivializations is measured by the second Stiefel-Whitney class w2(σ).

If X = T ∗M is a cotangent bundle and σ is its cotangent fiber polarization, this means 

that the orientation data determined by σ differs from the canonical trivialization of the 

map X → B3(Z/2) if and only if w2(M) is nonzero. We conclude that the cotangent 

fiber trivialization on Cn or on (C×)n induces the canonical orientation data.

Grading data and 2-periodicity

In contrast to the situation for orientation data, the grading data (with integral co-

efficients) for the cotangent fiber polarizations on Cn and (C×)n does not agree. The 

discrepancy between the two trivializations of the map to B2Z is measured by a map 

to ΩB2Z = BZ. As a map C× → BZ, this is homotopic to the map S1 → S1 of de-

gree 2, corresponding to the fact that traversing the Maslov cycle in LGr acts by the 

automorphism [2] of degree-shift by 2.

However, the discrepancy vanishes if we work with coefficients in Z((β)), where β is a 

variable of homological degree 2. Grading/orientation data for Z((β)) is a trivialization 

of the composite map

X → B2(Pic(Z)) = B2(Z × BZ/2) → B2(Z/2 × BZ/2) = Pic(Z((β))),
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where the quotient Z → Z/2 reflects the fact that the n-shifted invertible modules 

Z((β))[n] of the same parity are all isomorphic to each other.

We conclude that the cotangent fiber polarizations of C and C× induce the same 

grading data with Z((β)) coefficients. Dg-categories linear over Z((β)) may equivalently 

be thought of as 2-periodic (Z-linear) dg-categories, with 2-periodicity element β. In 

other words, we have shown that so long as we work with 2-periodic dg-categories, 

all the restrictions of the grading and orientation data used in this paper agree up to 

homotopy.
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