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ABSTRACT

In recent years, there has been a growing interest in low-Reynolds-number, unsteady flight applications, leading to renewed scrutiny of the
Kutta condition. As an alternative, various methods have been proposed, including the combination of potential flow with the triple-deck
boundary layer theory to introduce a viscous correction for Theodorsen’s unsteady lift. In this research article, we present a dynamical system
approach for the total circulatory unsteady lift generation of a pitching airfoil. The system’s input is the pitching angle, and the output is the
total circulatory lift. By employing the triple-deck boundary layer theory instead of the Kutta condition, a new nonlinearity in the system
emerges, necessitating further investigation to understand its impact on the unsteady lift model. To achieve this, we utilize the describing
function method to represent the frequency response of the total circulatory lift. Our analysis focuses on a pitching flat plate about the mid-
chord point. The results demonstrate that there is an additional phase lag due to viscous effects, which increase as the reduced frequency
increases, the Reynolds number decreases, and/or the pitching amplitude increases.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0173643

NOMENCLATURE

a Hinge location along the airfoil chord
Aa Angle of attack amplitude
b Half chord
Be Scaled version of the trailing edge singularity strength
Bs The strength of the trailing edge singularity
Bv Unsteady triple-deck viscous correction

C kð Þ Theodorsen function (lift frequency response function)
CL Lift coefficient
CLc Total circulatory lift coefficient
CLP Potential flow lift coefficient
CLQS Quasi-steady lift coefficient
CLs Viscous steady flow lift coefficient

HðmÞ
n Hankel function of the mth kind of order n
IðÞ Imaginary part of ()

i
ffiffiffiffiffiffi�1

p
k Reduced frequency

NBv The describing function of the triple-deck nonlinearity
NCL The describing function of the total circulatory lift

P Pressure
R Reynolds number

RðÞ Imaginary part of ()
t Time variable
U Free stream velocity
vp The airfoil’s normal velocity

v1=2 The normal velocity at the mid-chord
v3=4 The normal velocity at the three-quarter-chord point

a Angle of attack
ae Scaled angle of attack
as Steady angle of attack or actual angle of attack
e R�1=8

k Blasius skin friction coefficient
q Density
x Oscillation frequency

I. INTRODUCTION

The classical theory of unsteady aerodynamics has witnessed sig-
nificant advancements in recent years due to the emergence of some
modern applications such as bio-inspired flights (flapping flight),
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highly flexible aircraft, etc. These developments are primarily based on
the assumptions introduced by Prandtl1 and Birnbaum,2 regarding the
flow around a thin airfoil. These assumptions, valid for high Reynolds
numbers and small angles of attack, involve the shedding of vorticity
sheets from the trailing edge, and the flow outside these sheets is con-
sidered irrotational. Additionally, they asserted that vorticity genera-
tion is a result of flow unsteadiness. These assumptions formed the
basis for many analytical theories of linear aerodynamics, where an
ideal flow is only governed by the Laplace equation, which is a linear
equation enabling the use of linear properties like superposition.
Consequently, these assumptions were employed in both steady theo-
ries (e.g., the thin airfoil theory3,4 and the lifting surface theory5,6) and
unsteady ones (e.g., Wagner’s lift step response,7 Theodorsen’s lift fre-
quency response,8 and the contributions of Von Karman and Sears9).
Moreover, these assumptions continue to be central to recent develop-
ments in the field such as those by Yongliang et al.,10 Pullin and
Wang,11 Michelin and Smith,12 Ramesh et al.,13 Ramesh et al.,14 Taha
et al.,15 Yan et al.,16 Zakaria et al.,17 Xia and Mohseni,18 and Hussein
et al.19

In addition to the aforementioned assumptions, researchers typi-
cally adopted more assumptions to make the analysis of unsteady aero-
dynamics tractable: they assumed small disturbance variations to the
mean flow (i.e., flat wake assumption), and they replaced the thin air-
foil and the wake with singularities of vorticity which satisfy Laplace’s
equation everywhere except at the surface of singularities (i.e., they are
weak solutions). In order to find a unique solution of the vorticity
strength (hence, the generated lift), three conditions are needed.
However, only two are available: the no penetration boundary condi-
tion (the airfoil surface is considered a flow streamline) and the conser-
vation of total circulation. The third condition is considered mainly
through observation of the flow around a thin airfoil with a sharp trail-
ing edge by Martin Kutta (1902), and it is the famous Kutta condition.
It asserts that there is no flow around the trailing edge (i.e., the flow
stagnation point is at the point in the cylinder domain corresponding
to the trailing edge). It is basically a singularity removal condition;
Crighton20 defined it as a condition of least singularity. The Kutta con-
dition is an appropriate representation for steady flow as the stagnation
point lies at the trailing edge in the cylinder domain. In contrast, the
stagnation point in an unsteady impulsive flow starts at the upper sur-
face of the airfoil ahead of the trailing edge and moves downstream
along the upper surface until it reaches the trailing edge at the steady
state condition.21

Numerous papers in the literature have criticized the applica-
tion of the Kutta condition to unsteady flows, prompting the need
for corrections: Woolston and Castile,22 Rott and George,23

Abramson and Chu,24–26 Henry,27 Chu,28 Shen and Crimi,29 Orszag
and Crow,30 Basu and Hancock,31 Daniels,32 Satyanarayana and
Davis,33 Bass et al.,34 Ansari et al.,35 Pitt Ford and Babinsky,36

Hemati et al.,37 Xia and Mohseni,18 Taha and Rezaei,38 Zhu et al.,39

Gonzalez and Taha,40 and Taha and Gonzalez.41,42 To correct for
the Kutta condition in unsteady applications, Taha and Rezaei38,43

developed a viscous extension of the classical theory of unsteady
aerodynamics. They utilized the unsteady boundary layer triple-
deck theory, originally developed by Brown and Daniels44 and
Brown and Cheng,45 to provide a viscous extension of Theodorsen’s
lift frequency response without relying on the Kutta condition.

In this paper, we revisit the viscous extension of Theodorsen’s lift
frequency response model.38 Instead of linearizing the theory to obtain

a linear frequency response as previously done by Taha and Rezaei,38

we construct a describing function of the nonlinear dynamics of the
viscous unsteady lift. Notably, a linear frequency response is indepen-
dent of the input signal’s amplitude (e.g., angle of attack). With the
constructed describing function, we investigate the effects of pitching
amplitude on the frequency response of the unsteady lift at different
Reynolds numbers.

II. UNSTEADY LIFT MODEL

The extended Theodorsen’s unsteady lift model comprises three
components:38 potential-flow noncirculatory lift, potential-flow circu-
latory lift, and a viscous correction implemented through the triple-
deck boundary layer theory.

A. Potential-flow model

Consider an arbitrarily-deforming thin airfoil subjected to a uni-
form stream U, as depicted in Fig. 1. The pressure distribution on the
airfoil’s upper surface can be represented by a series solution satisfying
the Kutta condition, as explained by Robinson and Laurmann46

P h; tð Þ � P1 ¼ q
1
2
a0 tð Þ tan h

2
þ
X1
n¼1

an tð Þsin h
" #

; (1)

where x ¼ b cos h and a0 is the leading-edge singularity term. The
series coefficients are determined using the no penetration boundary
condition as follows.

The plate’s normal velocity is expressed in terms of the plate
motion kinematics in a Fourier series with coefficients bn,

vp h; tð Þ ¼ 1
2
b0 tð Þ þ

X1
n¼1

bn tð Þcos nh: (2)

Hence, the coefficients an of the pressure series can then be written in
terms of bn (which are known from the plate motion) as follows:

an tð Þ ¼ b
2n

_bn�1 tð Þ þ Ubn tð Þ � b
2n

_bnþ1 tð Þ; 8 n � 1: (3)

For the a0 term, an integral equation needs be solved, which is chal-
lenging for arbitrary time-varying motion. However, it has been solved
for common inputs, e.g., harmonic motion. In this study of the nonlin-
ear behavior of Theodorsen’s viscous extension, we focus on simple
harmonic motion, with the airfoil’s normal velocity expressed in terms
of a Fourier series,

FIG. 1. An airfoil subject to a sinusoidal time varying pitching.
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vp h; tð Þ ¼ Vp hð Þeixt ; Vp hð Þ ¼ 1
2
B0 þ

X1
n¼1

Bncos nh: (4)

Consequently, a0 can be expressed as

a0 tð Þ ¼ U B0 þ B1ð ÞC kð Þ � B1

� �
eixt ; (5)

where CðkÞ is Theodorsen’s frequency response function, which
depends on the reduced frequency k ¼ xb

U and can be evaluated using
the Hankel functionHðmÞ

n of themth kind of order n,

C kð Þ ¼ H 2ð Þ
1 kð Þ

H 2ð Þ
1 kð Þ þ i H 2ð Þ

0 kð Þ : (6)

Finally, the potential-flow lift coefficient can be written as

CLP ¼ � p
U2

a0 þ a1ð Þ; (7)

which, according to Theodorsen,8 can be divided into circulatory and
noncirculatory components.

B. Viscous model (the triple-deck boundary layer
theory)

Over the years, various extensions to the original boundary layer
theory developed by Prandtl47 have been proposed. One such theory is
the triple-deck boundary layer theory, devised to resolve the flow near
the trailing edge. It divides the flow around a flat plate into three
regimes, as explained by Messiter48 and shown in Fig. 2: (i) the upper
deck is composed of irrotational flow; (ii) the main deck contains rota-
tional but inviscid (no viscous forces) flow; and (iii) the lower deck
where Prandtl’s boundary layer equation applies. The triple-deck the-
ory matches the Blasius boundary layer49 upstream of the trailing edge
with Goldstein’s shear layer50 downstream of the edge, resolving the
discontinuity in the viscous boundary condition from zero slip on the
plate to zero stress on the wake centerline. This approach provides
detailed flow information in the vicinity of the trailing edge down to
the Kolmogorov length scale.

1. Steady triple-deck

For steady flow over a flat plate at an angle of attack, Euler’s equa-
tion has infinitely many solutions, each with a different value of circu-
lation over the plate.40 The velocity distribution corresponding to this
family of solutions can be expressed as

u
U

¼ 1þ as

ffiffiffiffiffiffiffiffiffiffiffi
1� ~x
1þ ~x

r
� Bsffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~x2
p ; (8)

where Bs is the correction to Kutta’s circulation, which leads to a singu-
larity at the trailing edge. Note that any correction to the Kutta condi-
tion must allow for a singularity at the trailing edge within the
framework of ideal flow. That is, Bs represents the strength of the trail-
ing edge singularity, corresponding to each solution in the family.
According to the Kutta condition, the solution with Bs ¼ 0 is selected
by nature. However, the Kutta condition is replaced in this study by
the triple-deck theory.

According to the triple-deck theory, the strength of the trailing
edge singularity can be calculated as51

Bs ¼ 2e3k�5=4 Be aeð Þ as; (9)

where
k ¼ 0:332 is the Blasius skin friction coefficient.
e ¼ R�1=8, where R is the Reynolds number.
as is the steady angle of attack.
ae ¼ e�1=2k�9=8as is the scaled angle of attack.
Be is a scaled version of the trailing edge singularity strength,

which is determined by the numerical solution of Prandtl’s partial dif-
ferential equations in the lower deck. Chow and Melnik52 expressed Be

as a nonlinear function of the scaled angle of attack ae, as shown in
Fig. 3.

Hence, the viscous steady lift coefficient can be written in terms
of the trailing edge singularity as

CLs ¼ 2p sin as � Bsð Þ: (10)

Chow and Melnik52 concluded that the trailing edge stall angle of
attack ae is equal to 0.47; at this value, the flow will separate from the

FIG. 2. The triple-deck structure and various flow regimes.48
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upper surface of the flat plate, limiting the actual angle of attack to the
range as ¼ 3.1 �–4.2 � for Reynolds number in the range of 104–106.

2. Unsteady triple-deck

Brown and Daniels44 were the first to develop an unsteady
version of the triple-deck theory for high-frequency x and low-
amplitude oscillations of a flat plate, corresponding to a range of
reduced frequencies k from 5 to 15 for Reynolds numbers R in the
range of 104–106 (where k is of order R1=4). However, these reduced
frequencies are too large for engineering applications. Therefore,
Brown and Cheng45 obtained the unsteady triple-deck solution for
a more practical range of reduced frequencies 0 < k � R1=4. Taha
and Rezaei38 utilized their solution to develop a viscous extension
of the classical theory of unsteady aerodynamics, as explained in
Sec. II A. They focused on deriving a viscous extension of
Theodorsen’s linear frequency response, resulting in a Reynolds-
number-dependent linear frequency response. However, a linear
frequency response is independent of the input amplitude (e.g.,
angle of attack). In this study, we adopt the concept of describing
function for weakly nonlinear dynamical systems53 to investigate
the nonlinear effects of pitching amplitude on the frequency
response at different angles of attack. Figure 4 provides a schematic
representation of the contribution of this paper in comparison to
the efforts of Taha and Rezaei38 and Theodorsen.8

3. Viscous correction

In the context of a pitching flat plate mapped to a circular cylin-
der through standard conformal mapping, Taha and Rezaei38 intro-
duced additional circulation Cv at the center of the cylinder as a
correction to Kutta’s circulation. As a result, this circulation creates a
singularity of strength Bv in the pressure distribution at the trailing
edge. That is, the potential-flow series (1) is modified with the viscous
contribution Bv as

P h; tð Þ � P1 ¼ q

�
1
2
a0 tð Þtan h

2
þ
X1
n¼1

an tð Þsin nh

þ 1
2
Bv tð Þ cot

h
2
þ a0v tan

h
2

� ��
: (11)

To determine the viscous correction Bv , Taha and Rezaei38 employed
the unsteady triple-deck theory, which yielded the expression:

Bv tð Þ ¼ �2e3k�5=4 1
2
a0 tð Þ þ 2

X1
n¼1

nan tð Þ
 !

Be aeð Þ; (12)

and ae tð Þ is given by

e tð Þ ¼ e�1=2k�9=8 1
U2

1
2
a0 tð Þ þ 2

X1
n¼1

nan tð Þ
					

					|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
as tð Þ

; (13)

where as is the equivalent instantaneous steady angle of attack. Then,
the total lift coefficient can be expressed as sum of two contributions,

CL ¼ �p
U2

a0 þ a1ð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Potential

þ�p
U2

Bv 1þ a0vð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Viscous correction

; (14)

where the coefficient a0v is given by ½a0v ¼ 2C kð Þ � 1�:45
This formulation allows us to investigate the influence of viscous

effects on the total lift coefficient. The viscous correction Bv provides
valuable insights into the nonlinear dynamics of the system and the
impact of the additional circulation at the trailing edge. The triple-
deck theory, in conjunction with the unsteady extension proposed by
Taha and Rezaei,38 has proven to be effective in capturing the essential
aspects of the viscous unsteady circulatory lift coefficient.

III. NONLINEAR ANALYSIS AND DESCRIBING
FUNCTION FORMULATION

In linear systems theory, the frequency response method is a
powerful tool used to study the steady state response of linear systems
to sinusoidal inputs. When a linear system G ixð Þ is excited by a har-
monic input u tð Þ ¼ Aeixt , the steady state output y tð Þ is expressed as

FIG. 3. The trailing edge scaled singularity Be as function of the scaled angle of
attack ae.

FIG. 4. A schematic diagram showing the contribution of this paper in comparison to the viscous extension of Taha and Rezaei38 and the linear frequency response of
Theodorsen.8
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y tð Þ ¼ A G ixð Þ		 		eixtþ/G ixð Þ. However, the frequency response
method cannot be directly applied to nonlinear systems.54 Fortunately,
the concept of frequency response can be extended to weakly nonlinear
systems using the describing function (DF) method.

The describing function method is an approximate approach that
predicts the nonlinear behavior of a dynamical system in response to a
sinusoidal input while retaining the appealing properties of the fre-
quency response method. For weakly nonlinear systems forced by a
sinusoidal input u tð Þ ¼ Aeixt , the DF method considers only the fun-
damental harmonic of the output.54–56 It should be noted that the
describing function approach is a particular class of the more general
framework of harmonic balance.55,56

In this section, we present the construction of the describing
function for the viscous lift dynamics of a flat plate pitching around its
mid-chord point, subject to a sinusoidal time-varying angle of attack
(pitching angle), in the following form:

a tð Þ ¼ Aae
ixt; (15)

where Aa is an angle of attack amplitude, x is the frequency, and the
positive angle of attack is clockwise. In this representation, the actual
angle of attack is given by the real part of Eq. (15).

Recall that for a pitching motion according to Eq. (15), the flat
plate’s normal velocity can be written as

vp h; tð Þ ¼ � _a b cos h� abð Þ � Ua; �b � x � b; (16)

where _a is the pitching rate and ab is the distance from mid-chord to
the hinge location, as shown in Fig. 1. Then, the kinematics of the flat
plate can be expressed using Eqs. (2) and (16) in terms of a; _a as

b0 tð Þ ¼ 2v1=2 tð Þ; (17a)

b1 tð Þ ¼ �b _a tð Þ and bn tð Þ ¼ 0 8 n > 1; (17b)

where v1=2 tð Þ is the normal velocity at the mid-chord. Hence, for the
harmonic motion (15), we can find the series coefficients of the pres-
sure distribution on the upper surface of the flat plate using Eqs.
(3)–(5),

a0 ¼ U 2v3=4 tð ÞC kð Þ þ b _a
� �

; (18a)

a1 ¼ b _v1=2 tð Þ � U _a tð Þ
 �
; (18b)

a2 ¼ � b2€a tð Þ
4

and an ¼ 0 8 n > 2; (18c)

where v3=4 tð Þ ¼ V3=4eixt is the normal velocity at the three-quarter-
chord point. Finally, the total lift coefficient can be written as

CL ¼ �p
U2

b _v1=2 tð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
potential noncirculatory

þ 2pa3=4 tð ÞC kð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
potential circulatory

� 2p~Bv tð ÞC kð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
viscous correction

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ciculatory lift coefficient

; (19)

where ~Bv tð Þ ¼ Bv=U2, a3=4 tð Þ ¼ � v3=4 tð Þ
U ¼ a3=4 eixt is the angle of

attack at the three-quarter-chord point as recommended by the
Pistolesi theorem (see p. 80 of Ref. 57 by Schlichting). Note that for
the harmonic motion a tð Þ ¼ Aaeixt , complex values may appear in
the lift coefficient expression of Eq. (19), due to complex numbers
multiplication [eixt CðkÞ�. But only the real part of these values is
considered.

Figure 5 shows a block diagram of the total circulatory lift
dynamics; the dynamics of the unsteady lift is considered as a dynami-
cal system with the angle of attack being the input and the total circula-
tory lift coefficient being the output.58 Furthermore, Fig. 5 clearly
indicates that the term Bv and the total circulatory lift coefficient
exhibit nonlinear dynamics. Consequently, when the input a oscillates
at frequency x, it generates not only the fundamental harmonic at x
but also higher harmonics. However, the describing function approxi-
mation technique focuses solely on the fundamental harmonic.
Interestingly, the describing function can be constructed for each non-
linear block separately or for the entire nonlinear system. In this paper,
we construct two describing functions: (i) for the triple-deck viscous
nonlinearity (i.e., between as and ~Bv) and (ii) for the entire system
between the angle of attack and the total circulatory lift. Similar to
Theodorsen’s function CðkÞ, we normalize the unsteady lift by the
quasi-steady lift in our definition of the describing function.

To make the analysis more tractable, we performed curve fitting
to find an algebraic expression for Be as a function of ae. Moreover, we
retained only even powers of ae in the curve fitting expression, to
account for the absolute-value function of ae in Eq. (13),

FIG. 5. The total circulatory lift dynamics block diagram.
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Be jaejð Þ ¼ 36:63 a6e þ 0:8598 a2e þ 0:5301: (20)

Figure 3 shows that the performed fitting is accurate.
The input and the first harmonic of the output of the dynamical

system were written in the form Rþ iIð Þeixt . The describing functions
are then defined as the ratio between the phasor representation of the
frequency x of the output to that of the input, i.e., the ratio between
the complex amplitudes of the coefficients of the fundamental har-
monic eixt of the output to the input.

Figure 6 illustrates a flow chart outlining the construction of the
describing function. Based on this notation, we define the describing
function of the triple-deck viscous nonlinearity as

NBv ¼
RBv þ iIBvð Þ
Ra þ iIað Þ (21)

and the describing function of the total circulatory lift coefficient as

NCL ¼
RCL þ iICLð Þ
RQS þ iIQSð Þ (22)

where all the complex amplitudes depend on the pitching amplitude
Aa, the reduced frequency k, and the Reynolds number R.

IV. DERIVATION AND VALIDATION OF THE
DESCRIBING FUNCTIONS
A. Describing function of the triple-deck viscous
nonlinearity

Proceeding through the flow chart in Fig. 6, we can represent v as
follows:

v ¼ Aa

"
�U2Rk þ xb

1
2
� a

� �
Ik þ b2x2 1

4
� 2ab

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rv

þi bxU � 1
2
� a

� �
Rk � 7

2

� �
� U2Ik

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Iv

#
eixt ; (23)

where Rk and Ik represent the real and imaginary parts of
Theodorsen’s frequency response function, respectively. Next, we
express ae as

FIG. 6. The describing function flow chart.
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ae ¼ Rv cosxt � Iv sinxt½ � e
�1

2k�
9
8

U2
: (24)

After substituting ae in Eq. (20) and using it to find Bv from Eq. (12),
we perform mathematical manipulations to compute the amplitudes
of the fundamental harmonic, given by

Bv tð Þ ¼ Re �2e3k�
5
4


 �
Rc þ iIcð Þcosxt þ Rs þ iIsð Þsinxtð Þ

h i
; (25)

where Rc; Ic; Rs, and Is are polynomials in Rv and Iv. Finally, to calcu-
late the describing function of the triple-deck nonlinearity, we repre-
sent Bv in phasor form as

Bv tð Þ ¼ Re �2e3k�
5
4


 �
Rc � iRsð Þeixt

h i
(26)

and the DF is then given by

NBv ¼
�2e3k�

5
4


 �
Rc � iRsð Þ

Rv þ iIvð Þ : (27)

In addition, the describing function of the triple-deck nonlinearity
exhibits a constant phase of �180�, which can be explained using Eq.
(13) where the output of the describing function NBv can be repre-
sented as the real value Be multiplied by the complex input v,

Bv tð Þ ¼ �2e3k�5=4|fflfflfflfflfflffl{zfflfflfflfflfflffl}
constant

Be aeð Þ|fflffl{zfflffl}
real

v|{z}
complex

:

To validate this approximation of Bv by the first harmonic only, we
conduct simulations of the exact dynamics, as given in the block dia-
gram in Fig. 5, and compare the resulting response to the fundamental
harmonic expression given by Eq. (27). Figure 7 illustrates this com-
parison for the viscous correction Bv at various reduced frequencies.
All simulations are performed at a pitching amplitude of Aa ¼ 1� and
a Reynolds number of R ¼ 104. For a wide range of reduced frequen-
cies ðk < 0:5Þ, the two responses are indistinguishable. Slight differ-
ences start to emerge at k¼ 1. This validation confirms that, for small
angles of attack, the viscous nonlinearity is weak enough to admit a
describing function approach even at low-Reynolds numbers (down to
104) and high frequencies (up to k ¼ 1).

B. Describing function of the total circulatory lift
coefficient

Considering the flow chart in Fig. 6, we express the fundamental
harmonic of the total circulatory lift as

CLc tð Þ ¼ 2pRe½ RLcRk � ILc Ikð Þ þ i RkILc þ RkILcð Þð Þcosxt
þ RLsRk � ILs Ikð Þ þ i RkILs þ IkRLsð Þð Þsinxt�; (28)

where

RLc ¼ Aa � Rc

U2
; (29a)

ILc ¼
bxAa

U
1
2
� a

� �
� Ic; (29b)

RLs ¼ � bxAa

U
1
2
� a

� �
� Rs; (29c)

ILs ¼ Aa � Is: (29d)

Then, we represent the fundamental harmonic of the total circulatory
lift in phasor form as

CLc tð Þ ¼ Re 2p RLcRk � ILc Ikð Þ � i RLsRk � ILs Ikð Þð Þeixt
� �

: (30)

Note that the time signal is given by the real part.
The quasi-steady lift is calculated as

LQS tð Þ ¼ Re 2pAa 1þ i
bx
U

1
2
� a

� �� �
eixt

� �
: (31)

Finally, the describing function of the total circulatory lift is given by

NCL ¼
RLcRk � ILc Ikð Þ � i RLsRk � ILs Ikð Þ

Aa 1þ i
bx
U

1
2
� a

� �� � : (32)

Figure 8 provides validation of the describing function fundamental
frequency approach for the total circulatory lift at different reduced
frequencies. All simulations are performed at a pitching amplitude of
Aa ¼ 1� and a Reynolds number of R ¼ 104. The describing function
(DF) approximate response of the total circulatory lift is even closer to
the exact response than that of Bv , as shown in Fig. 8. The slight

FIG. 7. Triple-deck viscous nonlinearity validation for a pitching flat plate about mid-
chord point for different reduced frequencies k at Aa ¼ 1�; R ¼ 104.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 117106 (2023); doi: 10.1063/5.0173643 35, 117106-7

Published under an exclusive license by AIP Publishing

 07 N
ovem

ber 2023 13:56:08

pubs.aip.org/aip/phf


differences observed at k ¼ 1 for Bv are further reduced in the case of
CLc . This outcome is intuitively expected due to the low-pass filter
effect of Theodorsen’s function between Bv and CLc (see Fig. 5), which
attenuates the higher harmonics of Bv .

V. RESULTS AND DISCUSSION

The main advantage of the describing function of a weakly non-
linear system compared to the frequency response of the linearized
version is its ability to capture the dependence on the input amplitude.
Thus, for our dynamical system that represents the viscous unsteady
circulatory lift coefficient, the describing function approach captures
dependence on the pitching amplitude Aa, in addition to the conven-
tional dependence on reduced frequency k and Reynolds number R.

Therefore, the obtained describing functions of the total circula-
tory lift for a pitching flat plate about mid-chord point at different
pitching amplitudes and different Reynolds numbers are presented in
Figs. 9 and 10. The former displays the obtained DFs for various pitch-
ing amplitudes at R ¼ 104, while the later shows the obtained DFs for
different Reynolds numbers at Aa ¼ 0:8�. Figure 9 also shows the lin-
ear frequency response of Taha and Rezaei38 for comparison, which
closely matches our describing function at low pitching amplitude
(Aa ¼ 0:1�). The selected range for the pitching amplitude is between
0.1� and �3� over the range k ¼ 0–1. However, the considered range

of frequency is smaller for larger pitching amplitudes to avoid flow
separation at the trailing edge. The selected range for the Reynolds
number is between 103 and 106 to illustrate the effects of the viscous
correction on total circulatory lift as the flow approaches inviscid con-
ditions. It is important to note that the triple-deck theory and the
unsteady extension of Taha and Rezaei,38 which form the basis of the
current work, are valid only up to trailing edge stall. Even within this
range of small angles of attack, there are considerable nonlinear vis-
cous effects, as shown below.

Observing Fig. 9, it is evident that the viscous effects introduce a
considerable phase lag to the total circulatory lift coefficient, which
increases as the reduced frequency increases at all pitching amplitudes.
Moreover, this additional lag further amplifies with increasing the
pitching amplitude. Furthermore, the viscous effects result in a reduc-
tion in the amplitude of the total circulatory lift coefficient. It is inter-
esting (perhaps counter-intuitive) to observe a significant deviation
(reduction) from the amplitude of Theodorsen’s frequency response
even at very small pitching amplitudes (down to 0:1�). This deviation
is due to the fact that the ideal flow outside the boundary layer is no
longer flowing over a smooth body, but rather over the body plus the
boundary layer. In other words, viscosity leads to a reduction in the lift
curve slope (even at small angles of attack).40,41 Figure 10 demonstrates

FIG. 8. Total circulatory lift comparison for a pitching flat plate about mid-chord point
for different reduced frequencies k at Aa ¼ 1�; R ¼ 104. FIG. 9. The describing function of the total circulatory lift coefficient of a pitching flat

plate about the mid-chord point at R ¼ 104 and different pitching amplitudes.
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that these viscous effects (larger lag and smaller amplitude) are exag-
gerated as the Reynolds number decreases, which is intuitively
expected; for a very large Reynolds number, Theodorsen’s frequency
response is recovered. The smaller the Reynolds number, the larger the
boundary layer thickness, and consequently, the larger the deviation
from potential-flow results. It should be noted that, as the Reynolds
number gets smaller, the inertial effects (i.e., convective acceleration
and curvature) are no longer dominant, and viscous effects (e.g., vis-
cous dissipation) play a more prominent role in the picture.42 Finally,
it is worth noting that the resulting describing functions over the con-
sidered Reynolds number range at Aa ¼ 0:1� are similar to those pre-
sented in Fig. 10 at Aa ¼ 0:8�. So, we opt to present only one figure.

These findings align with previous results in the literature. For
instance, Chu and Abramson25 proposed to add 10� phase lag to
Theodorsen’s function at the reduced frequency k ¼ 0:5. Similarly,
Bass et al.34 suggested adding a phase lag of 30� over the range of
0:5 < k < 10 and Reynolds numbers R ranging from 6500 to 26500.
Thus, it is widely recognized that Theodorsen’s inviscid model under-
estimates the lag of the unsteady lift dynamics. These insights hold par-
ticular significance for flutter analysis, where the phase difference
between the airfoil oscillations and unsteady aerodynamic loads plays
a pivotal role in defining the flutter boundary.59,60 The provided

describing function formulation allows nonlinear analysis of aeroelas-
tic systems pre-, during, and post-flutter.

We also present the describing functions (DFs) of the triple-deck
nonlinearity for a pitching flat plate about the mid-chord point at dif-
ferent pitching amplitudes and Reynolds numbers in Figs. 11 and 12,
respectively. The former illustrates the obtained DFs for various pitch-
ing amplitudes at R ¼ 104, while the later shows the obtained DFs for
different Reynolds numbers at Aa ¼ 0:8�. Upon analyzing Fig. 11, it
becomes apparent that the amplitude of the triple-deck nonlinearity
experiences an exponential increase as both the reduced frequency and
the pitching amplitude increase. In contrast, Fig. 12 reveals that the
amplitude of the triple-deck nonlinearity exhibits a direct correlation

FIG. 10. The describing function of the total circulatory lift coefficient of a pitching
flat plate about the mid-chord point at Aa ¼ 0:8� and different Reynolds numbers.

FIG. 11. The describing function of triple-deck nonlinearity of a pitching flat plate
about the mid-chord point at R ¼ 104 and different pitching amplitudes.

FIG. 12. The describing function of triple-deck nonlinearity of a pitching flat plate
about the mid-chord point at Aa ¼ 0:8� and different Reynolds numbers.
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solely with the Reynolds number; it is almost independent of k. The
triple-deck nonlinear element between as and Bv has a phase lag of
�180� (i.e., out of phase). However, since Bv contributes in negative
sign to CLc as shown in Eq. (19) and Fig. 5, the triple-deck nonlinearity
per se does not add any phase lag to the circulatory lift coefficient.

VI. CONCLUSION

In this study, we investigated the nonlinear dynamics of viscous
unsteady lift on a harmonically pitching flat plate. We employed the
concept of describing function to capture the nonlinear behavior of the
system, particularly the triple-deck viscous nonlinearity and the total
circulatory lift coefficient. The results from simulations show good
agreement between the describing function-based approach and the
exact dynamics, confirming the efficacy of the describing function
approximation.

For the triple-deck viscous nonlinearity, we have derived the
describing function in terms of the reduced frequency k, the Reynolds
number R, and the pitching amplitude Aa. By employing this
approach, we successfully demonstrated that the amplitude of the
triple-deck nonlinearity is significantly influenced by the concurrent
increase in both the reduced frequency and the pitching amplitude.

Similarly, we constructed the describing function for the entire
aerodynamic system, which relates the total circulatory lift as an output
to the pitching angle (i.e., angle of attack) as an input. The obtained
describing functions reveal the considerable phase lag caused by vis-
cous effects in the total circulatory lift coefficient, which increases with
higher reduced frequencies and pitching amplitudes. Additionally, vis-
cous effects lead to a reduction in the amplitude of the circulatory lift
coefficient—a finding consistent with previous results in the literature.

These results hold great significance for flutter analysis and stud-
ies of aeroelastic systems, where the phase difference between airfoil
oscillations and unsteady aerodynamic loads plays a critical role in
determining the flutter boundary. The proposed describing function
formulations provide valuable tools for nonlinear analysis of aeroelas-
tic systems pre-, during, and post-flutter. For example, it is worth
investigating, using the presented results, how the robustness measures
(e.g., gain margin and phase margin)61,62 of a given flight controller
may change due to viscous unsteady aerodynamic effects, which are
typically neglected in the control design process.
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