
Control over Low-Power Wide-Area Networks
Aakriti Jain†

Wayne State University
Detroit, USA

Prashant Modekurthy†
University of Nevada Las Vegas

Las Vegas, USA

Abusayeed Saifullah
Wayne State University

Detroit, USA

Abstract—There has been a growing interest to adopt low-

power wide-area network technology, specially LoRa, for indus-

trial control applications. Its machine-to-machine communication

capabilities can enable management of large-area applications

(e.g., oil fields over hundreds of km
2
) or process plants that are

often positioned far from the central operations center, at incon-

venient or hazardous locations in difficult terrain or offshore.

While recent works have studied real-time communication over

LoRa, they have not considered optimizing control performance.

To optimize control performance, industrial automation needs a

co-design of real-time scheduling and control. Such a co-design,

in general, is highly challenging due to complex dependencies

between control performance, plant dynamics, and real-time

communication. Existing co-design approaches for other wireless

domains are not applicable to LoRa network. LoRa nodes are

extremely power-constrained hindering frequent communication

and scale. In this paper, we propose a highly energy-efficient

and scalable framework for real-time scheduling and control co-

design for a LoRa network. By taking into account LoRa charac-

teristics, the co-design approach entails state-aware communica-

tion and control to dynamically update the sampling rates while

meeting real-time constraints. To minimize communication and

synchronization overhead, the co-design is decomposed through

a partitioned scheduling. We consider co-design in each partition

of the control loops by developing a new schedulability condition.

The proposed scheduling-control co-design solution dynamically

determines the sampling rates of the sensors to optimize control

performance. Simulations based on NS-3 and a custom control

script show that our co-design approach minimizes control cost

at least by 80% as compared to the baselines.

Index Terms—Networked Control system, IIoT, CPS, LPWAN,

LoRa, Real-Time Communication, Model Predictive Control,

Stability, Scheduling

I. INTRODUCTION

In industrial domain, Internet of Things (IoT) and cyber-
physical systems (CPS) are emerging in large-scale and wide-
area applications. For example, oil fields can extend over
hundreds of km2 (e.g., the East Texas Oil-field has an area
of 74 ⇥ 8km2) requiring numerous sensors and actuators for
their management [1]. Emerson is planning to deploy 10,000
sensors and actuators in an oil-field in Texas [2]. Traditional
industrial wireless solutions based on short-range technologies
such as WirelessHART [3] and ISA100.11a [4] form multi-
hop mesh networks, posing a huge challenge to support
such large-scale and wide-area deployments. Therefore, many
recent works have proposed to adopt Low-Power Wide-Area
Network (LPWAN) for industrial control applications [5]–
[7]. In parallel, there has been a growing interest for LP-
WANs in industries, as shown in a recent survey conducted

†Co-primary author

by ON World and the International Society of Automation
(ISA) that 57% of industrial IoT professionals prefer LP-
WAN solutions [8]. Thanks to their long range (km) at low-
power (milliwatts), LPWANs can enable machine-to-machine
communication thereby greatly benefiting the applications like
management of pipelines (that can be hundreds of km long),
silo level, oil refineries, and process plants that are often po-
sitioned far from the central operations center, at inconvenient
or hazardous locations in difficult terrain or offshore.

LoRa (Long Range) is a leading LPWAN technology that is
commercially available across the world with more than 600
known use cases and over 50 million devices deployed on
every inhabited continent [9]. Existing works like [5], [7] have
specifically considered LoRa as a communication backbone
for industrial control applications, specially for the regions
like North America, where LoRa spectrum duty-cycling is not
required. ABI research predicts that more than 50% of all
LPWAN connections will be based on LoRa by 2026 due to
it is flexible for outdoor and indoor applications [10]. Works
[6], [7] have proposed real-time communication over LoRa
to enable control applications. However, these works have
not considered control performance optimization on LoRa
networks. In this paper, we bridge the gap between real-time
communication and control applications and address control
performance optimization for a LoRa network.

Optimizing control performance over a LoRa network is
highly challenging. To optimize control performance, indus-
trial automation needs a co-design of real-time scheduling and
control. Such a co-design, in general, is highly challenging
due to complex dependencies between control performance,
plant dynamics, and real-time communication. Existing co-
design approaches [11]–[15] for other wireless domains are
not applicable to LoRa network as LoRa nodes are extremely
power-constrained. A LoRa node’s battery-life is expected to
be of several years as changing batteries too often in numerous
devices and in remote or inaccessible places is not a practical
option. While energy-efficiency is a general requirement and
challenge in LPWANs, it becomes more complicated in LoRa
when combined with real-time requirement. Specifically, the
nodes’ communications have to be minimal which makes real-
time communication extremely challenging.

The fundamental building blocks of any industrial automa-
tion system are feedback control loops that largely rely on real-
time communication between sensors and actuators. Enabling
closed-loop communication under severe energy constraints of
the nodes is quite challenging. One key method of conserving

1



energy of the LoRa devices is to reduce communication while
doing critical control operation, which could be achieved by
dynamically selecting the sampling rates for the control loops.
However, the selection of sampling rates for these loops is
crucial to achieve a balance between control performance
and real-time communication. Opting for a low sampling
rate can degrade control performance, while a high rate
can introduce substantial communication delays, leading to
subpar performance. Furthermore, the large-scale deployment
of LPWAN/LoRa poses a challenge on the scalability and
stability of the network.

In this work, we explore scheduling-control co-design to
maintain control performance at low energy cost. We address
the above challenges by proposing a highly energy-efficient
and scalable framework for real-time scheduling and control
co-design for a LoRa network. By taking LoRa characteristics
into account, the co-design approach entails state-aware com-
munication and control to dynamically update the sampling
rates while meeting real-time constraints and ensuring stability.
Using Model Predictive Control (MPC) theory, it samples the
system at a slow rate in steady state and faster during the
transients. To minimize communication and synchronization
overhead, the co-design is decomposed through a partitioned
scheduling after which scheduling-control co-design is done
inside each partition of the control loop. The partitioning is
done by adopting RTPL, a partitioned real-time scheduling
algorithm for LoRa proposed in [7]. We develop the co-
design in each partition subject to a schedulability constraint
which, to our knowledge, is the first sufficient schedulability
condition for real-time protocol on a LoRa network supporting
concurrent transmission and reception of packets on distinct
channels. The co-design solution dynamically determines the
sampling rates of the sensors to optimize control performance.

The paper is organized as follows. Section II presents the
necessary background and system model. Section III reviews
related work. Section IV presents the proposed scheduling-
control co-design. Section V evaluates the proposed co-design,
and Section VI concludes the paper.

II. SYSTEM MODEL AND BACKGROUND

In this section, we present a brief overview of LoRa and
the RTPL MAC protocol. We also present the system model,
consisting of a network model and a physical control system.

A. An Overview of LoRaWAN

LoRa is a leading LPWAN technology. Typically, Lo-
RaWAN is known as the MAC layer of the LoRa stack, while
LoRa is considered as the physical (PHY) layer. A LoRaWAN
architecture consists of three devices: gateways, end devices
(nodes), and a network server. Nodes are sensors or actuators
that can communicate directly with a gateway over long
distance (several kilometers) and have a half-duplex radio,
enabling transmission or reception of a packet at a time but not
both. A LoRaWAN network can consist of multiple gateways
that relay information to the network server through a local
LAN/Internet. The network manager and the controller are

responsible for the overall operation of the network. Unlike the
battery powered nodes, the gateway is line-powered, Internet-
connected and has high computation capabilities.

LoRa adopts a proprietary Chirp Spread Spectrum (CSS)
for communication that makes it less sensitive to noise and
interference. A LoRa transceiver entails five transmission
parameters that can be adjusted during runtime: transmission
power, carrier frequency (channel), spreading factor (SF),
bandwidth (BW), and coding rate (CR). These parameters are
crucial role in determining the transmission duration, energy
consumption, reliability, and range of the communication.
SF ranges between 7-12 and represents the number of bits
encoded in a symbol. A higher spreading factor implies a
lower-bit rate, longer transmission time, a higher Signal-to-
Noise Ratio (SNR), increased receiver sensitivity, and longer
range. Depending on the SF and bandwidth, LoRa achieves
data rates between 0.3 kbps and 27 kbps.

B. Network Model

We consider an LPWAN based on LoRaWAN. A commu-
nication path in a LoRaWAN network is a combination of
a SF and a channel. LoRaWAN uses orthogonal SFs [16],
where two communications paths are said to be orthogonal to
each other if they have different channels or different SFs. An
uplink communication path (UCP) is a unique combinations
of uplink channels and spreading factors on which a gateway
can simultaneously receive packets. Similarly, a downlink
communication path (DCP) is a unique combination of down-
link channels and spreading factors on which a gateway can
simultaneously transmit packets.

Sensors are responsible for measuring process variables and
transmitting them to the controller on a UCP. The controller,
in turn, sends control commands to the actuators on a DCP.
Actuators apply the control command to modify physical
processes. We refer to the closed loop communication from
a sensor to actuator via a controller as a control loop. A LoRa
gateway is equipped with (1 +m0) radios. One radio enables
simultaneous reception across m UCPs, while the remaining
radios enable concurrent transmissions across m0 DCPs.

Each control loop is allocated multiple time slots on the up-
link and downlink communication path. The system designer
determines the number of time slots allocated to a control
loop on a communication path, considering the control loop’s
reliability requirement and noise conditions on the commu-
nication path. We define Cup

i (UCPj) as the communication
time requirement on the uplink communication path UCPj for
control loop `i, referring to the number of time slots allocated
for control `i on the communication path UCPj . Similarly, we
define Cdown

i (DCPj) as the communication time requirement
for control loop `i on the downlink communication path DCPj .

We adopt the RTPL partitioned scheduling from a recent
work [7]. In RTPL, control loops are partitioned and each
partition is assigned a UCP and DCP. Control loops are
scheduled within a partition using earliest deadline first (EDF).

2



C. Physical Control System

We consider a LoRa network with n wireless control loops
`1, `2, · · · , `n, where `i represents the feedback control loop
between a sensor node si and actuator ai through a controller
at the gateway. For a control loop `i, the controller computes
control command ui(k) upon receiving state information xi(k)
from sensor si, and then sends it to the actuator ai. The
controller also computes the sampling period for each loop.

We model the physical plant as a linear time-invariant
system (LTI). We use an LTI representation since it models a
wide variety of systems with satisfactory accuracy. A control
loop `i is represented in the discrete state space as follows.

xi(k + 1) = Aixi(k) +Biui(k); yi(k) = Cixi(k),
Here, xi(k) is the state of the control loop `i at time step
k. The control input is denoted as ui(k), while the observed
output is represented by yi(k). Ai 2 Rn⇥n, Bi 2 Rn⇥m, and
Ci 2 Rp⇥n. For each control loop `i, we assume that the pair
(Ai,Bi) is controllable, and that the pair (Ai,Ci) is observable.
Since each control loop is controllable, an optimal controller
such as model predictive controller ensures all control loops
reach their desired state and remain in the desired state.

We denote the sampling period of `i by pi and the deadline
of `i by di. We consider an implicit deadline system, i.e., the
period of control loop equals its deadline (pi = di). If a control
loop `i meets its deadline di for all of its packets, then it is
said to be schedulable. A set of control loops is schedulable,
when each control loop in the set is schedulable.

D. RTPL Overview

RTPL is a low-overhead real-time communication protocol
for LoRa that leverages the concurrent reception capabilities
of LoRa proposed in [7]. It adopts a partitioned scheduling
approach, dividing control loops into partitions. The control
loops in each partition uses one uplink and one downlink
communication path with the same SF. Communications of the
control loops inside a partition happen only on that partition’s
uplink and downlink communication paths.

Within a partition, the nodes adopt a time division multiple
access (TDMA) protocol, dividing the network time into slots.
The time slot length is defined as the time to transmit a
packet on the smallest spreading factor. Packet transmission
lengths vary with the SFs. Thus, a control loop requires
multiple time slots to transmit a packet on higher SFs. Within
a partition, the control loops follow the EDF scheduling. The
period and communication time requirement for uplink and
downlink communication for all control loops is disseminated
to all nodes within a partition. Nodes use EDF scheduling to
transmit and receive packets.

RTPL adopts a worst-fit partitioning algorithm. The algo-
rithm iterates over the list of control loops. For each control
loop, the partitioning algorithm identifies a partition with the
largest remaining utilization after allocation. If the control loop
is schedulable on that partition, it assigns the control loop to
that partition. If it cannot be assigned to any partition, the
algorithm decides the case as unscheduleable and stops.

RTPL adopts a utilization-based schedulability test to de-
termine the schedulability within a partition. Considering a
control loop `i has a period of Ti and a deadline di = Ti, the
utilization of `i on the partition with UCPj and DCPj is

µi(UCPj) =
Cup

i (UCPj) + Cdown
i (DCPj)

Ti
.

Considering ⇡(UCPj) represents the set of control loops
allocated to that parition, the schedulability test within the
partition is given by the following equation.X

`i2⇡(UCPj)

µi(UCPj)  1

III. RELATED WORK

Several recent studies have suggested using LoRa for indus-
trial control applications [5]–[7] and real-time communication
[6], [7]. [6] introduces a medium access strategy to support
real-time flows in LoRa-based networks, while [7] presents
a partitioned real-time scheduling strategy called RTPL for
LoRa. [17] proposes a strategy to enhance task schedulability
by optimum period selection. In contrast to these works, our
approach involves dynamically updating sampling rates based
on a control cost formulation, which jointly determines the
control signal and sampling period.

Prior studies on scheduling and control co-design [11]–
[15], [18], [19] have predominantly focused on traditional
short-range wireless networks, leaving the potential of LP-
WAN/LoRa unexplored. These studies assume fixed sampling
periods for each sensor, which can be power-consuming,
particularly when the system is in a stable state. In contrast, our
proposed state-aware system model aims to optimize control
performance while ensuring real-time performance.

The study in [20] examines a sufficient condition for the
existence of a stabilizing controller under a fixed upper bound
on the probability of packet failure. Typically, such a fixed
upper bound is derived for worst-case scenarios, leading to
significant overheads and high energy consumption at the
sensors. To mitigate this issue, the approach in [21] adopts
an event-based control strategy, where a sensor transmits
packets only when an event occurs. However, this method
requires continuous monitoring of the system state to check
the triggering condition, leading to high energy consumption.

To address the energy consumption limitation, [22], [23]
propose stability under a self-triggered control without schedu-
lability constraints. However, [24] proposes a self-triggered
control based on a virtual link capacity margin, which is
not applicable to LoRa, even under a single channel. [25]
suggests a self-triggered control for a TDMA network sched-
uler, but this approach relies on single-channel transmission
with packet flooding, leading to high energy consumption.
Energy conservation at the controller is explored in [26].
but a similar approach is not suitable for conserving energy
at sensors. Additionally, [5] has investigated closed-loop
communication in LoRa networks to facilitate event-triggered
control. However, this study does not sufficiently address
energy constraints, as it requires the actuators to remain in

3



continuous listen mode, and it does not leverage the potential
of LoRa’s concurrent reception on orthogonal SFs.

IV. DESIGN OF SCHEDULING-CONTROL CO-DESIGN
FRAMEWORK

In this section, we present an energy-efficient and scalable
real-time scheduling and control co-design framework for
LoRa. We first formulate the co-design problem, for a single
control loop, as an optimization problem solved using a model
predictive controller. The insights from the single control loop
system drive the design for a multiple control loop system.

Typically, industrial control systems employ static sampling,
wherein a sensor measures the state periodically at a fixed
rate. A static sampling rate negatively impacts the control
performance and energy consumption at each node. For ex-
ample, when a control loop is not in a stable state, sampling
the system more frequently improves control performance,
enabling a smaller settling time, i.e., reaching a stable state
faster. When a control loop is in a stable state, sampling
the system less frequently reduces energy consumption at the
nodes. LPWAN devices are energy-constrained, and minimiz-
ing energy consumption is crucial for their use in control
systems. We propose a co-design of scheduled communication
and control with dynamic sampling, wherein the sampling rate
of a control loop is updated based on the current state.
A. An Overview of the Scheduling-Control Co-design

Sampling rate selection renders opposing impacts on control
performance and real-time guarantees. Control performance
benefits from high sampling rates, but high sampling rates
may violate real-time requirements due to limited capac-
ity/bandwidth of the network. Lower sampling rates have
higher chances of ensuring real-time guarantees, but they lead
to poor control performance. Thus, sampling rate selection
must balance control performance and real-time guarantees.

Figure 1. Scheduling-Control
Co-Design Framework

To balance control performance
and real-time guarantees, we for-
mulate the scheduling-control co-
design as an optimization problem
using model predictive control the-
ory [27], [28]. The model predic-
tive controller identifies a sequence
of control commands and sampling
rate for each control loop, resulting
in a minimum control cost. Addi-
tionally, it offers the capability to pre-compute system output
y(k) and control signal u(k) to avoid sudden changes and
delay in system response. The optimization problem includes a
constraint (schedulability condition), ensuring real-time guar-
antees of end-to-end communication under the selected periods
(inverse of the rates). Upon generating the optimal periods, the
control loops are partitioned using the RTPL algorithm and the
communications within each partition follow the EDF policy.
Fig. 1 shows the full framework of the co-design.

After partitioning, to minimize the computation and commu-
nication overhead, we propose to execute the constrained op-
timization problem of finding periods and control commands

for each control loop after a sync period. A network designer
may tune the sync period prior to network deployment. The
sync period constitutes multiple sampling instances of each
control loop, i.e., the sync period (⌧ ) is significantly greater
than the sampling period of each control loop, ⌧ > pi 8`i.
After each sync period, the controller solves the constrained
optimization to compute the control command and period of
all control loops. The network manager then broadcasts the
updated periods to all nodes and synchronizes their time. This
constitutes our proposed dynamic sampling approach.

Specifically, the dynamic sampling approach functions as
follows: Nodes wake-up periodically after each sync period
to receive new sampling periods. Upon receiving the updated
periods, nodes compute the next transmission time according
to the RTPL scheduler. The default mode of the sensors is to
sleep. Sensors wake up before the transmission time to sense
the plant’s state and transmit the message to the controller.
Upon receiving the new state, the controller executes the
unconstrained control cost optimization to compute (only)
the control command. The controller sends the new control
command to the actuator, which applies the control command
on the plant. The default mode of the actuator is to apply the
received control command on the plant at each time step with
its radio off.

The controller and network manager operate in discrete
time. For the network manager, the length of a downlink
packet transmission on the smallest SF and its acknowledg-
ment defines the time slot size. The plant model defines
the controller’s time step size. We consider a single time
step within the model of a plant comprises of multiple time
slots of the network. Precisely, one time step of the plant
`i contains Cup

i (UCPj) + Cdown
i (DCPj) (the sum of uplink

and downlink communication time requirement) network time
slots. The dissimilar step sizes facilitates the application of
control command during the same time step as the sensor
senses the state, thereby simplifying the stability analysis.
Following the dissimilar step sizes, we define the period of
the control loop `i according to the controller time step as
pi, Ti = pi ⇥ (Cup

i (UCPj) +Cdown
i (DCPj)), where Ti is the

period in network time slots.
For simplicity in explanation, we first formulate the co-

design problem for a single control loop. We use the insights of
this problem to formulate and propose an approach to address
the scheduling-control co-design of multiple control loops.

B. Formulating Scheduling-Control Co-Design for a Single
Control Loop

The goal of the controller is to move the state of the system
to 0 (a zero matrix of the appropriate dimension). To meet
the goal, we formulate the controller’s cost function to trade
off the traditional quadratic control cost and sampling cost
similar to [23]. A control loop `i operates with a period
of pi 2 Pi, where Pi = [1, 2, · · · , �i] ⇢ N+. The model
predictive controller generates a sequence of control com-
mands Ui = {ui(k), ui(k + pi), · · · }. Qi > 0 and Ri > 0
are symmetric matrices of appropriate dimensions indicating

4



weight. Considering �i 2 R+ is a design variable used to trade
off sampling cost against control cost, the cost function of the
controller is expressed by Eq. (1).

Ji

�
xi(k), pi, Ui

�
=

�i

pi
+

1X

j=0

⇣
kxi(k+j)k2Qi

+ kui(k+j)k2Ri

⌘
(1)

We formulate the cost function for an infinite-horizon con-
troller to ensure the period selection ensures asymptotic sta-
bility at the origin. During runtime, the controller minimizes
the cost for a finite horizon. In a network with a single control
loop, there is no network contention. Thus, the sensor of
control loop `i samples the state periodically with a period pi,
starting at time step 0, until the sync period ⌧ . After the sync
period ⌧ , we assume the control loop `i operates periodically
with a period �i. Therefore, the control cost can be expanded
as follows.
Ji

�
xi(k), pi, Ui

�
=

�i

pi
+

⇣ d ⌧
pi

eX

r=0

pi�1X

j=0

�
kxi(k + r.pi + j)k2Qi

+ kui(k + r.pi)k2Ri

�⌘
+

⇣ 1X

r=0

�i�1X

j=0

�
kxi(k + d ⌧

pi
epi + r.�i + j)k2Qi

+

kui(k + d ⌧
pi

epi + r.�i)k2Ri

�⌘

(2)

In a single control loop system, the smallest period of a
control loop of one time step ensures real-time guarantees on
the network, since the time step of the plant is large enough to
accommodate both uplink and downlink communication on the
network. Thus, the single loop problem formulation minimizes
the cost function in Eq. (2), ignoring scheduling constraints.
The goal of this formulation is to compute a series of control
commands and the sampling period for the first sync period
that result in a minimum cost as shown below.

Minimize{pi,Ui(pi)}Ji

⇣
xi(k), pi, Ui(pi)

⌘
(3)

Although the controller executes the above optimization
problem only at sync periods, the computation overhead for
finding a solution is high. To minimize the overhead, we split
the problem into two sub-problems. The first sub-problem aims
to compute the sequence of control commands for an arbitrary
period pi. We then use the control commands to simplify the
sub-problem of period selection. Thus the scheduling-control
co-design problem formulation is written as shown below.

Minimize{pi}

✓
Minimize{Ui(pi)}Ji

⇣
xi(k), pi, Ui(pi)

⌘◆
(4)

The control command for Ji(xi(k), pi, Ui(pi)) can be com-
puted using a dynamic programming approach as mentioned
in [29]. To compute the control command, we define the
following notations. �(A) denotes the eigenvalues of A.

A(j)
i = Aj

i , Q(j)
i = Qi +

jX

q=2

A(q�1)T

i QiA
(q�1)
i

B(j)
i =

j�1X

q=0

Aq
iBi, N (j)

i =
jX

q=2

A(q�1)T

i QiB
(q�1)
i

R(j)
i = Ri +

jX

q=2

�
B(q�1)T

i QiB
(q�1)
i +Ri

�

Lemma 1. For a system with Q > 0, R > 0, and
(A(pi)

i , B(pi)
i ) is controllable, then minimizing the control cost

function for an infinite-horizon optimization problem

Minimize{Ui(pi)}

1X

r=0

�i�1X

j=0

�
kxi(k + d ⌧

pi
epi + r.�i + j)k2Qi

+

kui(k + d ⌧
pi

epi + r.�i)k2Ri

�

results in a control command
ui

⇣
k+d ⌧

pi
epi+r.�i

⌘
= �V (�i)xi

⇣
k+d ⌧

pi
epi+r.�i

⌘
8r 2 N+

where V (�i)
i is given below

V (�i)
i =

⇣
R(�i)

i +B(�i)
T

i W (�i)
i B(�i)

i

⌘�1

⇣
A(�i)

T

i W (�i)
i B(�i)

i +N (�i)
i

⌘T
(5)

and P (�i)
i is obtained by solving the Riccati equation below
W (�i)

i =Q(�i))
i +A(�i))

T

i W (�i))
i A(�i))

i

�
⇣
A(�i))

T

i W (�i))
i B(�i))

i +N (�i))
i

⌘
V (�i))
i

(6)

Proof. The proof follows the proof for infinite-horizon optimal
control problem in [23].

We extend Lemma 1 to provide control commands for all
samples.

Lemma 2. For a system with Q > 0, R > 0, and
(A(pi)

i , B(pi)
i ) is controllable, then the objective function of

the finding the control command can be expressed as follows
Minimize{Ui(pi)}Ji

⇣
xi(k), pi, Ui(pi)

⌘
=

�i

pi
+ kxi(k)k2

W
(pi)
i

(7)

where
W

(d ⌧
pi

epi)
i = Q

(d ⌧
pi

epi))
i +A

(d ⌧
pi

epi))T

i W (�i))
i A

(d ⌧
pi

epi))
i

�
✓
A

(d ⌧
pi

epi))T

i W (�i))
i B

(d ⌧
pi

epi))
i +N

(d ⌧
pi

epi))
i

◆
V

(d ⌧
pi

epi))
i

V
(d ⌧

pi
epi)

i =

✓
R

(d ⌧
pi

epi)
i +B

(d ⌧
pi

epi)T

i W (�i)
i B

(d ⌧
pi

epi)
i

◆�1

✓
A

(d ⌧
pi

epi)T

i W (�i)
i B

(d ⌧
pi

epi)
i +N

(d ⌧
pi

epi)
i

◆T

,

W (j.pi)
i = Q(j.pi))

i +A(j.pi))
T

i W ((1+j)pi))
i A(j.pi))

i

�
⇣
A(j.pi))

T

i W ((1+j)pi))
i B(j.pi))

i +N (j.pi))
i

⌘
V (j.pi))
i

V (j.pi)
i =

⇣
R(j.pi)

i +B(j.pi)
T

i W ((1+j)pi)
i B(j.pi)

i

⌘�1

⇣
A(j.pi)

T

i W ((1+j)pi)
i B(j.pi)

i +N (j.pi)
i

⌘T

8j 2 [1, d ⌧
pi
e� 1], and W (�i)

i is given by Lemma 1. The opti-
mal control command for the above formulation is expressed
as shown below.

ui

⇣
k + j.pi

⌘
= �V (j.pi)xi

⇣
k + j.pi

⌘
8j 2 [1, d ⌧

pi
e]

ui

⇣
k+d ⌧

pi
epi+r.�i

⌘
= �V (�i)xi

⇣
k+d ⌧

pi
epi+r.�i

⌘
8r 2 N+

Proof. Upon applying Lemma 1 to the cost function, the cost
function reduces to a finite-horizon optimal control, solved
using the recurring Riccati equation for W (pi)

i [29].

Applying Lemma 2, the objective function of the
scheduling-control co-design can be reduced to Eq. (8).

Minimize{pi}
�i

pi
+ kxi(k)k2

W
(pi)
i

(8)

5



The algorithm for finding the suitable period for Eq. (8)
involves computing the cost for each feasible period pi 2 Pi

and finding the period that results in the smallest cost. The
above algorithm has to test several period values before
termination, incurring large computation overhead. To reduce
computation overhead, we reduce the search space of the
feasible periods to those that ensure stability.

Theorem 1 (Stability of a Control Loop). For a system with
Q > 0, R > 0, and (A(pi)

i , B(pi)
i ) is controllable, then

choosing pi 2 Pi ⇢ N+,
�i = max{pi|pi 2 Pi, 8� 2 �(Ai) �

pi 6= 1 if � 6= 1} (9)
and using the dynamic sampling approach results in asymp-
totic stability at the origin, i.e.,

lim
k!1

x(k) = 0

where �i is the maximum pi 2 Pi, ✏ 2 (0, 1] and pi 2 Pi

fulfills
(A(pi)�B(pi)V (pi))TW (�i)(A(pi)�B(pi)V (pi))  (1� ✏)W (pi).

(10)

Direct proof. The difference between the cost function at time
step k and time k+ pi is bounded, leading to the system state
at k ! 1 to be 0. This proof follows the stability proof in
[23].

The stability proof provides a mathematical expression of
computing the set of feasible periods using Eq. (10). The set
of feasible periods Pi and Riccati solutions for each period
W pi are computed during network deployment and stored in
memory. The period selection algorithm iterates over the set of
feasible periods and selects the period that results in smallest
cost for Ji(xi(k), pi, U(pi)).

C. Formulating Scheduling-Control Co-Design for Multiple
Control Loops

In this section, we plan to adopt the period selection
algorithm from the single control loop to develop a period
selection algorithm for multiple control loops. For a network
with multiple control loops, RTPL MAC schedules the packets
in the network. The use of RTPL MAC introduces two primary
challenges in adopting the aforementioned period selection.
First, the period selection algorithm should ensure real-time
guarantees in RTPL. Second, the use of EDF scheduling in
RTPL implies that sensors measure system state at some time
step in the interval [k, k + pi). Thus, the time difference
between two sampling instances can be greater than pi.

In RTPL, considering a sampling period pi for control
loop `i, the maximum interval between any two sampling
instances is 2pi. The cost function of control loop `i assuming
the control loop samples with a fixed sampling interval of
p̂i = 2pi is shown below in Eq. (11). The cost function in Eq.
(11) introduces pessimism since the control loop samples the
system more frequently (decreasing the actual control cost).
Thus, Eq. (11) serves an upper bound of the cost function. We
propose to adopt Eq. (11) for calculating the list of feasible
periods.

Ji

�
xi(k), p̂i, Ui

�
=

�i

p̂i
+

⇣ d ⌧
p̂i

eX

r=0

p̂i�1X

j=0

�
kxi(k + r.p̂i + j)k2Qi

+ kui(k + r.p̂i)k2Ri

�⌘
+

⇣ 1X

r=0

�i�1X

j=0

�
kxi(k + d ⌧

p̂i
ep̂i + r.�i + j)k2Qi

+

kui(k + d ⌧
p̂i

ep̂i + r.�i)k2Ri

�⌘

(11)

Considering Li represents the maximum latency (or re-
sponse time) of control loop `i, Li < pi8`i serves as a
schedulability condition for all control loops. The scheduling-
control co-design of multiple control loops is shown below

Minimize{p̂i,Ui(p̂i)}
X

8`i

Ji

⇣
xi(k), p̂i, Ui(p̂i)

⌘

s. t. Li 
p̂i
2

8 i

(12)

where Ji(xi(k), p̂i, Ui(pi)) is given by Eq. (11).
In the co-design formulation, the cost function of the

multiple control loop case is a sum of individual control loops,
and the cost function for a control loop is identical to that of
the single control loop case. Thus, adopting Lemma 2, the
scheduling-control co-design formulation can be re-written as
shown below.

Minimizep̂i

X

8`i

�i

p̂i
+kxi(k)k2W (p̂i)

i
s. t. Li 

p̂i
2

8 i

The stability proof of the above equation follows Theorem
1. The feasible periods p̂i 2 Pi that result in asymptotic
stability at origin must obey Eq. (13).

(A(p̂i) �B(p̂)V (p̂))TW (�i)(A(p̂) �B(p̂)V (p̂)) 
(1� ✏)W (p̂).

(13)

Since the control loop operates at pi = p̂i

2 , the feasible
periods are limited to even numbers. Given the set of feasible
periods, the period selection algorithm can try all possible
combination of periods to find the period selection that mini-
mizes the total cost of the plant and ensures schedulability.

Ensuring the schedulability of all control loops for a set
of periods is time-consuming. In the next few sections, we
propose a polynomial time solution for testing schedulability.

D. Schedulability Analysis within a Partition

Schedulability analysis for industrial wireless networks has
been well-studied for half-duplex radios. These works adopt
existing processor schedulability analysis by mapping the
communication on a channel to the execution of a task on
a processor. For the analysis, a unique communication path is
analogous to a core on a processor, and packet transmission on
a channel in one time slot is equivalent to a task execution on
a core for one time unit. Existing works assume (1) uplink and
downlink communication happen on the same communication
path and (2) nodes and gateway can transmit to or receive
from at most one node. LoRa uses separate uplink and down-
link communication channels, and the gateway simultaneously
receives and transmits packets, precluding the direct adoption
of existing schedulability analysis.

6



RTPL adopts an EDF scheduler for scheduling packet trans-
missions on the uplink and downlink communication paths.
Thus, high-priority packets can delay a low-priority packet on
both the uplink and downlink communication path. Typically,
analyzing the interference on the uplink and downlink com-
munication paths relies on a response-time analysis. Response-
time calculation is a pseudo-polynomial time algorithm, that
complicates the proposed period selection algorithm. To sim-
plify the period selection algorithm, we propose a sufficient
utilization-based schedulability condition for RTPL.

To develop a sufficient utilization-based test, we analyze
RTPL scheduling under the assumption that the ordering
of packet transmissions remains the same for the uplink
and downlink communication, which we refer to as RTPL-
Uplink-EDF. Specifically, in RTPL-Uplink-EDF, the uplink
communication schedule follows an EDF schedule, while the
downlink schedule follows the uplink schedule with added
offsets (instead of a local EDF). The offsets in the downlink
schedule account for the time delay to successfully receive
an uplink packet and generate a control command before
transmitting a downlink packet. RTPL-Uplink-EDF scheduler
purports to restrict the interference from high-priority packets
onto one communication path, facilitating a mapping to the
processor domain for a utilization-based test.

With the ordering preserved between uplink and downlink
communication, we estimate the worst-case offset between a
control loop’s packet transmission on the uplink and downlink
channel. We then map the offset in the downlink schedule to
a ghost task and communication on the downlink schedule to
a uniprocessor schedulability analysis to generate a sufficient
schedulability test.

Lemma 3. A set of control loops ⇡(UCPj) assigned to uplink
communication path UCPj and downlink communication path
DCPj are said to be schedulable under RTPL scheduling if
they are schedulable under RTPL-Uplink-EDF.

Proof. A packet transmission schedule generated by RTPL-
Uplink-EDF is transformable to RTPL schedule by a series of
packet transmission swaps, similar to EDF optimality proof.
Thus, a task set schedulable under RTPL-Uplink-EDF is also
schedulable under RTPL-EDF.

Upon restricting the ordering of packets for downlink com-
munication, we define critical interval for RTPL scheduling

Definition 1 (Critical Interval of RTPL). In RTPL and RTPL-
Uplink-EDF, the critical interval is defined as the interval
starting with an uplink transmission that does not overlap with
any downlink communication and ends in an idle time slot
with no uplink or downlink communication or the start of the
next critical interval.

Critical interval of RTPL scheduler is similar to a critical
instance in the real-time processor scheduling theory. Follow-
ing Definition 1, the start of a critical interval may follow the
last downlink communication of the previous critical interval.
Since there is no overlap between critical intervals, packets

from one critical interval cannot delay a packet of another
critical interval. Therefore, a critical interval bounds the delay
experienced by a packet.

Observation 1. [Uplink communication in the first time slot
of the critical interval] An uplink communication marks the
start of a critical interval.

Observation 2. [No downlink Communication in the first time
slot of the critical interval] At the start of the critical inter-
val, there is no downlink communication. The first downlink
communication happens after the uplink communication.

Within a critical interval, the first downlink communication
starts after the first uplink communication completes. The
downlink communication schedule within a critical interval
is offset by the communication time requirement of the first
uplink communication.

Observation 3. [Upper Bound of the Offset for Downlink
Communication within a Critical Interval] The maximum
offset for downlink communication is the maximum uplink
communication time requirement of all control loops, i.e.,
maxi Cup

i .

For RTPL and RTPL-Uplink-EDF, a control loop’s commu-
nication time requirement comprises of communication time
requirement on the uplink channel (Cup

i ) and communication
time requirement on the downlink channel (Cdown

i ). The total
communication time requirement is computed as shown below.

Ci = Cup
i + Cdown

i

Due to the parallel uplink and downlink communication, the
total communication time requirement of control loop `i does
not contribute to the length of the critical interval. Instead, the
maximum of the uplink and downlink communication time
requirement contributes to the length of the critical interval.

Lemma 4. A set of control loops ⇡(UCPj) assigned to uplink
communication path UCPj and downlink communication path
DCPj are said to be schedulable under RTPL-Uplink-EDF
scheduling if maxi Cup

i
minTi�1 +

P
8⌧i2⌧

maxCup
i ,Cdown

i

Ti
< 1

Direct Proof. To develop a schedulability test, we map the
RTPL-Uplink-EDF schedule’s critical instant to a unipro-
cessor system’s critical interval. The combination of uplink
and downlink communication paths represents one core. In
processor mapping, a unit time of the processor corresponds
to the minimum number of time slots required for uplink
communication on the partition. A control loop `i allocated to
the partition (⇡(UCPj)) maps to a task execution ⌧i executing
on a core. The period of task ⌧i is the same as the period of `i.
The worst-case execution time of ⌧i is equal to the maximum
of the uplink and downlink communication time requirements,
i.e., WCETi = max(Cup

i ,Cdown
i ).

For RTPL-Uplink-EDF, we model the offset for downlink
communication as a ghost task ⌧ghost that delays all com-
munications. From Observation 3, the ghost task’s worst-case
execution time is given by WCETghost = maxi Cup

i . The
ghost task executes every critical instant, which is the smallest

7



period of all control loops. The ghost task must execute with
the highest priority within the critical interval. Therefore, the
ghost task must execute with a period Tghost = (mini Ti)�1.

Given the mapping and uniprocessor EDF utilization-based
schedulability test, the schedulability of RTPL-Uplink-EDF is
given by the following equation.

maxi Cup
i

mini Ti � 1
+

X

8⌧i2⌧

max(Cup
i ,Cdown

i )

Ti
< 1

Theorem 2. A set of control loops ⇡(UCPj) assigned to uplink
communication path UCPj and downlink communication path
DCPj are said to be schedulable under RTPL scheduling if

maxi Cup
i

mini Ti � 1
+

X

8⌧i2⌧

max(Cup
i ,Cdown

i )

Ti
< 1

Proof. The proof of this theorem follows Lemma 4 and
Lemma 3.

E. Schedulability for RTPL

RTPL adopts a worst-fit paritioning algorithm for parition-
ing control loops. The worst-fit approach checks whether a set
of control loops are schedulable within a partition using The-
orem 2. Only upon ensuring schedulability, control loops are
assigned to a partition. Additionally, the worst-fit heuristic is a
polynomial time solution. Thus, worst-fit heuristic provides a
sufficient test of schedulability, wherein a set of control loops
are schedulable if the heuristic finds a partitioning.

F. Period Selection Algorithm

Selecting and dynamically adjusting the periods of control
loops is critical to the scheduling-control co-design frame-
work. The selected periods must guarantee schedulability (Sec.
IV-E) and successful partitioning of the loops. In this section,
we present an algorithm for selecting periods for control loops
that can ensure stability and schedulability of all control loops.

During deployment, a set of feasible periods pi 2 Pi

that ensures stability are determined for each control loop
using Equation (13). From these feasible periods, the one that
leads to the lowest control cost (Eq. (11)) is chosen as the
period for the control loop. If the selected periods result in a
schedulability of control loops, they are assigned to partitions.
However, if the loops cannot be scheduled, periods of control
loops are iteratively updated to find a valid period assignment
that ensures stability and schedulability of all control loops.

In each iteration, the algorithm modifies the period of all
control loops by incrementing them by a small value denoted
as the update size (Z) , selected by the system designer.
The control cost for each control loop is recomputed using
the modified periods, resulting in a new control cost. The
difference between the new and old control costs, denoted as
�, is calculated for each loop. The algorithm identifies one
control loop whose period adjustment results in the smallest
increase in the control cost. The period adjustment of the
identified control loop is accepted, and all other adjustments
are rejected. Upon updating one control loop’s period, the
schedulability of the system is verified. If the system is

schedulable, the algorithm terminates. Otherwise, the algo-
rithm iteratively updates the period until it finds a valid period
assignment. Note that the algorithm may fail to find a valid
period assignment when each control loop’s maximum feasible
period (ensuring stability) does not ensure schedulability. In
such case, the system designer may redesign the network to
ensure stability and schedulability.

G. Handling Re-Partitioning of the Nodes

Addition or deletion of nodes to the network, or a change
in sampling rates may trigger the partitioning algorithm.
Moreover, disseminating partitioning information to all control
loops frequently will consume huge amount of energy. It
becomes highly time consuming specially when the number of
nodes is large. To achieve scalability and energy-efficiency of
the nodes, we propose to run the optimization less frequently,
periodically after a long interval, called schedule epoch.
Nodes are re-partitioned after each epoch period, right after
executing the optimization problem and thus any change in
network dynamics is taken care of periodically. Additionally,
executing optimization less frequently ensures maximum sleep
time of the loops to save energy. As a result, a longer
schedule epoch length leads to lower sampling rates and
lower energy consumption. Conversely, shorter epoch lengths
increase power consumption due to the more frequent need to
solve the optimization problem.

A schedule epoch and a sync period serve distinct func-
tions. A schedule epoch is a longer interval after which the
optimization problem is globally executed for all control loops,
leading to re-partitioning of loops. In contrast, a sync period is
a shorter interval after which only the optimization is done to
compute periods and control inputs of loops within a partition,
without any re-partitioning. Multiple sync periods can occur
within a schedule epoch, but the partitioning algorithm is only
run at the start of each epoch. After the initial execution,
the partitioning algorithm is not run again following any
period update after the sync period which ensures the energy
efficiency of the nodes. The lengths for both the schedule
epoch and sync period can be determined through simulation.

H. Handling Time-Synchronisation of the Nodes
In the scheduling-control co-design framework, only the

nodes in a partition need to be time-synchronized. The sync
period helps in synchronizing the time of all nodes. After each
sync period, the controller computes (and broadcasts) periods
of (to) all control loops. All the nodes within a partition
wake up after the sync period to receive the updated periods.
We propose to broadcast the packets with a longer preamble
to allow the nodes to wake up before the start of actual
transmission. The length of the preamble may be tuned based
on the synchronization requirements and the number of nodes.

V. SIMULATION

In this section, we evaluate our control co-design approach
through simulation.

Setup: We use the NS-3 LoRaWAN module[30] to model
the network in our simulation and a custom script to emulate

8



physical control system. We used up to 350 nodes and a single
gateway. The locations of the nodes were randomly selected
within a range of 5 km from the gateway. The nodes and the
gateway use 8 channels with center frequencies between 902.3
and 903.7 MHz and bandwidth of 125 kHz. To comply with
US regulations, we exclude SF11 and SF12 from our usage.
We use 36 UCPs and 16 DCPs. We set the design variables
A = 1, B = 1, P = 1.1571, Q = 1 and �= 1. We set �i to 50s
i.e., Pi = [1s, 2s, · · · , 50s] and the update size Z to 1s. The
total run time of the simulation is calculated by multiplying the
total number of schedule epochs taken during the simulation
run, the number of sync periods within each schedule epoch,
and the duration of a single sync period.

Baselines: We compare the proposed scheduling-control co-
design approach against two approaches namely Fixed Periods
and Holistic Control. In the Fixed Periods approach, the
periods are not updated, i.e., the sampling periods are fixed
for the entire simulation. In the Holistic Control approach,
proposed in [25], the Rate adaptation algorithm adapts the
sampling rate of controllers dynamically based on the control
performance, measured by the Lyapunov function V . It com-
pares the Lyapunov function to two thresholds- an increasing
threshold VIth, and a more stringent decreasing threshold
VDth. If V stays below VDth for a time interval, indicating
good control performance, the period doubles to save energy.
If V exceeds VIth, the period halves (with the initial period
being the smallest feasible value) to improve control.

Metrics: We evaluate the control cost over time with dif-
ferent numbers of nodes, schedule epochs, and sync periods.
Furthermore, we evaluate the energy consumption of the nodes
which is defined as the amount of energy expended by each
node to transmit the state and control information from the
sensor to the actuator and is measured in milli-Joules.
A. Results under varying number of nodes

Figure 2. Results under varying
number of nodes (50 nodes)

In this simulation, we set
the total number of sched-
ule epochs to 2, the number
of sync periods within each
schedule epoch to 10 and the
duration of a single sync pe-
riod to 100s. Initially, we set
the number of nodes to 50
and assess the control cost.
Subsequently, we increase the
number of nodes to 200 and 350, and evaluate the control cost
for a total simulation time of 2000 seconds.

1) 50 nodes: In Fig. 2, for our co-design approach, we
notice a swift decline in control cost within the initial 100s,
stabilizing at a constant value of 0.20, indicating fast system
convergence. In contrast, the control cost for the fixed periods
approach stabilizes at 5.47, significantly higher than our ap-
proach. This is due to the nodes using fixed periods throughout
without accounting for changes in the system state, leading
to poor control performance. Additionally, we observe that
the control cost for the holistic control approach fluctuates
between 200s and 700s as the system sampling rates multiple

(a) 200 nodes (b) 350 nodes
Figure 3. Results under varying number of nodes.

times based on the threshold to achieve stability. It then
gradually decreases, with the system becoming stable after
1400s with a control cost of 4.20.

2) 200 and 350 nodes: Now, we vary the number of nodes
to 200 and 350 and evaluate the control cost in Fig. 3 under the
same setup. As the number of nodes in the network increases,
we notice a corresponding spike in the initial control cost.
Therefore, to better visualize the range of values, we plot the
control cost on a logarithmic scale. In Fig. 3(a), the initial
cost for 200 nodes is 931.08 for our approach and 938.05
for both fixed periods and holistic control. In Fig. 3(b) the
initial cost for 350 nodes is 1917.48 for our approach and
1988.09 for both fixed periods and holistic control. We observe
a similar trend of control cost where it gradually decreases
after first 100s. In fact all the approaches tend to stabilize after
this point by trying to increase the inter-sampling times. Our
approach achieves stability with a very low control cost of 0.80
and 0.93 for 200 and 350 nodes respectively. This consistent
performance demonstrates that our approach maintains a lower
control cost compared to the two baseline approaches. This
indicates that our co-design approach can deliver good control
performance even at a large scale as it relies on dynamic
sampling based on system state. On average, our approach
outperforms the baseline approaches by 80%.

3) Energy consumption of 200 nodes: In this simulation,

Figure 4. Energy consumption

we present the energy con-
sumption of 200 nodes under
the same setup in Fig. 4. Our
co-design approach aims to
reduce the energy consump-
tion of each node while dy-
namically updating the sam-
pling rates, which also aids in
improving network lifetime.
Introducing disturbance in the system by adding impulse
noise of 0.02 magnitude at every 5s, we observe that the
median energy consumed for our approach is 15.73035 mJ
(half of the nodes consume less, and half consume more). For
holistic control, the median energy consumption per packet
is 26.8804 mJ, indicating higher average energy consumption
compared to our approach. Our approach shows some outliers
at approximately 100 mJ, indicating some nodes consume sig-
nificantly more energy than others. In contrast, holistic control
has several outliers, all above the upper quartile, suggesting
multiple nodes with significantly higher energy consumption.
Fixed periods has the highest median energy consumption at

9



(a) 50 nodes (b) 200 nodes
Figure 5. Results under varying schedule epoch and sync period

28.4076 mJ but with relatively few outliers above 100 mJ.
Overall, our approach is more energy-efficient, achieving good
control performance with less energy consumption, even in
the presence of noise. Our approach performs approximately
44.61% better than the fixed periods approach and 41.49%
better than the holistic control approach based on median.
B. Results under varying Schedule Epochs and sync periods

In this simulation, we vary the number of schedule epochs
and the length of sync periods to evaluate the control cost in
Fig. 5. We change the total number of schedule epochs to 4, set
the number of sync periods within each schedule epoch to 20,
and the duration of a single sync period to 200s. We evaluate
the control cost for 50 nodes for a total simulation time of
16000s in Fig. 5(a). We observe that increasing the number
of sync periods leads to a reduced initial cost compared to
previous setups, as dynamic sampling occurs more frequently
but still remains under control. The costs for each approach
gradually decrease as the system stabilizes, with our approach
stabilizing at a very low control cost of 0.20, the fixed periods
approach at 5.47, and the holistic control approach oscillating
between high and low control costs before stabilizing at 4.30.

In Fig. 5(b), we evaluate the control cost for 200 nodes.
We observe a spike as the number of loops increases. To
better visualize the range of values, we plot the control cost
on a logarithmic scale. Initially, the control cost is high for
each approach: 920.08 for fixed periods, 913.02 for holistic
control, and 600.00 for our approach. Our approach quickly
stabilizes with a cost of only 0.60, even over a long run time,
due to dynamically updating periods based on the system state
after each schedule epoch and sync period. However, fixed
periods stabilize at cost of 6.10, while holistic control at 4.78.
This result demonstrates the effectiveness of our approach of
periodically updating sampling periods after sync periods and
schedule epochs for achieving good control performance.

VI. CONCLUSION

In this paper, we have proposed a highly energy-efficient
and scalable framework for real-time scheduling and control
co-design for a LoRa network. To our knowledge, this is the
first work on control performance optimization over a LoRa
network. Simulations based on NS-3 show that our approach
minimizes control cost at least by 80% as compared to the
considerable baselines.

ACKNOWLEDGEMENT

The work was supported by NSF through grants CNS-
2301757, CAREER-2306486, CNS-2306745, CNS-2211640
and by ONR through grant N00014-23-1-2151.

REFERENCES

[1] E. T. O. Field, https://en.wikipedia.org/wiki/East Texas Oil Field.
[2] “WirelessHART sys. eng. guide,” https://www.emerson.com/documents/

automation/emerson-wirelesshart-system-engineering-guide-en-41252.
pdf.

[3] “WirelessHART,” https://www.fieldcommgroup.org/technologies/hart.
[4] “ISA100:,” http://www.isa.org/MSTemplate.cfm?MicrositeID=1134&

CommitteeID=6891.
[5] L. Bhatia, I. Tomić, A. Fu, M. Breza, and J. A. McCann, “Control

communication co-design for wide area cyber-physical systems,” ACM
TCPS’21.

[6] L. Leonardi, F. Battaglia, and L. Lo Bello, “Rt-lora: A medium access
strategy to support real-time flows over lora-based networks for indus-
trial iot applications,” IEEE IoT J., 2019.

[7] S. Fahmida, V. P. Modekurthy, D. Ismail, A. Jain, and A. Saifullah,
“Real-time communication over lora networks,” in IEEE/ACM IoTDI’22.

[8] M. Hatler, D. Gurganious, and J. Kreegar, Industrial LPWAN – A Market
Dynamics Report, https://www.onworld.com/iLPWAN/index.html.

[9] “LoRaWAN,” https://www.lora-alliance.org.
[10] “LoRa design guide,” https://www.semtech.com/uploads/documents/

LoraDesignGuide STD.pdf.
[11] A. Saifullah, C. Wu, P. B. Tiwari, Y. Xu, Y. Fu, C. Lu, and Y. Chen,

“Near optimal rate selection for wireless control systems,” ACM Trans.
Embed. Comput. Syst., 2014.

[12] Y. Ma, J. Guo, Y. Wang, A. Chakrabarty, H. Ahn, P. Orlik, X. Guan,
and C. Lu, “Optimal dynamic transmission scheduling for wireless
networked control systems,” IEEE Trans. on Cont. Sys. Tech., 2022.

[13] F. Mager, D. Baumann, C. Herrmann, S. Trimpe, and M. Zimmerling,
“Scaling beyond bandwidth limitations: Wireless control with stability
guarantees under overload,” ACM TCPS, 2022.

[14] V. P. Modekurthy and A. Saifullah, “Online period selection for wireless
control systems,” in IEEE ICII’19.

[15] Y. Ma, Y. Wang, S. Di Cairano, T. Koike-Akino, J. Guo, P. Orlik,
X. Guan, and C. Lu, “Smart actuation for end-edge industrial control
systems,” IEEE Trans. on Automation Sci. and Eng., 2022.

[16] https://lora-developers.semtech.com/documentation/
tech-papers-and-guides/lora-and-lorawan/.

[17] D. Roy, C. Hobbs, J. H. Anderson, M. Caccamo, and S. Chakraborty,
“Timing debugging for cyber-physical systems,” in DATE’21).

[18] Y.-Q. Xia, Y.-L. Gao, L.-P. Yan, and M.-Y. Fu, “Recent progress in
networked control systems—a survey,” International J. of Automation
and Computing, 2015.

[19] P. Park, S. C. Ergen, C. Fischione, C. Lu, and K. H. Johansson, “Wireless
network design for control systems: A survey,” IEEE Comm. Surv. &
Tut., 2018.

[20] K. Tsumura, H. Ishii, and H. Hoshina, “Tradeoffs between quantization
and packet loss in networked control of linear systems,” Automatica,
2009.

[21] J. Araújo, M. Mazo, A. Anta, P. Tabuada, and K. H. Johansson, “System
architectures, protocols and algorithms for aperiodic wireless control
systems,” IEEE TII, 2014.

[22] M. Mazo and P. Tabuada, “Input-to-state stability of self-triggered
control systems,” in IEEE CDC/CCC 2009, pp. 928–933.

[23] E. Henriksson, D. E. Quevedo, E. G. W. Peters, H. Sandberg, and K. H.
Johansson, “Multiple-loop self-triggered model predictive control for
network scheduling and control,” IEEE Trans. on Cont. Syst. Tech., 2015.

[24] J. Bai, E. P. Eyisi, F. Qiu, Y. Xue, and X. D. Koutsoukos, “Optimal
cross-layer design of sampling rate adaptation and network scheduling
for wireless networked control systems,” in IEEE/ACM ICCPS’12.

[25] Y. Ma and C. Lu, “Efficient holistic control over industrial wireless
sensor-actuator networks,” in IEEE ICII’18, pp. 89–98.

[26] Y. V. Pant, H. Abbas, K. Mohta, T. X. Nghiem, J. Devietti, and
R. Mangharam, “Co-design of anytime computation and robust control,”
in IEEE RTSS’15, pp. 43–52.

[27] J. M. Maciejowski, Predictive Control With Constraints. Prentice Hall,
2002.

[28] J. H. Lee, “Model predictive control: Review of the three decades of
development,” International J. of Cont., Auto. and Sys., 2011.

[29] D. Bertsekas, Dynamic programming and optimal control: Volume I.
Athena scientific, 2012.

[30] D. Magrin, M. Capuzzo, and A. Zanella, “A thorough study of lorawan
performance under different parameter settings,” IEEE IoT J., 2019.

10

https://en.wikipedia.org/wiki/East_Texas_Oil_Field
https://www.emerson.com/documents/automation/emerson-wirelesshart-system-engineering-guide-en-41252.pdf
https://www.emerson.com/documents/automation/emerson-wirelesshart-system-engineering-guide-en-41252.pdf
https://www.emerson.com/documents/automation/emerson-wirelesshart-system-engineering-guide-en-41252.pdf
https://www.fieldcommgroup.org/technologies/hart
http://%20www.isa.org/MSTemplate.cfm?MicrositeID=1134&CommitteeID=6891
http://%20www.isa.org/MSTemplate.cfm?MicrositeID=1134&CommitteeID=6891
https://www.onworld.com/iLPWAN/index.html
https://www.lora-alliance.org
https://www.semtech.com/uploads/documents/LoraDesignGuide_STD.pdf
https://www.semtech.com/uploads/documents/LoraDesignGuide_STD.pdf
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/

	Introduction
	System model and Background
	An Overview of LoRaWAN
	Network Model
	Physical Control System 
	RTPL Overview

	Related Work
	Design of Scheduling-Control Co-design Framework
	An Overview of the Scheduling-Control Co-design
	Formulating Scheduling-Control Co-Design for a Single Control Loop
	Formulating Scheduling-Control Co-Design for Multiple Control Loops
	Schedulability Analysis within a Partition
	Schedulability for RTPL
	Period Selection Algorithm
	Handling Re-Partitioning of the Nodes
	Handling Time-Synchronisation of the Nodes

	Simulation
	Results under varying number of nodes
	50 nodes
	200 and 350 nodes
	Energy consumption of 200 nodes

	Results under varying Schedule Epochs and sync periods

	Conclusion
	References

