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a b s t r a c t

In this note we revisit one of the first known examples of exceptional orthogonal
polynomials that was introduced by Dubov, Eleonskii, and Kulagin in relation to non-
harmonic oscillators with equidistant spectra. We dissect the DEK polynomials using
the discrete Darboux transformations and unravel a characterization bypassing the
differential equation that defines the DEK polynomials. This characterization also leads
to a family of general orthogonal polynomials with missing degrees and this approach
manifests its relation to biorthogonal polynomials introduced by Iserles and Nørsett,
which are applicable to a whole range of problems in computational and applied
analysis. We also obtain a modification of the Christoffel formula for this family since
its classical form cannot be applied in this case.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The classical orthogonal polynomials have shown themselves to be very useful in a wide range of various branches
of mathematics. One of the reasons is that they satisfy both differential and difference equations. This naturally led to a
separate industry that was concerned with the question on how to obtain more families of polynomials or functions that
have those bispectral properties. For instance, Reach [1] showed that Darboux transformations applied to a differential
operator, whose eigenfunctions satisfy a recurrence relation, leads to a new family that satisfy both differential and
difference equations. Oftentimes, one encounters the problem from a different perspective: a certain perturbation of a
problem to which one applies classical orthogonal polynomials would lead to a new family of polynomials which would
satisfy a differential equation or a difference equation, or both.

To demonstrate how one can encounter new families, let us recall that an example of a potential of an anharmonic
oscillator such that the Hamiltonian operator has a strictly equidistant part of the spectrum that corresponds to all the
excited states was given in [2]. This potential gives rise to the monic polynomials Fn(x), which we refer to as the DEK
polynomials, defined by the differential equation
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where n = 1, 2, 3, . . . and hence deg Fn = n+ 2. Eq. (1.1) also has a constant solution when n = �2 and for consistency,
we set F0(x) = 1. Notably, F0(x) corresponds to the ground state of the system but the gap separates this state from
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the first excited state that corresponds to F1(x) = x
3 + 3x. This construction was further investigated and generalized

in [3–6], and [7]. In particular, a connection to Darboux transformations of the differential equation that defines Hermite
polynomials was explicitly given in [3] and its relation to commutation methods was pointed out in [4,7]. The polynomials
Fn(x) can also be expressed via Rodrigues’ formula [2]
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which, in turn, can be used to prove the orthogonality relation [2]
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for any nonnegative integers n and m, where �n,m is the Kronecker delta. At the same time, the polynomials Fn(x) are
closely connected to the monic Hermite polynomials
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where the latter is known to satisfy the three-term recurrence relation

xHen(x) = Hen+1(x) + nHen�1(x), n = 1, 2, 3, . . . . (1.4)

More precisely, the relation between the sequences of Hermite and DEK polynomials is given by the formula (for instance,
see [3])
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which means that the polynomials Fn(x) correspond to (continuous) Darboux transformation (for more information about
continuous Darboux transformation, see [3]). As a consequence, the results of [1] can be applied in this case and thus we
know that the Fn’s satisfy a recurrence relation (see [8] where it is shown that exceptional Hermite polynomials, which
include Fn’s as a particular case, satisfy multiple recurrence relations). Although (1.5) was not given in [2] explicitly, the
relation

Fn(x) = (x3 + 3x)Hen�1(x) � (n � 1)(1 + x
2)Hen�2(x), n = 1, 2, . . . (1.6)

was proved and it is equivalent to (1.5) through (1.4). Note that applying (1.4) to (1.6) one can get [2]

Fn(x) = Hen+2(x) + 2(n + 2)Hen(x) + (n + 2)(n � 1)Hen�2(x), (1.7)

which shows that Fn(x) is a linear combination of 3 Hermite polynomials. Actually, formula (1.7) suggests that the family
of the polynomials Fn(x) might be a discrete Darboux transformation of Hermite polynomials Hen(x) (for the definition
and basic properties of discrete Darboux transformations see [9–11]), which will be confirmed and used in this paper. It is
also worth noting here that the above-described construction was recently given a new flavor and farther generalized to
new algebraic and spectral theory levels (see the recent papers [12–19] and references therein). In particular, in [12] the
construction of Meixner orthogonal polynomials was presented, which already put exceptional orthogonal polynomials
outside of the context of differential equations.

On the other hand, the theory of orthogonal polynomials is not restricted to just classical orthogonal polynomials and
these days general orthogonal polynomials are even more important than the classical ones due to the development of
computational mathematics and spectral theory to name a few. For example, general orthogonal polynomials appear as
denominators of rational approximants that are called Padé approximants [20]. In some cases for some degrees Padé
approximants might not exist, which leads to some gaps in the corresponding sequence of orthogonal polynomials
(see [20]). Although it may seem unrelated to the polynomials Fn(x) with missing degrees 1 and 2, having seen these
two occurrences side by side it is natural to ask if gaps in exceptional orthogonal polynomials and gaps in Padé approximants

have the same nature. Findings of this paper demonstrate that the answer to this question is affirmative and at the same time

the approach puts exceptional orthogonal polynomials in the framework of discrete Darboux transformations as was done for

other nonstandard orthogonalities. Although from the modern point of view, the DEK polynomials Fn(x) are a particular case
of exceptional Hermite polynomials, the transparent construction of the family provides a certain insight into the theory
of exceptional orthogonal polynomials that we exploit in this paper. In most of the cases, our approach is not restricted to
the DEK type polynomials and one can adapt our findings to the general case of exceptional Hermite polynomials using
the already developed machinery.

Now we are in the position to briefly describe the structure of the paper. To this end observe that one can deduce
from (1.1) that

F
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which is an interpolation condition but it will be shown in Section 3 that it can be thought of as a part of biorthogonality,
the concept that was introduced in [21] and generalized in [22,23], and that appears when solving various problems
[24–26]. Before that, in Section 2, we will demonstrate that (1.7) and (1.8) are characteristic for a class of orthogonal
polynomials with missing degrees 1 and 2 that includes the DEK polynomials, which is why we will call them DEK-type
orthogonal polynomials. Then, in Section 5, we recast this class of polynomials as a specific multiple discrete Darboux
transformation (cf. [10,27–29]; note that in [27] it is shown that single step discrete Darboux transformations lead to
families of orthogonal polynomials with gaps). To do that, in Section 4, we will introduce a modification of the Christoffel
formula that works for the exceptional orthogonal polynomials in question since the classical form of the Christoffel
formula cannot be applied. At the end, we will show that this construction is applicable to the Chebyshev polynomials
and as a result we will present a new family of DEK-type orthogonal polynomials related to the Chebyshev polynomials.

2. DEK-Type orthogonal polynomials

In this section we present the general construction of DEK-type orthogonal polynomials starting with a family of
symmetric orthogonal polynomials.

Let {Pn(x)}n�0 be a sequence of monic orthogonal polynomials with respect to a symmetric measure µ supported on a
symmetric subset of the real line. We will consider a sequence of polynomials Rn(x) defined as

Rn(x) := Pn+2(x) + AnPn(x) + BnPn�2(x), R0(x) := 1, (2.1)

for sequences {An}n�1 and {Bn}n�1 of real numbers such that
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Remark 2.1. Note that if µ is symmetric then Pn(x) is an even (odd) function when n is even (odd).

Proposition 2.2. Suppose {Pn(x)}n�0 is a sequence of monic polynomials orthogonal with respect to a symmetric measure µ.
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Then there exists a sequence of polynomials {Rn(x)}n�0 defined as in Eq. (2.1) which satisfy (2.2), (2.3) and (2.4) above if and

only if for all k = 1, 2, . . . , we have that det En 6= 0 for n = 2k, and detOn 6= 0 for n = 2k + 1.

Proof. First note that if R1(x) = P3(x) + A1P1(x), then by Remark 2.1, R1(x) must be of the form x
3 + ax + A1x for some

real number a where P3(x) = x
3 + ax. Then R1(x) satisfies condition (2.3) since it is an odd function. In order for R1(x) to

satisfy (2.2), we must have that A1 + a = 3 and hence R1(x) = x
3 + 3x.

For n � 2, the proof follows simply by noting that conditions (2.2) and (2.3) are equivalent to the following system of
equations:
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If such a family of polynomials {Rn(x)}n�0 exists, then it must be the case that the family is orthogonal.
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Theorem 2.3. The polynomials Rn(x) are orthogonal with respect to
dµ(x)

(1+x2)2 i.e.
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Proof. First consider the case when n and m are both even and let Gm(x) := Rm(x) � Rm(i). Then Gm(i) = 0 and
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by definition of Sm(x) and the fact that x
k
Rn(x)

(1+x2)2 is an odd function for any positive, even integer k. But by condition (2.4),
we know that
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If such a sequence {Rn(x)}n�0 exists then Rn(i) 6= 0 for any n � 0. To show this, we will first prove the following lemma.

Lemma 2.4. Given an arbitrary set {x1, x2, . . . , xn�1} of distinct real numbers, there is a monic polynomial f (x) such that

deg f = n + 1,

f (xj) = 0, j = 1, 2, . . . , n � 1,

where the xj are the only real zeros of f , and

f
0(i) = f

0(�i) = 0. (2.7)

Proof. Evidently, if such a polynomial exists then f (x) = P(x)Q (x), where Q (x) = (x � x1)(x � x2) . . . (x � xn�1) is a real
polynomial and P(x) = x

2 + bx + c. In other words, the condition (2.7) is equivalent to

P
0(i)Q (i) + P(i)Q 0(i) = 0

P
0(�i)Q (�i) + P(�i)Q 0(�i) = 0.

(2.8)

Since P
0(i) = 2i + b, P 0(�i) = �2i + b, P(i) = c � 1 + bi, and P(�i) = c � 1 � bi, (2.8) takes the form
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Since

Q
0(x)

Q (x)
=

n�1X

j=1

1
x � xj

,

we see that =(Q 0(i)/Q (i)) < 0 and hence the determinant in question is not 0, which proves the desired result.
To show that {x1, x2, . . . xn�1} are the only real zeros of f (x), just note that if f (x) had all real zeros, then by the mean

value theorem, f 0(x) must have n real zeros. But this is not possible since f
0(x) is degree n and f

0(i) = f
0(�i) = 0. ⇤

Proposition 2.5. For the polynomials Rn(x), provided they exist, we have that Rn(i) 6= 0 for any n = 1, 2, . . . .

Proof. Assume that Rn(i) = 0 for some n � 1. Then since Rn(x) is a real polynomial, we must also have that Rn(�i) = 0.
This combined with the fact that R

0
n
(i) = R

0
n
(�i) = 0 from (2.2), shows that Rn(x)/(1 + x

2)2 is a polynomial of degree
n � 2. Let Fn�2(x) =

Rn(x)
(1+x2)2 and let {x1, x2, . . . , xk}, be the distinct, real roots of odd degree of Fn�2(x), k  n � 2. From

Lemma 2.4, we know that there exists a polynomial f of degree k+2 such that its only real roots are xj for j = 1, 2, . . . , k
and f

0(i) = f
0(�i) = 0. Since {R0(x), x, x2, R1(x), R2(x), . . . , Rk(x)} forms a basis for polynomials of degree at most k + 2,
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we can write

f (x) = c0R0(x) + c1x + c2x
2
+

k+2X

j=3

cjRj�2(x).

By the condition f
0(i) = f

0(�i) = 0, it must be the case that c1 = c2 = 0. By the orthogonality of {Rn(x)}n�0, we have
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However, Fn�2(x)f (x) is a polynomial of degree n � 2 + k where all the real roots have even multiplicity. ThusR
1

�1
Fn�2(x)f (x)dµ(x) = 0 implies that Fn�2(x)f (x) ⌘ 0 which is a contradiction. Thus, Rn(i) 6= 0 for all n � 1. ⇤

3. The relation to biorthogonal polynomials

A generalization of the classical concept of orthogonality that is also relevant to our considerations was introduced by
Iserles and Nørsett [21]. Later it was even further generalized by Brezinski [22] (see also [23]). For convenience of the
reader let us recall the Brezinski setting: given a sequence of linear functionals c

(m) defined on polynomials, find a family
of monic polynomials Pk such that:

• Pk has the exact degree k;
• c

(j)(Pk) = 0 for j = 0, 1, . . . , k � 1.

Following Iserles and Nørsett, we will call such polynomials Pk biorthogonal provided they exist for all k’s. It is not so
difficult to see that such polynomials can be found by the formula

Pk(x) =
1
�k

��������

1 x . . . x
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0 c

(0)
1 . . . c

(0)
k

. . . . . . . . . .
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= c
(j)(xn) (3.1)

provided that

�k = det(c(m)
l

)k�1
l,m=0 6= 0. (3.2)

If �k 6= 0 it is said that a family of the functionals c
(m) is regular. It is worth mentioning that if for a given functional

c = c
(0) we set

c
(m)(p(x)) = c

(0)(xmp(x)),

the above-described biorthogonality becomes the conventional orthogonality with respect to the functional c .
To show how this concept appears in the context of the exceptional polynomials in question, let us consider the

following two functionals:

c
(0)(p(x)) = p

0(i), c
(1)(p(x)) = p

0(�i), (3.3)

which are naturally related to (2.2) and the fact that the polynomials Rn are real. Unfortunately, we immediately see that

�1 = |0| = 0, �2 =

����
0 1
0 1

���� = 0,

which means that any family of functionals that starts with c
(0) and c

(1) is not regular. It also implies that we cannot
construct polynomials of degrees 1 and 2 that will be biorthogonal but it is exactly what we expect when generating Rn.
To define the rest of the family to produce Rn, let us introduce the functions

 0(x) = 1,  k(x) = x
k+2

+
k + 2
k

x
k, k = 1, 2, . . . . (3.4)

Now we are in the position to define the functionals:

c
(k+1)(p(x)) =

Z
1

�1

p(x) k�1(x)
dµ(x)

(1 + x2)2
, k = 1, 2, . . . (3.5)

and for which the following statement holds true.

6
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Theorem 3.1. The family of polynomials Rn is almost biorthogonal with respect to the family of the functionals defined by

(3.3) and (3.5), that is,

c
(j)(Rk) = 0, j = 0, . . . , k + 1.

Here, the term ‘‘almost’’ indicates that we have to skip two degrees.

Remark 3.2. Recall that deg Rk = k + 2 and based on the theory of biorthogonal polynomials, the reason we have to
skip the polynomials is because the family of the functionals is not regular, which is the same situation that happens for
indefinite orthogonal polynomials [30], where the term ‘‘almost orthogonal’’ was used and for Padé approximation [20]
(see also [31] where the interplay between indefinite orthogonal polynomials and the Padé table is given).

Proof. The proof is immediate from Theorem 2.3 and the representation

Rk(x) =

kX

n=0

↵n n(x)

that holds for some coefficients ↵n, which in turn follows from the fact that R0

k
(x) = (1+ x

2)⇥polynomial of degree k�1
and  0

n
(x) = (n + 2)(1 + x

2)xn�1. ⇤

Corollary 3.3. The polynomials Rk can be computed by (3.1) using the moments c
(j)
n of the linear functionals defined by (3.3)

and (3.5).

Proof. Using the standard Cramer’s rule argument, we get that the existence of the polynomial Rk of degree k+2 implies
that the corresponding determinant �k+2 6= 0 (e.g. see the proof of [21, Theorem 1]). ⇤

At this point we can reformulate Proposition 2.2 in a form that is more transparent and typical for orthogonal
polynomials.

Corollary 3.4. The polynomials Rk defined as in Eq. (2.1) which satisfy (2.2), (2.3) and (2.4) exist if and only if

�k 6= 0, k = 4, 5, 6, . . . ,

where �k is defined by (3.2) with the functionals given by (3.3) and (3.5).

Remark 3.5. Note that we should have actually started with �3 because deg R1 = 3. However, we see that

�3 =

�����

0 1 2i
0 1 �2i
1 0 µ2

����� = 4i 6= 0

regardless of the value

µ2 =

Z
1

�1

x
2 dµ(x)
(1 + x2)2

.

As a result, for the family of functionals under consideration, from (3.1) for the polynomial of degree 3 we have that

R1(x) =
1
�3

�������

1 x x
2

x
3

0 1 2i �3
0 1 �2i �3
1 0 µ2 0

�������
= x

3
+ 3x

To conclude this section, note that there is an analog of (3.3) for any family of exceptional Hermite polynomials and
thus the results of this section can be adapted to the general case. Therefore, the exceptional Hermite polynomials are a
subclass/limiting case of a larger class of biorthogonal polynomials that has various applications and generic properties.

4. Modification of the Christoffel formula

By definition, given a family of orthogonal polynomials {Pn(x)}n�0, we can obtain the family of exceptional orthogonal
polynomials {Rn(x)}n�0. We aim to reverse the process and obtain the polynomials Pn(x) from the polynomials Rn(x).

Since by Theorem 2.3, the polynomials Rn(x) are orthogonal with respect to dµ(x)
(1+x2)2 , one would expect to get the monic

polynomials Pn(x), under the classical Christoffel transformation of Rn(x). Thus, applying [32, Theorem 2.7.1] and letting

7
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�(x) = (1 + x
2)2 = (x � i)2(x + i)2, one hopes that Pn(x) can be defined by

Cn�(x)Pn(x) =

���������

Rn(i) Rn+1(i) Rn+2(i) Rn+3(i) Rn+4(i)
R

0
n
(i) R

0

n+1(i) R
0

n+2(i) R
0

n+3(i) R
0

n+4(i)
Rn(�i) Rn+1(�i) Rn+2(�i) Rn+3(�i) Rn+4(�i)
R

0
n
(�i) R

0

n+1(�i) R
0

n+2(�i) R
0

n+3(�i) R
0

n+4(�i)
Rn(x) Rn+1(x) Rn+2(x) Rn+3(x) Rn+4(x)

���������

, (4.1)

where

Cn =

�������

Rn(i) Rn+1(i) Rn+2(i) Rn+3(i)
R

0
n
(i) R

0

n+1(i) R
0

n+2(i) R
0

n+3(i)
Rn(�i) Rn+1(�i) Rn+2(�i) Rn+3(�i)
R

0
n
(�i) R

0

n+1(�i) R
0

n+2(�i) R
0

n+3(�i)

�������
.

However, by (2.2), we have that R0
n
(i) = R

0
n
(�i) = 0 for all n = 0, 1, 2, . . . , therefore the determinant on the right-hand

side of (4.1) vanishes as well as Cn = 0 and we cannot make any conclusions about the polynomials in (4.1). To resolve
this issue, we instead define a sequence of polynomials {Sn(x)}n�0 as follows:

Sn(x) :=
1

cn�(x)

�����

Rn(i) Rn+1(i) Rn+2(i)
Rn(�i) Rn+1(�i) Rn+2(�i)
Rn(x) Rn+1(x) Rn+2(x)

����� , (4.2)

where

cn =

����
Rn(i) Rn+1(i)
Rn(�i) Rn+1(�i)

���� . (4.3)

Note that cn 6= 0 for any n � 0 since

Rn(i)Rn+1(�i) � Rn+1(i)Rn(�i) = ±2Rn(i)Rn+1(i)

and by Proposition 2.5, Rn(i) 6= 0 for any n � 0.
In general we have the following:

Proposition 4.1. Sn(x) is a real, monic polynomial of degree n and

Sn(�x) = (�1)nSn(x).

Proof. Let

Dn(x) =

�����

Rn(i) Rn+1(i) Rn+2(i)
Rn(�i) Rn+1(�i) Rn+2(�i)
Rn(x) Rn+1(x) Rn+2(x)

����� .

Then Dn(x) has a zero at i and �i since a row will be repeated. Also, D0
n
(x) = anR

0
n
(x) + bnR

0

n+1(x) + cnR
0

n+2(x) for complex
numbers an, bn, cn. Since R

0
n
(x) has zeros at i and �i for all n � 1, Dn(x) must have zeros of multiplicity k � 2 at i and

�i, therefore, Dn(x)/�(x) is a polynomial of degree  n. Since the leading coefficient of Dn(x) is cn from (4.3), which is
nonzero, Dn(x)/�(x) has degree n.

Also notice that bn = Rn(i)Rn+2(�i)�Rn(�i)Rn+2(i) = 0 for all n � 0 since if n is even, then Rn(x) is an even function so
Rn(i) = Rn(�i) and thus Rn(i)Rn+2(�i) = Rn(�i)Rn+2(i). Similarly, if n is odd, Rn(x) is an odd function, so Rn(i) = �Rn(�i).
Therefore, Rn(i)Rn+2(�i) = (�Rn(�i))(�Rn+2(i)) = Rn(�i)Rn+2(i). In both cases we see that bn = 0 for all n � 0. Hence,
the assertion that Sn(�x) = (�1)nSn(x) follows simply from the fact that

�(x)Sn(x) =
an

cn

Rn(x) + Rn+2(x) (4.4)

and Rn(�x) = (�1)nRn(x). Lastly, Eq. (4.4) shows that Sn(x) = Sn(x) since the Rn(x)0s are real polynomials, thus Sn(x) must
have real coefficients for all n = 0, 1, 2 . . . . ⇤

It is natural to ask about orthogonality relations regarding the Sn(x) and in fact, we have that they are ‘‘almost’’
bi-orthogonal to the polynomials Rn(x).

Theorem 4.2. For the sequences {Sn(x)}n�0 and {Rn(x)}n�0 we have that

Z
1

�1

Sn(x)Rm(x)dµ(x) = 0 for m = 0, 1, . . . , n � 1, n + 1, n + 3, n + 4, . . .

and Z
1

�1

Sn(x)Rm(x)dµ(x) 6= 0 for m = n, n + 2.

8
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Proof. For the cases m < n, m = n + 1, or m > n + 2, we see by the orthogonality of {Rn(x)}n�0, that
Z

1

�1

Sn(x)Rm(x)dµ(x) =

Z
1

�1

an

cn

Rn(x)Rm(x)
dµ(x)

(1 + x2)2

+

Z
1

�1

Rn+2(x)Rm(x)
dµ(x)

(1 + x2)2

= 0.

Lastly, we have
Z

1

�1

Sn(x)Rm(x)dµ(x) 6= 0 for m = n, n + 2

since an = cn+1 6= 0 for all n = 0, 1, 2, . . . by (4.3). ⇤

It turns out that one can state the above theorem for polynomials f (x) satisfying f
0(i) = f

0(�i) = 0.

Theorem 4.3. Let f (x) 2 C[x] such that f
0(i) = f

0(�i) = 0 and let deg(f ) = m. If m < n + 2, then
Z

1

�1

Sn(x)f (x)dµ(x) = 0.

Proof. Since R
0

k
(i) = R

0

k
(i) = 0 for all k = 0, 1, 2, . . . , R

0
k
(x)

1+x2
is a polynomial of degree k � 1 for k = 1, 2, . . . so

n
R
0
k
(x)

1+x2

o

k�1

is a basis for C[x]. Thus, f
0(x)

1+x2
=
P

m�2
k=1 ak

R
0
k
(x)

1+x2
. Multiplying by 1 + x

2 and then integrating we see

f (x) =

m�2X

k=0

akRk(x).

The result now follows from Theorem 4.2. ⇤

The biorthogonality relationship from Theorem 4.2 allows us to define new polynomials which will be shown to
coincide with our original polynomials Pn(x).

Theorem 4.4. Let ⇢n 2 R be such that

⇢n =

8
>>><

>>>:

0 n = 1, 2,
�
R

1

�1
xSn(x)dµ(x)

R
1

�1
xSn�2(x)dµ(x) n odd, n � 3,

�
R

1

�1
x
2
Sn(x)dµ(x)

R
1

�1
x2Sn�2(x)dµ(x) n even, n � 4.

(4.5)

Then defining S�1(x) := 0, the monic polynomial Pn(x) := Sn(x)+⇢nSn�2(x) is orthogonal to {1, x, x2, R1(x), R2(x), . . . , Rn�3(x)}
with respect to µ for all n � 1.

Proof. To show ⇢n is well defined for n � 3, consider the case where n is odd and assume by way of contradiction thatR
1

�1
xSn�2(x)dµ(x) = 0. We claim this implies that if k is a positive, odd integer, then
Z

1

�1

x
k
Sn�2(x)dµ(x) = 0 (4.6)

for all n > k. Recall that Rk(x) is a monic polynomial of degree k + 2 and by Theorem 4.2,
Z

1

�1

Sn�2(x)Rk(x)dµ(x) = 0

for n > k + 2. But,
Z

1

�1

Sn�2(x)Rk(x)dµ(x) =

Z
1

�1

x
k+2

Sn�2(x)dµ(x) +

Z
1

�1

x
k
Sn�2(x)dµ(x) + · · · +

Z
1

�1

xSn�2(x)dµ(x)

thus, by induction,
R

1

�1
x
k
Sn�2(x)dµ(x) = 0 for all n > k. Therefore, Eq. (4.6) implies that Sn(x) is orthogonal to

{x, x3, x5, . . . , xn} for all n odd, n � 1. In particular,
Z

1

�1

S
2
n
(x)dµ(x) = 0

which is a contradiction. Therefore, ⇢n is well defined for all n odd, n � 1.

9



R. Bailey and M. Derevyagin Journal of Computational and Applied Mathematics 438 (2024) 115561

The same reasoning holds for when n is even since then we will have that Sn(x) is orthogonal to {1, x2, x4, . . . , xn} for
all n � 2. Therefore, ⇢n is well-defined for all n � 1.

It remains to show the orthogonality of Pn(x) with each polynomial in
{1, x, x2, R1(x), R2(x), . . . , Rn�3(x)}. Notice that if k < n � 2, then
Z

1

�1

Pn(x)Rk(x)dµ(x) =

Z
1

�1

Sn(x)Rk(x)dµ(x) + ⇢n

Z
1

�1

Sn�2(x)Rk(x)dµ(x)

= 0

by Theorem 4.2. Thus,
R

1

�1
Pn(x)Rk(x)dµ(x) = 0 for all k = 1, 2, . . . , n � 3.

Now for n � 3,
Z

1

�1

Pn(x)dµ(x) =

Z
1

�1

Sn(x)dµ(x) + ⇢n

Z
1

�1

Sn�2(x)dµ(x)

=

Z
1

�1

✓
an

cn

Rn(x) + Rn+2(x)
◆

dµ(x)
(1 + x2)2

dx

+ ⇢n

Z
1

�1

✓
an�2

cn�2
Rn�2(x) + Rn(x)

◆
dµ(x)

(1 + x2)2
dx

= 0,

where the last equality holds by the orthogonality of Rn(x) with R0(x). If n = 1, then
Z

1

�1

P1(x)dµ(x) =

Z
1

�1

S1(x)dµ(x) = 0

since S1(x) is odd (and by the orthogonality of R1(x) and R3(x) with R0(x)).
If n = 2, then
Z

1

�1

P2(x)dµ(x) =

Z
1

�1

S2(x)dµ(x) + ⇢2

Z
1

�1

S0(x)dµ(x) = 0

by definition of ⇢2 and S2(x), so that P2(x) is orthogonal to 1 and thus Pn(x) is orthogonal to 1 for all n � 1.
It is now easy to see that Pn(x) is orthogonal to x for all n � 2 since if n is even, then xPn(x) is an odd function so that
Z

1

�1

xPn(x)dµ(x) = 0.

If n is odd, then
Z

1

�1

xPn(x)dµ(x) =

Z
1

�1

xSn(x)dµ(x) + ⇢n

Z
1

�1

xSn�2(x)dµ(x) = 0

by the definition of ⇢n. Thus, Pn(x) is orthogonal to x for n � 2.
Similarly, Pn(x) is orthogonal to x

2 for n � 3 since if n is odd, then
Z

1

�1

x
2
Pn(x)dµ(x) = 0

since x
2
Pn(x) is an odd function, and if n is even, then the result follows by definition of ⇢n.

Thus, Pn(x) is orthogonal to {1, x, x2, R1(x), R2(x), . . . , Rn�3(x)} with respect to µ as wanted. ⇤

Theorem 4.5. Let {Pn(x)}n�0 be a sequence of monic orthogonal polynomials with respect to a symmetric measure µ and let

{Rn(x)}n�0 be the family of polynomials defined by Rn(x) = Pn+2(x) + AnPn(x) + Bn(x)Pn�2(x). Assume that {Rn(x)}n�0 satisfies

the following:

(1) R
0
n
(i) = 0 n = 1, 2, . . .

(2)

R
1

�1
R0(x)Rn(x) dµ(x)

(1+x2)2 = 0 n = 1, 2, . . .
(3)

R
1

�1
R1(x)Rn(x) dµ(x)

(1+x2)2 = 0 n � 2.

Then

�(x)Pn(x) =

"
1
cn

�����

Rn(i) Rn+1(i) Rn+2(i)
Rn(�i) Rn+1(�i) Rn+2(�i)
Rn(x) Rn+1(x) Rn+2(x)

�����+
⇢n

cn�2

�����

Rn�2(i) Rn�1(i) Rn(i)
Rn�2(�i) Rn�1(�i) Rn(�i)
Rn�2(x) Rn�1(x) Rn(x)

�����

#
,

where �(x) = (1 + x
2)2 and ⇢n and cn are given by (4.5) and (4.3), respectively.

10
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Proof. First, since {1, x, x2, R1(x), R2(x), . . . Rn�3(x)} is a basis for polynomials of degree less than n, we can write
x
k = a0 + a1x + a2x

2 + a3R1(x) + · · · + akRk�2(x) for k < n. Therefore, by Theorem 4.4, {Pn(x)}n�0 is orthogonal to
{1, x, x2, . . . , xn�1}. Also, since Pn(x) is a polynomial of degree n, this orthogonality implies that

R
1

�1
x
n
Pn(x)dµ(x) 6= 0 for

all n � 1 (otherwise Pn(x) ⌘ 0 for all n � 1). Therefore, {Pn(x)}n�0 is a monic OPS with respect to µ. By the uniqueness
of orthogonal polynomial systems, we must have that Pn(x) = Pn(x). ⇤

It is interesting to note that while the polynomials Sn(x) defined in (4.2) may not form an orthogonal polynomial
sequence (as will be shown in Section 6), they still have familiar behavior of their zeros.

Proposition 4.6. The zeros of Sn(x) are real and simple and lie in the interior of the support of dµ(x).

Proof. First, since Sn(x) 6= 0 for n = 0, 1, 2, . . . and
Z

1

�1

Sn(x)dµ(x) =

Z
1

�1

Sn(x)R0(x)dµ(x) = 0

for all n = 1, 2, . . . , it must be the case that for n = 1, 2, . . . , Sn(x) has at least one zero of odd multiplicity which lies
in the interior of the support of dµ(x). So let x1, x2, . . . xk, 1  k  n, be the distinct zeros of odd multiplicity of Sn(x) in
the interior of the support of dµ(x). By Lemma 2.4, there exists a polynomial f (x) of degree k + 2 such that f (xj) = 0 for
j = 1, 2, . . . , k and f (i) = f (�i) = 0. Then Sn(x)f (x)e�

x
2
2 � 0 for all x 2 (�1, 1). But, by Theorem 4.3,

Z
1

�1

Sn(x)f (x)dµ(x) = 0

for k < n so we must have that k = n and hence Sn(x) has n distinct, real zeros in the interior of the support of dµ(x). ⇤
We also have that the zeros of Sn(x) and Sn+1(x) interlace. Before proving this behavior, we recall the definition of an

integrable Markov system (see [33]).

Definition 4.7. Let mk(x), k = 0, 1, 2, . . . , be real valued functions on R. Then the sequence {mk(x)}k�0 forms an
integrable Markov system on (a, b) if

(1) For each k = 0, 1, 2, . . . , wk(x) is defined on (a, b) and
R

b

a
mk(x) dx < 1.

(2) For n = 1, 2, . . . and arbitrary scalars a0, a1, . . . (not all zero), the function

f (x) :=

n�1X

k=0

akmk(x)

has at most n � 1 zeros in (a, b).

We are now in a position to show the interlacing property of the zeros of Sn(x) and Sn+1(x) when the associated measure
has density with respect to the Lebesgue measure.

Proposition 4.8. Let {Pn(x)}n�0 be a sequence of polynomials orthogonal with respect to the positive weight function w(x)
on (a, b) and let {Rn(x)}n�0 and {Sn(x)}n�0 be the corresponding families of polynomials defined in (2.1) and (4.2), respectively.
Denote the kth zero of Sn(x) by xnk. Then

xn+1,k < xnk < xn+1,k+1, k = 1, 2, . . . , n.

Proof. Consider the family of functions { k(x)}k�0, where

 0(x) = 1 and  k(x) = x
k+2

+
k + 2
k

x
k, k = 1, 2, . . .

as in (3.4) and let mk(x) = w(x) k(x) for k = 0, 1, . . . . Then mk(x) is integrable for k = 0, 1, 2, . . . since the measure
w(x)dx has finite moments. Also,

P
n�1
k=0 akmk(x) = w(x)

P
n�1
k=0 ak k(x), where f (x) :=

P
n�1
k=0 ak k(x) is a polynomial of

degree at most n + 1. Note that f 0(i) = f
0(�i) = 0, therefore f

0(x) has at most n � 2 real zeros. Thus, by the mean value
theorem, f (x) can have at most n � 1 real zeros. Since w(x) is non-zero on (a, b), we see that

P
n�1
k=0 akwk(x) can have at

most n � 1 zeros in (a, b), hence, {mk(x)}k�0 forms an integrable Markov system.
Recall that
Z

b

a

 k(x)Sn+1(x)w(x)dx = 0

for k < n + 1 by Theorem 4.3, and the zeros of Sn+1(x) are real and distinct by Proposition 4.6, thus the result follows
from Theorem 3(iii) of [33]. ⇤

Remark 4.9. One can check that Theorem 3(iii) of [33] can be extended to any measure supported on R with finite
moments so that Proposition 4.8 also holds in the more general case.
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5. Recurrence relations

In this section we establish that the polynomials Rn(x) satisfy a higher-order recurrence relation and at the same time
we show that the Rn are a discrete Darboux transformation of the original family Pn. Note that in [8] it was shown that
exceptional Hermite polynomials satisfy a family of recurrence relations and we demonstrate that a similar statement is
also valid for the Rn.

It has been shown in [4,6,7] that the differential operator underlying (1.1) can be obtained via a double commutation
method (aka continuous Darboux transformation) from the analogous differential operator corresponding to Hermite
polynomials. The ideology of generating new nonclassical orthogonal polynomials from the classical ones goes back the
works of Grünbaum and Haine (see [10,29] and the references therein) and now we are in the position to demonstrate
that a similar situation occurs for the difference operators underlying the DEK-type orthogonal polynomials and the
corresponding conventional orthogonal polynomials. To this end, let us consider the monic Jacobi matrix

J =

0

BBBB@

0 1 0 · · ·

a1 0 1

0 a2 0
. . .

...
. . .

. . .

1

CCCCA
(5.1)

that corresponds to the family of symmetric orthogonal polynomials {Pn(x)}n�0 that we started with, that is,

JP(x) = xP(x),

where P(x) = (P0(x), P1(x), P2(x), . . . )>. From (2.1) and Theorem 4.5 we conclude that

R(x) = AP(x), �(x)P(x) = BR(x), (5.2)

where R(x) = (R0(x), R1(x), R2(x), . . . )>, A and B are some banded matrices. Then the following result holds true.

Theorem 5.1. We have that

ABR(x) = �(x)R(x) (5.3)

and

BA = (J2 + I)2, (5.4)

where J is given by (5.1) and I is the identity matrix.

Proof. To get (5.3), one multiplies the second relation in (5.2) by A on the left and uses the first relation to get rid of
P(x). Similarly, we get

BAP(x) = �(x)P(x).

Since �(x) = (1 + x
2)2, we have �(x)P(x) = (J2 + I)2P(x) and hence

BAP(x) = (J2 + I)2P(x).

The latter relation gives (5.4) because any finite number of the orthogonal polynomials form a linearly independent
system. ⇤

Remark 5.2. Formula (5.3) constitutes a recurrence relation for Rn(x) and therefore the exceptional orthogonal polynomi-
als Rn(x) satisfy a higher-order recurrence relation and form generalized eigenvectors of the corresponding non-selfadjoint
operator, which allows to do spectral analysis of the underlying semi-infinite band matrices. Another message is that
the approach can be applied to other similar classes of biorthogonal polynomials. Note that this approach was already
implemented for some nonclassical orthogonalities. For instance, a discrete Darboux transformation can lead to Sobolev
orthogonal polynomials [28,34] as well as to indefinite orthogonal polynomials [27]. As for the exceptional part, skipping
polynomials of certain degrees is natural for discrete Darboux transformations as can be seen on indefinite orthogonal
polynomials [30,31,35].

A different technique leads to a family of recurrence relations analogous to what was obtained in [8] but it does not
immediately reveal the bond between the spectral properties unlike the commutation relation given in Theorem 5.1.

Proposition 5.3. Let  be a monic polynomial of degree k such that

 0(i) = 0,  0(�i) = 0.

12
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Then

 (x)Rn(x) =

n+kX

m=n�k

cn,mRm(x)

for some constants cn,m.

Proof. Since f (x) =  (x)Rn(x) satisfies f
0(i) = f

0(�i) = 0, using the reasoning given in the proof of Theorem 4.3, we see
that

 (x)Rn(x) =

n+kX

m=0

cn,mRm(x).

Reiterating the argument for  (x)Rm(x) and using the orthogonality of Rn, we see that
Z

1

�1

 (x)Rn(x)Rm(x)
dµ(x)

(1 + x2)2
=

Z
1

�1

Rn(x)

 
m+kX

l=0

cm,lRl(x)

!
dµ(x)

(1 + x2)2
= 0

provided that m < n � k, which yields the desired relation. ⇤

In particular, if  (x) = 1+ x+
x
3

3 , then Proposition 5.3 gives a 7-term recurrence relation while Theorem 5.1 produces
a 9-term recurrence relation for  (x) = (1 + x

2)2.

6. Examples

Here we firstly show that the DEK polynomials fit into the general scheme that we presented and then apply the
construction to the Chebyshev polynomials of the first kind, which leads to a new family of DEK-type orthogonal
polynomials that does not coincide with the known families.

6.1. DEK polynomials

As was pointed out at the beginning the DEK polynomials satisfy the relations [2]

Fn(x) = (x3 + 3x)Hen�1(x) � (n � 1)(1 + x
2)Hen�2(x) (6.1)

= Hen+2(x) + 2(n + 2)Hen(x) + (n + 2)(n � 1)Hen�2(x). (6.2)

Next, note that from Eq. (6.1), one has that

F
0(i) = 0

for all n. In this case, we know the coefficients from the start but, in principle, Proposition 2.2 could independently
establish existence of the coefficients and the procedure given in the proof would lead to An = 2(n + 2) and Bn =

(n+2)(n�1). Then, the orthogonality would follow from Theorem 2.3. Since Fn(i) = F
0
n
(�i) = 0, as was already mentioned,

the classic Christoffel transformation cannot be applied. However, Theorem 4.5 allows us to obtain the original Hen(x) from
the Fn(x). We show this below for n = 1, 2, . . . , 5.

Example 6.1. Let Sn(x) be the polynomials defined by

Sn(x) :=
1

cn(1 + x2)2

�����

Fn(i) Fn+1(i) Fn+2(i)
Fn(�i) Fn+1(�i) Fn+2(�i)
Fn(x) Fn+1(x) Fn+2(x)

����� ,

where

cn =

����
Fn(i) Fn+1(i)
Fn(�i) Fn+1(�i)

���� .

Then applying Theorem 4.5 to the DEK polynomials for n = 0, 1, 2, 3, 4, we have

�(x)He0(x) = �(x)S0(x) = F2(x) + 2F0(x)
�(x)He1(x) = �(x)S1(x) = F3(x) + 2F1(x)
�(x)He2(x) = �(x)S2(x) = F4(x) + 4F2(x)
�(x)He3(x) = �(x)[S3(x) + S1(x)] = F5(x) + 6F3(x) + 2F1(x)

�(x)He4(x) = �(x)[S4(x) +
3
2
S2(x)] = F6(x) + 8F4(x) + 6F2(x).

13
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We list the first five Sn(x) for the reader’s convenience.

S0(x) = 1
S1(x) = x

S2(x) = x
2
� 1

S3(x) = x
3
� 4x

S4(x) = x
4
�

15
2

x
2
+

9
2
.

One may ask if {Sn(x)}n�0 is an orthogonal polynomials system. If this were the case, then {Sn(x)}n�0 would satisfy the
three-term recurrence relation

xSn(x) = Sn+1(x) + ↵nSn(x) + �nSn�1(x).

However, if we consider when n = 3, then we cannot find coefficients ↵3 and �3 such that this three-term recurrence
relation is satisfied. Thus, the polynomials Sn(x) cannot be an OPS with respect to any quasi-definite linear functional.

Remark 6.2. It was shown in [3] that the DEK polynomials are complete in

L
2
✓

e
�x

2/2

(1+x2)2 dx, (�1, 1)
◆
.

6.2. Chebyshev polynomials

We now take the case Pn(x) = T̂n(x) where T̂n(x) is the monic Chebyshev polynomial of the first kind of degree n and
dµ(x) = (1 � x

2)�1/2
dx.

Theorem 6.3. Let T̂n(x) denote the monic Chebyshev polynomial of the first kind of degree n. Then for n � 1, there exist real

numbers An and Bn such that Rn(x) = T̂n+2(x) + AnT̂n(x) + BnT̂n�2(x) is a monic polynomial of degree n + 2 satisfying,

(1) R
0
n
(i) = 0 for all n = 1, 2, . . . ,

(2)

R 1
�1

R0(x)Rn(x)p
1�x2(1+x2)2

dx = 0 for all n = 1, 2, . . . ,

(3)

R 1
�1

R1(x)Rn(x)p
1�x2(1+x2)2

dx = 0 for all n � 2,

where R0(x) := 1.

Proof. First, it should be noted that if An, Bn 2 R and R
0
n
(i) = 0 then, it must be the case that R0

n
(�i) = 0.

We can explicitly find R1(x) since R1(x) = T̂3(x) + A1T̂1(x), is an odd, monic polynomial of degree 3 which satisfies
that R

0

1(i) = 0. Thus R1(x) = x
3 + 3x and hence A1 = 15/4 and B1 can be arbitrary. Notice that R1(x) satisfiesR 1

�1
R0(x)R1(x)p
1�x2(1+x2)2

dx = 0 since R0(x)R1(x)p
1�x2(1+x2)2

is an odd function.
Now for n � 2, by Proposition 2.2, it suffices to show that for n � 2 even, det(En) 6= 0 and for n � 3 odd, det(On) 6= 0

where

En =

0

@
T̂

0
n
(i) T̂

0

n�2(i)
R 1

�1
T̂n(x)p

1�x2(1+x2)2
dx

R 1
�1

T̂n�2(x)p
1�x2(1+x2)2

dx

1

A

and

On =

0

@
T̂

0
n
(i) T̂

0

n�2(i)
R 1

�1
R1(x)T̂n(x)p
1�x2(1+x2)2

dx

R 1
�1

R1(x)T̂n�2(x)p
1�x2(1+x2)2

dx

1

A .

In fact, since T̂n(x) =
1

2n�1 Tn(x) for n � 2, where Tn(x) is non-monic Chebyshev polynomial of the first kind of degree n,
we can replace T̂ with T in En and On and show the corresponding determinants are non-zero. Thus in what follows, we
will let On and En denote the matrices with entries given by the non-monic Chebyshev polynomials of the first kind.

Let n � 2 be even. Then using partial fraction decomposition, we have
Z 1

�1

Tn(x)
p
1 � x2(1 + x2)2

dx =
i

4

Z 1

�1

Tn(x)
(x + i)

p
1 � x2

dx �
i

4

Z 1

�1

Tn(x)
(x � i)

p
1 � x2

dx

�
1
4

Z 1

�1

Tn(x)
(x + i)2

p
1 � x2

dx �
1
4

Z 1

�1

Tn(x)
(x � i)2

p
1 � x2

dx.

14
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Notice that for x /2 (�1, 1),
Z 1

�1

Tn(y)

(y � x)
p
1 � y2

dy =

Z 1

�1

Tn(y) � Tn(x)
y � x

dy
p
1 � y2

+ Tn(x)
Z 1

�1

1
y � x

dy
p
1 � y2

= ⇡Un�1(x) + Tn(x)
Z 1

�1

1
y � x

dy
p
1 � y2

,

(6.3)

where Un(x) is the nth degree Chebyshev polynomial of the second kind. Differentiating, we see that
Z 1

�1

Tn(y)

(y � x)2
p
1 � y2

dy = ⇡U 0

n�1(x) + T
0

n
(x)
Z 1

�1

1
y � x

dy
p
1 � y2

+ Tn(x)
Z 1

�1

1
(y � x)2

dy
p
1 � y2

.

(6.4)

Thus, using the fact that for n even,

Tn(�i) = Tn(i)
T

0

n
(�i) = �Tn(i)

Un�1(i) = �Un�1(i)
U

0

n�1(�i) = U
0

n�1(i)

and also using the identities

T
0

n
(i) = nUn�1(i) (6.5)

and

U
0

n�1(i) =
nTn(i) � iUn�1(i)

�2
(6.6)

we have that
Z 1

�1

Tn(x)
(1 + x2)2

p
1 � x2

dx = ⇡

 
3 + n

p
2

4
p
2

!
Tn(i) � i⇡

 
3
p
2 + 2n
4
p
2

!
Un�1(i). (6.7)

Now, assume by way of contradiction that det(En) = 0. Then,

T
0

n
(i)
Z 1

�1

Tn�2(x)
(1 + x2)2

p
1 � x2

dx = T
0

n�2(i)
Z 1

�1

Tn(x)
(1 + x2)2

p
1 � x2

dx

so substituting in (6.7) and simplifying, we must have

n

 
3 + (n � 2)

p
2

4
p
2

!
Un�1(i)Tn�2(i) � (n � 2)

 
3 + n

p
2

4
p
2

!
Un�3(i)Tn(i)

=
3i
2
Un�1(i)Un�3(i).

(6.8)

Using the fact that

Tn�2(i)Un�1(i) =
1
2

(U2n�3(i) + 2i) and

Tn(i)Un�3(i) =
1
2

(U2n�3(i) � 2i)
(6.9)

Eq. (6.8) becomes
3

4
p
2
U2n�3(i) +

3(n � 1)i
2
p
2

+
n(n � 2)i

2
=

3i
2
Un�1(i)Un�3(i). (6.10)

Note that

Un(i) =
(i +

p
2i)n+1 � (i �

p
2i)n+1

2
p
2i

thus, for n even,

Un�1(i)Un�3(i) =
1
8
(3 + 2

p
2)n�1

+
1
8
(3 � 2

p
2)n�1

�
3
4
15
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and

U2n�3(i) =
�(3 + 2

p
2)n�1 + (3 � 2

p
2)n�1

2
p
2i

so that Eq. (6.10) is equivalent to
3(n � 1)
2
p
2

+
n(n � 2)

2
+

9
8

=
3
8
(3 � 2

p
2)n�1. (6.11)

But since 9
8 > 1 and all the terms on the left-hand side are positive, we see that the left-hand side is strictly greater than

1. However, 3� 2
p
2 < 1 hence (3� 2

p
2)n�1 < 1 for all n � 2 which shows that the right-hand side of (6.11) is strictly

less than 1 which is a contradiction. Therefore, det(En) 6= 0 for n even, n � 2.
Now let n be odd, n � 1. Using partial fraction decomposition, we have that
Z 1

�1

R1(x)Tn(x)
p
1 � x2(1 + x2)2

dx =
1
2

Z 1

�1

Tn(x)
(x + i)

p
1 � x2

dx +
1
2

Z 1

�1

Tn(x)
(x � i)

p
1 � x2

dx

+
i

2

Z 1

�1

Tn(x)
(x + i)2

p
1 � x2

dx �
i

2

Z 1

�1

Tn(x)
(x � i)2

p
1 � x2

dx

so using Eqs. (6.3), (6.4), (6.5), (6.6) and the fact that for n odd,

Tn(�i) = �Tn(i)
T

0

n
(�i) = T

0

n
(i)

Un�1(�i) = Un�1(i)
U

0

n�1(�i) = �U
0

n�1(i)

we see that
Z 1

�1

R1(x)Tn(x)
p
1 � x2(1 + x2)2

dx =

✓
3i⇡
2
p
2

+
i⇡n

2

◆
Tn(i) +

✓
⇡n
p
2

+
3⇡
2

◆
Un�1(i).

As before, assume that det(On) = 0. Then

T
0

n
(i)
Z 1

�1

(x3 + 3x)Tn�2(x)
(1 + x2)2

p
1 � x2

dx = T
0

n�2(i)
Z 1

�1

(x3 + 3x)Tn(x)
(1 + x2)2

p
1 � x2

dx

hence,

n

✓
3i⇡
2
p
2

+
i⇡ (n � 2)

2

◆
Un�1(i)Tn�2(i) � (n � 2)

✓
3i⇡
2
p
2

+
i⇡n

2

◆
Un�3(i)Tn(i)

= 3⇡Un�1(i)Un�3(i).
(6.12)

By Eq. (6.9), this simplifies to
3i

2
p
2
U2n�3(i) �

3(n � 1)
p
2

� n(n � 2) = �3Un�1(i)Un�3(i). (6.13)

Since n is odd,

Un�1(i)Un�3(i) =
�1
8

⇣
(3 + 2

p
2)n�1

� (3 � 2
p
2)n�1

+ 6
⌘

and

U2n�3(i) =
(3 + 2

p
2)n�1 � (3 � 2

p
2)n�1

2
p
2i

so that Eq. (6.13) is equivalent to
�3(n � 1)

p
2

� (n � 2) �
9
4

=
3
4
(3 � 2

p
2)n�1. (6.14)

Clearly, for n � 1, the left-hand side is less than zero but the right-hand side is greater than 0, hence det(On) 6= 0 for any
n odd n � 1. ⇤

We list the first few Rn(x) below:

R0(x) = 1
R1(x) = x

3
+ 3x
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Fig. 1. The behavior of the zeros of Rn(x) for n = 20 and n = 25. Note that for n = 20, there are 4 real zeros of multiplicity two and for n = 25,
there are 8 with multiplicity two and two with multiplicity 3.

R2(x) = x
4
+ 2x2 + 1 �

4
p
2

3

R3(x) = x
5
+

41 � 5
p
2

28
x
3
+

�17 � 15
p
2

28
x

R4(x) = x
6
�

3(�859 + 192
p
2)

2402
x
4
�

2052 + 1152
p
2

2402
x
2
�

7859 + 5592
p
2

2402
.

Next, using Mathematica one can check the behavior of the zeros of Rn.

Remark 6.4. From Fig. 1, one can see that the zeros of Rn behave similarly to zeros of exceptional Hermite, Jacobi,
and Laguerre polynomials [36,37]. Besides, such a behavior is typical for indefinite orthogonal polynomials [31,35]. Since
the link between general Rn and indefinite orthogonal polynomials has been given earlier in this paper, it is natural to
conjecture that similar situation takes place for general polynomials Rn.

Corollary 6.5. Let {Rn(x)}n�0 be the family of polynomials given in Theorem 6.3. Then {Rn(x)}n�0 is a family of DEK-type

orthogonal polynomials and Rn(i) 6= 0 for any n = 0, 1, 2, . . . .

Proof. By Theorem 6.3, we know that the Rn(x) are polynomials of degree n + 2, thus, the sequence does not include a
degree 1 or degree 2 polynomial. The orthogonality and the fact that Rn(i) 6= 0 for any n follow from Theorem 2.3 and
Proposition 2.5, respectively. ⇤

The results of Theorem 6.3 allow us to apply Theorem 4.5 to obtain the monic Chebyshev polynomials of the first kind
from the Rn(x).

Corollary 6.6. Let {Rn(x)}n�0 be the family of polynomials given in Theorem 6.3 and let {T̂n(x)}n�0 be the sequence of monic

Chebyshev polynomials of the first kind. Then for �(x) = (1 + x
2)2, we have

�(x)T̂n(x) =

"
1
cn

�����

Rn(i) Rn+1(i) Rn+2(i)
Rn(�i) Rn+1(�i) Rn+2(�i)
Rn(x) Rn+1(x) Rn+2(x)

�����+
⇢n

cn�2

�����

Rn�2(i) Rn�1(i) Rn(i)
Rn�2(�i) Rn�1(�i) Rn(�i)
Rn�2(x) Rn�1(x) Rn(x)

�����

#
,

where

cn =

����
Rn(i) Rn+1(i)
Rn(�i) Rn+1(�i)

����

and {⇢n}n�2 is a sequence of real numbers.

Proof. This is a direct application of Theorem 6.3. ⇤
One may note that the ⇢n are given by Theorem 4.4, where
dµ(x) =

1p
1�x2

�[�1,1](x)dx and

Sn(x) =
1

cn�(x)

�����

Rn(i) Rn+1(i) Rn+2(i)
Rn(�i) Rn+1(�i) Rn+2(�i)
Rn(x) Rn+1(x) Rn+2(x)

����� .

17



R. Bailey and M. Derevyagin Journal of Computational and Applied Mathematics 438 (2024) 115561

Below are the first few Sn(x) corresponding to the Chebyshev polynomials:

S0(x) = 1
S1(x) = x

S2(x) = x
2
�

1
2

S3(x) = x
3
�

23
30

x

S4(x) = x
4
�

49
48

x
2
+

13
96

.

One can also quickly check that, for example, when n = 2, there are no such ↵ and � such that

xS2(x) = S3(x) + ↵S2(x) + �S1(x).

Thus the Sn(x) corresponding to the Chebyshev polynomials of the first kind do not form an orthogonal polynomial
sequence with respect to any quasi-definite linear functional.

Below we illustrate the modification of the Christoffel formula when applied to the Rn(x).

Example 6.7. Applying Theorem 4.5 to the Rn(x) for n = 0, 1, 2, 3, 4, we have

�(x)T̂0(x) = �(x)S0(x) = R2(x) +
4
p
2

3
R0(x)

�(x)T̂1(x) = �(x)S1(x) = R3(x) �
5

12 � 4
p
2
R1(x)

�(x)T̂2(x) = �(x)S2(x) = R4(x) +
9

57 � 32
p
2
R2(x)

�(x)T̂3(x) = �(x)

S3(x) +

1
60

S1(x)
�

= R5(x) +
50 + 29

p
2

100
R3(x) +

3 +
p
2

336
R1(x)

�(x)T̂4(x) = �(x)

S4(x) +

1
48

S2(x)
�

= R6(x) +
2(32 � 27

p
2)

832 � 597
p
2
R4(x) +

3(57 + 32
p
2)

19216
R2(x).

The family {Rn(x)}n�0 shares a similar property with families of exceptional orthogonal polynomials in that they form
a complete basis for the corresponding weighted L

2 space.

Theorem 6.8. The DEK-type polynomials Rn(x) corresponding to the monic Chebyshev polynomials of the first kind are

complete in L
2
✓

dxp
1�x2(1+x2)2

, [�1, 1]
◆
.

Proof. Assume that {Rn(x)}n�0 is not complete in L
2
✓

dxp
1�x2(1+x2)2

, [�1, 1]
◆
.

Then there exists f (x) 2 L
2
✓

dxp
1�x2(1+x2)2

, [�1, 1]
◆

such that f (x) 6⌘ 0 and

Z 1

�1
f (x)Rn(x)

dx
p
1 � x2(1 + x2)2

= 0

for all n = 0, 1, 2 . . . . By Theorem 4.5, we have for all n = 1, 2, . . .

(1 + x
2)2T̂n(x) = Rn+2(x) + ↵nRn(x) + �nRn�2(x)

for real numbers ↵n and �n. Thus for all n = 1, 2, . . .
Z 1

�1
f (x)T̂n(x)

dx
p
1 � x2

=

Z 1

�1
f (x)(1 + x

2)2T̂n(x)
dx

p
1 � x2(1 + x2)2

=

Z 1

�1
f (x)Rn+2(x)

dx
p
1 � x2(1 + x2)2

+ ↵n

Z 1

�1
f (x)Rn(x)

dx
p
1 � x2(1 + x2)2

+ �n

Z 1

�1
f (x)Rn�2(x)

dx
p
1 � x2(1 + x2)2

= 0.
18
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If n = 0, then (1 + x
2)2T̂0(x) = (1 + x

2)2S0(x) = R2(x) + ↵0R0(x) so by the same reasoning
Z 1

�1
f (x)T̂0(x)

dx
p
1 � x2

= 0.

Notice that 1
(1+x2)2 �

1
4 on [�1, 1] hence

1
4

Z 1

�1
|f (x)|2

dx
p
1 � x2



Z 1

�1
|f (x)|2

dx
p
1 � x2(1 + x2)2

< 1.

Thus f (x) 2 L
2
✓

dxp
1�x2

, [�1, 1]
◆
. But since T̂n(x) are complete in this space, the above implies that f (x) ⌘ 0 which is a

contradiction. ⇤

Remark 6.9. Theorem 6.8 can be generalized to DEK-type polynomials where the Pn(x) are complete in L
2 (dµ(x), [a, b])

for a compact subset [a, b] of R.
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