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ABSTRACT

High-level synthesis (HLS) is an automated design process that
transforms high-level code into optimized hardware designs, en-
abling rapid development of efficient hardware accelerators for
various applications such as image processing, machine learning,
and signal processing. To achieve optimal performance, HLS tools
rely on pragmas, which are directives inserted into the source code
to guide the synthesis process, and these pragmas can have various
settings and values that significantly impact the resulting hardware
design. State-of-the-art ML-based HLS methods, such as HARP, first
train a deep learning model, typically based on graph neural net-
works (GNNs) applied to graph-based representations of the source
code and its pragmas. They then perform design space exploration
(DSE) to explore the pragma design space, rank candidate designs
using the trained model, and return the top designs as the final
designs. However, traditional DSE methods face challenges due
to the highly nonlinear relationship between pragma settings and
performance metrics, along with complex interactions between
pragmas that affect performance in non-obvious ways.

To address these challenges, we propose COMPAREXPLORE, a
novel approach that learns to compare hardware designs for effec-
tive HLS optimization. COMPAREXPLORE introduces a hybrid loss
function that combines pairwise preference learning with point-
wise performance prediction, enabling the model to capture both
relative preferences and absolute performance values. Moreover,
we introduce a novel NoDE DIFFERENCE ATTENTION module that
focuses on the most informative differences between designs, en-
hancing the model’s ability to identify critical pragmas impacting
performance. coMPAREXPLORE adopts a two-stage DSE approach,
where a pointwise prediction model is used for the initial design
pruning, followed by a pairwise comparison stage for precise per-
formance verification. Experimental results demonstrate that com-
PAREXPLORE achieves significant improvements in ranking metrics
and generates high-quality HLS results for the selected designs,
outperforming the existing state-of-the-art method.
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1 INTRODUCTION

High-Level Synthesis (HLS) has emerged as a transformative tech-
nology in the realm of hardware design, bridging the gap between
high-level software abstractions and efficient hardware implemen-
tations. Tools such as Xilinx’s Vitis HLS [2] automate the translation
of high-level code into optimized hardware designs, enabling rapid
development of specialized accelerators for image processing, ma-
chine learning, signal processing [6-8, 20], etc.

Central to the HLS design flow is the concept of pragmas—directives
embedded within the high-level code that guide the synthesis pro-
cess, which heavily affects the effectiveness of HLS in producing
high-quality designs. However, the relationship between pragma
settings and performance metrics is highly nonlinear, with intri-
cate interactions and dependencies that are difficult to predict or
reason about. Traditional design space exploration (DSE) methods,
which rely on heuristics and iterative synthesis, often fall short in
efficiently identifying optimal configurations [41].

To address these challenges, researchers have turned to machine
learning (ML) techniques to aid in the DSE process. State-of-the-art
ML-based HLS methods, such as GNN-DsE [28] and HARP [29], utilize
deep learning models to guide the DSE process for high-quality
pragma configurations. These approaches typically involve two
key steps: (1) training a predictive model, often based on graph
neural networks (GNNs) [15, 39], to learn the mapping between
designs with varying pragma settings and performance metrics,
and (2) performing DSE using the trained model to rank and select
the most promising candidate designs.

While ML-based methods have shown promise in improving the
efficiency and effectiveness of HLS, they still face limitations in
capturing the complex relationships and interactions within the
pragma design space. We hypothesize that the highly nonlinear
nature of the design space, coupled with the intricate dependencies
between pragmas, poses challenges for accurate performance pre-
diction and the ranking of candidate designs. Our experiments in
Section 4 provide further evidence of this issue.
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We hypothesize that comparing a pair of designs and predicting
which design is better may an easier task compared with accurately
predicting the design quality. In this paper, we propose COMPAREX-
PLORE, a novel approach to DSE in HLS that leverages the power
of comparative learning, a paradigm where models are trained to
discern relative preferences between data points [5], to navigate
the pragma design space effectively. coMPAREXPLORE introduces
a hybrid loss function that combines pairwise preference learning
with pointwise performance prediction, enabling the model to cap-
ture both relative preferences and absolute performance values.
By learning to compare designs based on their pragma settings
and performance characteristics, COMPAREXPLORE can effectively
identify the most promising configurations and guide DSE towards
optimal hardware designs.

Moreover, we introduce a novel NODE DIFFERENCE ATTENTION
module that focuses on the most informative differences between
designs. This attention mechanism allows COMPAREXPLORE to pri-
oritize the pragma settings that have the greatest impact on perfor-
mance, enhancing the model’s ability to make accurate comparisons
and identify critical design choices.

To balance exploration and exploitation in the DSE process, com-
PAREXPLORE uses a two-stage approach. In the first stage, a point-
wise prediction model is used to explore and efficiently prune the
design space, identifying a subset of promising candidates. This
stage leverages the model’s ability to estimate absolute performance
values and quickly eliminate suboptimal designs. In the second
stage, a pairwise comparison model is leveraged to perform pre-
cise performance verification and rank the remaining candidates
based on their relative performance. This stage takes advantage
of the model’s comparative learning capabilities to make nuanced
distinctions between designs and select the top-performing config-
urations.

We evaluate COMPAREXPLORE on a comprehensive set of HLS
kernels and demonstrate its effectiveness in improving the qual-
ity of the generated hardware designs. Experimental results show
that coMPAREXPLORE achieves significant improvements in ranking
metrics, compared to existing state-of-the-art methods. Moreover,
the designs selected by coMPAREXPLORE consistently outperform
those obtained through baseline approaches.

The main contributions of this paper are as follows: We pro-
pose COMPAREXPLORE, a two-stage approach to DSE in HLS that
leverages comparative learning to effectively navigate the pragma
design space and identify high-quality hardware designs.

e We introduce a hybrid loss function that combines pairwise
preference learning with pointwise performance prediction,
enabling coMPAREXPLORE to capture both relative prefer-
ences and absolute performance values.

e We present a novel NODE DIFFERENCE ATTENTION module
that focuses on the most informative differences between
designs, enhancing the model’s ability to identify critical
pragma settings and make accurate comparisons.

e We propose a two-stage DSE approach that balances explo-
ration and exploitation, using a pointwise prediction model
for efficient design pruning and a pairwise comparison model
for precise performance verification inspired by Ranked
Choice Voting (RCV) [1, 23].
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e We conduct extensive experiments on a diverse set of HLS
benchmarks and demonstrate the superiority of COMPAREX-
PLORE over HARP in terms of ranking metrics and the quality
of the generated hardware designs.

2 RELATED WORK
2.1 ML and GNN for HLS and DSE

Traditional ML algorithms like random forests and linear regression
have been used to model HLS tools [19]. However, recent studies
demonstrate that GNNs significantly improve accuracy in various
HLS tasks [28, 36-38].

Learning algorithms have been applied to accelerate HLS DSE
for finding Pareto-optimal designs [36]. In contrast to traditional
heuristics-based approaches [30], these methods employ data-driven
techniques. IronMan [36], for instance, trains a reinforcement learn-
ing agent to optimize resource allocation.

2.2 Pairwise Comparison in ML

Pairwise comparison has a broad range of applications in machine
learning beyond its traditional uses in ranking items [21, 26, 35].
In fields such as information retrieval [16] and recommender sys-
tems [25], pairwise methods have proven effective for sorting and
prioritizing items based on user preferences [5].

Metric Learning In metric learning, pairwise comparisons
are used to learn meaningful distances between items. Techniques
such as contrastive loss and triplet loss are used to learn a distance
metric in which similar items are closer [13, 18].

Preference Learning Pairwise comparison is also central to
preference learning [10], where the goal is to learn a model that
predicts preferences between items based on observed pairwise
comparisons.

Natural Language Processing. Pairwise comparison methods
are crucial for tasks such as sentence similarity [32, 34], evaluating
machine translation [11], and aligning Large Language Models with
human preferences [22, 24, 31].

2.3 Pairwise Comparison in Electronic Design
Automation

In the context of hardware optimization, comparative learning and
ranking approaches have been explored in the quantum computing
domain for optimizing circuit layouts [12], which demonstrates
a machine learning based method that ranks logically equivalent
quantum circuits based on their expected performance, leading to
improvements in reducing noise and increasing fidelity. To the best
of our knowledge, we are among the first to adopt the pairwise
comparison paradigm in ML-based HLS.

3 METHODOLOGY

3.1 Overview

In this section, we introduce our proposed model, COMPAREXPLORE,
for effective design space exploration in high-level synthesis. com-
PAREXPLORE is a novel comparative learning framework that com-
bines pointwise prediction and pairwise comparison models to effi-
ciently navigate the pragma design space and identify high-quality
design configurations.
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Figure 1: Overview of coMPAREXPLORE. The model consists of a GNN encoder, a NODE DIFFERENCE ATTENTION module, and
two MLP decoders for pairwise comparison and pointwise prediction tasks. The GNN encoder learns node embeddings by
aggregating information from neighboring nodes. The NopE DIFFERENCE ATTENTION module focuses on the most informative
differences between node embeddings, computes attention scores based on these differences, and aggregates the embedding
differences. The model is used in the two-stage DSE process depicted at the bottom. The major novel components are highlighted

in the reddish color.

3.2 Problem Setup

Let G = (V, ) denote the graph representation of an HLS design
used by HARP [29], where V is the set of nodes and & is the set of
edges. Each node v € V is associated with a feature vector x, € Rd,
where d is the feature dimension. We denote |G| as the number of
nodes.

The goal of design space exploration (DSE) is to find the optimal
valid pragma configuration p* € P that maximizes the performance
metric y, which is intuitively the inverse of the latency defined
consistently with [29], where P is the space of all possible pragma
configurations.

3.3 Model Architecture

COMPAREXPLORE consists of a GNN encoder and an MLP-based
decoder, as shown in Figure 1.

GNN Encoder: The GNN encoder learns node embeddings by
aggregating information from neighboring nodes. We adopt a stack
of GNN layers, such as GCN [15], GAT [33], GIN [40], or Trans-
formerConv [27], to capture the structural information and node
features of the hardware design graph. The output of the GNN
encoder is a set of node embeddings h, € R [v € V, where d’ is
the embedding dimension. A pooling operation such as summation

is applied to the node embeddings to obtain one embedding per
design denoted as hg.

Node Difference Attention (NODE DIFFERENCE ATTEN-
TION): The NODE DIFFERENCE ATTENTION module is designed
to focus on the most informative differences between node em-
beddings. It takes the node embeddings from the GNN encoder
and computes attention scores based on the differences between
node pairs. The attention scores are then used to weight the dif-
ferences, emphasizing the most critical pragma-related differences.
The weighted differences are aggregated to obtain a graph-level
embedding.

For a design pair (i, j), denote their node embeddings as H; €
RIG!Xd" and H; € RI9/1*?" Since DSE is only concerned with de-
signs of the same kernel, during training, we only compare designs
of the same kernel, i.e. G; and G; only differ in the pragma nodes
and |Gi| = |Gj|. The differences between the node embeddings
in H; and H; are computed: D;; = H; — H;. The attention scores
are computed by concatenating the node embeddings with their
corresponding differences and passing them through an attention
network:

sij = AttentionNet(concat(H;, Hj, D;;)), sij € RIG! (1)

AttentionNet is a multi-layer perceptron (MLP) that produces at-
tention scores. To focus on the most informative differences, we
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propose the following attention mechanism to learn which node-
level embedding difference contributes the most to the comparison
between the designs:

ajj = softmax(s;j), ajj € RIGil, 2)

The attention scores are then used to weight the difference embed-
dings and aggregate the differences:

|Gil

hgij = Z SOftn’laX(Sij)k . Dij,k 3)

k=1
where |G;| = |G| as described previously, and k indicates the k-th
element in a softmax(s;;) and the k-th row in D;;. hQij e RY can
be viewed as the graph-level difference-embedding that captures
the most informative pragma-related differences.

MLP Decoders: Since there are two tasks, the pairwise design
comparison task and the pointwise design prediction task, we use
two MLP decoders.

For the pairwise prediction task, the MLP decoder takes the
concatenated results of various comparison operations applied to
the graph-level embeddings of the two designs as input. Given
the graph-level difference-embeddings hg,  produced by the Nobe
DIFFERENCE ATTENTION module, and the individual graph-level
embeddings hg, and hg, produced by the pooling operation over
H; and H;:

hpairij = concat(hg, © hgj, hgij)’ (4)
where © denotes the Hadamard product, i.e. element-wise product.

For the pointwise prediction task, the MLP decoder takes the
individual design embedding hg, and hg; as input:

hpointi = hg,», ©)
hpointj = hgj~ (6)

Both MLP decoders consist of multiple fully connected layers
with non-linear activations, such as ReLU. The pairwise MLP de-
coder outputs a 2-dimensional vector representing the raw logits
for the pairwise comparison, while the pointwise MLP decoder out-
puts a scalar value representing the predicted performance metric
for the individual design, i.e.

Zjj = MLPpair (hpairij)s (7)
Zj = MLPpoint(hpointi)’ (8)
Zj = MLPpoint (hpointj)' (9)

3.4 Training of comPAREXPLORE with Hybrid
Loss Function

To train COMPAREXPLORE, we propose a hybrid loss function that
combines pairwise preference learning with pointwise performance
prediction. This enables the model to capture both relative prefer-
ences between designs and absolute performance values.

The hybrid loss function is defined as:

L= -Cpoint + a'-Lpair (10)

where a € [0,1] is a hyperparameter that controls the balance
between the pairwise and pointwise losses.

The pairwise loss Lpqir is calculated using a cross-entropy loss

that evaluates the model’s ability to correctly rank pairs of design
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configurations. For each pair of designs, the MLP decoder outputs a
2-D vector of logits, z;j, indicating the model’s confidence in the rel-
ative performance of designs i and j. The softmax function is applied

to these logits to obtain probabilities, p;; = [log(pl.(jl)), log(pl.(jz))}
The cross-entropy loss for the pairwise comparison is defined

as:

> (1w > yprogpl)

(i.j)eD
1y < y))log(p}})). (1)

where 1(-) is the indicator function, and D is the set of all pairs
(i, j) sampled during training.

The pointwise loss Lpoint is computed using a mean squared
error (MSE) loss between the ground-truth and the predicted per-
formance metric over design pairs sampled for Lpgir.

Lpair ==

3.5 Two-Stage DSE Approach

We propose two-stage approach for design space exploration, as
described in Algorithm 1.

Algorithm 1 Two-Stage Design Space Exploration

1: Stage 1: Use the pointwise prediction model to score and prune
the design space to the top K7 candidate designs as done in [29].

2: Stage 2: Apply pairwise comparisons among the pruned
designs to obtain Kz < K final designs.

3: scores « Initialize array of size K; X K; with zeros

4: fori < 1to Kj do

5 for j« i+1toKj; do

6: d; « designs]i]

7: dj « designs[j]

8: scores[d;][d}] < PairwiseComparisonModel(d;, d;)
9:  end for

10: end for

11: remain « designs

12: while |remain| > K3 do

13:  points « Initialize array of size |remain| with zeros
14:  fori « 1to |remain| do

15: d; < remain][i]

16: for j « i+ 1to |remain| do

17: dj < remain|j]

18: points[d;] < points[d;] + scores[d;][d;]

19: points[d;] « points[d;] + 1 — scores[d;][d}]
20: end for

21:  end for

22 minPoints < min(points)

23:  remain < remain \ minPoints
24: end while

25: return remain

In the first stage, the pointwise prediction model is used to effi-
ciently prune the design space # and identify a subset of K; promis-
ing candidate designs ' C P. This stage leverages the model’s
ability to estimate absolute performance values and quickly elimi-
nate suboptimal designs.
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Table 1: Main results. The numbers in parentheses indicate the number of designs used for regression (525) and the number of
design pairs used for classification (174 for d;, 827 for dy, 1411 for ds, and 8139 for ALL).

Model Regression (|) Classification (T) Ranking (T)
RMSE (525) ACC,d; (174) ACC,dz (827) ACC,ds (1411) ACC, ALL (8139) Kendall’s 7

HARP 0.2333 0.8218 0.8609 0.8866 0.8859 0.4157

COMPAREXPLORE 0.3570 0.8161 0.8888 0.9118 0.9117 0.4319

In the second stage, the pairwise comparison model is used to
perform precise performance verification on the candidate designs
in P’. The pairwise comparisons are used to rank the designs based
on their relative performance, and the top-performing designs are
selected as the final designs.

Specifically, the design with the minimum total score is itera-
tively removed from the remain set until only K3 designs are left.
This process is analogous to the Ranked Choice Voting (RCV) sys-
tem, where the candidate with the fewest votes is eliminated in
each round. In our case, the pairwise comparison scores serve as
the "votes" that determine which designs are eliminated and which
ones remain in the top K; set. This approach allows for a more
nuanced decision-making process.

3.6 Complexity Analysis

Compared to the original HARP model or a pointwise-only approach,
the newly introduced NoDE DIFFERENCE ATTENTION module has
a time complexity of O(|G|d"), which is linear to the number of
nodes.

In the two-stage DSE approach, the pointwise prediction stage
has the same time complexity as HARP. The newly introduced pair-
wise comparison stage has a time complexity of O(Kf), where K
is the number of candidate designs which is usually set to 100. The
actual pairwise comparison, i.e. lines 4-10 in Algorithm 1, can be
performed in a batch-wise fashion, with a batch size of B. This
reduces the time complexity to O(Kl2 /B).

4 EXPERIMENTS

4.1 Experimental Setup

We evaluate our proposed approach using the Xilinx Vitis HLS tool
(version 2021.1), which is a more recent version compared to the one
used in HARP and the HLSYN benchmark [3]. Our dataset consists
of 40 kernels from various application domains. The kernels are
synthesized using Vitis HLS, and the resulting designs are used for
training and evaluation.

The dataset consists of a total of 10,868 designs, with 9,818
(90.34%) used for training, 525 (4.83%) for validation, and 525 (4.83%)
for testing. The test set is used as a transductive test set, where the
model has access to the design graphs but not their performance
values during training. We ensure all the sampled design pairs come
from the training set for a fair comparison. The validation loss is
used to select the best model for testing. Training is conducted on
a machine with 8 NVIDIA PG506 GPUs.

4.2 Hyperparameter and Implementation
Details

Our approach adopts TransformerConv with 7 layers and 64-dimensional

node embeddings. Consistent with HARP, we use node attention
and encode pragmas using MLPs. The model is trained using the
AdamW optimizer with a learning rate of 0.001 and a batch size of
128 for 1600 epochs. We use a cosine learning rate scheduler [17].
The prediction target, performance, is defined consistently with
HARP. « is set to 1. For DSE, we set Ky to 100 and K> to 10 with a
total time budget of 12 hours with a batch size B = 512. The model is
implemented in PyTorch Geometric [9]. The full hyperparameters,
model implementation, and datasets will be released publicly to
enhance reproducibility.

4.3 Evaluation Metrics

We evaluate our approach using two main metrics: pairwise classi-
fication accuracy and ranking metrics.

o Pointwise Regression Error: This metric measures the model’s
ability to accurately make prediction for the performance
metric for each design in the test set. The Root Mean Squared
Error (RMSE) is used.

e Pairwise Classification Accuracy: This metric measures the
model’s ability to correctly predict which design in a pair
has better performance across design pairs in the test set.
We report the accuracy for different degrees of pragma dif-
ferences (dj, dz, d3 indicating design pairs differing by 1, 2
and 3 pragma settings) and the overall accuracy (ALL).

e Ranking metric: We report Kendall’s 7, which measures the
ordinal association between the predicted performance rank-
ings and the true performance rankings of the designs in the
test[14].

We randomly select six kernels where we perform DSE followed
by running the HLS tool to evaluate the selected designs by the DSE
process. We report the lowest latency of the selected Ky designs.

4.4 Loss Curves

Figure 2 presents the training loss curves for our proposed com-
PAREXPLORE, including the pairwise loss (Lpgir), pointwise loss
(Lpoint), and the overall loss (£). The figure demonstrates a de-
crease in both pairwise and pointwise losses, indicating the model’s
effectiveness in learning from the data for both tasks.

4.5 Main Results

Table 1 presents the comparison between the vanilla HARP model
and our proposed approach. Our approach achieves higher pairwise
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Figure 2: Loss curves for the proposed COMPAREXPLORE.

classification accuracy for designs with more pragma differences
(d2 and d3) and overall (ALL) compared to the vanilla HARP model.
In terms of ranking performance, our approach achieves a higher
Kendall’s 7 score, indicating a better alignment between the pre-
dicted and true rankings of the designs. While HARP achieves a
lower regression error, the hybrid loss design in COMPAREXPLORE
leads to a more balanced performance across classification accuracy
and ranking metrics.

The accuracy improves as the number of differences between
designs increases ( d; < dy < d3). This suggests that the model finds
it easier to distinguish between designs that have more differences.
When designs differ in more pragmas, the performance metrics
tend to vary more significantly, making it easier for the model to
learn and identify which design is better. The increasing accuracy
from dj to ds suggests potential future work, such as incorporating
curriculum learning to progressively improve the model’s perfor-
mance on more challenging design pairs with smaller performance
differences [4].

Figure 3 shows the design space exploration results using our pro-
posed approach compared to the vanilla HARP model. The results
demonstrate that our proposed approach consistently outperforms
the vanilla HARP model across all kernels in terms of latency re-
duction. On average, COMPAREXPLORE achieves a 16.11% reduction
in latency compared to HARP. The improvement is particularly sig-
nificant for the “adi” kernel, where coMPAREXPLORE reduces the
latency by nearly 50%. These results highlight the effectiveness
of our approach in identifying high-quality designs that lead to
improved hardware performance.

Latency

Figure 3: Latency in terms of cycle count (]) of the final de-
signs selected by the DSE stage. The figure is on the log-scale.

4.6 Parameter Sensitivity Study

Figure 4 shows the effect of @ on the coMPAREXPLORE’s perfor-
mance. As « increases, the regression RMSE worsens, while the
classification accuracy peaks around a = 1. Kendall’s 7 ranking
metric reaches its highest value at & = 1 and then declines. These
trends suggest that excessive emphasis on pairwise comparisons
may not necessarily improve overall performance. In contrast, mod-
erate a values effectively balance pointwise and pairwise losses,
optimizing both tasks effectively.
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Figure 4: As « increases, the model places more emphasis on
the pairwise loss compared to the pointwise loss. « varies in
{0.125,0.25,0.5, 1, 2,4, 8}.

4.7 Time Breakdown Analysis

The average time breakdown analysis presented in Table 2 high-
lights the efficiency of our two-stage DSE process. On average,
Stage 1 accounts for approximately 87.06% of the total computation
time, while Stage 2 contributes only 12.94%. This demonstrates
that the pairwise comparison phase (Stage 2) introduces minimal
additional overhead, ensuring that the overall computational effi-
ciency is maintained. The relatively small proportion of time spent
in Stage 2 indicates that our approach is practical and scalable for
large-scale design space exploration tasks, making it suitable for
optimizing HLS designs.

Table 2: Average Time Breakdown of Stage 1 and Stage 2

Stage Average Time (%)

Stage 1 87.06
Stage 2 12.94

5 CONCLUSION AND FUTURE WORK

In this paper, we presented COMPAREXPLORE, a novel approach for
HLS design space exploration that addresses the challenges of mod-
eling complex design performance relationships. By incorporating
a hybrid loss function, a Node Difference Attention module, and
a two-stage DSE approach, COMPAREXPLORE demonstrates signif-
icant improvements in both pairwise comparison accuracy and
ranking metrics. Our results show that explicitly learning to com-
pare designs, with a focus on pragma-induced variations, leads to
the discovery of higher quality HLS-generated designs.

Although coMPAREXPLORE does not achieve the lowest regres-
sion error compared to HARP, our results show that explicitly learn-
ing to compare designs leads to the discovery of higher quality
HLS-generated designs. In addition, in practice, it is worth consid-
ering a separate model such as HARP for stage 1 of the DSE process
specializing in accurate pointwise prediction.

The success of comPAREXPLORE in HLS DSE highlights the
broader potential of learning-to-rank methods in the hardware
optimization domain. In future work, we believe that this para-
digm can be further explored and extended. For example, the ability
to rank and select designs within a large language model (LLM)
framework could lead to tighter integration of language models
and hardware design enabling a more intuitive and automated de-
sign process, and achieving better performance in both regression
and classification due to the higher expressive power of LLMs in
capturing complex design relationships and patterns.
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