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Integrative analyses on the ciliates Colpoda illuminate the life
history evolution of soil microorganisms
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ABSTRACT Microorganisms play a central role in sustaining soil ecosystems and
agriculture, and these functions are usually associated with their complex life history.
Yet, the regulation and evolution of life history have remained enigmatic and poorly
understood, especially in protozoa, the third most abundant group of organisms in
the soil. Here, we explore the life history of a cosmopolitan species—Colpoda steinii.
Our analysis has yielded a high-quality macronuclear genome for C. steinii, with size of
155 Mbp and 37,123 protein-coding genes, as well as mean intron length of ~93 bp,
longer than most other studied ciliates. Notably, we identify two possible whole-genome
duplication events in C. steinii, which may account for its genome being about twice
the size of C inflata’s, another co-existing species. We further resolve the gene expres-
sion profiles in diverse life stages of C. steinii, which are also corroborated in C. inflata.
During the resting cyst stage, genes associated with cell death and vacuole formation
are upregulated, and translation-related genes are downregulated. While the translation-
related genes are upregulated during the excystment of resting cysts. Reproductive cysts
exhibit a significant reduction in cell adhesion. We also demonstrate that most genes
expressed in specific life stages are under strong purifying selection. This study offers
a deeper understanding of the life history evolution that underpins the extraordinary
success and ecological functions of microorganisms in soil ecosystems.

IMPORTANCE Colpoda species, as a prominent group among the most widely distrib-
uted and abundant soil microorganisms, play a crucial role in sustaining soil ecosystems
and promoting plant growth. This investigation reveals their exceptional macronuclear
genomic features, including significantly large genome size, long introns, and numerous
gene duplications. The gene expression profiles and the specific biological functions
associated with the transitions between various life stages are also elucidated. The
vast majority of genes linked to life stage transitions are subject to strong purifying
selection, as inferred from multiple natural strains newly isolated and deeply sequenced.
This substantiates the enduring and conservative nature of Colpoda’s life history, which . o
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through natural selection has shaped life history traits. Consequently, organisms
sharing the same phylogeny tend to have similar traits (2). The life history strat-
egies of soil microorganisms are highly diverse, endowing them with the exceptional
capacity to thrive in a variety of environments, such as terrestrial soils, freshwater, and
oceans. However, despite these, the associated regulatory mechanisms and evolution-
ary processes have received little research attention. Colpoda organismsare ciliates
prevalent in diverse habitats worldwide, with a particularly notable presence in soil
ecosystems. Colpoda species share a common feature typical of all ciliates—the presence
of a dimorphic nuclear apparatus, comprising both micronucleus and macronucleus
sequestered in the same cytoplasm. To date, a total of 32 nominal species of Colpoda
have been documented, and their cosmopolitan distribution has been empirically
substantiated through an extensive body of global investigations (3-6). Moreover,
they show highly similar life histories, characterized by distinct life stages, including
trophonts—cells in a state of vegetative growth when food bacteria are abundant,
reproductive cysts—a mode of asexual reproduction within a cyst wall that distinguishes
them from most other ciliates (7), and resting cysts—a dormant stage that helps endure
harsh and highly fluctuating soil environments (7, 8). Importantly, these resting cysts are
transformable with trophonts. The encystment process is widely acknowledged as a key
mechanism contributing to the near-global distribution of Colpoda (8).

Colpoda species are well-known for their ease of collection and significant agricultural
contributions, such as promoting the growth of crops like corn (9), cucumber (10),
and rice (11). They also serve as valuable indicator species for monitoring soil quality
and environmental pollution (12). The morphological features of Colpoda have been
extensively documented in previous studies (13-15). For example, the transformation of
trophonts into resting cysts includes oral absorption, shedding of cilia, filling of small
vesicles within the cyst, and the formation of the resisting cyst wall (16, 17). Despite
resting cysts are crucial in the life history of Colpoda, there are only a few studies
focusing on their molecular mechanisms. For example, Sogame et al. (18, 19) proposed
the involvement of elongation factor 1 (EF-1a) in inhibiting resting cyst formation.
Furthermore, an increase in cAMP concentration, achieved through adenylate cyclase
activation, has been shown to promote encystment (20). Additionally, Jiang et al. (21)
applied transcriptomic analyses to investigate gene expression involved in the formation
of resting cysts. Their findings revealed a reduction in biosynthesis and energy metab-
olism, coupled with a significant upregulation of autophagy during this critical stage.
A systematic exploration encompassing various life stage transitions using omics tools
remains an area yet to be investigated.

Cell divisions through the idiosyncratic formation of reproductive cysts in Colpoda
(Fig. 1; Movie S1) have received limited attention, primarily investigated at the morpho-
logical level, dating back more than half a century (22). The molecular regulation of
these cell divisions, albeit underexplored, may offer a valuable context for investigating
non-canonical eukaryotic cell cycles involving amitosis and polyploidy (as the macronu-
clear chromosomes lack centromeres and are polyploid) and cellular differentiation.
Similarly, while there are numerous studies on multiple whole-genome duplications,
sexual processes involving micronucleus-macronucleus development and mating types,
genomics, etc., in ciliates (23-26), corresponding investigations on Colpoda are mostly
absent. It is worth noting that most of the previous efforts on Colpoda were conducted
in the last century, and the current number of active researchers dedicated to studying
Colpoda may be even fewer than the known Colpoda species.

Despite the rapid advancement of multi-omics technology, investigations into the
life histories of ciliates have primarily focused on a handful of species. These studies
have often relied on comparative transcriptomics but typically lacked high-quality de
novo macronuclear genome assemblies. Such genome assemblies are essential for
understanding the genetic basis and enhancing the precision and quantification of
differential gene expression analyses, akin to reference-based transcriptome analyses
(27-30). Colpoda organisms, despite their near-global distribution and vital ecological
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FIG 1 Life history, sample collection and preparation, and morphology of Colpoda spp. (a) Sampling sites of the 10 natural strains of C. steinii. Blue dots represent
nine isolates used for population genomic analysis, and the orange dot shows the reference strain for the de novo assembly. (Map from https://datav.aliyun.com/
portal/school/atlas/area_selector#&lat=30.332329214580188¢&ng=106.72278672066881&zoom=3.5.) (b) Strain isolation and preparation for genomics. (c) The
sampling site of C. steinii and C. inflata. (d-g) Photomicrographs of C. steinii RZ4A at different life stages: d, trophonts in vegetative growth; e, resting cysts; f, g,
reproductive cysts with two and four cells. (i-l) Photomicrographs of C. inflata RL4B at different life stages: i, trophonts; j, resting cysts; k, |, reproductive cysts.
Scale bar represents 5 pm. (h and m) DAPI staining of the nuclei of Colpoda: h, C. steinii RZ4A; m, C. inflata RL4B. Arrow shows the macronucleus, and arrowhead

marks the micronucleus.

roles, have remained among the understudied majority, in stark contrast to the genomic
resources of model ciliates like Tetrahymena and Paramecium (23, 31-34).

In this study, we explored the life history of Colpoda steinii at both phenotypic and
molecular levels. Our approach involved uncovering its molecular basis through de novo
macronuclear assembly and gene annotation, using Nanopore long-read sequencing.
We also revealed differential gene expression by performing low-input RNA library
preparation across various life stages, conducted comparative genomics with the de novo
assembled macronuclear genomes of another co-existing congener C. inflata, as well as
published genomes of distantly-related ciliates, investigated population genomics using
strains newly collected from diverse regions in China, and examined the proteomics of
resting cysts. This study will provide new data to uncover the strategies and evolution
of soil ciliates in resisting adverse environments. It also lays the necessary foundation
for a deeper understanding of the role of protozoa in maintaining the functioning and
long-term evolution of soil ecosystems.
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RESULTS

De novo assembly and gene annotation of the macronuclear genome of
Colpoda steinii RZ4A

We collected soil samples, isolated single Colpoda cells, and identified species by
live microscopy and 18S rDNA Sanger sequencing (Fig. 1a through c). To ensure the
purification of the cell lines, we executed five rounds of single-cell passaging (Fig. 1b). As
a result, we successfully established a clonal cell line, denoted as C. steinii RZ4A, which
has a typical life history akin to most previously reported Colpoda species.

Subsequently, we performed genome sequencing on this strain using Illumina
Novaseq 6000 and Oxford Nanopore MinlON platforms. Following the exclusion of reads
stemming from food bacteria contamination and the removal of low-quality bases or
adaptors, we generated a total of 23.89 Gbp Nanopore and 31.54 Gbp Illumina PE150
high-quality sequences (Table 1). We initiated the assembly process by first compiling
the Nanopore clean reads into contigs, subsequently merging them into scaffolds. The
draft genome was then polished with high-quality Illumina short reads. Based on the
distribution of GC content within the scaffolds, we further filtered out scaffolds that
potentially originated from bacteria, as well as contaminating scaffolds of micronucleus
sources according to sequencing depth. To prevent the inadvertent exclusion of genuine
genome components, we conducted a thorough examination of scaffolds that were
flagged for removal (see details in Supplemental Materials and Methods).

Ultimately, our efforts yielded a high-quality macronuclear genome for C. steinii RZ4A,
with 155.39 Mbp in length, N50 of 40,553 bp (most ciliates are known to have short
chromosomes in the macronucleus due to chromosome fragmentation), a genome
completeness of 90.05% according to the BUSCO assessment (Fig. S1). The genome
assembly comprises 7,989 scaffolds, of which 2,717 (~34% of all scaffolds) possess 2
telomeres, while 3,838 (~48%) have 1 telomere (Table 1).

We conducted gene structural annotation through a combination of de novo gene
prediction and RNAseq evidence. To capture the transcriptome encompassing as many
genes as possible, we performed low-input RNAseq on three distinct life stages:

TABLE 1 Macronuclear genomic features of C. steinii RZ4A and C. inflata RL4B

Features C. steinii RZ4A C. inflata RL4AB
Illumina PE150 sequences (Gbp) 31.54 34.67
Nanopore sequences (Gbp) 23.89 19.23
Genome size (bp) 155,392,961 81,751,086
Number of scaffolds 7,989 2,481
Number of scaffolds (21,000 bp) 7,961 2,480
Number of scaffolds (>10,000 bp) 3,738 2,041
Number of scaffolds (=50,000 bp) 710 385

Largest scaffolds 501,730 1,462,395
N50 (bp) 40,553 46,401

GC content (%) 33.55 35.09
Telomere TT(T/G)GGG TT(T/G)GGG
Scaffolds with telomere (%) 82.05 58.52
2-Telomeres scaffolds 2,717 307
1-Telomere scaffolds 3,838 1,145
BUSCO (%) 90.1 76.6
Number of genes 37,123 22,668
Mean gene size (bp) 2,034 1,876

CDS size (bp) 440 456
Number of introns 110,669 59,429
Genes with introns 22,652 12,430
Mean intron size (bp) 93.2 85.01

Mean no. of introns 2.98 2.62
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trophonts, reproductive cysts, and resting cysts (Fig. 1d through g). This effort resulted in
the annotation of 37,123 protein-coding genes, with a mean size of 2,034 bp, featuring
2.98 introns (mean intron size ~93 bp, much longer than those in other ciliates) and 3.98
exons per gene (Table 1).

In terms of gene functional annotation, an exceptional 97.06% of gene models show
homologous matches against the NCBI NR database. In addition, 63.03% of genes can be
successfully annotated in Gene Ontology (GO). These results collectively demonstrate the
high quality of the functional annotation of the genome.

Transcription and translation profiles associated with the life history

To uncover the transcriptional profiles associated with the life stages of C. steinii RZ4A,
we first isolated ~20 cells from each distinct life stage on ice with a high-power Olympus
dissection microscope. Following isolation, we promptly proceeded with low-input RNA
library construction. We conducted an intensive analysis of differential gene expressions
across various life stages, using the low-input RNAseq data obtained from C. steinii
RZ4A, including trophonts in vegetative growth, reproductive cysts, resting cysts, and
revived trophonts, with each stage comprising a minimum of at least three replicates. To
ensure the reliability of our RNAseq data sets, we performed rigorous quality control
assessments by principal component and clustering analyses. The identification of
significantly differentially expressed genes (DEGs) between two life stages was executed
using DESeq2, with a defined threshold of |fold-change| > 2 and Paqj < 0.05.

Resting cysts vs trophonts

We compared resting cysts with trophonts, with their replicated samples clustered
together (Fig. 2a). There were significant distinctions in overall gene expression between
the two life stages (Fig. 2b), and we found that 69 genes were upregulated and 2,313
downregulated in resting cysts (Fig. 2c; Table S1). To gain deeper insights into the
biological processes, molecular functions, and cell components involved in the life stage
transition of C. steinii RZ4A, we performed GO enrichment analysis focusing on the DEGs
between these life stages.

Consistent with previous observations indicating that resting cysts represent a
dormant stage, we detected a significant downregulation in their major cellular activities,
particularly genes associated with translation (Fig. 2d). As expected, resting cysts
still maintain essential metabolic functions, as evidenced by the slight background
expression observed in most genes. This was further corroborated by our proteome
sequencing on resting cysts, which identified 1,483 peptide hits corresponding to genes
associated with translation, protein folding, microtubule cytoskeleton organization, and
other processes (Tables S1 and S2; Fig. S2). Notably, the abundance of LamG-domain-
containing proteins was found to be the highest in resting cysts (Table S2). These
proteins are usually Ca?*-mediated receptors. We hypothesize that these proteins may
be the primary receptors for the molecular process of the formation of resting cysts
because the regulation of Ca?* concentration can induce the formation of resting cysts in
Colpoda (20).

Colpoda species are also known for their propensity to generate numerous small
vesicles and vacuoles within the cytoplasm during the formation of resting cysts, a
phenomenon well-documented. In the case of C. steinii RZ4A, we have observed that
upregulated genes are enriched in lipid metabolism (GO:0006629) and the vacuole
cellular component (GO:0005773) (Fig. 2d). According to previous studies, the extrusion
of macronuclear chromatin is a distinctive feature in the process of encystment in a
manner similar to the apoptosis-like nuclear death that occurs during conjugation in
other ciliates (13). In line with this, we have also identified two additional upregulated
genes (g20033.t1 and g7555.t1) enriched in cell death (GO:0008219; Fig. S3). Our results
align nicely with the aforementioned conjectures suggesting that events similar to cell
death may occur during encystment.
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FIG 2 Differential gene expression and gene enrichment analyses of resting cysts vs trophonts in C. steinii RZ4A. (a) Principal component analysis of mRNAs of
trophonts and resting cysts. Each dot represents one sample. Blue dots are resting cyst samples, and red ones are trophont samples. (b) The heatmap of top 20
differentially expressed genes in resting cysts (vs trophonts). The blue rectangles at the far left of the figure are resting cyst, and the red are trophont. (c) DEGs
in resting cysts (vs trophonts). Gray, red, and blue dots represent not significantly, significantly up- and downregulated DEGs. (d) Results from GO enrichment
analyses, using up- or downregulated DEGs.

These findings collectively reinforce the reliability of our differential gene expression
analyses based on RNAseq. Furthermore, they provide valuable molecular insights into
the process of encystment—a critical survival strategy used by Colpoda to contend with
the challenging and ever-changing conditions of their soil habitats.

Revived trophonts vs resting cysts

When an ample supply of food bacteria becomes available, resting cysts undergo
excystment and transition into trophonts. In our experimental setup, we initiated this
process by re-introducing food bacteria to the resting cysts of C. steinii RZ4A. Remarka-
bly, within a span of 12 h following this re-introduction, the resting cysts commenced
excystment, giving rise to trophonts. The resting cysts before re-feeding and newly
formed trophonts were promptly isolated and used for the construction of low-input
RNAseq libraries, which were subsequently subject to Illumina PE150 sequencing.
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Through an intensive analysis of differential gene expression, we identified a total
of 2,803 upregulated and 2,486 downregulated genes in the revived trophonts when
compared to the resting cysts (Fig. 3a; Table S3). We detected active expression of
translation-related genes in the revived trophonts (Fig. 3e), and they are downregulated
in the resting cysts (vs trophonts). By comparing the upregulated genes in the revived
trophonts with those downregulated in the resting cysts, we found that more than
one-third of the genes were shared between them, and these genes may play a crucial
role in the mutual transformation between trophonts and resting cysts.

Reproductive cysts vs trophonts

Similar to other Colpoda congeners, C. steinii RZ4A reproduces by forming reproductive
cysts, which typically give rise to two or four trophonts upon bursting (Fig. 1f and g;
Movie S1). Using differential gene expression analyses, we have identified a total of
2,297 genes that are upregulated in reproductive cysts when compared to trophonts
(Fig. 3b; Table S4). These genes are enriched in molecular functions commonly associ-
ated with eukaryotic cell division, encompassing processes such as mitosis, protein
phosphorylation, MAPK cascade activation, lipid metabolism, and so on. Furthermore,
they are associated with critical cell components including cilia, microtubules, spindles,
centromeres, and others (Fig. 3f).

Among these molecular functions, those related to cilia are particularly prominent
(Fig. 3f), indicating the heightened activity in the generation and movement of cilia
of progeny cells enclosed within the reproductive cyst wall. By contrast, there is a
noticeable reduction in genes associated with the transport of xenobiotic and communi-
cation with the extracellular environment (Fig. 3f). This observation further underscores
that the cell-division process within the reproductive cysts is an independent process,
reducing the interference of the external environment as much as possible to ensure
high-fidelity cell divisions.

Technical validation of the DEGs analyses using RT-qPCR

To corroborate the accuracy of our differential gene expression analyses, we first
conducted RT-gPCR experiments using newly prepared total RNA of trophonts and
resting cysts as templates. Then, we did reverse transcription and qPCR, targeting six
randomly chosen genes of C. steinii RZ4A (upregulated: g10370.t1, g17316.t1, g33357.t1;
downregulated: g2805.t1, g2807.t1, g28308.t1; Table S5). These genes were chosen
based on their observed up- or downregulation during the resting cyst stage compared
to trophonts, as indicated by our earlier analyses using low-input RNAseq. Encouragingly,
the expression patterns of all these genes were found to be consistent with those
derived from the low-input RNAseq data sets (Fig. 3c and d). This alignment serves as
compelling evidence affirming the reliability of the above differential gene expression
analyses.

Validation of the gene ontology analyses

In addition, we made efforts to perform RNAi targeting the aforementioned six genes,
using the L4440 plasmid system. However, we have not yet achieved success in these
endeavors. Fortunately, given the high degree of conservation in the life histories of
Colpoda species, it is reasonable to anticipate that the molecular mechanisms revealed
through our GO analyses in C. steinii RZ4A are also likely to be present in congeners.

We then proceeded to isolate C. inflata RL4B from the same sampling site as C. steinii
RZ4A (Fig. 1c, i through ). Following similar procedures, we first de novo assembled and
annotated its macronuclear genome. The genome of C. inflata RL4B is approximately
81.75 Mbp in size, harboring a total of 22,668 genes, and shares identical telomere
sequences [5-TT (T/G)GGG-3'] with C. steinii RZ4A (Table 1). Significantly, there are
notable differences in the scaffold count between the macronuclear genomes of the two
species, with C. inflata RL4B featuring 2,481 scaffolds (with N50 ~46.40 kbp) compared to
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FIG 3 Differential gene expression of revived trophonts and reproductive cysts in C. steinii RZ4A. (a) Differential expression profiles of revived trophonts

(vs resting cysts) and (b) reproductive cysts (vs trophonts in vegetative growth). Gray, red, and blue dots represent not significantly, significantly up- and
downregulated DEGs, respectively. (c and d) RT-qPCR verification of DEGs in resting cysts (vs trophonts). **, *** and **** represent P value < 0.01, 0.001, and
0.0001. (e) GO functional enrichment of DEGs of revived trophonts (vs resting cysts) and (f ) reproductive cysts (vs trophonts). The size of the black dots represents

the number of enriched genes in each pathway.

C. steinii RZ4A’s 7,989 scaffolds (with N50 ~40.55 kbp). This discrepancy is consistent with
the observation that the genome size of the latter (155.39 Mbp) is roughly twice that of
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the former (81.75 Mbp) (Table 1). The increase in genome size may be driven by multiple
processes, including whole-genome duplication (WGD), transposable elements (TE)
proliferation, intron amplification, and tandem gene duplication (35). Using a synteny
analysis of homologous gene pairs, we have discerned that two WGD events might have
occurred in C. steinii RZ4A, whereas only one ancient WGD event in C. inflata RL4B (Fig.
4a). This fits nicely with the approximately twofold difference in genome size between
the two species.

Using the genome of C. inflata RL4B as a reference and harnessing low-input RNAseq
data from various life stages, we identified DEGs and conducted GO enrichment analyses.
Impressively, numerous DEGs in C. inflata RL4B overlapped with those identified in C.
steinii RZ4A and were enriched in the same molecular functions, biological processes, or
cell components as those of C. steinii RZ4A. These included the upregulation of genes
associated with cell death and vacuole formation, as well as the downregulation of
translation in resting cysts (compared to trophonts in vegetative growth) (Table S6).
Additionally, we observed significant enrichment of translation-related genes in revived
trophonts (in contrast to resting cysts) (Table S7). Moreover, active biological processes,
such as microtubule-based movement, cilium assembly, and cell motility, along with a
noteworthy downregulation of cell adhesion regulated by the integrin complex, were
evident in reproductive cysts (vs trophonts) (Table S8). These findings supported the
reliability of our DEGs and GO analyses, as well as the robustness of gene expression
patterns during the transformation between life stages.

Molecular evolution of DEGs associated with different life stages

To elucidate the evolutionary patterns underlying the above DEGs in the transcriptional
profiles of different life stages, we first performed gene family expansion and contrac-
tion analyses. Since gene family expansion can facilitate adaptation, the expansion
of gene families containing DEGs may serve as an indicator of complex life history
conferring selective advantages for Colpoda. Using 14 previously published high-qual-
ity ciliate macronuclear genomes (including 2 Colpoda genomes from this study, as
well as genomes from 4 Tetrahymena and 8 Paramecium species; Table S9), a total of
406,576 genes were clustered into 41,111 gene families. Of these, 102,897 genes were
allocated into 3,584 shared gene families found in all species, while 1,876 gene families
were exclusive to Colpoda (Fig. 4b). Our analyses also revealed a total of 19,711 gene
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FIG 4 Genome evolution of Colpoda. (a) The Ks distribution of C. steinii RZ4A and C. inflata RL4B macronuclear genomes. Blue and orange represent C.

steinii RZ4A and C. inflata RL4B information, respectively. After WGD occurred, paralogs doubled and accumulated mutations in parallel, which increased the
synonymous mutations (Ks) and led to Ks peaks. Peaks A and B represent two WGD events in C. steinii RZ4A. Peak C refers to the only WGD event in C. inflata RL4B.
(b) Homologous gene cluster analysis. Venn diagram illustrates the shared and unique gene families of Colpoda, compared with Tetrahymena and Paramecium.
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duplication events in C. steinii RZ4A and 7,587 in C. inflata RL4B (Fig. S4), a finding that
aligns consistently with the aforementioned WGD analyses.

Among the DEGs identified in resting cysts (in comparison to trophonts in vegetative
growth) and in revived trophonts (vs resting cysts) of C steinii RZ4A, 28.72% and 29.32%
of them are in expanding gene families, while only 6.05% and 3.37% are in contracting
ones (Tables $S10 and S11). Significantly, many of the DEGs implicated in encystment
and excystment processes are found within these expanding gene families, implying the
possibility of these genes conferring selective advantages.

Similarly, for the DEGs identified in reproductive cysts (vs trophonts) of C. steinii RZ4A,
a substantial 26.67% are associated with expanding gene families, with only 0.99% in
contracting ones. It is noteworthy that the majority of these DEGs are involved in the cell
adhesion processes (Table $12), suggesting that this molecular function has also been
preserved by expanding gene families during the course of evolution.

The gene expansion and contraction analyses presented above provide evidence of
DEGs that are subject to selection pressures. To further quantify the selective strength
acting on the life-history-associated DEGs in C. steinii, we conducted Illumina-PE150
whole-genome sequencing on nine natural strains of C. steinii isolated from soils
collected in China between 2020 and 2022 (Fig. 1a; Table S13). The clean Illumina
reads were aligned to the genome of C. steinii RZ4A, and SNPs were called. In total,
we identified 1,157,466 SNPs for C. steinii. These SNPs yielded nucleotide diversity at all
genomic sites (1), nucleotide diversity at silent sites (1s), and Tajima’s D values of 0.04,
0.06, and 0.18, respectively.

Tajima’s D test was used to distinguish between random neutral mutations and
non-neutral mutations under selective pressure. A Tajima’s D value greater than 0
suggests a low frequency of rare alleles, which may be indicative of equilibrium selection
pressure or a population undergoing shrinkage/bottleneck. Because mRNA expression
levels of the genes specifically expressed during one life stage, regardless of whether
they are downregulated or upregulated, do not necessarily correlate with the regulation
of associated biological functions. For instance, inhibitors’ expression can be elevated
but may result in downstream functional downregulation. We, thus, compiled the DEGs
specifically expressed in each life stage as “regulation” DEGs and performed Tajima’s D
tests on them. Our analyses revealed that the mean Tajima’s D for DEGs in reproductive
cysts, resting cysts, and revived trophonts are 0.15, 0.03, and 0.09, respectively (Fig. 5a
through c). We also used the McDonald-Kreitman (MK) test (a simple and widely used
selection test), which is usually done by calculating the mean cross-gene neutrality
index (NI) values, to summarize the selection patterns within C. steinii (36, 37). The
majority of the NI values for the DEGs in reproductive cysts, resting cysts, and revived
trophonts are larger than 1, and their distributions are highly similar (Fig. 5d through
f). Taken the above together, purifying selection is, thus, dominant in genes associated
with life history regulation. This further demonstrates the functional constraint on the
complex life history with multiple life stages, as these stages are crucial for survival and
reproduction in the highly challenging soil environments.

Possible sexual processes in Colpoda

The presence of sexual processes in Colpoda remains a subject of ongoing investigation,
as there have been no direct and confirmed reports of conjugative nuclear changes in
Colpoda to date, a fact also reflected in our own observations since 2018. In a study
conducted by Dunthorn et al. (38), they explored 51 meiosis genes (11 meiosis-specific
and 40 meiosis-related genes) in Colpoda magna and found that most of these genes
align with those found in other ciliates known to undergo sexual processes.

In order to explore this, we followed the study of Dunthorn et al. (38) and reconstruc-
ted the database of these 51 meiosis genes, with a total of 391 homologs (Table S14).
Subsequently, we conducted a thorough search for these meiosis genes across 16 ciliate
macronuclear genomes, including the two Colpoda genomes assembled in this study.
Our investigations revealed that a substantial portion of meiosis genes are present with
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FIG 5 Selective pressures on DEGs of different life stages in C. steinii RZ4A. (a, b, c) m vs Tajima's D distribution of DEGs in reproductive cysts (vs trophonts,
a), resting cysts (vs trophonts, b), and revived trophonts (vs resting cysts, c) of C. steinii RZ4A. The blue dots are all the genes in the genome, and the pink dots are
DEGs (pink dots show up when they overlap with the blue ones). (d, e, f) The distribution of DEGs’ NI values in reproductive cysts (d), resting cysts (e), and revived

trophonts (f) of C. steinii RZ4A.

intact open reading frames in the macronuclear genome of C steinii RZ4A, including all
the 11 meiosis-specific genes that are also commonly found in most Paramecium species
(indicated by underlined genes in Fig. 6). Among these genes are critical components
such as SPOI I, DMCI, HOP2, MER3, MNDI, MSH4, and MSHS, all of which play pivotal roles
in recombination processes in eukaryotes (39-42).

Recombination can reduce linkage equilibrium (LD). In order to investigate potential
recombination events, we calculated linkage disequilibrium, measured as the squared
correlation between allelic states (r?). Our results revealed a rapid decline of LD within
1 Kbp region, and declining slowly with longer distance (Fig. S5), indicating possible
recombination in C steinii. We further evaluated the heterozygosity of the nine C. steinii
natural strains by calculating method-of-moments F coefficient estimates, and found
that their F values were between 0.56 and 0.87, indicating that homozygosity was more
likely. This again raises the possibility of inbreeding or low mutation rate in Colpoda.
Based on these findings, our results support the notion that all Colpoda congeners might
undergo cryptic sexual processes, which may rarely occur or not manifest in the form
of conjugation. Instead, it is possible that the cryptic sexual process is triggered by
as-yet-unknown factors within the natural soil environment.

DISCUSSION

In this thorough study, our investigation spanned multiple domains of technology,
including genomics (encompassing de novo macronuclear genome assembly and
annotation—first effort using long-read sequencing for the Colpodea class), proteomics,
and transcriptomics across four distinct life stages (namely, resting cysts, trophonts in
vegetative growth, reproductive cysts, and revived trophonts from resting cysts) using
low-input RNAseq, as well as comparative genomics and population-genomics analyses.

We successfully identified a substantial number of DEGs associated with various life
stages and confirmed their occurrence during life history of the co-existing congener
C. inflata; however, it is imperative to further determine their causal effects. Specifically,
identifying the trigger genes responsible for transitioning between life stages remains
to be done. Functional validation using efficient RNAi or gene-editing tools is the next
logical step in our research trajectory despite our unsuccessful preliminary trials. The
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FIG 6 Meiosis genes in 16 ciliate genomes. The red and blue dots represent the presence and absence of genes. The genes underlined are meiosis-specific

genes. Species with “*” represent data from Dunthorn et al. (38).

resolution of these critical aspects holds the promise of providing deeper insights into
the evolutionary mechanisms of cell differentiation in these unicellular eukaryotes.

As one of the most successful eukaryotic genera in soil, Colpoda has diverse
life history strategies that are conserved across taxa (6). These strategies, including
the extreme tolerance of resting cysts to harsh environmental conditions and fission
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within reproductive cysts, likely contribute significantly to their broad distribution and
abundant presence (3). Moreover, research has demonstrated that Colpoda species play
a pivotal role in enhancing nutrient absorption by plants, while the presence of plants,
in turn, increases the density of Colpoda (9, 43). This mutualistic relationship fosters both
the robust growth of plants and the extensive proliferation of Colpoda populations.

In addition, the mean guanine-cytosine (GC) content of Colpoda genomes exceeds
that of most other ciliates (Fig. S6). The high GC composition contributes to genome
stability and resilience in extreme environments. Various mechanisms underpin this
stability, including the presence of an extra hydrogen bond in G:C base pairs compared
to A:T base pairs, and the fact that codons with higher GC encode more hydrophobic
amino acids. These hydrophobic amino acids may enhance the stability and resistance
to denaturation of proteins within Colpoda, reinforcing their adaptability to challenging
conditions (44). Numerous predators and highly variable physicochemical factors such
as moisture, pH, and temperature might exert much stronger natural selection pressure
on Colpoda in soil habitats compared to freshwater environments where Paramecium
and Tetrahymena live. These extra selection pressures might have likely contributed to
the evolution of higher GC levels in Colpoda genomes (45). While Colpoda populations
sharing the same ecological niches in soil may have undergone co-evolution, the specific
interactions between them, including aspects such as competition and mutualism,
remain largely unexplored. Future research in this domain promises to reveal additional
strategies within Colpoda’s toolkit.

While C. inflata RL4B experienced a single whole-genome duplication (WGD) event,
C. steinii RZ4A, by contrast, underwent two such events. This difference in WGD history
likely contributes significantly to the observed doubling in genome size between the
two Colpoda species. The molecular functions of both the expanded gene families and
genes retained after WGD in C. steinii RZ4A are associated with ATP-binding, ion-binding,
and protein-binding proteins (Fig. S4, S7a and b), which are the basic cell functions
to maintain vital activities. We speculate that Colpoda require intensive energy supply
due to the harsh habitats in soil, which may be related to ATP binding. lon-binding
function may be related to morphological changes during the formation of resting and
reproductive cysts in Colpoda.

The macronuclear genome size of C. steinii RZ4A is larger than that of most
other ciliates (Fig. S4). Genome size evolution is a multifaceted process influenced by
factors such as natural selection, genetic drift, and mutations. These factors collectively
contribute to significant changes in genome size (46). In the case of C. steinii RZ4A, its
genome has experienced the most gene duplications among all the 14 ciliate genomes
analyzed in this study, while this could not solely account for its large genome size.
For example, in Paramecium, there are large genomes with few gene duplications or
small genomes with numerous gene duplications (Fig. S4). These findings underscore the
intricate nature of genome size evolution, wherein gene duplications can, indeed, lead
to genome size expansion, but the roles of natural selection and genetic drift should not
be overlooked. Further investigations are needed to disentangle the complex interplay of
these genetic factors in shaping genome sizes.

Microbial eukaryotes, comprising a substantial portion of Earth’s organisms, play
active roles in the global biogeochemical processes that govern our soils. Their
indispensability in the microbial loop, where they facilitate the transfer of materials
and energy from bacteria to higher trophic levels, underscores their profound ecological
significance. Despite ongoing research efforts, there remains an imperative need for
further investigations to unravel the intricate survival strategies embedded in their
life histories, alongside the genetic and evolutionary mechanisms that underpin their
success. These diminutive yet exceptionally resilient and ancient denizens hold the key
to unlocking the mysteries hidden beneath the Earth’s surface at the molecular level,
offering fresh insights that extend beyond the limitations of conventional methodolo-
gies. In summary, this research represents a significant advancement in the study of
the life histories of these understudied single-celled eukaryotes. It does so by using
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state-of-the-art “-omics” tools, coupled with extensive collections, isolations, microbio-
logical manipulations, and advanced microscopy techniques. This study, thus, paves the
way for a more profound understanding of the life history evolution of soil microorgan-
isms.

MATERIALS AND METHODS

We collected two Colpoda species (C. steinii reference strain RZ4A and the C. inflata
RL4B) from the Yushan campus of Ocean University of China (36°3'42"N, 120°19'56"E;
Fig. 1c), Qingdao, China, on 22 August 2018. Their DNA and RNA were extracted using
the MasterPure Complete DNA and RNA Purification kit. Subsequently, we used MinlON
(in-lab) and NovaSeq6000 (Berry Genomics, Inc., Beijing) sequencers for Nanopore and
Illumina sequencing on the reference strains. We then assembled and annotated the
macronuclear genomes of both species. In order to reveal transcription patterns of
different life stages of each species, low-input RNAseq was performed, followed by
differential gene expressions analyses. In addition, we also conducted comparative
genomics and population genomics analyses to elucidate the evolutionary patterns of
life-history-associated genes. Details can be found in the Supplemental Materials and
Methods.
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