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Abstract
In this note, we explain how mirror symmetry for
basic local models in the Gross–Siebert program can be
understood through the nontoric blowup construction
described by Gross–Hacking–Keel. This is part of a pro-
gram to understand the symplectic geometry of affine
cluster varieties through their SYZ fibrations.
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1 INTRODUCTION

In the Gross–Siebert program, a pair of dual spaces is described by the combinatorial data of an
integral affine manifold with singularities, which is supposed to be understood as the base of a
Lagrangian torus fibration with singularities. Following [39], such a map is called an SYZ fibra-
tion. Locally near a smooth point of the base, the total space looks like the cotangent bundle of a
torus, projecting to its cotangent fibers.
Near singular points in the base, the behavior of a torus fibration can becomemore complicated

as torus fibers acquire singularities. However, in each dimension 𝑁, there is a finite list of such
singularities 𝔰𝑛,𝑚 (with 𝑛 + 𝑚 = 𝑁) that are known to serve as building blocks for a wide class of
integral affine manifolds. Above the singularity 𝔰𝑛,𝑚, the symplectic manifold is described by the
local model

𝑋𝑛,𝑚 ∶= {𝑧0⋯ 𝑧𝑛 = 1 + 𝑢1 +⋯𝑢𝑚 ∣ 𝑧𝑖 ∈ ℂ, 𝑢𝑗 ∈ ℂ
×},

equipped with singular Lagrangian torus fibration 𝑋𝑛,𝑚 → ℝ𝑛+𝑚 by

(𝑧0, … , 𝑧𝑛, 𝑢1, … , 𝑢𝑚) ↦
(|𝑧0|2 − |𝑧1|2, … , |𝑧0|2 − |𝑧𝑛|2, log |𝑢1|, … , log |𝑢𝑚|). (1.1)

In the case 𝑛 = 1, this SYZ fibration on the conic bundle 𝑋1,𝑚 was studied extensively in [2].
In this paper, we will show (in §4) that the spaces𝑋𝑛,𝑚 may be described using a generalization

of the nontoric blowup construction of [21, 22]. The mirror to that construction was described in

© 2024 The Author(s). The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

Bull. London Math. Soc. 2024;1–15. wileyonlinelibrary.com/journal/blms 1

https://orcid.org/0000-0002-2154-7190
mailto:gammage@math.harvard.edu
https://wileyonlinelibrary.com/journal/blms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.13126&domain=pdf&date_stamp=2024-08-01


2 GAMMAGE

detail in [15] (following earlier works [29, 31, 36]); by generalizing that mirror construction to the
case of 𝑋𝑛,𝑚, we can deduce a mirror symmetry equivalence between these spaces.

Theorem 1.2. There is an equivalence of categories Fuk(𝑋𝑚,𝑛) ≅ Coh(𝑋𝑛,𝑚).

Remark 1.3. Theorem 1.2 as formulated has long been expected; a proof of this theorem from
a more traditional Fukaya-categorical perspective, providing a more detailed correspondence
betweenhomologicalmirror symmetry and SYZgeometry,will appear in [3].Many special cases of
Theorem 1.2 appear in the literature, including the case 𝑚 = −1 (the (𝑛 − 1)-dimensional pants,
studied in [25] and from the perspective of Lagrangian skeleta in [27]), and the case 𝑛 = 1 (the
substrate of the basic “generalized cluster transformation,” studied in [29, 31]) — indeed, in some
sense, the content of this paper consists in combining those two calculations. (Other special cases
of this theorem can be found in [6, 32].)
But the broader novelty in this work is in relating the Lagrangian skeleton of Fuk(𝑋𝑚,𝑛)

to the geometry of its SYZ fibration (1.1). This is part of a larger program, to be discussed in
§4, to understand Lagrangian skeleta and mirror symmetry for affine cluster varieties via their
SYZ fibrations.

On the A-side, the main input to this theorem is a calculation of the Lagrangian skeleton 𝕃𝑚,𝑛
of the Weinstein manifold 𝑋𝑚,𝑛. Let Σℂ𝑛×(ℂ×)𝑚 be the fan of cones in ℝ𝑛+𝑚 spanned by subsets
of the first 𝑛 basis vectors 𝑒1, … , 𝑒𝑛, identifying each cone 𝜎 with the corresponding subset of [𝑛].
Introduce the conic Lagrangian

𝕃ℂ𝑛×(ℂ×)𝑚 ∶=
⋃
𝜎⊂[𝑛]

𝜎⟂ × 𝜎 ⊂ ℝ𝑛+𝑚∕
(
ℤ +

1
2

)𝑛+𝑚
× ℝ𝑛+𝑚 = T∗𝑇𝑛+𝑚, (1.4)

where in the first factor, we write 𝜎⟂ for the image of the subspace orthogonal to 𝜎 under the
projectionℝ𝑛+𝑚 → 𝑇𝑛+𝑚. This Lagrangian, studied in [11–13], following earlierwork [5], is known
[16, 38] to be the skeleton of the Liouville-sectorial mirror to the toric variety ℂ𝑛 × (ℂ×)𝑚 [24, 35,
37], and its boundary

𝜕𝕃ℂ𝑛×(ℂ×)𝑚 =
⋃

∅≠𝜎⊂[𝑛]

𝜎⟂ × 𝜕∞𝜎 ⊂ S∗𝑇𝑛+𝑚

is mirror to the toric boundary 𝜕ℂ𝑛 × (ℂ×)𝑚 [16, 27]. We will sometimes refer to these objects as
“FLTZ skeleta.”

Remark 1.5. In [16], we avoided the translation ℤ ↦ ℤ + 1
2
appearing in the definition of the quo-

tient torus 𝑇𝑛+𝑚 in (1.4) by changing the sign of the constant coefficient in 1 + 𝑢1 +⋯ + 𝑢𝑚. In
this paper, we prefer the more symmetrical convention for this polynomial.

Observe that 𝕃ℂ𝑛×(ℂ×)𝑚 is globally a product

𝕃ℂ𝑛×(ℂ×)𝑚 = 𝕃ℂ𝑛 × 𝑇
𝑚 ⊂ T∗𝑇𝑛 × T∗𝑇𝑚.

We will be interested in a second Lagrangian that involves the degeneration of the 𝑇𝑚 factor in
that product. Let 𝕃𝑚

deg
⊂ ℂ𝑚+1 be the “Lagrangian𝑚-torus degeneration,”

𝕃𝑚deg ∶=

{
(𝑧0, … , 𝑧𝑚) ∣ |𝑧0| = ⋯ = |𝑧𝑚|, 𝑚∏

𝑖=0

𝑧𝑖 ∈ ℝ⩾0

}
,
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LOCAL MIRROR SYMMETRY VIA SYZ 3

studied in [14, 28] as the skeleton of a mirror to a general linear hypersurface in (ℂ×)𝑚, and in [29,
31] as part of higher dimensional cluster theory. Its Legendrian boundary 𝜕𝕃𝑚

deg
is the𝑚-torus 𝑇𝑚.

Our main result on the symplectic geometry of symplectic manifold 𝑋𝑚,𝑛 is a calculation of its
Lagrangian skeleton 𝕃𝑚,𝑛.

Theorem 1.6. The Lagrangian skeleton 𝕃𝑚,𝑛 of 𝑋𝑚,𝑛 has a cover

𝕃𝑚,𝑛 = 1 ∪ 2,

where 1 ≅ 𝕃ℂ𝑛×(ℂ×)𝑚 , 2 ≅ (𝜕𝕃ℂ𝑛) × 𝕃𝑚deg, and their intersection is  ≅ (𝜕𝕃ℂ𝑛) × ℝ × 𝑇
𝑚.

The proof of Theorem 1.6, essentially a combination of the calculations in [27, 31], will be given
in §3. First, in §2, we give a proof of Theorem 1.2 assuming Theorem 1.6. Further discussion on
the meaning of these results, and their relations to cluster theory and a generalization of [15], will
be postponed to §4.
We conclude the introduction with an example recalling how our construction recovers the

geometry of the “cluster local model” 𝑋1,1.

Example 1.7. Let𝑚 = 𝑛 = 1, so that 𝔰1,1 is the focus–focus singularity, whose local model

𝑋1,1 = {𝑧0𝑧1 = 1 + 𝑢} = ℂ
2 ⧵ {𝑧0𝑧1 = 1}

was first studied from the perspective of mirror symmetry in [4, §5]. The Weinstein manifold 𝑋1,1
admits a Lagrangian skeleton 𝕃 that is the union of a torus 𝑇 = 𝑇2 and a disk whose boundary
is glued along a primitive homology class of 𝑇. In line with Theorem 1.6, we can think of this as
a union of two open pieces: a torus with a cylinder attached (the mirror to ℂ × ℂ×) and a disk
collapsing the boundary circle of that cylinder to a point.

2 GLUINGMICROSHEAF CATEGORIES

In this section, we show how Theorem 1.2 follows from Theorem 1.6 by gluing together prior
microsheaf calculations. We collect those calculations first.

Notation 2.1. Throughout this section, we write

𝑅 ∶= ℂ[𝑧1, … , 𝑧𝑛, 𝑢
±
1 , … , 𝑢

±
𝑚].

We will also write Π ∶= 𝑧1⋯ 𝑧𝑛 and Σ ∶= 1 + 𝑢1 +⋯ + 𝑢𝑚 for the respective product and sum,
and we will be interested in the quotient rings 𝑅∕Π, 𝑅∕Σ, and 𝑅∕(Π, Σ).

Notation 2.2. Following the convention of [17], we will write 𝜇 Sh for the sheaf of microlocal sheaf
categories defined in [23, Ch. 6] (or technically speaking, the sheafification of the presheaf of
categories defined there) and 𝜇 sh for the sheaf of categories defined in [30]. The former of these
is defined within a cotangent bundle or cosphere bundle; the latter is defined on more general
symplectic or contact manifolds equipped with polarization data. (It is the latter sheaf that is
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4 GAMMAGE

related to the Fukaya category by [18], but some of the calculations we cite, predating [30], are
expressed in the older language.) We take these to be valued in the presentable category ℂ−mod
of ℂ-modules, although more general choices of coefficients are possible.

Theorem 2.3. There is a commutative diagram

(2.4)

where the vertical maps are equivalences, and the bottom horizontal map is the pullback to the toric
boundary of ℂ𝑛 on the first factor (and the identity on the second factor).

Proof. The left-hand isomorphism is a special case of [24, Theorem 1.3] but the idea essentially
goes back to [5]. (See also [12].) This is an instance of the “Basic calculation” described at [16,
§7.1]: see there for more references. The existence of the right-hand isomorphism making the
square commute is [16, Theorem 7.13]. □

Theorem 2.3 is stated in the language of sheaves and microlocalization within the cotangent
bundle T∗𝑇𝑛. For our purposes, it will be necessary to rephrase this in terms of the theory of
microlocal sheaves in a general Weinstein manifold.

Lemma 2.5. There is a commutative diagram

(2.6)

where the vertical maps are equivalences, and the bottom row is computed using the cotangent fiber
polarization of T∗𝑇𝑛.

Proof. For a Legendrian 𝐿 ⊂ 𝑆∗𝑋 in a cosphere bundle, there is a canonical equivalence ([30,
Remark 9.5]; see also [8, Corollary 4.13]) between𝜇 Sh(𝐿) and𝜇 sh(𝐿), where the latter is computed
in the cotangent fiber polarization. However, 𝕃ℂ𝑛 starts life as a conic Lagrangian in a cotangent
bundle, rather than a Legendrian in a cotangent bundle.
As explained in [17, §4E], for 𝐿 ⊂ T∗𝑋 a conic Lagrangian in a cotangent bundle, there is not

a canonical equivalence between 𝜇 Sh(𝐿) and 𝜇 sh(𝐿), where again the latter is computed in the
cotangent fiber polarization. However, [17, §4E] constructs a (noncanonical) equivalence between
these, which supplies the vertical equivalences in (2.6). □

Theorem 2.7 [28, Corollary 1.8]. There is a commutative diagram

(2.8)
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LOCAL MIRROR SYMMETRY VIA SYZ 5

where the bottom horizontal map is restriction of scalars, and the polarization data for computing
𝜇 sh comes from the Legendrian lift of 𝕃𝑚

deg
to 𝑆∗(ℝ𝑚+1 × ℝ) discussed in [28, §3.1].

Remark 2.9. As [28] predates the theory of microlocal sheaves in a general Weinstein manifold
constructed in [30], the above calculation is not stated in the language of polarizations; rather,
the category of microlocal sheaves on 𝕃𝑚

deg
(which is not a conic Lagrangian in a cotangent bun-

dle) is defined to be the category of microlocal sheaves on its Legendrian lift from T∗(ℝ𝑚+1) to
𝐽1(ℝ𝑚+1) ⊂ 𝑆∗(ℝ𝑚+1 × ℝ). Note that as the identification ℂ𝑚+1 ≃ T∗(ℝ𝑚+1) does not respect the
natural Liouville forms, a priori 𝕃𝑚

deg
lifts to a Legendrian in the “wrong” contact structure on

𝐽1(ℝ𝑚+1), namely, the one coming from its identification with the contactizationℂ𝑚+1 × ℝ. How-
ever, as explained in [28, Remark 3.3], since the difference of the two Liouville forms is exact, the
two contact structures may be related by a contactomorphism.

We now equip the Lagrangian 𝕃𝑚,𝑛 = 1 ∪ 2 with the following polarization:

∙ On 1 = 𝕃ℂ𝑛 × (ℂ
×)𝑚 = 𝕃ℂ𝑛 × (𝜕𝕃

𝑚
deg
), we take the product of the cotangent fiber polarization

on 𝕃ℂ𝑛 ⊂ T∗𝑇𝑛 and the polarization on 𝜕𝕃𝑚deg described in [28, §3.1].
∙ On 2 = (𝜕𝕃ℂ𝑛) × 𝕃

𝑚
deg
, we again take the product of the cotangent fiber polarization and the

polarization described in [28].

As the restrictions of these two polarizations to are canonically identified, the above does indeed
define a polarization on the total Lagrangian 𝕃𝑚,𝑛.

Proposition 2.10. In the above polarization, the category 𝜇 sh(𝕃𝑚,𝑛) of microlocal sheaves on 𝕃𝑚,𝑛
may be computed as a homotopy limit

𝜇 sh(𝕃𝑚,𝑛) ≃ lim←55
(𝑅 −mod → 𝑅∕Π−mod ← 𝑅∕(Π, Σ)−mod). (2.11)

Proof. By descent, the category 𝜇 sh(𝕃𝑚,𝑛)may be computed as the homotopy limit of the diagram

𝜇 sh(1) → 𝜇 sh() ← 𝜇 sh(2),

which we may rewrite as

𝜇 sh
(
𝕃ℂ𝑛 ×

(
𝜕𝕃𝑚deg

))
→ 𝜇 sh

(
(𝜕𝕃ℂ𝑛) ×

(
𝜕𝕃𝑚deg

))
← 𝜇 sh

(
(𝜕𝕃ℂ𝑛) × 𝕃

𝑚
deg

)
,

with the polarizations as given above. Thus, by a Künneth theorem, the middle term splits as a
tensor product, with the maps being given by the corresponding map from (2.6) or (2.8) on one
factor and the identity on the other factor. From Theorem 2.3, Lemma 2.5, and Theorem 2.7, we
conclude that the above diagram is equivalent to the diagram

QCoh(ℂ𝑛) ⊗ QCoh((ℂ×)𝑚) → QCoh(𝜕ℂ𝑛) ⊗ QCoh((ℂ×)𝑚) ← QCoh(𝜕ℂ𝑛) ⊗ QCoh({Σ = 0}),

which agrees with the limit diagram on the right-hand side of (2.11). □

Now we compute the above homotopy limit algebraically.
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6 GAMMAGE

Proposition 2.12. Let 𝑅′ denote the ring 𝑅′ ∶= 𝑅[𝑧0]∕(𝑧0Π = Σ). Then, there is an equivalence of
categories

𝑅′ −mod
∼
5→ lim
←55
(𝑅 −mod → 𝑅∕Π−mod ← 𝑅∕(Π, Σ)−mod) (2.13)

describing the category of 𝑅′-modules as the indicated homotopy fiber product.

Proof. Anobject of the right-hand side of (2.13) can be presented as a triple (𝑀,𝑁, 𝜑)where𝑀 is an
𝑅-module,𝑁 is an𝑅∕(Π, Σ)-module, and𝜑 is an equivalence of𝑅∕Π-modules between𝑀 ⊗𝑅 𝑅∕Π
and res𝑅∕Π𝑅 (𝑁), where we write res for restriction of scalars. From this perspective, the functor in
(2.13) sends an 𝑅′-module𝑀′ to the triple(

res𝑅
𝑅′
𝑀′, res𝑅

𝑅′
(𝑀′) ⊗𝑅 𝑅∕(Π, Σ), 𝜑

)
,

where 𝜑 is the evident isomorphism (coming from the fact that {Π = 0} and {Π = Σ = 0} describe
the same closed subscheme of Spec(𝑅′)).
To see that this functor is an equivalence, we will want a different description of the objects of

the limit category.We observe that the data of a triple (𝑀,𝑁, 𝜑) as above are equivalent to the data
of (𝑀, 𝜉0) where𝑀 is as before and 𝜉0 is a nulhomotopy of the action of Σ on𝑀 ⊗𝑅 𝑅∕Π. (Given
(𝑀,𝑁, 𝜑), we may use 𝜑 to identify 𝑁 as an 𝑅∕Π-module with𝑀 ⊗𝑅 𝑅∕Π, and 𝜉0 is the data of a
lift of the 𝑅∕Π-module structure to an 𝑅∕(Π, Σ)-module.)
Taking a semifree resolution of 𝑅∕Π as 𝑅[𝜂] with |𝜂| = −1 and 𝑑𝜂 = Π, we may write 𝑀 ⊗𝑅

𝑅∕Π ≃ 𝑀 ⊗𝑅 𝑅[𝜂] as the complex 𝑀[𝜂] = (𝑀
Π
55→ 𝑀), which is a semifree 𝑅-module with basis

𝜂, 1. If 𝑀 is a discrete (i.e., concentrated in degree 0) 𝑅-module, then on the (vertical) map of
complexes (with differentials written horizontally)

satisfying 𝑧0Π = Π𝑧0 = Σ.
In general (for 𝑀 not necessarily a discrete module), the nulhomotopy 𝜉0, as a degree-(−1)

endomorphism of Cone(𝑀
Π
55→ 𝑀), has two components 𝛼 and 𝑧0, illustrated as the dashed maps

in the diagram

where 𝛼 is a degree-(−1) cochain (not necessarily a cocycle) in the mapping complex Hom𝑅(𝑀).
In terms of 𝛼 and 𝑧0, the condition that 𝜉0 is a nulhomotopy of 𝑓 is the relation

𝑧0Π + 𝑑𝛼 = 𝑓,

where 𝑑 is the internal differential on𝑀.
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LOCAL MIRROR SYMMETRY VIA SYZ 7

In other words, the data of 𝜉0 are equivalent to the data of a lift of the 𝑅-module structure on
𝑀 to an 𝑅[𝑧0, 𝛼]-module structure, where 𝛼 has degree-(−1) and satisfies 𝑑𝛼 = 𝑓 − 𝑧0Π. But the
ring 𝑅[𝑧0, 𝛼] is equivalent (as a cofibrant replacement) to 𝑅′, so we conclude that the category
of pairs (𝑀, 𝜉0) is equivalent to the category of 𝑅′-modules. It is straightforward to see that the
functor (2.13) realizes the canonical equivalence. □

Assuming Theorem 1.6, the proof of Theorem 1.2 follows immediately from the above:

Proof of Theorem 1.2. Combining (2.11) and (2.13), we have an equivalence 𝜇 sh(𝕃𝑚,𝑛) ≃
QCoh(𝑋𝑛,𝑚). Theorem 1.6 asserts that 𝕃𝑚,𝑛 is the skeleton of the Weinstein manifold 𝑋𝑚,𝑛, and
we may therefore apply [18, Theorem 1.4] to produce an equivalence 𝜇 sh(𝕃𝑚,𝑛) ≃ IndFuk(𝑋𝑚,𝑛)
(where each is defined with the stable polarization constructed above). We deduce Theorem 1.2
by combining these equivalences and passing to compact objects. □

3 CALCULATING THE SKELETON

Let 𝜑 ∶ 𝑋𝑚,𝑛 → ℝ be a Morse–Bott Kähler potential for the Stein manifold 𝑋𝑚,𝑛, so that its Stein
Kähler form is 𝜔 = 𝑑𝑑𝑐𝜑, which has primitive 𝜆 = 𝑑𝑐𝜑. Morse theory gives a handle presentation
of the manifold 𝑋𝑚,𝑛, where only critical points of index up to 𝑚 + 𝑛 occur, and the union of
stable manifolds for the critical points is a singular Lagrangian subset 𝕃 ⊂ 𝑋𝑚,𝑛, the skeleton of
𝑋𝑚,𝑛. These Lagrangian skeleta are of great interest thanks to the fact that the Fukaya category
Fuk(𝑋) of a Stein manifold𝑋may be computed locally over its Lagrangian skeleton 𝕃 [18–20, 30].
Let 𝜑1 ∶ ℂ𝑚+1 → ℝ and and 𝜑2 ∶ (ℂ×)𝑛 → ℝ denote the respective functions

𝜑1(𝑧) ∶=
𝑚∑
𝑖=1

(|𝑧0|2 − |𝑧𝑖|2)2, 𝜑2(𝑢) ∶=
𝑛∑
𝑗=1

(log |𝑢𝑖| + 𝓁)2,

where we have fixed some 𝓁 ≪ 0. We will write

𝜑(𝑧, 𝑢) ∶= 𝜑1(𝑧) + 𝜑2(𝑢)

for the sum of these functions.
The function 𝜑 is natural from the perspective of the SYZ fibration 𝜋 ∶ 𝑋𝑚,𝑛 → ℝ𝑚+𝑛 defined

by

𝜋(𝑧, 𝑢) ∶=
(|𝑧0|2 − |𝑧1|2, … , |𝑧0|2 − |𝑧𝑚|2, log |𝑢1|, … , log |𝑢𝑚|), (3.1)

so that 𝜑 can be written as 𝜑(𝑧, 𝑢) = 𝑑(𝜋(𝑧, 𝑢), (0⃗,𝓁)), where 𝑑 is the distance function on ℝ𝑛+𝑚.
In what follows, we will write (𝜂1, … , 𝜂𝑚, 𝜉1, … , 𝜉𝑚) for the natural coordinates on this SYZ base
ℝ𝑛+𝑚. Note that the general fiber of this fibration is an (𝑛 + 𝑚)-torus, and it degenerates where 𝜉
is in the image of the map

Log ∶ {1 + 𝑢1 +⋯ + 𝑢𝑛 = 0 ∣ 𝑢𝑖 ∈ ℂ
×} → ℝ𝑛, 𝑢⃗ ↦ (log |𝑢1|, … , log |𝑢𝑛|) (3.2)

and at least one of the 𝜂𝑖 is zero.
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8 GAMMAGE

As a symplectic hypersurface, 𝑋𝑚,𝑛 ⊂ ℂ𝑚+1 × (ℂ×)𝑛 inherits a Stein Liouville structure from
the restriction of the ambient structure onℂ𝑚+1 × (ℂ×)𝑛. For compatibility with the SYZ fibration,
we would like equip ℂ𝑚+1 and (ℂ×) with the Stein structures defined by the respective potential
functions 𝜑1 and 𝜑2. However, for our purposes, it will be useful to deform the Liouville forms on
both ℂ𝑚+1 and (ℂ×)𝑛. We begin with ℂ𝑚+1.
The obvious problem with using the function 𝜑1 to define the Stein structure on ℂ𝑚+1 is that

it is not quite a Stein potential: the form 𝑑𝑑𝑐𝜑1 is not positive but only semipositive, vanishing
when at least two of the coordinates 𝑧𝑖 are 0. We will fix this by adding a perturbing term to 𝜑1.
For 0 ⩽ 𝑖 ≠ 𝑗 ⩽ 𝑚, let 𝑟𝑖𝑗 ∶= |𝑧𝑖|2 + |𝑧𝑗|2, and let 𝜒 ∶ ℝ → ℝ be a smooth cut-off function, such

that for some fixed 𝛼1 > 𝛼0 > 0, the function 𝜒 satisfies

𝜒(𝑡) =

{
1 where 𝑡 < 𝛼0,
0 where 𝑡 > 𝛼1.

Lemma 3.3. Choose 0 < 𝜖 ≪ 𝛼1, and let 𝜑1 ∶ ℂ𝑚+1 → ℝ be the function

𝜑1(𝑧) ∶= 𝜑1(𝑧) + 𝜖
∑
𝑖≠𝑗

𝜒(𝑟𝑖𝑗)𝑟𝑖𝑗.

Then, the function 𝜑1(𝑧) is a Kähler potential on ℂ𝑚+1.

Proof. First consider the regions where 𝜒(𝑟𝑖𝑗) is constant: that is, for each 𝑖 ≠ 𝑗, either 𝑟𝑖𝑗 > 𝛼1 or
𝑟𝑖𝑗 < 𝛼0. In each case, positivity of 𝑑𝑑𝑐𝜑1 is clear. In the former case, the second term vanishes,
but the first term already defines a positive (1,1)-form. In the latter case, each term is semipositive,
and the second term is positive in those directions in which the first term is not, so the total sum
is positive.
Thus, it remains to consider the case where 𝛼0 < 𝑟𝑖𝑗 < 𝛼1. In this region, the perturbation term

in𝜑1may fail to define a semipositive (1,1)-form, since the function𝜒(𝑟𝑖𝑗) is not plurisubharmonic.
However, by compactness of the interval [𝛼0, 𝛼1], we can choose𝜒 such that its𝐶2 normon [𝛼0, 𝛼1]
is bounded by a constant𝐶 (depending on 𝛼1 − 𝛼0). Since the same is true of the function 𝑟𝑖𝑗 in the
region 𝛼0 < 𝑟𝑖𝑗 < 𝛼1, we conclude that there exists an overall constant bounding

|||𝑑𝑑𝑐 (𝜒(𝑟𝑖𝑗)𝑟𝑖𝑗)|||
in the region 𝛼0 < 𝑟𝑖𝑗 < 𝛼1. On the other hand, in the region where 𝑟𝑖𝑗 > 𝛼0, |𝑑𝑑𝑐𝜑1| is bounded
below. Putting these together, we conclude that for 𝜖 sufficiently small, the total function 𝜑1 will
continue to define a positive (1,1)-form in this region. □

From now on, we write 𝜑 ∶ ℂ𝑚+1 × (ℂ×)𝑛 → ℝ for the perturbed function

𝜑(𝑧, 𝑢) ∶= 𝜑1(𝑧) + 𝜑2(𝑢). (3.4)

Lemma 3.3 ensures that this perturbation of 𝜑 is the potential for a Stein structure on ℂ𝑚+1 ×
(ℂ×)𝑛.
Both the original function 𝜑 and the deformation 𝜑 have a Morse-Bott manifold of minima

given by the (𝑛 + 𝑚)-torus𝕋 ∶= {𝜂𝑖 = 0, 𝜉𝑗 = 𝓁}, and the remaining critical points of𝜑 also project
under𝜋 to the subspace = {𝜂 = 0} ⊂ ℝ𝑛+𝑚. To simplify the determination of these higher index
critical points, we will imitate [1, 16, 26, 27] in applying a deformation to the Liouville structure
on (ℂ×)𝑛.
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LOCAL MIRROR SYMMETRY VIA SYZ 9

Within , the singular locus of the fibration 𝜋 coincides with the amoeba , defined as the
image of the projection (3.2). The amoeba contains within it a spine, the tropical hypersurfaceΠ
defined as the corner locus of the functionmax(0, 𝜉1, … , 𝜉𝑛). Observe that the complement ⧵ Π
consists of 𝑛 components, one of which is the “all-negative” orthant, and each of the others can
be reached from this one by crossing one of the hyperplanes {𝜉𝑖 = 0}. The components of this
complement may be equivalently be described as the Log images of the loci where one monomial
in the function 1 +

∑
𝑢𝑖 dominates all the others. We will write 𝐶𝑖 for the component where 𝑢𝑖

dominates, and 𝐶0 for the bottom-left orthant, where 1 dominates.
We will deform the space 𝑋𝑚,𝑛 by a symplectic isotopy that brings the amoeba closer to the

spine Π, making it easier to understand the Liouville dynamics of 𝑋𝑚,𝑛. This trick was first used
in [26] and later elaborated in [1, §4], which we follow here. For 0 ⩽ 𝑖 ⩽ 𝑛, we pick a tailoring
function 𝜓𝑖 (which is called 𝜙𝛼 in [1]) satisfying

𝜓𝑖(𝜉) =

{
0 when 𝑑(𝜉, 𝐶𝑖) ⩽

𝜖
2

1 when 𝑑(𝜉, 𝐶𝑖) ⩾ 𝜖,
and

𝑛∑
𝑗=1

|||||
𝜕𝜓𝑖
𝜕𝜉𝑗

||||| < 4𝜖 ,
for some 𝜖 ≪ 𝓁, and we define the family of maps {𝑓𝑠 ∶ (ℂ×)𝑛 → ℂ}0⩽𝑠⩽1, by

𝑓𝑠(𝑢1, … , 𝑢𝑛) ∶= (1 − 𝑠𝜓0(𝑢)) +
𝑛∑
𝑖=1

(1 − 𝑠𝜓𝑖(𝑢))𝑢𝑖. (3.5)

Consider the family 𝑃𝑛−1𝑠 ∶= {𝑓𝑠 = 0} ⊂ (ℂ
×)𝑛. For 𝑠 = 0, the hypersurface 𝑃𝑛−10 is the usual

pair of pants {1 +
∑𝑛
𝑖=1 𝑢𝑖 = 0}, andwhen 𝑠 = 1, for log |𝑢𝑖|≪ 0, the coordinate 𝑢𝑖 does not appear

in the defining equation of 𝑃𝑛−11 , so that in that region, 𝑃𝑛−11 is a product of ℂ×𝑢𝑖 with 𝑃
𝑛−2
1 .

Proposition 3.6 [1, Proposition 4.2].Near {𝑓𝑠 = 0}, we have |𝜕̄𝑓𝑠| < |𝜕𝑓𝑠|, and therefore, the family
𝑃𝑛−1𝑠 ∶= {𝑓𝑠 = 0} ⊂ (ℂ

×)𝑛, for 0 ⩽ 𝑠 ⩽ 1, is a family of symplectic hypersurfaces.

As a result, 𝑓𝑠 is a symplectic fibration in a neighborhood of each 𝑃𝑛−1𝑠 , so that we can use
the symplectic connection to lift 𝜕𝑓𝑠

𝜕𝑠
to a vector field 𝑌𝑠 that will flow 𝑃𝑛−10 to 𝑃𝑛−11 . The essential

result that allows us to integrate the vector field 𝑌𝑠 is the following, which is due to the fact that
the isotopy 𝑓𝑠 was constructed to modify only the subdominant terms in 𝑓0.

Lemma 3.7 [1, Lemma 4.11]. The vector field 𝑌𝑠 is bounded: there is a constant 𝐶 so that |𝑌𝑠| < 𝐶
everywhere (where the norm | − | is taken with respect to the Kähler metric from (ℂ×)𝑛).
Lemma 3.7 allows the application of the Moser trick.

Corollary 3.8 [1, Lemma 4.13]. There exists a Hamiltonian time-dependent vector field𝑌′𝑠 on (ℂ
×)𝑛,

supported in a neighborhood of 𝑃𝑛−1𝑠 , with germ at 𝑃𝑛−1𝑠 𝐶∞-close to𝑌𝑠, which is bounded and hence
integrates to a symplectic flow that maps 𝑃𝑛−10 to 𝑃𝑛−11 .

Definition 3.9. Following [27], we call the space 𝑃𝑛−11 resulting from applying this isotopy the
tailored pants and denote it also by 𝑃𝑛−1. The regions log |𝑢𝑖|≪ 0 on 𝑃𝑛−1 will be called the legs of
the tailored pants, and the projection of 𝑃𝑛−1 under the Logmap will be denoted by ̃ and called
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10 GAMMAGE

the tailored amoeba. Similarly, we denote by𝑋𝑚,𝑛 ⊂ ℂ𝑛+1 × (ℂ×)𝑚 the space obtained by applying
this isotopy to (ℂ×)𝑚. We refer to 𝑋𝑚,𝑛 as the tailored local model.

Remark 3.10. The singularities of the SYZ fibration 𝜋 on𝑋𝑚,𝑛 coincide precisely with the amoeba
 ⊂ , and the effect of the tailoring isotopy is to make that amoeba a better approximation of
the tropical hypersurface Π. From the perspective of tropical geometry, it would be desirable to
have a more elaborate modification of the SYZ fibration that makes the discriminant locus agree
precisely with Π. Such a modification appears difficult, but some progress can be found in [10,
33].

Like 𝑋𝑚,𝑛, the space 𝑋𝑚,𝑛 inherits a Liouville structure from its embedding into ℂ𝑚+1 × (ℂ×)𝑛;
by pulling back along the deformation relating these spaces, we can understand𝑋𝑚,𝑛 and𝑋𝑚,𝑛 as
the same underlying symplectic manifold 𝑋𝑚,𝑛, carrying a 1-parameter family of Liouville struc-
tures 𝜆𝑠, such that 𝜆0 is the original Liouville structure on 𝑋𝑚,𝑛 and 𝜆1 is the Liouville structure
on 𝑋𝑚,𝑛. We will use the latter Liouville structure in our computation of the skeleton.
In order to justify this, we must check that this family of Liouville structures is a Liouville

homotopy in the sense of [7].

Definition 3.11 [7, Definition 11.5]. A family of Liouville structures (𝑋, 𝜔 = 𝑑𝜆𝑠), for 𝑠 ∈
[0, 1] is a Liouville homotopy if there exists a smooth family of exhaustions 𝑋 =

⋃∞
𝑘=1 𝑋

𝑘
𝑠

by compact domains 𝑋𝑘𝑠 ⊂ 𝑋 with smooth boundaries along which the Liouville vector field
is outward-pointing.

Lemma 3.12 [7, Lemma 11.6]. A family of finite-type Liouville manifolds 𝑋𝑠 = (𝑋, 𝜔 = 𝑑𝜆𝑠) is a
Liouville homotopy if the closure

⋃
𝑠∈[0,1] Skel(𝑋𝑠) of the union of their skeleta is compact.

Remark 3.13. The point of Definition 3.11 is to ensure that such a homotopy cannot modify the
Liouville structure in an interestingway at infinity. To see that this is a desirable definition, observe
([9, Exercise 4]) that any Liouville structure on ℝ2𝑛 can be deformed to the standard one (in a
manner not necessarily satisfying Definition 3.11), whereas the conical Liouville structure on ℝ2𝑛
should not be regarded as equivalent to the cotangent Liouville structure on T∗ℝ𝑛 = ℝ2𝑛.

Proposition 3.14. The family of Liouville structures interpolating between 𝑋𝑚,𝑛 and 𝑋𝑚,𝑛 is a
Liouville homotopy.

Proof. For 0 ⩽ 𝑠 ⩽ 1, write 𝑋𝑚,𝑛(𝑠) for the (symplectically isomorphic) family of submanifolds
of (ℂ×)𝑛 interpolating between 𝑋𝑚,𝑛 and 𝑋𝑚,𝑛 by the flow of the vector field 𝑌𝑠. Observe that
the Liouville form 𝜆𝑠 is the pullback to 𝑋𝑚,𝑛(𝑠) of the Liouville form 𝑑𝑐𝜑 on ℂ𝑚+1 × (ℂ×)𝑛, and
therefore the Liouville vector field on 𝑋𝑚,𝑛(𝑠) is gradient-like (under the metric inherited from
the Kähler metric on the ambient ℂ𝑚+1 × (ℂ×)𝑛) for the function 𝜑.
It will therefore be sufficient to show that for𝑁 ≫ 0, the function 𝜑|𝑋𝑠 has no critical points on

𝜑−1((𝑁,∞)). This is obvious except where the 𝑧𝑖 coordinates are 0, so we may reduce to the prob-
lem of establishing the corresponding fact for |Log−𝓁|2|𝑃𝑛−1𝑠 , where 𝑃𝑛−1𝑠 ⊂ (ℂ×)𝑛 is the partially
tailored (𝑛 − 1)-dimensional pants defined by the equation (3.5).
In other words, in terms of the compactification (ℂ×)𝑛 ⊂ ℙ𝑛, we must show that there exists

a neighborhood 𝑈 ⊂ ℙ𝑛−1 of 𝜕ℙ𝑛−1 such that the gradient of |Log−𝓁|2 on 𝑃𝑛−1𝑠 does not vanish
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LOCAL MIRROR SYMMETRY VIA SYZ 11

within𝑈 ∶= 𝑃𝑛−1𝑠 ∩ 𝑈 for any 𝑠. Moreover, as this calculation, which is taking place at infinity, is
insensitive to 𝓁, we may as well take 𝓁 = 0 for simplicity.
Let 𝑎 ∈ 𝑃

𝑛−1

𝑠 be a point in the compactification of 𝑃𝑛−1𝑠 insideℙ𝑛. By symmetry, wemay assume
that 𝑎 ∈ ℂ𝑛. This point is contained in 𝑘 boundary divisors, for some 1 ⩽ 𝑘 ⩽ 𝑛 − 1; again, by
symmetry, we may write 𝑎 = (𝑎1, … , 𝑎𝑛) where 𝑎1 =⋯ = 𝑎𝑘 = 0, and 𝑎𝑘+1, … , 𝑎𝑛 ≠ 0, and we
may take 𝑎𝑛 to be the largest of the 𝑎𝑖 . Since at least one 𝑎𝑖 must satisfy |𝑎𝑖| > 1

𝑛
, we know in

particular that |𝑎𝑛| > 1
𝑛
. Note also that in a neighborhood of 𝑎, the final monomial in 1 + 𝑢1 +

⋯ + 𝑢𝑛 is a dominant term, so we have 𝜓𝑛 identically 0 near 𝑎, where 𝜓𝑛 is the cut-off function
used to define 𝑓𝑠.
We will now show that for small 𝜖, the gradient of |Log |2 on 𝑃𝑛−1𝑠 does not vanish for

any 𝑢 = (𝑢1, … , 𝑢𝑛) ∈ 𝑃𝑛−1𝑠 within an 𝜖-neighborhood of 𝑎 — that is, such that |𝑢𝑖 − 𝑎𝑖| < 𝜖
for all 𝑖. Observe that our assumptions ensure that for 𝑢 near 𝑎, the germ of curve (𝑢1 +
𝑡𝑢1, 𝑢2, … , 𝑢𝑛−1, 𝑢𝑛 + 𝑡𝑢1(1 − 𝑠)𝜓1) at 𝑢 lies in 𝑃𝑛−1𝑠 and thus defines a tangent vector 𝑉 ∈
𝑇𝑢(𝑃

𝑛−1
𝑠 ); in real coordinates 𝑢𝑖 = 𝑟𝑖𝑒

√
−1𝜃𝑖 , we may write this tangent vector as

𝑉 = 𝜕𝑟1 + (𝐶𝜕𝑟𝑛 + 𝐶
′𝜕𝜃𝑛 )

for some real constants 𝐶, 𝐶′. Since |𝑢𝑛| > 1
𝑛
− 𝜖 and |𝑢1| < 𝜖, and |𝜓1| < 1, we see that by choos-

ing 𝜖 sufficiently small, we may ensure |𝐶|, |𝐶′|≪ 1 for all 𝑠. We would like a lower bound for|𝑑|Log |2| evaluated on 𝑉.
Since 𝑑|Log |2 = ∑

𝑑(log |𝑢𝑖|)2 = ∑ log(𝑟𝑖)

𝑟𝑖
𝑑𝑟𝑖 , we have

|||(𝑑|Log |2)(𝑉)||| = |||||
log(𝑟1)

𝑟𝑖
+ 𝐶
log(𝑟𝑛)

𝑟𝑛

|||||
⩾
|||||
log(𝑟1)

𝑟𝑖

||||| − 𝐶
|||||
log(𝑟𝑛)

𝑟𝑛

|||||. (3.15)

Since 0 < 𝑟1 < 𝜖 ≪ 1, the first term is at least | log(𝜖)∕𝜖|, which is large and grows monotonically
as 𝜖 decreases, whereas since 𝑟𝑛 >

1
𝑛
− 𝜖, the term | log(𝑟𝑛)∕𝑟𝑛| is bounded, and since 𝐶 can be

made arbitrarily small by decreasing 𝜖, we conclude that the difference (3.15) is bounded away
from 0, as desired. □

Remark 3.16. The proof of Proposition 3.14 may be summarized as, “apply the usual proof that the
hypersurface 𝑋𝑚,𝑛 is a finite-type Stein manifold, and check that it continues to hold uniformly
over the deformation.” In fact, this first statement (viz., that the Stein structure on an affine alge-
braic variety is finite-type) is not well documented in the literature; it appears to have been a
folklore theorem for some time, although a proof can be found as Lemma 8 of [34]. In any case,
the second step in this case (showing that the deformation remains finite-type) requires almost
no extra work, since increasing 𝑠 only improves the bound on (3.15) by taking 𝐶 closer to 0.

With the tailored local model 𝑋𝑚,𝑛 in hand, we are ready to study the Liouville geometry of
𝑋𝑚,𝑛. As the Liouville structure is gradient-like for the restriction (along the inclusion 𝑋𝑚,𝑛 ⊂
ℂ𝑚+1 × (ℂ×)𝑛) of the function𝜑 defined in (3.4), we are reduced to studying theMorse–Bott theory
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12 GAMMAGE

of this function. OurMorse–Bott calculationwill imitate that performed in [16, 27], relying heavily
on the inductive structure of the tailored pants 𝑃𝑛−1.

Proof of Theorem 1.2. It will be useful to study the potential 𝜑 via the singular torus fibration (3.1).
As we have noted, we may restrict our attention to the locus = {𝜂 = 0} = ℝ𝑛 ⊂ ℝ𝑚+𝑛. (For the
remainder of this proof, we will always take the coordinates 𝜂𝑖 to be equal to 0.) We will begin
from the index-0 critical locus, which we denote by

𝕋∅ ∶= {𝜉 = (−𝓁, … , −𝓁)},

and attach stable manifolds for the critical points of progressively higher index.
Fix some 𝑖 ∈ {1, … , 𝑛} and consider the region in  where 𝜉𝑖 = 0 and 𝜉𝑗 ≪ 0 for 𝑗 ≠ 𝑖. In this

region, the tailored amoeba ̃𝑛 is a hyperplane, and the tailored pants 𝑃𝑛−1 is defined by the
equation {𝑢𝑖 + 1 = 0}. It is clear that in this region, the function 𝜑 has an index-1 Morse–Bott
critical locus at the (𝑛 − 1)-torus

𝕋𝑖 ∶= {𝑢𝑖 = −1, log |𝑢𝑗| = −𝓁 ∣ 𝑗 ≠ 𝑖}.
The stable set for this critical locus projects to along the interval {0 ⩾ 𝜉𝑖 ⩾ −𝓁, 𝜉𝑗 = −𝓁 ∣ 𝑗 ≠ 𝑖}
(or possibly a small perturbation of this interval, depending on how the bump function 𝜒 used
in defining 𝜑 is chosen), and it attaches to 𝕋∅ as the Legendrian whose front projection is the
codimension-1 subtorus obtained by fixing Arg(𝑢𝑖).
The index-𝑘 critical manifolds, for 1 < 𝑘 ⩽ 𝑛, are computed similarly. We fix some 𝐼 =

{𝑖1, … , 𝑖𝑘} ⊂ [𝑛] and consider the region where 𝜉𝑖 = 0 for 𝑖 ∈ 𝐼 and 𝜉𝑗 ≪ 0 for 𝑗 ∉ 𝐼. In this region,
the tailored pants 𝑃𝑛 looks like a product (ℂ×)𝑛−𝑘 × 𝑃𝑘−1, and the calculation of [27, Theorem
5.13], repeated in more detail in the proof of [16, Theorem 5.3.4], shows that there is a single
critical manifold in this region, lying over the point in the boundary of the tailored amoeba ̃

where 𝜉𝑖 = 𝜉𝑗 for all 𝑖, 𝑗 ∈ 𝐼, and 𝜉𝑗 = −𝓁 for all 𝑗 ∉ 𝐼. This critical manifold 𝕋𝐼 is a (𝑛 − 𝑘)-torus,
obtained by fixing the values of 𝑢𝑖 for 𝑖 ∈ 𝐼 and log |𝑢𝑗| for 𝑗 ∉ 𝐼.
Moreover, the attachments for these critical points are just as described in [16, Theorem 5.3.4],

giving the FLTZ skeleton of the pants, attaching to 𝕋∅ in the expected way. □

Example 3.17. Let 𝑛 = 2. Then, the region  in the SYZ base is a plane, depicted in Figure 1
together with the tailored amoeba ̃ (containing the tropical curve Π for reference). Near the
torus fiber over the red point, the skeleton looks like the product of the FLTZ skeleton 𝕃ℂ2 with an
𝑚-torus 𝑇𝑚 parametrized by Arg(𝑧1), … , Arg(𝑧𝑚). This 𝑇𝑚 factor collapses to a point over points
in the base where the blue region meets the boundary of the amoeba.

4 SYZ GEOMETRY AND CLUSTER THEORY

In this section, we connect the results of this paper to the nontoric blowup construction of Gross–
Hacking–Keel, and explain how our results fit into a program to understand mirror symmetry for
a general affine cluster variety.
In [21, 22], it was proposed that a cluster variety 𝑋 should be studied via its relation to a toric

model: a toric variety𝑋 containing a codimension-2 subvariety𝐻 inside its toric boundary divisor
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LOCAL MIRROR SYMMETRY VIA SYZ 13

F IGURE 1 The plane, which lives inside the SYZ base of 𝑋𝑚,2. The Lagrangian skeleton is the union of
the torus fiber over the red point and a piece projecting to the blue-shaded region. The higher index critical points
are depicted in green.

𝐷 such that 𝑋 embeds in the blowup Bl𝐻 𝑋 as the complement of the proper transform 𝐷̃ of the
toric boundary divisor𝐷. The requirement that the result𝑋 of this construction is a cluster variety
imposes strong constraints on 𝐻, which must be defined by a character of the dense torus in its
component of 𝐷.
In the case at hand,we relax this constraint, allowing𝐻 to be defined by a general linear polyno-

mial.We also allow contributions from the placeswhere𝐻meets the singularities of the boundary
divisor 𝐷. With these modifications to the above construction, we can produce our spaces 𝑋𝑛,𝑚.
Let 𝑋 = ℂ𝑛 × (ℂ×)𝑚, with coordinates 𝑧1, … , 𝑧𝑛, 𝑢1, … , 𝑢𝑚. Write 𝐷 ∶= {𝑧1 … 𝑧𝑛 = 0} ⊂ 𝑋

for the toric boundary divisor, and consider the nontoric subvariety 𝐻 = {𝑧1 … 𝑧𝑛 = 0,∑
𝑢𝑖 = −1} ⊂ 𝐷.

Proposition 4.1. Let 𝑋 = Bl𝐻 𝑋 ⧵ 𝐷̃ be the result of blowing up 𝐻 and then deleting the proper
transform of the boundary divisor 𝐷. Then, 𝑋 ≅ 𝑋𝑛,𝑚.

Proof. Let 𝑓 = 𝑧1⋯ 𝑧𝑛 and g = 1 + 𝑢1 +⋯ + 𝑢𝑚. The center 𝐻 is defined by the equations 𝑓 =
g = 0, so that blowing up 𝐻 involves introducing 𝑓

g
, g
𝑓
into the ring of functions of 𝑋. Delet-

ing the proper transform of 𝐷 means that it is sufficient to introduce the function g

𝑓
into

the coordinate ring. If we denote this new variable by 𝑧0, then the coordinate ring of 𝑋 is
ℂ[𝑧1, … , 𝑧𝑛, 𝑢

±
1 , … , 𝑢

±
𝑚][𝑧0]∕(𝑧0𝑓 = g) = ℂ[𝑋𝑛,𝑚]. □

The equation 𝑧0 ⋅ 𝑧1⋯ 𝑧𝑛 = 1 + 𝑢1 +⋯𝑢𝑚 should be understood as a generalization of the
usual “cluster transformation equation” 𝑧0𝑧1 = 1 + 𝑢. Note that in this simpler case, the variable
𝑧1 is obtained from 𝑧0 by a cluster mutation, whereas in the more general situation considered in
this paper, there are 𝑛 + 1 variables 𝑧𝑖 , corresponding to 𝑛 possible mutations.
On the symplectic side, this corresponds to the fact that the singular locus ⊂  divides into

𝑛 chambers. In the constructions of §3, we distinguished one of those chambers (the “all-negative”
orthant), but we could equally have begun with a torus fiber in one of the other chambers instead.
The difference between the torus fibers in the various chambers is a generalization of the familiar
“Clifford/Chekanov” distinction in cluster symplectic geometry.
On the B-side, as we have seen, this new feature is due to the fact that the center 𝐻 of

the GHK blowup intersects the singular locus of the divisor 𝐷. Keeping track of contributions
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14 GAMMAGE

from these intersections is a crucial step in generalizing the results of [15], which disregarded
those contributions.
The results of this paper therefore suggest a strategy for studying mirror symmetry for an

affine cluster variety 𝑋 via its SYZ fibration. The SYZ base should have a presentation by gluing
together local pieces modeled by the singularities 𝔰𝑛,𝑚 (or products of these). Each singularity has
a monodromy-invariant space , and if there is a point in the intersection of all of these spaces,
it should play the rôle of the torus 𝕋∅ in the skeleton 𝕃 of 𝑋, with the remainder of the skeleton
obtained by attaching and collapsing subtori in a manner prescribed by the geometry of the base,
locally agreeing with the construction in this paper (as illustrated in Figure 1). This presentation
should match a presentation of the mirror space𝑋∨ in terms of the nontoric blowup construction
of Proposition 4.1.
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