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Abstract—While extremely useful (e.g., for COVID-19 forecast-
ing and policy-making, urban mobility analysis and marketing,
and obtaining business insights), location data collected from
mobile devices often contain data from a biased population
subset, with some communities over or underrepresented in the
collected datasets. As a result, aggregate statistics calculated
from such datasets (as is done by various companies including
Safegraph, Google, and Facebook), while ignoring the bias, leads
to an inaccurate representation of population statistics. Such
statistics will not only be generally inaccurate, but the error will
disproportionately impact different population subgroups (e.g.,
because they ignore the underrepresented communities). This
has dire consequences, as these datasets are used for sensitive
decision-making such as COVID-19 policymaking. This paper
tackles the problem of providing accurate population statistics
using such biased datasets. We show that statistical debiasing,
although in some cases useful, often fails to improve accuracy.
We then propose BiasBuster, a neural network approach that
utilizes the correlations between population statistics and loca-
tion characteristics to provide accurate estimates of population
statistics. Extensive experiments on real-world data show that
BiasBuster improves accuracy by up to 2 times in general and
up to 3 times for underrepresented populations.

Index Terms—Location bias, estimation, machine learning

I. INTRODUCTION

Location data collected from mobile devices is useful: [1]–

[4] use such datasets for COVID-19 forecasting and policy-

making, [5]–[7] use them for urban mobility analysis and [8]–

[10] use them for marketing and obtaining business insights.

A concrete example is deciding closure policies for COVID,

which depends on how many people go to a location and

how long they stay there (a place should be closed if many

people stay there for a sufficiently long duration). Such studies

use aggregate statistics obtained from the observed data. The

observed data is a set of location signals (e.g., GPS pings

from cellphones) from which aggregate statistics are calculated

(e.g., number of people in an area, average time people stay

at a location and average distance they travel to get there).

However, observed location data is often a biased subset

of the population data. More data is available for some

sub-groups of the population, a bias that occurs due to the

means of data collection. Location datasets are collected from

mobile apps, which are often used by different sub-groups

∗Work done while the author was a PhD student at USC’s Infolab

City Adult Senior Child Median Income

Houston 0.31 -0.12 -0.24 -0.08

Chicago 0.09 -0.02 -0.19 -0.18

San Francisco 0.16 0.04 -0.30 -0.24

Tulsa 0.41 -0.12 -0.22 -0.29

Fargo 0.63 -0.38 -0.40 -0.39

Table I: Correlation between observed proportion of neigh-

bourhood population and neighbourhood demographics

within a population at varying degrees. Android phones and

iPhones are used by different demographics [11], [12], and

dependence on demographics such as age is more broadly

true across different app users [13], [14]. To quantify such

biases, we analyzed the location dataset used by Safegraph,

a popular data curator, which provides aggregate location-

based statistics [15] extensively used for COVID studies [1]–

[4] and other applications [5]–[10]We observe that the dataset

contains more data for the adult and low-income populations

(we suspect this is due to the data being mostly collected

from Android phones). while it contains less data for the

senior or child populations. This is summarized in Table I,

which shows the Pearson correlation between the portion of

the neighbourhood’s population for which data was available

and various neighbourhood demographics (see Sec. V for

methodology and details). A higher correlation for an attribute

(e.g., income) means neighbourhoods with a higher value of

that attribute had a larger portion of their population in the

observed data. For instance, in Fargo, we see a relatively strong

negative correlation between income and the population’s

representation in the observed GPS data.

The problem, then, is to provide accurate aggregate popula-

tion statistics while having access only to a biased sample of

the population’s location. An approach that reports aggregate

statistics but is oblivious to the present bias leads to inaccurate

estimates. In this case, the estimation error is due to using

a biased estimator of the population statistic. Consequently,

we not only obtain inaccurate estimations in general, but the

estimation error will also disproportionately impact different

population subgroups. For instance, less data for the senior

population leads to larger errors for such a population, while

more data for people with low income can lead to an overes-

timation of densities in low-income neighbourhoods (because
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Figure 1: BiasBuster end-to-end pipeline

low-income neighbourhoods will appear to be more densely

populated compared with other neighoubhoods in our observed

data). This can, for example, result in COVID-19 policies that

put undue burdens on such (often more vulnerable) popula-

tions. It is, therefore, essential to provide accurate estimates

for all population subgroups.

To improve the accuracy, one approach is to use statistical

debiasing to provide an unbiased estimator of the population

statistics (i.e., an estimator equal to the population statistic on

expectation). This is achieved by utilizing the probabilities of

users being sampled, and weighting the samples according to

those probabilities when estimating the population statistics.

Although such an approach eliminates the bias in estimation,

the variance of the estimator (due to the randomness in

sampling) leads to errors in the estimations. We observed

that debiasing helped improve the accuracy when calculating

COUNT statistics (e.g., number of users at a location), but led

to worse estimates for AVG statistics (e.g., average duration

people stay at a location). Indeed, in our datasets, we observed

the variance of attributes such as visit duration and distance

traveled were much larger than the variance of the number

of visits. For example, many users have a similar number of

visits to a location (e.g., most people go to the same restaurant

at most once a week), while there are variations across how

long people stay there (e.g., short stays to pick-up food, longer

stay to eat and even longer stays for social gatherings). This

leads to larger variance when estimating AVG queries, which is

further amplified by debiasing as often samples needed to be

weighted by large values. As a result, we observe an example

of the bias/variance trade-off, where debiasing eliminates the

bias but the increased variance of the estimator leads to a larger

error for AVG statistics.

In this paper, we introduce BiasBuster, a learned estimator

that utilizes patterns in the aggregate statistics to provide

accurate estimates of population statistics for all subgroups

of the population. The end-to-end pipeline is presented in

Fig. 1. Given a set of location data collected from mobile

users, BiasBuster first uses statistical methods described above

to obtain initial estimates for population statistics. Then, it uses

these initial estimates, together with contextual information

available about different locations to train a model that learns

the underlying correlations between location characteristics

and the population statistics (e.g., people tend to stay shorter

in gas stations than in restaurants). Learning such correlations

leads to a model that provides accurate estimation for the

population statistics. We experimentally verify this observa-

tion, showing that BiasBuster reduces the estimation error by

a factor of 2 in general, and specifically reduces the error by

a factor of 3 for under-sampled neighbourhoods.

BiasBuster uses the inductive bias that correlations between

location characteristics and population statistics exist, and a

learned model is used to capture such correlations to reduce

the error. For instance, people tend to spend a similar amount

of time in similar locations (e.g., gas stations), and the model

will be able to aggregate such information across locations

to reduce the error across locations. Furthermore, the correla-

tions between location characteristics and population statistics

can be learned from locations where accurate estimates are

available and extrapolated to locations for which less data

is available. This takes advantage of the fact that more data

is available for some neighbourhoods, and allows improving

the accuracy for neighbourhoods where lack of data would

otherwise have led to large errors, thus providing accurate

answers across the board.

Specifically, our contributions are as follows.

• We present the first study of location bias and its impact

on releasing aggregate statistics using large-scale GPS

datasets.

• We present, BiasBuster, a neural network approach that

provides accurate estimates of population statistics by

taking into account contextual information

• Through extensive experiments on commonly used real-

world datasets, we show BiasBuster improves accuracy

by up to 3 times for under-represented neighbourhoods

and 2 times across all neighbourhoods, while, surpris-

ingly, statistical debiasing often worsens the accuracy.

The rest of this paper is organized as follows. Sec II

discusses related work, Sec. III describes problem setting,

Sec. IV discusses our methodology, Sec. V presents our

empirical study and Sec. VI concludes the paper.

II. RELATED WORK

Bias in observed location data has been documented in a

variety of data sources [16]–[20], [20], [21]. Closest to our

setting, [19] reports similar biases on Safegraph data, showing

that older and non-white populations are less likely to be

captured by mobility data. Their analysis compares aggregate

statistics released by Safegraph to voter turnout records to

uncover biases. Although different in methodology and data

sources (they use voter turnout records as population ground

truth while we utilize census data), their results corroborate

our observations regarding the existing biases in the dataset.

Nonetheless, we note that Safegraph does provide an analysis

of bias in their datasets [22], where they argue that on

aggregate and across the US, the proportion of the observed

population in certain demographics across the US is the same

as the proportion of the true population in that demographic

across the US. As also noted by [19], this observation does not

imply that there is no sampling bias, because biases at lower

granularity can still exist. This is shown in our experiments,
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where we observe that sampling ratio of census tracts is neg-

atively correlated with their median income. We also observe

that sampling ratios are correlated with age groups (similar

observation is reported by [19]), a demographic attribute not

considered by Safegraph [22] in their analysis. Overall, we

have focused on Safegraph dataset because we have access to

the raw data (unaggregated GPS signals, see Sec. V) used for

calculating aggregate statistics, but we expect bias in location

data to be pervasive across the board and in any dataset

collected through mobile apps.

To the best of our knowledge, there is no existing work

that addresses bias in location data, with the related work

being confined to only documenting such biases. Although

many companies have released such aggregate statistics, (e.g.,

Google Mobility Report [23], Facebook Social Connectedness

Index [24] in addition to Safegraph Patterns [15]), the statistics

are reported by simply aggregating the observed data without

accounting for the bias. Related to our setting is the work

on synthetic trajectory generation such as [25], [26], which

can be used to generate more data to increase the size of

the observed data. However, such approaches will not be able

to account for the observed bias, and will merely replicate

such biases while creating more data. Moreover, our use of

neural networks for estimating population statistics follows

the NeuroDB framework [27], [28] and is similar to [29],

[30] and [27] that, respectively, do so to answer queries

in a privacy-preserving manner or for incomplete relational

databases. Finally, the use of machine learning for estimating

population statistics is not new [31], [32], but to the best of

our knowledge, this is the first work studying how to address

bias in location data using machine learning.

III. PROBLEM SETUP

Setup. We are given a dataset of user stay-point sequences,

D, of n users, where each user’s sequence describes locations

the user has stayed at in a city. This stay-point sequence

is derived from user trajectories (i.e., raw GPS readings)

by extracting the locations at which the users stayed for a

long enough duration (we describe the exact methodology in

Sec. V). For a user u, their stay-point sequence is a sequence

of ku stay-points, < p1, ..., pku
>, for an integer ku. A stay-

point, p, is a tuple p =(lat, lon, arrive_t, leave_t),

where lat and lon denote the latitude and longitude where

the user stayed, arrive_t is the time the user entered the

location and leave_t the time the user left the location. We

assume D is a subset of a set D, where D is the set of stay-

point sequences of the entire population of size N . That is,

D is the set of stay-point sequences of all the population of a

city, whereas D is the set of stay-point sequences of the subset

of the population whose location has been collected.

Sampling Bias. We use observed population statistics (from

our dataset) and government-released population statistics

(from censuses) for the city to study the sampling procedure.

For each user, we consider their home neighbourhood to be

the neighbourhood where they spend the most time (i.e., we

assume users spend the most time at their home, since they

stay there overnight and for long periods). This information is

obtained from their list of stay-points. We use the users’ home

neighbourhoods to compare the observed population of each

neighbourhood with its true population. Let h(u) be the home

neighbourhood of a user u. Then, the observed population, nµ,

of a neighbourhood µ is nµ = |{u ∈ D,h(u) = µ}|.
We consider the government-released statistics for the city

to be the true population statistics, i.e., calculated from D.

In the US, where our datasets are collected (See Sec. V

for dataset details), US Census releases such information.

We utilize aggregate population statistics (e.g., population,

median income) released for different census tracts, where

census tracts are small (with about 4,000 inhabitants [33])

subdivisions of counties (similar to zip codes). We consider

each census tract as a neighbourhood and use the terms census

tract and neighbourhood interchangeably. Let Nµ be the true

population of the neighbourhood µ (obtained from Census).

We define the sampling ratio, sµ, of µ as sµ =
nµ

Nµ

, which

denotes the fraction of the population from the neighbourhood

that is sampled. We consider the setting where the sampling

ratio, sµ, is different for different neighbourhoods µ, the

setting we call biased sampling. In this case, for different

neighbourhoods, a different portion of their population has

been sampled. Biased sampling based on other attributes (e.g.,

income, race, age) often translates to bias based on neighbour-

hood, since neighbourhoods in the US are often segregated

and homogeneous [34], [35]. Biased sampling happens often

in practice; Table I presents one such instance where it shows

the dataset used by Safegraph (used by [1]–[10]

Problem Definition. Our goal is to provide an accurate

estimate of population statistics given access only to a biased

subsample, that is to provide estimates of a statistic using D

so that the answer is similar to answers from D. Population

statistics are aggregate queries over D. We specifically focus

on aggregate queries over neighbourhoods, and we use the

terms queries and statistics interchangeably. A query q =
(AGG,α, µ) asks for aggregation, AGG, of an attribute, α, of

all the stay-points, p, that fall in neighbourhood µ, so that the

true answer to a query q is AGG({p[α]|p ∈ uµ, u ∈ D}),
where for a user u, we denote their set of stay-points in

µ by uµ, i.e., uµ = {p, (p[lat], p[lon]) ∈ µ}. Although our

approach is generic, we consider COUNT and AVG aggregation

functions and specifically queries of total number of visits,

average visit duration and average distance travelled. All

such statistics are important for disease spread analysis and

policy-making, as well as transportation and urban planning,

and Safegraph is already releasing aggregate information for

these attributes for different neighbourhoods [15]. Specifi-

cally, the visit duration of each stay-point p is calculated as

p[leave_t]−p[arrive_t]. Furthermore, for the i-th stay

point of a user, pi, the distance travelled is dist((pi[lat],

pi[lon]), (pi+1[lat], pi+1[lon])), where we use Euclidean

distance (since distances are short, there is no need to take

curvature of the earth into consideration using geographic

coordinate system (GCS)) as our distance function (distance

travelled for the user’s first stay-point is undefined and ignored

in computations). We consider both visit duration and distance
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travelled to be attributes of the stay-point. The average visit

duration and average distance travelled queries ask for the

average of visit duration and distance travelled of all the

stay-points (across all users) that fall in a neighbourhood,

and total number of visits is similarly defined. For a query

q = (AGG,α, µ), we denote by cµ the true answer to q if

AGG =COUNT and by yαµ if if AGG =AVG.
Sampling Assumption and Terminology. Although the

following sampling assumptions are not required by our

methodology, we use these assumptions to analyze and evalu-

ate different approaches. We assume that the data D is sampled

from D as follows. For every neighbourhood, µ, nµ i.i.d and

uniform samples from {u ∈ D, h(u) = µ} are selected, i.e.,

each sample X
µ
i , 1 ≤ i ≤ nµ is equal to one of elements

of {u ∈ D, h(u) = µ} with probability 1
Nµ

. This sampling

procedure is repeated for all neighbourhoods, where we obtain

a different number of samples for different neighbourhoods. In

practice, this assumption often holds due to the homogeneity

of neighbourhoods [34], [35]. For instance, if an app that

collects data is mostly used by the senior population, then

more data will be collected from neighbourhoods with a larger

older population. However, within the older population, the

sampling can be assumed to be uniform.
Therefore, the database D is a collection of random vari-

ables. Next, for concreteness, we review some terminology.

For an estimator θ̂, calculated from D, to estimate a population

statistic θ, recall that bias of θ̂ is bias(θ̂) = E[θ̂] − θ. The

estimator θ̂ is called an unbiased estimator of θ if E[θ̂] = θ

and is otherwise called a biased estimator. Furthermore, recall

that the mean squared error of an estimator can be written as

E[(θ − θ̂)2] = bias(θ̂)2 + var(θ̂). (1)

IV. QUERYING BIASED LOCATION DATA

In this section, we present BiasBuster, our neural network

approach for answering queries on biased location data. We

first discuss the downsides of answering queries oblivious to

the bias (Sec. IV-A) or using statistical debiasing (Sec. IV-B).

Subsequently, in Sec. IV-C we present our learned approach

that addresses such shortcomings.

A. The Oblivious Method

A naive approach to solving the problem is answering

queries without considering the bias.
AVG. For AVG queries, this means reporting answers directly

on the observed dataset. Specifically, for a query on attribute

α in neighbourhood µ the estimate from D is

ŷαµ =

∑
u∈D

∑
p∈uµ

p[α]
∑

u∈D |uµ|
,

Where to calculate the average visit duration for a neighbor-

hood, we go over all the observed visits in the neighborhood

and report their average value as the answer.
COUNT. For COUNT queries, we need to scale the query

answers observed on the sample dataset. Ignoring the sampling

bias, we scale the observed answers by N
n

to obtain the

estimate

ĉµ =
N

n

∑

u∈D

|uµ|.

Shortcomings. Intuitively, in this approach and for COUNT

queries, if we observe 10% of the population, we scale our

estimates by 10. This is problematic, because, e.g., for a

neighbourhood that is mostly visited by seniors, and when

the senior population is under-sampled (i.e., less than 10% of

the older population is sampled), then scaling by 10 underes-

timates the number of stay-points for that neighbourhood. A

similar example holds for average queries, e.g., if the senior

population stays for a shorter duration than the rest of the

population in a neighbourhood, then the average calculated

based on the observed samples overestimates the true average.

More theoretically, given our sampling assumption it is easy

to see that both ĉµ and ŷαµ estimators are biased estimators of

the true population statistics. Since the error of an estimator

can be decomposed into bias and variance terms, this bias can

contribute to large errors for such an approach. Note that ĉµ
and ŷαµ are biased estimators because the sampling procedure

is biased and they do not take this bias into account. That

is, if the data was sampled uniformly at random from the

population, ĉµ and ŷαµ would have been unbiased estimators.

B. Statistical Debiasing

To reduce the error, our second attempt uses statistical

debiasing to provide unbiased estimators of the population

statistics, weighing observed samples with their probability.

COUNT. Consider the users with home neighbourhood η. To

answer queries, we weight the visits of each user from η by
Nη

nη

. Intuitively, scaling by
Nη

nη

is similar to assuming for every

observed user from η there are
Nη

nη

(unobserved) users in η that

have the same characteristics. For instance, if the sampling rate

for the seniors is 1% while the sampling rate for the rest of

the population is 10%, to know how many people are at a

location, one needs to scale every observation from seniors by

100 and observations from the rest of the population by 10.

Scaling by a larger value helps account for the fact that the

older population was under-sampled.

Let H be the set of all neighbourhoods. Formally, our

estimate of the number of people in a neighbourhood µ is

ĉµ =
∑

η∈H

Nη

nη

∑

u∈D,h(u)=η

|uµ|.

Lemma 4.1: ĉµ is an unbiased estimator of the population

statistic cµ under the sampling assumptions of Sec. III.

Proof.

E[ĉµ] =
∑

η∈H

Nη

nη

∑

u∈D,h(u)=η

E[|uµ|] =
∑

η∈H

Nη

nη

nηE[|uµ|]

=
∑

η∈H

Nη

nη

nη

∑

uµ∈D,h(u)=η

1

Nη

|uµ| = cµ

□

AVG. For average queries, obtaining an unbiased estimator

is more difficult. For an attribute α, let the true attribute sum

for neighbourhood µ be

tαµ =
∑

η∈H

∑

u∈D,h(u)=η

∑

p∈uµ

p[α].
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The average of the attribute at µ is therefore yαµ =
tα
µ

cµ
. The

difficulty in obtaining an unbiased estimator is due to having

to estimate both the numerator and the denominator of this

quantity. To simplify the discussion, we assume cµ is known.

To obtain an estimator, we only need to estimate tαµ , which

can be done by weighting user stay-points similar to COUNT.

Specifically, let

t̂αµ =
∑

η∈H

Nη

nη

∑

u∈D,h(u)=η

∑

p∈uµ

p[α].

Similar to the above, we have that

Lemma 4.2:
t̂µ
cµ

= ŷαµ is an unbiased estimator of yαµ under

the sampling assumptions of Sec. III.

Proof.

E[t̂µ] =
∑

η∈H

Nη

nη

∑

u∈D,h(u)=η

E[
∑

p∈uµ

p[α]]

=
∑

η∈H

Nη

nη

nηE[
∑

p∈uµ

p[α]]

=
∑

η∈H

Nη

nη

nη

∑

uµ∈D,h(u)=η

1

Nη

∑

p∈uµ

p[α]

= tµ.

Therefore, E[
t̂α
µ

cµ
] = yαµ . □

In practice, we observed that even with the assumption that

cµ is known, this unbiased estimator performs poorly, so we

do not further relax this assumption. Nonetheless, we note that

the estimator
t̂µ
ĉµ

(i.e., using our estimate ĉµ of cµ to estimate

the denominator of aµ) is not an unbiased estimator.

Shortcomings. This approach eliminates bias in query

answering, so that the remaining error is due to the variance

of the estimators (recall that error can be decomposed into

bias and variance, see Eq. 1). Although this helps improve the

accuracy for COUNT queries, in practice, we observed that, in

the case of AVG queries, the large variance of the unbiased

estimator leads to a larger error than the biased estimator.

The difference in the effectiveness of debiasing for COUNT

and AVG queries can be attributed to the difference in the

estimator’s variance. In our dataset, the number of visits of

individuals has a much lower variance than the time people

stay in different locations or their average distance traveled,

as shown in Sec. V-C. Thus, debiasing does not help reduce

error for average queries, as it does not reduce the variance

which is the main source of error. Furthermore, the weights

used for debiasing can often be large, further increasing the

variance of the debiased estimator, leading to worse accuracy.

C. Learned Estimation
For average queries, the two approaches discussed so far

show an example of bias/variance trade-off in estimation,

where we see lowering the bias in our estimation increases the

variance and leads to worse error. This shows that eliminating

bias in our estimator can lead to worse results. Instead, we see

that using an estimator with a correct inductive bias is able to

provide more accurate results.

To provide lower error, we use a learned estimator to

answer queries, where we train a model that uses information
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Figure 2: BiasBuster Overview

about a neighbourhood to estimate query answers. Intuitively,

we use the inductive bias that there exist correlations be-

tween neighbourhood characteristics and query answers for

the neighbourhood, and to reduce the error, a learned model

is used to capture such correlations. For instance, similar

POIs tend to have similar visit durations, and the model can

aggregate such information across neighbourhoods to reduce

error observed for each neighbourhood. Furthermore, such cor-

relations between location characteristics and query answers

can be learned from queries for which accurate answers are

available. This takes advantage having more data available for

some neighbourhoods. Therefore a model can learn accurate

patterns from those neighbourhoods that can be extrapolated to

neighbourhoods for which less data is available. We provide an

overview of this approach in Sec. IV-C1 and describe further

details in Secs. IV-C2 and IV-C3.

1) Overview: Figure 2 shows an overview of BiasBuster.

BiasBuster has four steps as described below.

1. Initial Estimation. We use either the oblivious method

of Sec. IV-A or the method using statistical debiasing of

Sec. IV-B to obtain an initial estimate for the query answer for

each neighbourhood. These initial estimates are later used by

the model to obtain the final query answers estimate, where

the training process extracts the underlying correlations from

these initial estimates without overfitting to their error.

2. Neighbourhood Feature Extraction. We create features

for each neighbourhood using contextual information avail-

able about the neighbourhood through auxiliary data sources.

Intuitively, the feature vector captures characteristics of the

neighbourhood that are relevant to the query answer, so that a

model can learn the correlations between such characteristics

and query answers. For instance, the average visit duration

in a neighbourhood, is expected to be related to the type of

POIs that exist in the neighbourhood. Thus, the neighbourhood

features will contain information about types of POIs in the

neighbourhood. This step is further described in Sec. IV-C2.

3. Model Training. Model training uses the initial estimates

obtained in Step 1 and neighbourhood feature vectors obtained

in Step 2 to learn a neural network through a supervised

learning approach where the neighbourhood features are the

input to the model and the model is trained to estimate query

answers. This step is further described in Sec. IV-C3.

4. Final Estimation. The final estimates are obtained by

performing a forward pass of the model for each neighbour-
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hood. For each neighbourhood, the neighbourhood features

from Step 2 is used, further described in Sec. IV-C3.
2) Neighbourhood Feature Extraction: We extract a set of

features for each neighbourhood from auxiliary data sources.
POI Features. We utilize the information of POIs within

the neighbourhood to characterise the neighbourhood. Specif-

ically, we use the distribution of POI categories within each

neighbourhood. We utilize Safegraph Places [36] (Safegraph

Places [36] only provides a list of POIs, and is not generated

based on user cellphone data), which contains list of POIs in

all neighbourhoods, and for each POI the category it belongs

to (e.g., if it’s a restaurant or a hospital). The distribution of

POI categories is a vector of length k, where k is the number

of categories, whose i-th element is calculated by counting the

number of POIs in the i-th category in the neighbourhood and

dividing it by the total number of POIs in the neighbourhood.
Demographic features. We also use demographic features

for each neighbourhood, specifically population and median

income of the neighbourhood, both obtained from census.
3) Model Training and Inference: For a neighbourhood µ,

let the query answer estimate obtained in Step 1 be ŷµ and let

the features obtained in Step 2 be eµ.
Training. The training set for our model is T =

{(eµ, ŷµ), ∀µ}. We consider two variations of the training

process. We use (1) unweighted loss, where the model,

f̂ is simply trained to predict ŷµ, that is, to minimize∑
(eµ,ŷµ)∈T (f̂(eµ; θ) − ŷµ)

2. Furthremore, (2) we train the

model while giving more weight to neighbourhoods for which

we are more confident about the estimate. Specifically, let sµ
be the number of samples observed in a neighbourhood µ

and let wµ =
sµ

maxµ sµ
. We use the weighted loss function

∑
(eµ,ŷµ)∈T wµ(f̂(eµ; θ)− ŷµ)

2. Intuitively, using a weighted

loss function, the model is trained to capture correlations

from neighbourhoods where there are more observations and

therefore our initial estimate is more accurate. We use fully

connected neural networks.
Note that the training process uses labels ŷµ that are not

the ground-truth answers to the queries for a neighbourhood,

but instead, an initial estimate obtained from the observed

database. The goal of the training process is to learn the

underlying correlations of these query answers with respect

to the neighbourhood characteristics, without overfitting to the

error in the estimated answers. To ensure this, we use small

models and early stopping for our training process. That is,

we stop the training process before the model fully fits to the

training data, as fully fitting to the training data means the

model will have the same error as the initial estimate. Early

stopping helps the model stop when it captures the correlations

in the data but before it overfits to the training labels. This is

further experimentally explored in Sec. V-D.
Inference. Obtaining the final estimate for a neighbourhood

µ, is done by performing the forward pass f̂(eµ; θ), where eµ
is the feature vector obtained in Step 2. We note that eµ was

in the training set. However, by training a model that captures

query answer patterns without overfitting to the training labels,

f̂(eµ; θ) will be a better estimate of the query answer than the

City
Observed

Pop.

Sampling

Ratio
# Stay-Points

Houston 94,355 0.04 1,002,389

Chicago 133,178 0.03 1,493,640

San Francisco 24,855 0.03 938,500

Tulsa 26,976 0.04 277,077

Fargo 6,246 0.04 92,029

Table II: Summary of dataset statistics
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training label, ŷµ. This is facilitated by weighting the training

samples as well as early stopping, as explained above.

V. EMPIRICAL STUDY

A. Experiment Setup and Dataset Details

Our experiments use the dataset provided to us by Veraset

[37], a data-as-a-service company that provides user location

datasets. This dataset is the underlying dataset used by Safe-

graph [38], to provide aggregate population statistics, while

also used by various other entities [39], [40], among them the

US government [41]. We first describe this dataset and our

preprocessing method in detail and then proceed to discuss

the evaluation setup.

1) Dataset Details: We use the dataset provided to us

for December 2019. The dataset consists of records of the

form user_id, latitude, longitude and timestamp,

where each record is obtained through phone GPS signals.

From this dataset, we extract the stay-points sequences for

users to obtain the dataset of the form described in Sec. III. We

perform Stay Point Detection (SPD) [42] on the data to remove

location signals when a person is moving, and to extract POI

visits when a user is stationary.

Table II shows the details of our datasets after the above

preprocessing steps. The sampling ratios for different cities

reported in the third column of the table are calculated by

finding the user’s home neighbourhood and utilizing its cor-

responding Census tract demographics as the true population

of a city, as described in Sec. III. Figs. 3 and 4 visualize that

this sampling ratio is not distributed evenly across different

neighbourhoods, and for some neighbourhoods our dataset

contains data for a larger proportion of their population. Fig. 5

further quantifies this, showing how the sampling ratio varies

across neighbourhoods.

To understand factors impacting the sampling ratio, we

calculated its correlation between different demographic at-

tributes of each neighbourhood. Specifically, we obtained the
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Figure 5: Sampling Ratios Across Neighbourhoods

median income for each neighbourhood from the US Census,

and calculated the Pearson correlation coefficient between the

median income of each neighbourhood and its sampling ratio.

To calculate the correlation between age attributes, we ob-

tained the population of a neighbourhood in an age range and

divide it by the total population of that neighbourhood (both

statistics obtained from census). Subsequently, we calculate

the correlation coefficient between the calculated normalized

age and sampling ratio for each neighbourhood. This normal-

ization by total population is because we are interested in

the correlation with sampling ratio, and not the size of the

samples. These correlation statistics were reported in Table I,

showing that, in our dataset, less data is available for seniors

or children, while more data is available for the low-income

population (we define the child age group as people below 18,

adult as 18-65 and senior as above 65). Overall, the amount

of data available depends on how the data was collected, the

information that Veraset does not publically provide. However,

we suspect that more data for low-income population is due to

use of Android apps for data collection instead of iPhone apps,

which are used more often by the higher-income population.

2) Experiment Setup:

Datasets. To evaluate our methods and to have access to a

ground-truth, we consider the Veraset dataset, D, to be the

true population and we sample a new subset, Ds from this

dataset and consider it as the observed dataset. The sampling

procedure is designed to mimic the true sampling procedure

(based on which D was obtained). Specifically, we use the

sampling ratios calculated using D (i.e., sampling ratios ob-

tained by comparing D to the census data) for our sampling

procedure. This ensures a similar sampling procedure to what

was used to obtain D from the true population, is followed

to obtain Ds from D. Specifically, for each neighbourhood µ

whose sampling ratio is µs and whose population based on

D is nD
µ , we sample µs × nD

µ users from users in D whose

home neighbourhood is µ. This mimics the biased sampling

process, where some neighbourhoods have a larger portion of

their population observed. We sampled sampling uniformly

within each neighbourhood from the population, which, as

discussed before, can be true in practice since neighbourhoods

themselves are often homogenous [34], [35].

In our experiments, we use datasets corresponding to multi-

ple cities in the US, namely, Houston, Chicago, San Francisco,

Tulsa and Fargo. The data for each city is extracted by

defining an area of about 20x20 km2 covering the city. For

all algorithms, we sample the datasets five times and report

the average error across the runs and its standard deviation.

Evaluation Metric. We evaluate our approach by con-

sidering three different estimation tasks, i.e., estimating the

average visit duration, the average distance traveled and the

total number of visits. Each estimate is for a different census

tract (i.e., neighbourhood, see Sec. III) within a city and we

report average relative error across the neighborhoods within

a city. Specifically, let the true statistic (i.e., calculated from

D) for a census tract µ from all tracts M be xµ, and the

estimate obtained from an algorithm (where the algorithm only

has access Ds) be x̂µ. We calculate the relative error over all

census tracts as 1
|M |

∑
µ∈M

|xµ−x̂µ|
|xµ|

.

Additionally, we also subdivide the census tracts into five

categories and report average relative error for each category.

The categories are defined based on how much of the data in

each census tract was sampled. For each census tract, µ, let Lµ

be the number of stay-points within the census tract and let lµ
be the number of stay-points sampled within that census tract.

Then, we define the stay-point sampling ratio as
lµ
Lµ

. Note

that this is different from the user sampling ratio, defined in

Sec. III, which considers how many of the users belonging to a

neighbourhood were sampled. The user sampling ratio is used

to describe the bias in sampling, which leads to different values

for stay-point sampling ratios across the neighbourhood. On

the other hand, stay-point sampling ratio is more correlated

with the final error, since it is directly calculated based on

the number of stay-point observations in a census tract. To

understand the effect of stay-point sampling ratio, we divide

the census tracts into five categories based on their stay-point

sampling ratio. We consider the quantiles of sampling ratios

within a city, and define the five categories as less than first

quantiles, between first and second, between second and third,

between third and fourth and more than fourth quantiles.

Methods. We present results for (1) oblivious estimation

discussed in Sec. IV-A, referred to as Oblivious, (2) debiased

estimation discussed in Sec. IV-B, referred to as Debiased

and (3) variations of BiasBuster presented in Sec. IV-C.

Specifically, we train BiasBuster with labels obtained from

both Oblivious and Debiased, respectively referred to as

BiasBuster-O and BiasBuster-D. Furthermore, we also train

both these variations with weighted loss function which are

referred to as BiasBuster-OW and BiasBuster-DW. All varia-

tions of BiasBuster are fully connected neural networks with

3 hidden layers and each layer of size 80.

B. Evaluation

1) Average visit duration: Table III and Fig. 6 show the

results for this task. First consider Table III. It summarizes

the error for different cities and different methods where

for each column the number in parenthesis is the standard

deviation of error across runs. First, we observe that across

cities, all variations of BiasBuster outperform both Oblivious

and Debiased significantly, reducing error by more than half in

all instances. Second, Debiased performs worse than Oblivious

across datasets, indeed showing that debiasing does not help

improve accuracy as the large variance in estimation causes
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City Oblivious Debiased BiasBuster-O BiasBuster-D BiasBuster-OW BiasBuster-DW

Houston 0.41 (±0.008) 0.43 (±0.007) 0.20 (±0.007) 0.20 (±0.004) 0.22 (±0.011) 0.21 (±0.008)

Chicago 0.49 (±0.013) 0.50 (±0.016) 0.24 (±0.008) 0.24 (±0.009) 0.22 (±0.008) 0.22 (±0.008)

San Francisco 0.43 (±0.028) 0.45 (±0.026) 0.21 (±0.019) 0.20 (±0.019) 0.19 (±0.010) 0.19 (±0.024)

Tulsa 0.45 (±0.020) 0.45 (±0.030) 0.25 (±0.026) 0.26 (±0.033) 0.24 (±0.027) 0.23 (±0.022)

Fargo 0.34 (±0.032) 0.34 (±0.053) 0.25 (±0.027) 0.24 (±0.045) 0.23 (±0.027) 0.24 (±0.050)

Table III: Relative Error for Average Visit Duration
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Figure 6: Error Across Different Sampling Ratios for Average Visit Duration Travelled

City Oblivious Debiased BiasBuster-O BiasBuster-D BiasBuster-OW BiasBuster-DW

Houston 0.49 (±0.023) 0.48 (±0.029) 0.41 (±0.053) 0.36 (±0.033) 0.27 (±0.015) 0.23 (±0.012)

Chicago 0.73 (±0.026) 0.74 (±0.020) 0.44 (±0.154) 0.52 (±0.038) 0.36 (±0.028) 0.38 (±0.032)

San Francisco 0.48 (±0.031) 0.50 (±0.019) 0.30 (±0.064) 0.26 (±0.035) 0.24 (±0.025) 0.23 (±0.020)

Tulsa 0.46 (±0.070) 0.46 (±0.072) 0.38 (±0.037) 0.44 (±0.047) 0.33 (±0.022) 0.33 (±0.038)

Fargo 0.44 (±0.066) 0.45 (±0.091) 0.48 (±0.188) 0.51 (±0.107) 0.34 (±0.063) 0.33 (±0.090)

Table IV: Relative Error for Average Distance Travelled

Figure 7: Error Across Different Sampling Ratios for Average Distance Travelled

large errors (we further discuss variance in estimation in

Sec. V-C). Finally, we see that all variations of BiasBuster

perform similarly, although the weighted variations, namely

BiasBuster-OW and BiasBuster-DW often achieve better er-

ror (and/or lowest standard deviation), showing a marginal

benefit for weighting the samples. We also note that al-

though Debiased consistently performs worse than Oblivious,

BiasBuster-D and BiasBuster-O (or similarly BiasBuster-DW

and BiasBuster-OW) have a similar accuracy across datasets,

showing that, using BiasBuster, it is possible to use worse

training labels but still achieve good accuracy.

Furthermore, Fig. 6 further breaks down the error for

different algorithms. We report the average error for different

categories of census tracts defined based on stay-point sam-

pling ratio of the census tracts (as described in Sec. V-A).

Overall, we see that all variations of BiasBuster provide

consistent accuracy across different sampling ratio, while for

both Oblivious and Debiased, the error for census tracts with

small sampling ratio is often more than 10% higher than the

error for census tracts with higher sampling ratios. This shows

that BiasBuster is able to provide consistent accuracy across

neighbourhoods, even when their sampling ratio is small,

thus avoiding penalizing communities for which less data is

available (e.g., the seniors or children).

2) Average distance traveled: Table IV and Fig. 7 show

the results for the task of estimating average distance traveled.

The main observations are similar to the case of average visit

duration. Table IV shows that Debiased does not perform

better than Oblivious, while BiasBuster variations significantly

outperform both. Moreover, Fig. 7 shows that BiasBuster

provides consistently low accuracy across different sampling

ratios, while both Oblivious and Debiased have very large

variations in accuracy across sampling ratios (e.g, in Houston

the error drops from 80% for locations with low sampling

ratios to 40% for locations with high sampling ratios).

On the other hand, compared with average visit duration,

for average distance traveled, we see that weighting the loss

function has a more significant impact, where we often see

more than 10% reduction in error when using the weighted

loss. Overall, this shows that in the case of distance traveled,

the model is able to better extrapolate the patterns from

neighbourhoods with a large number of samples to neighbour-

hoods with a small number of samples. This can be because

transferrable patterns from highly-sampled to less-sampled

neighbourhoods are more prominent in the case of average

distance traveled compared with average visit duration.
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City Oblivious Debiased BiasBuster-D BiasBuster-DW

Houston 0.70 (±0.052) 0.46 (±0.034) 0.41 (±0.039) 0.46 (±0.072)

Chicago 1.07 (±0.076) 0.63 (±0.028) 0.55 (±0.022) 0.64 (±0.049)

San Francisco 2.79 (±0.270) 0.63 (±0.069) 0.59 (±0.074) 0.63 (±0.058)

Tulsa 0.81 (±0.043) 0.46 (±0.071) 0.43 (±0.047) 0.49 (±0.082)

Fargo 0.98 (±0.208) 0.41 (±0.074) 0.41 (±0.043) 0.44 (±0.073)

Table V: Relative Error for Number of Visits

Figure 9: Error Across Different Sampling Ratios for Number of Visits

3) Total Number of Visits: Finally, Table V and Fig. 9 show

the results for the task of estimating the total number of visits.

In Table V, we see that in contrast to the two average statistics,

Debiased does in fact improve upon Oblivious significantly. As

shown later (Sec. V-C), this is due to the lower variance in

number of visits of individuals, compared with average visit

duration or distance traveled.Due to this significant difference

betwe en Oblivious and Debiased, we only train BiasBuster

using Debiased as its labels, so that we only report results for

BiasBuster-D and BiasBuster-DW.

BiasBuster outperforms Debiased across all cities except

Fargo, which can be because Fargo has the least number

of neighbourhoods across all the cities. We also see that

BiasBuster-D performs better than BiasBuster-DW. Recall that

BiasBuster-DW weights neighbourhoods with more observed

samples more heavily. In the case of average queries, this

is helpful, as one expects to be able to learn patterns from

such neighbourhoods and extrapolate to neighbourhoods with

fewer samples. However, for total number of visits, such

extrapolation is not as effective. This is because in the case of

number of visits, neighbourhoods with more observed samples

also tend to have more true visits. Therefore learning from

such neighbourhoods leads to overestimating the number of

visits for neighbourhoods where number of observed sampled

is small. Finally, Fig. 9 shows Oblivious degrading signifi-

cantly for neighbourhoods with large sampling ratios. This

is because it scales the answer for all neighbourhoods with

a fixed constant x but neighbourhoods with sampling ratios

more than 1
x

should be scaled with a smaller scaling factor.

C. Variance Analysis

In Sec. V-B, we saw that debiasing, compared with the

oblivious approach, fails to improve accuracy in the case of

AVG queries, while it does improve accuracy for the COUNT

query. We discuss this further through the variance of the

estimators which correlates with estimator error.

In Fig. 8, we plot the variance of the three attributes

studied across different cities. To calculate the variance for

the number of visits, we (1) for each neighbourhood calculate

how many visits each user has in that neighbourhood, (2)
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Figure 10: Test accuracy during training processing

calculate the variance of the number of visits across users

for each neighbourhood and (3) present the average variance

across all the neighbourhoods. For average visit duration and

distance travelled, the process is the same, but in step (1),

instead of calculating the number of visits of each user per

neighbourhood, we calculate the average visit duration or

distance travelled for the user in each neighbourhood. To

be able to compare across the attributes, all the values are

normalized to be in [0, 1] in step (2) and before calculating

the variance, by deducting the minimum from all attributes

and dividing them by the maximum value across the users.

Fig. 8 shows that both average visit duration and average

distance traveled have a larger variance compared with the

number of visits. This implies that the error in Oblivious for

the average queries is more likely to be due to their variance,

and not the bias; on the other hand the variance for the number

of visits is very small (smaller than the average queries by

orders of magnitude). Since debiasing only reduces the bias

and not the variance, it does not help improve the accuracy for

average queries (where variance is large), but it does improve

accuracy for count queries (where variance is small).

D. Impact of Training Duration

Recall that the training process uses labels from the ob-

served data (which are inaccurate), so it’s prone to overfitting.

Fig. 10 depicts test accuracy at different stages of training,

which first improves but eventually worsens due to overfitting

after 500 epochs. This shows that early stopping (i.e., stopping

before the model fully fits the training set) is important for

training accurate models.
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VI. CONCLUSION

We presented the first comprehensive analysis of bias in

real-world location data collected from mobile phones. We

showed that this bias exists in a commonly used location

dataset (used by Safegraph), that is often utilized for, among

other tasks, the sensitive task of COVID forecasting and policy

making. We showed that a statistical debiasing method often

fails to improve accuracy, and instead presented BiasBuster,

a neural network approach that utilizes correlations between

location characteristics and population statistics to provide

accurate estimates of population statistics. Our experiments

showed that BiasBuster improves accuracy by up to 3 times for

underrepresented populations. Future work includes extending

location feature extraction to further improve accuracy and

considering other types of aggregate queries.
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