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1 | INTRODUCTION

In the Gross-Siebert program, a pair of dual spaces is described by the combinatorial data of an
integral affine manifold with singularities, which is supposed to be understood as the base of a
Lagrangian torus fibration with singularities. Following [39], such a map is called an SYZ fibra-
tion. Locally near a smooth point of the base, the total space looks like the cotangent bundle of a
torus, projecting to its cotangent fibers.

Near singular points in the base, the behavior of a torus fibration can become more complicated
as torus fibers acquire singularities. However, in each dimension N, there is a finite list of such
singularities 8, ,, (with n + m = N) that are known to serve as building blocks for a wide class of
integral affine manifolds. Above the singularity 8, ,,,, the symplectic manifold is described by the
local model

Xpm =120 2, =1+ u; +--u, | z; €C,u; € C*Y,
equipped with singular Lagrangian torus fibration X,, ,, — R"*"™ by
(Zgs oo s Zys Uy, s Upy) P> (12012 = 12112, e 12017 — |2,1%, 10g |1y, ..., 10g |, | ). (L1)

In the case n = 1, this SYZ fibration on the conic bundle X, ,,, was studied extensively in [2].
In this paper, we will show (in §4) that the spaces X, ,,, may be described using a generalization
of the nontoric blowup construction of [21, 22]. The mirror to that construction was described in
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2 | GAMMAGE

detail in [15] (following earlier works [29, 31, 36]); by generalizing that mirror construction to the

case of X,, ,,, we can deduce a mirror symmetry equivalence between these spaces.

Theorem 1.2. There is an equivalence of categories Fuk(X,, ,) = Coh(X,, ).

Remark 1.3. Theorem 1.2 as formulated has long been expected; a proof of this theorem from
a more traditional Fukaya-categorical perspective, providing a more detailed correspondence
between homological mirror symmetry and SYZ geometry, will appear in [3]. Many special cases of
Theorem 1.2 appear in the literature, including the case m = —1 (the (n — 1)-dimensional pants,
studied in [25] and from the perspective of Lagrangian skeleta in [27]), and the case n = 1 (the
substrate of the basic “generalized cluster transformation,” studied in [29, 31]) — indeed, in some
sense, the content of this paper consists in combining those two calculations. (Other special cases
of this theorem can be found in [6, 32].)

But the broader novelty in this work is in relating the Lagrangian skeleton of Fuk(X,, ,)
to the geometry of its SYZ fibration (1.1). This is part of a larger program, to be discussed in
§4, to understand Lagrangian skeleta and mirror symmetry for affine cluster varieties via their
SYZ fibrations.

On the A-side, the main input to this theorem is a calculation of the Lagrangian skeleton L,,, ,
of the Weinstein manifold X, ,,. Let Zcnycxym be the fan of cones in R"*” spanned by subsets
of the first n basis vectors ey, ..., e,,, identifying each cone o with the corresponding subset of [n].
Introduce the conic Lagrangian

n+m
Lengoagm = U ol xoc R"””/(Z + %) X R = TFT, (1.4)
oCln]

where in the first factor, we write o for the image of the subspace orthogonal to ¢ under the
projection R"*™ — T"*™ This Lagrangian, studied in [11-13], following earlier work [5], is known
[16, 38] to be the skeleton of the Liouville-sectorial mirror to the toric variety C" x (C*)™ [24, 35,
37], and its boundary

au_cnx(cx)m = U O'J_ X 5000 C S*Tn+m
f+cc[n]

is mirror to the toric boundary dC" x (C*)"™ [16, 27]. We will sometimes refer to these objects as
“FLTZ skeleta.”

Remark 1.5. In [16], we avoided the translation Z — Z + % appearing in the definition of the quo-
tient torus 7"+ in (1.4) by changing the sign of the constant coefficient in 1 + u; + -+ + u,,. In
this paper, we prefer the more symmetrical convention for this polynomial.

Observe that Leny(oxym is globally a product
Lenyexym = Len X " Cc T*T" x T*T™.

We will be interested in a second Lagrangian that involves the degeneration of the T™ factor in
that product. Let I]_(”lfBg C C™*1 be the “Lagrangian m-torus degeneration,”

m
ﬂ—grég 1= {(Zo,---,zm) | 1zo] = - = |Zm|’HZi € R;o},
i=0
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LOCAL MIRROR SYMMETRY VIA SYZ | 3

studied in [14, 28] as the skeleton of a mirror to a general linear hypersurface in (C*)™, and in [29,
31] as part of higher dimensional cluster theory. Its Legendrian boundary oL . is the m-torus T™.

Our main result on the symplectic geometry of symplectic manifold X, ,, is a calculation of its
Lagrangian skeleton L,,, ,,.

Theorem 1.6. The Lagrangian skeleton L, , of X,,, , has a cover
Linn = LyUp Ly,
where L1 = Leny(cxym, £ = (OLen) X LY . and their intersection is L = (0Lcn) X R X T™.

The proof of Theorem 1.6, essentially a combination of the calculations in [27, 31], will be given
in §3. First, in §2, we give a proof of Theorem 1.2 assuming Theorem 1.6. Further discussion on
the meaning of these results, and their relations to cluster theory and a generalization of [15], will
be postponed to §4.

We conclude the introduction with an example recalling how our construction recovers the
geometry of the “cluster local model” X ;.

Example 1.7. Let m = n = 1, so that &, ; is the focus-focus singularity, whose local model

was first studied from the perspective of mirror symmetry in [4, §5]. The Weinstein manifold X ;
admits a Lagrangian skeleton L that is the union of a torus T = T2 and a disk whose boundary
is glued along a primitive homology class of T. In line with Theorem 1.6, we can think of this as
a union of two open pieces: a torus with a cylinder attached (the mirror to C X C*) and a disk
collapsing the boundary circle of that cylinder to a point.

2 | GLUING MICROSHEAF CATEGORIES

In this section, we show how Theorem 1.2 follows from Theorem 1.6 by gluing together prior
microsheaf calculations. We collect those calculations first.

Notation 2.1. Throughout this section, we write

R :=Clzy, e, 2y U, o U]
We will also write IT := z; ---z, and £ := 1+ u; + --- + u,, for the respective product and sum,

and we will be interested in the quotient rings R /I, R/Z, and R/(IL, Z).

Notation 2.2. Following the convention of [17], we will write ¢ Sh for the sheaf of microlocal sheaf
categories defined in [23, Ch. 6] (or technically speaking, the sheafification of the presheaf of
categories defined there) and u sh for the sheaf of categories defined in [30]. The former of these
is defined within a cotangent bundle or cosphere bundle; the latter is defined on more general
symplectic or contact manifolds equipped with polarization data. (It is the latter sheaf that is
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4| GAMMAGE

related to the Fukaya category by [18], but some of the calculations we cite, predating [30], are
expressed in the older language.) We take these to be valued in the presentable category C —mod
of C-modules, although more general choices of coefficients are possible.

Theorem 2.3. There is a commutative diagram

Shy ,(T") —— uSh(Le)

1 I 24)

QCoh(C") —— QCoh(aC"),

where the vertical maps are equivalences, and the bottom horizontal map is the pullback to the toric
boundary of C" on the first factor (and the identity on the second factor).

Proof. The left-hand isomorphism is a special case of [24, Theorem 1.3] but the idea essentially
goes back to [5]. (See also [12].) This is an instance of the “Basic calculation” described at [16,
§7.1]: see there for more references. The existence of the right-hand isomorphism making the
square commute is [16, Theorem 7.13]. O

Theorem 2.3 is stated in the language of sheaves and microlocalization within the cotangent
bundle T*T". For our purposes, it will be necessary to rephrase this in terms of the theory of
microlocal sheaves in a general Weinstein manifold.

Lemma 2.5. There is a commutative diagram

Sy, (T") — wSh(dlLc.)

I I 2.6)

ush(Len) — ush(@ley)

where the vertical maps are equivalences, and the bottom row is computed using the cotangent fiber
polarization of T*T".

Proof. For a Legendrian L C S*X in a cosphere bundle, there is a canonical equivalence ([30,
Remark 9.5]; see also [8, Corollary 4.13]) between ¢ Sh(L) and u sh(L), where the latter is computed
in the cotangent fiber polarization. However, L.» starts life as a conic Lagrangian in a cotangent
bundle, rather than a Legendrian in a cotangent bundle.

As explained in [17, §4E], for L C T*X a conic Lagrangian in a cotangent bundle, there is not
a canonical equivalence between x Sh(L) and u sh(L), where again the latter is computed in the
cotangent fiber polarization. However, [17, §4E] constructs a (noncanonical) equivalence between
these, which supplies the vertical equivalences in (2.6). O

Theorem 2.7 [28, Corollary 1.8]. There is a commutative diagram

psh(Ly,) ———> ush(@LE )

I L 29)

C[uI—', vy Un]/ZFmod — Cluf, ..., u%] Fmod,
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LOCAL MIRROR SYMMETRY VIA SYZ | 5

where the bottom horizontal map is restriction of scalars, and the polarization data for computing
ush comes from the Legendrian lift of [I_gég fo S*(R™*! x R) discussed in [28, §3.1].

Remark 2.9. As [28] predates the theory of microlocal sheaves in a general Weinstein manifold
constructed in [30], the above calculation is not stated in the language of polarizations; rather,
the category of microlocal sheaves on L7 . (which is not a conic Lagrangian in a cotangent bun-

dle) is defined to be the category of microlocal sheaves on its Legendrian lift from T*(R™*!) to
JYR™1) c S*(R™*! x R). Note that as the identification C"™*! ~ T*(R"™*!) does not respect the
natural Liouville forms, a priori L7, . lifts to a Legendrian in the “wrong” contact structure on

JY(R™*1), namely, the one coming from its identification with the contactization C"**! x R. How-
ever, as explained in [28, Remark 3.3], since the difference of the two Liouville forms is exact, the
two contact structures may be related by a contactomorphism.

We now equip the Lagrangian L, , = £, U, £, with the following polarization:

* OnL, =Len X(C)" =Len X (6[L('1’:3 g), we take the product of the cotangent fiber polarization
onLg. C T*T" and the polarization on L7 . described in [28, §3.1].

* On £, = (OL¢n) X [I_(’j’ég, we again take the product of the cotangent fiber polarization and the
polarization described in [28].

As the restrictions of these two polarizations to £ are canonically identified, the above does indeed
define a polarization on the total Lagrangian L,,, ,,.

Proposition 2.10. In the above polarization, the category ush(lL,, ,,) of microlocal sheaveson L, ,
may be computed as a homotopy limit

ush(l,, ,) ~ I(E (R—mod — R/II —mod « R/(II, ) —mod). 21)
Proof. By descent, the category u sh(L,, ,) may be computed as the homotopy limit of the diagram
psh(Ly) = ush(L) « ush(L,),

which we may rewrite as

(sh <[I_Cn x (amg;g)) = ush ((amcn) x (amg@eg)) < ush <(<3I]_Cn) x [Lgfeg),
with the polarizations as given above. Thus, by a Kiinneth theorem, the middle term splits as a
tensor product, with the maps being given by the corresponding map from (2.6) or (2.8) on one
factor and the identity on the other factor. From Theorem 2.3, Lemma 2.5, and Theorem 2.7, we
conclude that the above diagram is equivalent to the diagram
QCoh(C") ® QCoh((C*)™) — QCoh(dC") ® QCoh((C*)™) « QCoh(dC") ® QCoh({Z = 0}),

which agrees with the limit diagram on the right-hand side of (2.11). O

Now we compute the above homotopy limit algebraically.
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6 | GAMMAGE

Proposition 2.12. Let R’ denote the ring R’ := R[z,]/(z,I1 = ). Then, there is an equivalence of
categories

R’ —mod — lim (R —mod — R/TT—mod « R/(I, £) ~mod) (2.13)
describing the category of R'-modules as the indicated homotopy fiber product.

Proof. An object of the right-hand side of (2.13) can be presented as a triple (M, N, ¢) where M is an
R-module, N isan R/(I1, £)-module, and ¢ is an equivalence of R /TI-modules between M ®5 R/II
and resﬁ/ r[(N ), where we write res for restriction of scalars. From this perspective, the functor in
(2.13) sends an R’-module M’ to the triple

(resk,M’, resk, (M) ® R/(I, 2), ),

where ¢ is the evident isomorphism (coming from the fact that {II = 0} and {IT = £ = 0} describe
the same closed subscheme of Spec(R")).

To see that this functor is an equivalence, we will want a different description of the objects of
the limit category. We observe that the data of a triple (M, N, ¢) as above are equivalent to the data
of (M, &,) where M is as before and &, is a nulhomotopy of the action of £ on M ®; R/II. (Given
(M, N, p), we may use ¢ to identify N as an R/II-module with M ®3 R/II, and & is the data of a
lift of the R /TTI-module structure to an R/(I1, £)-module.)

Taking a semifree resolution of R/II as R[n] with || = —1 and dn = II, we may write M ®p

n
R/II ~ M ®g R[n] as the complex M[n] = (M — M), which is a semifree R-module with basis
7, 1. If M is a discrete (i.e., concentrated in degree 0) R-module, then on the (vertical) map of
complexes (with differentials written horizontally)

M1y M My M
Z\L i \LZ the nulhomotopy &, is given by a diagonal map \L ;0// \LZ
M —=5% M, M1y M

satistying z,II = Iz, = X.
In general (for M not necessarily a discrete module), the nulhomotopy &, as a degree-(—1)

n
endomorphism of Cone(M — M), has two components « and z, illustrated as the dashed maps
in the diagram

where « is a degree-(—1) cochain (not necessarily a cocycle) in the mapping complex Homg(M).
In terms of a and z,, the condition that &, is a nulhomotopy of f is the relation

zoll + da = f,

where d is the internal differential on M.
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LOCAL MIRROR SYMMETRY VIA SYZ | 7

In other words, the data of £, are equivalent to the data of a lift of the R-module structure on
M to an R[z,, a]-module structure, where « has degree-(—1) and satisfies da = f — z,II. But the
ring R[z,, a] is equivalent (as a cofibrant replacement) to R’, so we conclude that the category
of pairs (M, &,) is equivalent to the category of R’-modules. It is straightforward to see that the
functor (2.13) realizes the canonical equivalence. O

Assuming Theorem 1.6, the proof of Theorem 1.2 follows immediately from the above:

Proof of Theorem 1.2. Combining (2.11) and (2.13), we have an equivalence wsh(lL,,,) =~
QCoh(X,, ;). Theorem 1.6 asserts that L,, , is the skeleton of the Weinstein manifold X, ,,, and
we may therefore apply [18, Theorem 1.4] to produce an equivalence ush(L,, ,) ~ IndFuk(X,, ,)
(where each is defined with the stable polarization constructed above). We deduce Theorem 1.2
by combining these equivalences and passing to compact objects. O

3 | CALCULATING THE SKELETON

Letp : X,,,, — R be a Morse-Bott Kihler potential for the Stein manifold X, ,,, so that its Stein

Kéhler form is w = dd g, which has primitive 1 = d°p. Morse theory gives a handle presentation

of the manifold X, ,, where only critical points of index up to m + n occur, and the union of

stable manifolds for the critical points is a singular Lagrangian subset L C X,,, ,, the skeleton of

Xm.n- These Lagrangian skeleta are of great interest thanks to the fact that the Fukaya category

Fuk(X) of a Stein manifold X may be computed locally over its Lagrangian skeleton L [18-20, 30].
Letp, : C™*! - Rand and ¢, : (C*)" — R denote the respective functions

m n
2
91(2) 1= Y (120> = 1z;1*)",  @o(w) 1= Y (log|u;| + £,
i=1 j=1
where we have fixed some 7 < 0. We will write
p(z,u) 1= ¢(2) + p,(u)

for the sum of these functions.
The function ¢ is natural from the perspective of the SYZ fibration 7 : X,,, , — R™*" defined

by

m(z,u) 1= (1201 = |22, e, 120]% = 12,51, 10g 11|, .., Tog | ), (€AY
so that ¢ can be written as ¢(z, u) = d(7(z, u), (6, z/z)), where d is the distance function on R**™,
In what follows, we will write (3y, ..., 9y, €15 - » §,) fOr the natural coordinates on this SYZ base
R"*"™_ Note that the general fiber of this fibration is an (n + m)-torus, and it degenerates where &
is in the image of the map

Log : {1+u; +-+u,=0|u €C*}>R", u — (log |u,l,...,log |u,|) (3.2)

and at least one of the ) is zero.
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8 | GAMMAGE

As a symplectic hypersurface, X,, , C C"*! x (C*)" inherits a Stein Liouville structure from
the restriction of the ambient structure on C"™*+! x (C*)". For compatibility with the SYZ fibration,
we would like equip C™*! and (C*) with the Stein structures defined by the respective potential
functions ¢, and ¢,. However, for our purposes, it will be useful to deform the Liouville forms on
both C"*! and (C*X)". We begin with C"*!,

The obvious problem with using the function ¢, to define the Stein structure on C"™*! is that
it is not quite a Stein potential: the form dd¢p, is not positive but only semipositive, vanishing
when at least two of the coordinates z; are 0. We will fix this by adding a perturbing term to ¢, .

ForO<i#j<m,letr; 1= |z; 1% + |zj|2,and let y : R - R be a smooth cut-off function, such
that for some fixed a; > « > 0, the function y satisfies

1 where ¢ < «,
x() =
Owheret > a;.

Lemma 3.3. Choose 0 < € < a,, and let §; : C™*! — R be the function

P1(2) 1= ¢(2) +¢ ZX(VU)VU-
i#]

Then, the function ,(z) is a Kéhler potential on C"™*1,

Proof. First consider the regions where y(r;;) is constant: that is, for each i # j, either r;; > o or
rij < & In each case, positivity of dd“g, is clear. In the former case, the second term vanishes,
but the first term already defines a positive (1,1)-form. In the latter case, each term is semipositive,
and the second term is positive in those directions in which the first term is not, so the total sum
is positive.

Thus, it remains to consider the case where &, < r;; < a;. In this region, the perturbation term
in @, may fail to define a semipositive (1,1)-form, since the function x(r;;) is not plurisubharmonic.
However, by compactness of the interval [a,, &, ], we can choose y such that its C2 norm on [, o |

isbounded by a constant C (depending on a; — a). Since the same is true of the function r;; in the

region o, < r;; < a;, we conclude that there exists an overall constant bounding |ddC ( x(riri; )(J
in the region a; < r;; < ;. On the other hand, in the region where r;; > a,, |dd°¢p, | is bounde

below. Putting these together, we conclude that for € sufficiently small, the total function &; will
continue to define a positive (1,1)-form in this region. O

From now on, we write @ : C"™*! x (C*)" — R for the perturbed function

P(z,u) 1= ¢1(2) + g, (u). (3.4)

Lemma 3.3 ensures that this perturbation of ¢ is the potential for a Stein structure on C"*! x
9"

Both the original function ¢ and the deformation @ have a Morse-Bott manifold of minima
givenby the (n + m)-torus T := {n; = 0, §; = £}, and the remaining critical points of ¢ also project
under 7 to the subspace H = {n = 0} C R"*™. To simplify the determination of these higher index
critical points, we will imitate [1, 16, 26, 27] in applying a deformation to the Liouville structure
on (CX)".
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LOCAL MIRROR SYMMETRY VIA SYZ | 9

Within H, the singular locus of the fibration 7 coincides with the amoeba A, defined as the
image of the projection (3.2). The amoeba .4 contains within it a spine, the tropical hypersurface IT
defined as the corner locus of the function max(0, &, ..., §,,). Observe that the complement H \ IT
consists of n components, one of which is the “all-negative” orthant, and each of the others can
be reached from this one by crossing one of the hyperplanes {§; = 0}. The components of this
complement may be equivalently be described as the Log images of the loci where one monomial
in the function 1 + ), u; dominates all the others. We will write C; for the component where u;
dominates, and C, for the bottom-left orthant, where 1 dominates.

We will deform the space X, , by a symplectic isotopy that brings the amoeba closer to the
spine TI, making it easier to understand the Liouville dynamics of X,,, ,. This trick was first used
in [26] and later elaborated in [1, §4], which we follow here. For 0 < i < n, we pick a tailoring
function ¥; (which is called ¢, in [1]) satistying

_J 0 whend(§,C) < % z
he) = {1 when d(&,C)) > € and ;

3| <

for some € < ¢, and we define the family of maps {f; : (C*)" = Clyyc1, by

Fous e ug) 1= (1= sho(@) + Y (A = s ). (3.5)

i=1

Consider the family P*~! := {f; = 0} C (C*)". For s = 0, the hypersurface P(’)‘_1 is the usual
pair of pants{1 + Y, u; = 0}, and when s = 1, for log |u;| < 0, the coordinate u; does not appear
in the defining equation of Pi’_l, so that in that region, P;‘_l is a product of CZ_ with PT‘z.

Proposition 3.6 [1, Proposition 4.2]. Near {f; = 0}, we have |0 f| < |8f|, and therefore, the family
Pl = {f =0} C (C)", for 0 < s < 1, is a family of symplectic hypersurfaces.

As a result, f is a symplectic fibration in a neighborhood of each P”‘1 so that we can use
the symplectic connection to lift af * to a vector field Y, that will flow P~ L to Pl L. The essential
result that allows us to integrate the vector field Y is the following, Wthh is due to the fact that
the isotopy f, was constructed to modify only the subdominant terms in f,.

Lemma 3.7 [1, Lemma 4.11]. The vector field Y, is bounded: there is a constant C so that |Y| < C
everywhere (Where the norm | — | is taken with respect to the Kdhler metric from (C*)").

Lemma 3.7 allows the application of the Moser trick.

Corollary 3.8 [1, Lemma 4.13]. There exists a Hamiltonian time-dependent vector field Y! on (C*)",
supported in a neighborhood of P;“l, with germ at P?‘l C®-close to Y, which is bounded and hence
integrates to a symplectic flow that maps P ~" to P} .

Definition 3.9. Following [27], we call the space P{“l resulting from applying this isotopy the
tailored pants and denote it also by P"~!. The regions log |u;| < Oon P will be called the legs of
the tailored pants, and the projection of P*~! under the Log map will be denoted by A and called

1°0°0T1269%1

sdy woy

:sdny) suonIpuo)) pue SWLd L, Y1 998 “[$70Z/60/S0] U0 A1vIqr] duruQ Ad[IAN “ANSIOAIUN preate] AQ 97 [€1SWIG/Z] [ 1°01/10p/WOd" A[Im',

Ko

5U9OIT SUOWIWIOD) AANERI) d[qeardde o) £q PAWIOAOT IE SAOILE YO SN JO SO[NI 10) ATRIQIT UIUQ AS[1AL UO



10 | GAMMAGE

the tailored amoeba. Similarly, we denote by X ma C C"F1 % (C*)™ the space obtained by applying
this isotopy to (CX)™. We refer to X,,, ,, as the tailored local model.

Remark 3.10. The singularities of the SYZ fibration 7 on X,,, , coincide precisely with the amoeba
A C H, and the effect of the tailoring isotopy is to make that amoeba a better approximation of
the tropical hypersurface II. From the perspective of tropical geometry, it would be desirable to
have a more elaborate modification of the SYZ fibration that makes the discriminant locus agree
precisely with IT. Such a modification appears difficult, but some progress can be found in [10,
33].

Like X,,, ,, the space X,,, , inherits a Liouville structure from its embedding into C"*+! x (C*)";
by pulling back along the deformation relating these spaces, we can understand X, , and X m.n a8
the same underlying symplectic manifold X, ,,, carrying a 1-parameter family of Liouville struc-
tures 4y, such that 4, is the original Liouville structure on X, , and 4, is the Liouville structure
on X m.n- We will use the latter Liouville structure in our computation of the skeleton.

In order to justify this, we must check that this family of Liouville structures is a Liouville
homotopy in the sense of [7].

Definition 3.11 [7, Definition 11.5]. A family of Liouville structures (X,w = d4,), for s €
[0,1] is a Liouville homotopy if there exists a smooth family of exhaustions X = U;le Xi,‘
by compact domains X f C X with smooth boundaries along which the Liouville vector field
is outward-pointing.

Lemma 3.12 [7, Lemma 11.6]. A family of finite-type Liouville manifolds X, = (X,w = dA) is a
Liouville homotopy if the closure | se[0.1] Skel(X,) of the union of their skeleta is compact.

Remark 3.13. The point of Definition 3.11 is to ensure that such a homotopy cannot modify the
Liouville structure in an interesting way at infinity. To see that this is a desirable definition, observe
([9, Exercise 4]) that any Liouville structure on R?>" can be deformed to the standard one (in a
manner not necessarily satisfying Definition 3.11), whereas the conical Liouville structure on R>"
should not be regarded as equivalent to the cotangent Liouville structure on T*R"” = R?",

Proposition 3.14. The family of Liouville structures interpolating between X, , and )?m,n isa
Liouville homotopy.

Proof. For 0 < s <1, write X, ,(s) for the (symplectically isomorphic) family of submanifolds
of (C*)" interpolating between X,, , and X m.n DY the flow of the vector field Y. Observe that
the Liouville form Ay is the pullback to X, ,(s) of the Liouville form d“® on M+l % (€*)", and
therefore the Liouville vector field on X, ,(s) is gradient-like (under the metric inherited from
the Kihler metric on the ambient C"*! x (C*)") for the function @.

It will therefore be sufficient to show that for N > 0, the function ¢| X, has no critical points on
@ '((N, )). This is obvious except where the z; coordinates are 0, so we may reduce to the prob-
lem of establishing the corresponding fact for | Log —¢|?| pr-ls where P;“l C (C*)" is the partially
tailored (n — 1)-dimensional pants defined by the equation (3.5).

In other words, in terms of the compactification (C*)" C P", we must show that there exists
a neighborhood U € P"~! of 9P"~ such that the gradient of | Log —#|? on P"~! does not vanish
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LOCAL MIRROR SYMMETRY VIA SYZ | 11

within U := P;‘_l N U for any s. Moreover, as this calculation, which is taking place at infinity, is
insensitive to 7, we may as well take # = 0 for simplicity.

Leta € 1_’:_1 be a point in the compactification of Pg‘l inside P". By symmetry, we may assume
that a € C". This point is contained in k boundary divisors, for some 1 < k < n — 1; again, by
symmetry, we may write a = (a, ..., a,) where a; = --- = a;, =0, and a;,,...,a, # 0, and we
may take a, to be the largest of the q;. Since at least one a; must satisfy |a;| > % we know in
particular that |a,,| > % Note also that in a neighborhood of a, the final monomial in 1 + u; +
--- +u,, is a dominant term, so we have ¢, identically 0 near a, where 1, is the cut-off function
used to define f.

We will now show that for small ¢, the gradient of |Log|? on P!~ does not vanish for
any u = (uy,...,u,) € P! within an e-neighborhood of a — that is, such that |u; —a;| <€
for all i. Observe that our assumptions ensure that for u near a, the germ of curve (u; +
tuy, Uy, oo, Uy 1, Uy, + tuy (1 —$)P;) at u lies in P! and thus defines a tangent vector V €

T,(PI'~1); in real coordinates u; = rie\/‘_lei, we may write this tangent vector as
V=0, +(Co, +C'd )

for some real constants C, C’. Since |u,| > % —eand |u;| <e¢,and || < 1, we see that by choos-
ing ¢ sufficiently small, we may ensure |C|, |C’| <« 1 for all s. We would like a lower bound for
|d| Log |?| evaluated on V.

Since d| Log |> = Y d(log |u;])* = X, logrﬂdri, we have

|(d| LOg IZ)(V)| — log(rl) + Clog(rn)

Fi I'n
5 |lo8tr)| _ [log(rn)| (3.15)
Fi Fn

Since 0 < r; < € < 1, the first term is at least | log(e)/¢|, which is large and grows monotonically
as ¢ decreases, whereas since r,, > % — ¢, the term |log(r,)/r,| is bounded, and since C can be
made arbitrarily small by decreasing €, we conclude that the difference (3.15) is bounded away
from 0, as desired. O

Remark 3.16. The proof of Proposition 3.14 may be summarized as, “apply the usual proof that the
hypersurface X, , is a finite-type Stein manifold, and check that it continues to hold uniformly
over the deformation.” In fact, this first statement (viz., that the Stein structure on an affine alge-
braic variety is finite-type) is not well documented in the literature; it appears to have been a
folklore theorem for some time, although a proof can be found as Lemma 8 of [34]. In any case,
the second step in this case (showing that the deformation remains finite-type) requires almost
no extra work, since increasing s only improves the bound on (3.15) by taking C closer to 0.

With the tailored local model X m.n in hand, we are ready to study the Liouville geometry of
fm’n. As the Liouville structure is gradient-like for the restriction (along the inclusion fm,n C
C"*1 x (C*)") of the function @ defined in (3.4), we are reduced to studying the Morse-Bott theory

1°0°0T1269%1

sdy woy

:sdny) suonIpuoy) pue suUd [ Ay S “[$707/60/S0] U0 Areiqi durjuQ K[iA ‘KNSIOAIUN PIeAIRH Aq 9Z €1 'SWIQ/Z 11 [ ([/10p/wod A1,

Ko

5U9OIT SUOWIWIOD) AANERI) d[qeardde o) £q PAWIOAOT IE SAOILE YO SN JO SO[NI 10) ATRIQIT UIUQ AS[1AL UO



12 | GAMMAGE

of this function. Our Morse-Bott calculation will imitate that performed in [16, 27], relying heavily
on the inductive structure of the tailored pants P"~!.

Proof of Theorem 1.2. It will be useful to study the potential ¢ via the singular torus fibration (3.1).
As we have noted, we may restrict our attention to the locus H = { = 0} = R" c R"*"_ (For the
remainder of this proof, we will always take the coordinates #; to be equal to 0.) We will begin
from the index-0 critical locus, which we denote by

Ty = (& = (£, —)}

and attach stable manifolds for the critical points of progressively higher index.

Fix some i € {1, ..., n} and consider the region in H where & = 0 and §j < 0for j #i. In this
region, the tailored amoeba A" is a hyperplane, and the tailored pants P! is defined by the
equation {u; + 1 = 0}. It is clear that in this region, the function @ has an index-1 Morse-Bott
critical locus at the (n — 1)-torus

T t={u; = —Llogluj| = ~¢ | j #1.

The stable set for this critical locus projects to H along the interval {0 > &; > —¢,§ i==C1j#i}
(or possibly a small perturbation of this interval, depending on how the bump function y used
in defining ¢ is chosen), and it attaches to T as the Legendrian whose front projection is the
codimension-1 subtorus obtained by fixing Arg(u;).

The index-k critical manifolds, for 1 < k < n, are computed similarly. We fix some I =
{iy, ..., it} C [n] and consider the region where §; = O fori € I and §j <« Ofor j & I. In this region,
the tailored pants P" looks like a product (CX)" % x P¥~1, and the calculation of [27, Theorem
5.13], repeated in more detail in the proof of [16, Theorem 5.3.4], shows that there is a single
critical manifold in this region, lying over the point in the boundary of the tailored amoeba A
where §; = §j foralli,j € I,and §; = —¢ forall j & I. This critical manifold T, is a (n — k)-torus,
obtained by fixing the values of u; for i € I and log |u;| for j & I.

Moreover, the attachments for these critical points are just as described in [16, Theorem 5.3.4],
giving the FLTZ skeleton of the pants, attaching to T in the expected way. O

Example 3.17. Let n = 2. Then, the region H in the SYZ base is a plane, depicted in Figure 1
together with the tailored amoeba .4 (containing the tropical curve II for reference). Near the
torus fiber over the red point, the skeleton looks like the product of the FLTZ skeleton L. with an
m-torus T™ parametrized by Arg(z,), ..., Arg(z,,). This T™ factor collapses to a point over points
in the base where the blue region meets the boundary of the amoeba.

4 | SYZ GEOMETRY AND CLUSTER THEORY

In this section, we connect the results of this paper to the nontoric blowup construction of Gross-
Hacking-Keel, and explain how our results fit into a program to understand mirror symmetry for
a general affine cluster variety.

In [21, 22], it was proposed that a cluster variety X should be studied via its relation to a toric
model: a toric variety X containing a codimension-2 subvariety H inside its toric boundary divisor
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LOCAL MIRROR SYMMETRY VIA SYZ 13

\-\

FIGURE 1 The plane H, which lives inside the SYZ base of X, ,. The Lagrangian skeleton is the union of
the torus fiber over the red point and a piece projecting to the blue-shaded region. The higher index critical points
are depicted in green.

D such that X embeds in the blowup Bly; X as the complement of the proper transform D of the
toric boundary divisor D. The requirement that the result X of this construction is a cluster variety
imposes strong constraints on H, which must be defined by a character of the dense torus in its
component of D.

In the case at hand, we relax this constraint, allowing H to be defined by a general linear polyno-
mial. We also allow contributions from the places where H meets the singularities of the boundary
divisor D. With these modifications to the above construction, we can produce our spaces X,, ,,,.

Let X = C" x (CX)™, with coordinates Zyy s Zpy Upy oo s Uy, Write D 1={z; ...z, = 0} cX
for the toric boundary divisor, and consider the nontoric subvariety H ={z;..z, =0,
Yu; =-1}CD.

Proposition 4.1. Let X = BlH)_( \ D be the result of blowing up H and then deleting the proper
transform of the boundary divisor D. Then, X = X, ..

Proof. Let f =z, -z, and g =1+ u; + --- +u,,. The center H is defined by the equations f =
g = 0, so that blowing up H involves introducing f,j% into the ring of functions of X. Delet-

ing the proper transform of D means that it is sufficient to introduce the function % into

the coordinate ring. If we denote this new variable by z,, then the coordinate ring of X is
Clzy, s Zps U] 5 s uE |20 /(20 f = 9) = C[X - O

The equation z; - z; -z, = 1 + u; + --- u,, should be understood as a generalization of the
usual “cluster transformation equation” z,z; = 1 + u. Note that in this simpler case, the variable
z, is obtained from z; by a cluster mutation, whereas in the more general situation considered in
this paper, there are n + 1 variables z;, corresponding to n possible mutations.

On the symplectic side, this corresponds to the fact that the singular locus .4 C H divides H into
n chambers. In the constructions of §3, we distinguished one of those chambers (the “all-negative”
orthant), but we could equally have begun with a torus fiber in one of the other chambers instead.
The difference between the torus fibers in the various chambers is a generalization of the familiar
“Clifford/Chekanov” distinction in cluster symplectic geometry.

On the B-side, as we have seen, this new feature is due to the fact that the center H of
the GHK blowup intersects the singular locus of the divisor D. Keeping track of contributions
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14 | GAMMAGE

from these intersections is a crucial step in generalizing the results of [15], which disregarded
those contributions.

The results of this paper therefore suggest a strategy for studying mirror symmetry for an
affine cluster variety X via its SYZ fibration. The SYZ base should have a presentation by gluing
together local pieces modeled by the singularities 8, ,, (or products of these). Each singularity has
a monodromy-invariant space H, and if there is a point in the intersection of all of these spaces,
it should play the role of the torus Ty in the skeleton L of X, with the remainder of the skeleton
obtained by attaching and collapsing subtori in a manner prescribed by the geometry of the base,
locally agreeing with the construction in this paper (as illustrated in Figure 1). This presentation
should match a presentation of the mirror space XV in terms of the nontoric blowup construction
of Proposition 4.1.
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