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Adaptive cache policy optimization through deep reinforcement

learning in dynamic cellular networks

Ashvin Srinivasan*, Mohsen Amidzadeh, Junshan Zhang, and Olav Tirkkonen

Abstract: We explore the use of caching both at the network edge and within User Equipment (UE) to alleviate traffic
load of wireless networks. We develop a joint cache placement and delivery policy that maximizes the Quality of
Service (QoS) while simultaneously minimizing backhaul load and UE power consumption, in the presence of an
unknown time-variant file popularity. With file requests in a time slot being affected by download success in the
previous slot, the caching system becomes a non-stationary Partial Observable Markov Decision Process (POMDP). We
solve the problem in a deep reinforcement learning framework based on the Advantageous Actor-Critic (A2C)
algorithm, comparing Feed Forward Neural Networks (FFNN) with a Long Short-Term Memory (LSTM) approach
specifically designed to exploit the correlation of file popularity distribution across time slots. Simulation results show
that using LSTM-based A2C outperforms FFNN-based A2C in terms of sample efficiency and optimality, demonstrating
superior performance for the non-stationary POMDP problem. For caching at the UEs, we provide a distributed
algorithm that reaches the objectives dictated by the agent controlling the network, with minimum energy

consumption at the UEs, and minimum communication overhead.
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1 Introduction

Wireless caching in cellular networks is a highly
effective method for alleviating traffic congestion
problemsl!]. A variety of methods have been explored
to develop efficient policies for the two phases of this
problem, cache placement and cache deliveryl2.

In Ref. [3],

considered, focusing on determining how Base Stations

probabilistic cache placement is

(BSs) should store files. This probabilistic approach

serves as the foundation for designing an optimal cache
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policy, which in turn, ensures the highest total hit
probability for random network topologies!“l.

During the cache delivery phase, it is crucial to
differentiate between unicast and multicast methods, as
well as between single-point approaches, where a file is
delivered by the caching BS with the highest signal
power, and multipoint approaches, where a user
downloading a file receives simultaneous transmissions
from multiple BSs. Single-Point Unicast (SPUC) cache
delivery has been analyzed in Refs. [3—11]. In Ref. [5],
a dynamic network architecture is considered, where
the nearest BS responds to a User Equipment (UE) that
demands service. In Ref. [6], BSs are equipped with
multiple antennas. Each BS utilizes beamforming
transmissions eliminate interference within a chosen
group of cooperating BSs. An SPUC scheme is
considered in Ref. [8] in a Heterogeneous Network
(HetNet)

beamforming BSs and cache-enabled helper-nodes.

setup, incorporating zero-forcing

Cache delivery based on Single-Point Multicast
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(SPMC) transmission is considered in Refs. [12-16].
The approach involves caching BSs that multicast or
broadcast different files to requesting UEs using
multiple access techniques. For instance, in Refs.
[12, 13], probabilistic caching is considered in a
HetNet environment, where cach BS multicasts k files
using pre-assigned resources that each span 1/k of the
total available bandwidth. In Ref. [14], optimal random
caching designs for perfect, imperfect, and unknown
file popularity distributions in a large-scale multi-tier
wireless network are considered. In Ref. [16], Peng et
al. investigated multicast sparse beamforming based on
a deterministic cache placement.

References [17, 18] have examined deterministic
caching with on-demand Multipoint Unicast (MPUC)
cache delivery. In Ref. [17], caching BSs deliver a
cached file to the requesting UE using a distinct
with network

among UEs to avert interference. This scheme does not

resource, resources orthogonalized

incorporate collaborative beamforming based on
Channel State Information (CSI), and the BSs only use
a single antenna. In contrast, Ref. [18] applies
Coordinated Multipoint (CoMP) transmission with
zero-forcing beamforming. It assumes known CSI
between UEs and a group of serving BSs. Here, each
UE receives unicast CoMP transmissions from a set of
serving BSs, which inevitably leads to multiple access
interference.

Here, we use Orthogonal Multipoint Multicast
(OMPMCO)!! for cache delivery. OMPMC caters to
file requests through a location-independent, content-
specific multicast scheme. This approach significantly
reduces the complexity of content delivery while
ensuring efficient utilization of network resources.

The dynamic nature of network traffic, and user
mobility,
intelligent caching mechanisms. Deep Reinforcement

necessitate the development of more
Learning (DRL) has emerged as a promising solution,
offering a robust framework for addressing these
challenges(20-231, In Ref. [20], an actor-critic learning
method is employed to identify an optimal policy for
user scheduling and cache placement in a
heterogeneous network with constant file popularity.

This approach aims to optimize network performance
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and user experience simultaneously. In Ref. [21], DRL
is utilized to achieve an optimal policy in terms of
average transmission delay for a cellular network. This
optimization process is crucial for ensuring timely
delivery of information and enhancing overall network
efficiency. In Ref. [22], Long Short-Term Memory
(LSTM)-based DRL is applied for inter-slice resource
management in cellular networks. This advanced
technique enables dynamic allocation and reallocation
of resources, leading to more efficient network
performance. A coded caching policy is developed
using a DRL algorithm with an LSTM architecture in
Ref. [23]. This policy is subsequently optimized in
terms of transmission delay and cache replacement
cost, resulting in significant improvements in network
efficiency and cost-effectiveness. A dynamic cache
policy is designed in Ref. [24], incorporating a non-
optimal methodology for placing files on UE caches.
This approach seeks to strike a balance between
performance and complexity.

In this paper, we study a cache policy optimization
problem where UEs cache content proactively, in
addition to edge caching at BSs; and cache placement
at both BSs and UEs is probabilistic. Departing from
Ref. [24], we allow the network to control the UE
caches, which is essential for maintaining the balance
between resource allocation, user experience, and UE
power consumption during proactive file downloads.
To take into account the time-varying nature of
dynamic caching, the file preference distribution is
modeled as a non-stationary stochastic process; this is
in contrast to Refs. [19, 20, 24], where the dynamics of
the network are treated as stationary, and the state
space is considered finite. We also assume that the
underlying file popularity distribution is unknown to
the network, making the problem only partially
observable.

We thus formulate the cache policy optimization
problem as a Non-stationary Partially Observable
Markov Decision Process (N-POMDP), a sophisticated
model that considers the uncertainties inherent in
cellular networks. To find an optimal policy, we
employ an Advantage Actor-Critic (A2C)[24] algorithm,

which is supported by an LSTM-based neural
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network[?’] to handle the non-stationarity. This
approach differs from Ref. [23], where a prediction
mechanism is applied to learn a cache policy for a
system with unknown parameters. An LSTM-based
Reinforcement Learning (RL) algorithm to solve the
formulated POMDP offers a more rigorous and
systematic approach to cache policy optimization.

The remainder of the paper is organized as follows:
Section 2 outlines the system and file popularity
models. The problem is formulated in Section 3.
Section 4 details the UE cache placement procedure,
while the deep reinforcement learning framework is
introduced in Section 5. Numeric simulation results are
provided in Section 6, and Section 7 concludes the
paper.

Notation: We use bold-face lower-case letters to
indicate vectors, and a’ is the transpose of a vector.
We indicate the m-th element of vector b by b,,, and
{bm}? _, collects the components of vector b from
m=1 to m=p. Moreover, 1 and 0 denote the vector
with all elements equal to one and zero, respectively.

2 System model

We examine a cellular access network that consists of
cache-equipped BSs, UEs, and a library F containing
N different files. Without loss of generality, each file is
assumed to be normalized to a value of 1. The BSs are
connected to the core network through error-free
backhaul links. In this network, the BSs are responsible
for responding to aggregated content requests from
UEs. To fulfill these requests, the BSs fetch the
required contents and store them in their caches. To
determine the placement of contents in the BS caches,
a probabilistic approach is employed, as described in
Ref. [3]. This approach utilizes a common probability
distribution.

The cache delivery process utilizes OMPMC, as in
Ref. [19]. According to this scheme, each file is
transmitted simultaneously across the network by all
BSs that cache that particular file, using a dedicated
specific to that file. This
orthogonality ensures that co-channel interference is

resource resource

avoided, as distinct files are transmitted using different
resources. UEs request files from the network based on

a file popularity distribution { Pn}nNzl, where p,
represents the probability of file n being preferred. The
transmitted files are then stored at UEs’ caches based
on a probabilistic cache placement strategy.

The network operates in a time-slotted manner,
where each time slot is indexed by ¢. The network
operation within each time slot can be divided into
three phases. In the first phase, UEs, distributed
according to a spatial poisson distribution, request
content from the network based on file popularity. In
the second phase, the BSs retrieve the requested files
from the core network based on the aggregate sum of
requests for different files, and update their respective
caches. The third phase involves the broadcast of files
using OMPMCI[20], and the update of UEs’ caches. We
assume that all these phases occur sequentially on a
time-slot basis. The interactions among UEs, BSs, and
the core network for a given time slot ¢ are illustrated
in Fig. 1.

2.1 Cache placement and delivery

The network applies probabilistic cache placement

strategy characterized by a file-specific probability
N

n=1»>

distribution[*], denoted as p(¢) = {0, (1)} where p, (1)
represents the probability of file n being cached at a

randomly selected BS. Each BS has a maximum cache

N
capacity of L, thus we have an(t)<Lb. Without
loss of generality, we assume :};z;t all files have the
same size. If files are of different sizes, they can be
segmented into equal-sized chunks, and each segment
could be treated as an individual entity in the caching
policy. Instead of formulating the popularity
distribution of entire files, we would then consider the
popularity of the individual segments.

For caching at the BSs, we follow the principle of
Ref. [4]. L, segments of length 1 are used to represent
the L, units of cache memory at the BSs, as shown in
Fig. 2. The segments are filled according to the weights
{pn(t)}f;':]. When a segment becomes full and cannot
completely accommodate a given weight, the
remaining probability weight is filled into the next
segment. As a result, each of these L, segments

accommodates a variety of potential files that could be
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Fig.1 Communication and coordination among UE, BS, and the core network for cache placement and delivery.
(a) File request mechanism at the BS. (b) BS caching probability mechanism. (¢) UE caching mechanism provided by the

network.
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Fig. 2 Example showcasing probabilistic caching for L, =
2, and N = 6 files with caching probabilities p = [0.4, 0.3, 0.5,
0.2, 0.3, 0.3]. A random number U = 0.18 is drawn from the
uniform distribution over [0, 1], represented by the vertical
line. The line intersects at p; and p3, indicating that Files 1
and 3 will be cached.

stored in the corresponding portion of the memory.
Once all segments have been populated, the BS
generates a uniformly distributed random variable U in
the range [0,1]. The BS then stores the files that
coincide with this the position of this random variable
in each segment. The probability of file n to be cached
becomes precisely p,,.

For proactive caching at UEs, we also employ a
probabilistic cache placement strategy, based on
multicast cache delivery from BSs to UEs. We adopt a
one-shot probabilistic UE-caching principle, where the
network broadcasts dictating messages to the UEs, and

UEs fill their caches accordingly from cache delivery

transmissions of the network. The process of filling UE
caches, differs from filling BS caches in two essential
ways. First, the success of cache delivery from BS
caches to UEs depends on randomness of wireless
channels. As a consequence, if there is a strict UE
cache capability L,, such that in each UE cache at any
time, there is at most L, files, a UE-cache placement
policy which always would fill all UE caches would
have to be based on feedback, to mitigate packet losses
in wireless transmission. To avoid this, we assume an
average cache capacity constraint at UEs; on average,
the number of files cached at a UE is not larger than
L,. This can be realized as a service-level agreement,
where a fraction of the UEs memory, on average, is
allocated to the caching service. Second, to minimize
UE power consumption, the amount of files that a UE
attempts to decode should be kept at a minimum.

To achieve this, we apply a proactive UE caching
method where file decoding attempts at a UE depend
on the dictating messages and the cache contents. On
the population level, the UE caching probability vector
s(¢) describes the state of the UE caches. Element s,,(7)
represents the probability of file n being cached at a
UE at time-slot ¢. Each UE cache has a restricted
capacity of L,. We thus have
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N

s <Ly (1)

n=1

At their most general, the dictating messages from
the network to the population of UEs consist of two
2N x 2N  matrices, where for each possible cache
content of a UE, there is a probability to attempt to
decode certain files, or a probability to flush certain
files from memory.

Cache delivery from BSs towards the UEs uses file-
specific resources {wn(t)}nN=1 through the OMPMC
scheme. In this scheme, the network responds to the
aggregated UE requests by broadcasting the cached
files. Each file is simultaneously broadcasted in
resource wy(f) by all the BSs that cache that particular
filel!91,

We assume that the users experience block Rayleigh
fading in addition to large-scale distance dependent
path loss. The instantaneous Signal to Interference plus
Noise Ratio (SINR) for UE m receiving file n is y,,.
We assume that transmission of the files happen at a
rate Ry, and that Additive White Gaussian Noise
(AWGN) capacity achieving codebooks at this rate are
used. Accordingly, Ry, becomes a threshold rate; if the
instantaneous AWGN-capacity of a user receiving a
file is larger than Ry, the user succeeds in decoding,
otherwise the user is in outage. Assuming that all files
have the same size, file n is thus in outage at UE m if
where W is the total
bandwidth of the transmission. We can thus define a

wpWlog, (1 +Ymn) < Rin,

spectral efficiency threshold a =Ry /W, such that at
time ¢, the outage probability for UE m receiving file n

in the dedicated fractional resource w,(f) becomes!!°]

on(1) = P(wp()1og, (1+Ymn() < @).

We utilize two independent homogeneous Poisson
Point Processes (PPPs) to model the locations of UEs
and BSs in the network. For a network using OMPMC
scheme with a propagation environment of path loss
exponent Sy =4, with BSs having the average
transmission power p distributed according to a PPP
with intensity Aps, and UEs having the receiver noise
(2), the outage probability for file n being
cached at BSs

transmitted using frequency resource w,(z) then

power o

with caching probability p,(7),

becomes[?4]

2

2
o,(1) = erfC(M)

4 \nu(2)

where erfc(-) is the complementary error function and

0 a/wp(t) . .
(1) = 7(2 " —1) is a channel gain threshold.

2.2 File popularity

In each time slot, users request files from the library F.
A user either finds the requested file in its cache, or it
attempts to decode it from an OMPMC transmission of
the network, which may or may not be in outage. We
assume that irrespective of whether or not a requested
file is in the cache and/or in outage, users inform the
network about the request for the time slot. These
requests are then aggregated by the network to a file
request probability p,(¢) for each file n, forming the
file request probability vector p(r). We assume that this

N
is a probability, such that Z pn®) =1,
n=1
There is an underlying dynamic file popularity

distribution driving the user’s requests, with f,(¢) being
the popularity of file n. We model two types of users,
patient and impatient ones. If a patient user requests
file m in slot r—1, if the file is not in the user’s cache
and the user faces outage, this user will request the
same file again in slot . An impatient user facing this
situation, in contrast, selects a file at random in slot 7
according to f,(r). We assume that a user is patient
with probability . Assume an event O,,, where a user
requests file m in slot -1, it is not in the UE cache,
and reception from the network fails. The probability
of this event is

P(Oy) = (l_sm(t_l))om(t_l) pm(t—1) (3)
The probability that file n is requested in slot ¢ is
then

P(n|Om) = £ 6nm + (1= &) ful0) “)
where 6,,,, is the Kronecker delta function.
Furthermore, we assume that in the event O,, where
the user requests file m in slot 71— 1 and either finds it in
its cache or successfully receives it, the user will not
request the same file in slot 7. Otherwise, the user
chooses the file freely according to f;(7):
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fn(®)
1- fm(t)

The probability of this event is

P(n|5m) = (I'=6um) Q)

P(Op) = pu(t=1) = P(Op) (6)

Finally, we assume that there is Gaussian noise v,(f)
affecting the file request process, reflecting the
randomness of user activation, and differences in real
preferences of users. The file request probability

dynamics before normalization thus becomes

N
Pa®) =va(D)+ " P(1lO) P(Oy) + P(niOy) P(Oy,) =

m=1

N
Fu®) Y (1= nlt= 1) pult = D+
m=1

En@—=1) pu(t=1) + vu(0) (7
where
&n(D) =L (1 = 5,() 0, (D)—

fa@+1)
T—far D) (I =0,(0)(1 = 5,(1))),

arises from the non-stationary driving popularity
distribution. The final normalization step adds a mild
non-linearity to the problem.

For concreteness, we model the underlying file
popularity distribution in terms of a modification of the
diffusion model applied in Ref. [27]:

2my,
e(t—tn0) ) ®)

n

fn(t) =
1 +cosh(

where 1, is a file-specific time-shift that describes the
time instance when the interest in the file peaks, A, is a

file-specific half-width of the file interest peak in units
N

of time slots, and m,=n"/ Zi_T is a diffusion
i=1
amplitude characterizing the peak interest in the file,

which we draw from a Zipf distribution with skewness
71281, and e = 41In(1 + V2) is a constant.

It is important to note that the model developed in
Eq. (7) is not confined to a specific form of f,(¢).
Rather, it exhibits a degree of flexibility, allowing it to
be applied across various contexts and systems. We
assume that the stochastic dynamics in Eq. (7) is not a

priori known to the network. The network does not
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know the underlying popularity distribution f,(z), while
it does know the realized file request probabilities

Pn(D).
3 UE cache placement

The network employs an updating mechanism in order
to manage the cache contents of UEs to adhere to a
target probability distribution s. For this, the network
The UEs
independent agents. Depending on the cache content of

broadcasts dictating messages. act as
an individual UE, and the dictating messages, the UEs
attempt to decode files and/or flush files. In this
section, we shall find an optimal distributed procedure
that the UE agents follow, such that the aggregate
action of the UE agents leads to the state desired by the
network with minimum energy consumption. We
assume that UE energy consumption for the caching
policy directly depends on the number of file decoding
attempts. As discussed in Section 2.1, we have Formula
(1) on the average cache size of the UEs.

In time-slot 7, the network generates the target UE
cache probabilities {s,(t+ 1)} for the files for the next
time slot. It then broadcasts dictating messages to the
UEs, with the objective of changing s,(¢) to the target
values.

First, we observe that while the continuous variables
s describe the probabilities to find files in the user
caches, when considering the cache of a given user, the
of finding different files
independent. This is directly seen in an extreme case,

probabilities are not
where s is such that the same set of L, files is cached
in every UE. The probability space describing possible
UE cache contents thus is 2"-dimensional. A priori,
any one of the N files may or may not be cached at a
different
combinations of files that a UE may attempt to decode

given UE. Similarly, there are 2V
in a time slot, and in principle 2V combinations of files
that a UE may flush. Despite this rather complicated
setting, we find that for an energy consumption
minimizing UE caching policy with the average cache
size constraint, correlations between probabilities of
files being cached do not need to be taken into account.
It is sufficient for each UE to treat each file

independently.
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If s,(z+1) > s,(¢), it implies that at time-slot 7+ 1,
more UEs should cache file n as compared to time-slot
t while if s,(t+ 1) < s,(¢), some UEs should discard the
file from their caches. To realize the target caching
probability, the population of users follow a procedure
as follows. Based on the caching probablity changes

A, (t+1) = 5,(t+ 1) = 5,(0),

we define the dictating variables:

An(l+ 1)
s An 1 0;
d = (I =s,()(1 _On(f)) +1)> (9)
=) 44D s
Sn(t) n S

This number is positive if more caching is needed,
and negative if less is needed. The quantity |d,(7)| is the
probability a UE should decode file n, if it is not
already cached, or that it should discard it if it is
cached. The network broadcasts d,(¢) to the UEs. Each
UE now independently follows the update procedure of
Algorithm 1. We have

Proposition 1  Consider a population of UEs
storing files at time-slot ¢ with aggregate cache
probability {s,(¢)}, experiencing an outage during
downloading file n with probability o,(f), and
following independently the cache update procedure of
Algorithm 1. In the limit of an infinite population,
Algorithm 1 leads to cache probability {s,(¢+ 1)} with a
minimum number of file decoding attempts per UE.

Proof As a shorthand, we denote variables in slot
t+1 with a “+”, and variables in slot ¢ without. The
target cache probability vector s*, and s then
represents a global view of the network on UE cache
contents. The cache content of an individual UE at time
t is given by the set ¢, a set of decoding attempts
performed by an individual UE is denoted by a, and a
set of files flushed by a UE is denoted by b. These can

be interchangeably thought of as N-dimensional

Algorithm 1 Cache-updating procedure
if d,(r) > 0 then
if file n is already cached at ¢ do nothing

else attempt to decode it with probability d, (7).
else

if file n is not cached at r do nothing

else discard it with probability |d,(1)|.
end if

vectors, or subsets of F. These represent the local view
of a UE of its cache content, and the actions it may
take. The probability of a UE having a given cache
content can be summarized in a 2" -dimensional vector
Pc, while the probabilities of decoding attempt and file
flushing events are p, and pp, respectively.

The conditional probability for a combination of file
decoding attempts given a UE cache content is Py,
and the conditional probability for a combination of
files being flushed given a UE cache content is Pp.
Both can be understood as 2V x 2V matrices. A generic
probabilistic UE cache update policy can be described
in terms of these two conditional probability matrices.

First, it is worth to observe that a file cannot be
flushed if it is not cached, thus the matrix elements of
the conditional flushing probability fulfill pp. =0 if
b ¢ c. Also, if a file is already cached, downloading it
does not change the cache content and only consumes
energy, thus we require that pg. =0ifanc# 2.

To move between the 2V-dimensional probability
space of UE cache contents and the N-dimensional
space of s, we use an N x2V constant indicator matrix
J. This matrix has entries in {0,1}. Each column is a
possible cache content, and the ones indicate the files
in the cache.

With these notations, the probability that a file in the
library is cached at an arbitrary UE is given by the

vector

s =J pe (10)
while the expected number of decoding attempts u, of
file n by a UE and the expected number of times v,
that file n is flushed by a UE, collected to N-

dimensional vectors, are

wu=JPycpe; v=JPpcp. (11)
Note that here we use matrix notation, such that
summation over ¢,a, and b is implicitly understood.
As the decoding attempts face channel uncertainty in
terms of packet loss, the UE-cache update equation
becomes

st—s=(D,)u-v (12)
where the diagonal matrix D, has the packet decoding
success probabilities 1 —o, on the diagonal.
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The objective is to minimize UE power consumption
spent on decoding attempts, i.e., the expected number
of file decoding attempts given by the one-norm |Ju||;.
As both u and v have non-negative entries, we find the
rather obvious fact that, assuming that none of the files
has outage probability 1, the optimum expectations for

decoding attempts and flushing fulfill

W=D (5" -9l v =[-8 (13)
where the non-negative part of a number is given by

_!
[x]+—2

conditional decoding attempt probabilities based on

(x+Ix). This can be achieved by defining the

independent probabilities d,, of Formula (9) as

Palc = { nmEadml—[kez\a(l _dk), ifanc = @

) else
(14)
where ¢ is the complement of ¢ in the file index set,
and \ denotes set subtraction. With this conditional
probability, we have for the probability of attempting

file download combination a:

Pa= Z@palcpc:(l_[dm] Z Pe l—l(l_dk)

c;cNa= mea c;cnNa=v kec\a
15)
and the probability that a UE attempts downloading file
nis
tn=> pa=dy Y [ dn Y pe [ | (1-di) =

asn acFmea  cca kea\c

d Y e [ Jan []1-do)=

ccF acc mea  kec\a

dy ) pe = du(1-cy) (16)
ecF

Here the sum in the first expression is over all sets a
that have n as an element, @ is the set a with the
element n removed, F is the file index set with n
removed, and & is the complement of @ in F, i.e., it
coincides with @ inside the sum. Furthermore, ¢
denotes the complement of ¢ in F. The second line
follows from changing the order of summations; we
divide F to the disjoint sets @, ¢, and their
complement. The last line follows from the fact that for
a sum over the power set P of a set S of indices one

has
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2 0 [[a-do=1 (17)

acPmea keS\a

which is a direct consequence of the multinomial
theorem. The final equality follows from the fact that
the sum of the probability over all cache contents
where n is not included is 1-c¢, by definition. We thus
have found that

u =diag([dy]+) J pc = diag([d,],) (1—5).

Using the values of d, in Formula (9), one sees that
this realizes the first part of Eq. (13). A similar
argument for Py, leads to the second part. This policy
thus is a minimum energy solution. Each UE executes
Algorithm 1 on one sample c. In the asymptotic limit
of an infinite population, the sample expectation
coincides with the probabilistic one, and s* is
realized. n

Note that there may be a continuum of UE cache
update policies that would realize s,(¢+ 1) starting from
sp() with the same energy consumption. Algorithm 1
is set apart by its communication complexity—instead
of dictating messages consisting of large-dimensional
matrices, only an N-dimensional vector is needed.
Note that this is the minimum overhead—due to the
outage probabilities, the dictating variables do not sum
up to 0.

4 Cache policy formulation

With the probabilistic caching UE-cach update policy
define, we concentrate on determining the cache policy
of the network. The objective is to maximize Quality of
Service (QoS) while minimizing the network backhaul
load and UE power consumption under the time-
varying file request dynamics Eq. (7).

4.1 State, observation, and action

For the cache policy optimization problem, the state of

the system is defined as the vector

x(t) = [p0)". s)", f "] (18)

The system state consists of the realization of the
stochastic request process Eq. (7), the content of the
UE caches, and the time-varying file popularity
distribution.

While the network has access to the file requests p(r)
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and the UE cache contents s(¢), the underlying file
popularity distribution f(r) remains unknown to the
network. Consequently, we define an observation
vector as

g = [pn", sO"" (19)

Accordingly, the observation space is given as

Q={(p.s) | pa>0,1"p=1, 5,20, 1Ts < L,}.
The network is equipped with three control variables:
the BS cache probability {pn(t)}flvzl, the resource
allocation {wn(t)}nN:l used by the network when
transmitting files by OMPMC, and the dictating
messages {d,,(t)}gz |- We then define the action vector

u(®) = [p®", w®", dn'1" (20)
The action space is given by

U={(p.w.d) |p,>0,1"p< L,
wa20,1Tw=1, -1<d, <1} (21)

Accordingly, the process of file retrieval is controlled
by the variables provided by the RL agent. Using the
optimal policy, it determines which files are essential
for proactive caching by the BSs from the core
network, hence maintaining the consistency and

reliability of the system.
4.2 POMDP

The file request dynamics in Eq. (7) involves the
outage probability 0,(¢), which is a function of resource
allocation wy(r) as given in Eq. (2). Since w,(?) is an
action variable, the dynamics leads to a Markov
Decision Process (MDP). As the underlying file
popularity f,(¢), modeled in Eq. (8), is time-varying we
have a non-stationary MDP. Furthermore, since f,(¢) is
unknown to the agent, our cache policy formulation
leads to a N-POMDP. The objective of this work is
thus to formulate a cache policy based on this N-
POMDP.

An N-POMDP is characterized by a tuple
(X,0,U,Pr(-;1),Po(-;1),r(-)), where X represents the
state space, O c X denotes the observation space, and
U signifies the action space. The time-varying
transition probability Pr(-;f) describes the system
environment, while the time-varying observation

distribution Py(-;¢) and the immediate reward function

additional information about the

environment and the agent’s performance.

r(-) provide

The system state at time ¢ is represented by x(r) € X.
The observation and action at the same time instance
are denoted by ¢(r) € O and u(r) € U, respectively. The
transition probability Pr(x(t+1) | x(f),u(t);t) indicates
the time-variant probability that being in state x(r) and
performing action u(r) will result in the next state
x(t+1). It is important to note that in our model, the
transition probability changes over time, reflecting the
dynamic nature of the environment.

In a POMDP framework, the state x(¢) is not directly
observable for an agent interacting with the
environment. Instead, the agent has access to the
observation ¢(#), which is drawn from the distribution
Po(-|x(¢+1);t). This means that the agent must make
decisions based on incomplete information of the
environment state, adding a layer of complexity to the
decision-making process.

In the context of file popularity, this framework is
adept at modeling environments with non-stationary
dynamics, relevant for situations with time-variant file
popularities and UE caching probabilities. More
specifically, it captures the time-varying nature of
transition probability, observation distribution, and
reward function, accurately modeling the intricate
cache policy dynamics. The uncertainty and incomplete
information of the cache policy problem is modelled
based on an N-POMDP problem. By leveraging
robust N-POMDP

LSTM-based reinforcement
learning, we can find effective solutions for cache
policiest?]. The approach facilitated by the POMDP
encourages the development of joint cache placement

learning  techniques against

environment such as

and delivery policies that maximize system
performance, while also revealing the underlying
structure and dynamics of the cache policy problem for

a deeper understanding of influential factors.
4.3 Optimization objective

This paper focuses on three metrics for evaluating
network performance. The first metric is QoS, which
measures the likelihood of a requesting UE being
satisfied by the OMPMC networking. This metric can
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be quantified as the probability of successful requests
compared to the total number of requests made by UEs.

N
Caos(®) = ) pad) (1= 5,(0) 0,(1) (22)
n=1

From Eq. (22), if the file is not cached then the cost
is directly proportional to the outage probability when
minimized the QoS metric improves. It is important to
note that the QoS metric depends on p,(#), which is a
part of the state vector.

Next, we examine the backhaul load associated with
the retrieval of files by the BSs from the core network.
When the difference between the file load at time ¢ and
the previous time ¢—1, i.e., p,() —p,(t—1) is less than
or equal to zero, it indicates that there is no backhaul
load since no files are being fetched. However, if the
difference is greater than zero, it implies that certain
BSs are required to cache file n due to the presence of
a backhaul load. This makes the backhaul load depends
on the action vector. The backhaul cost function is
defined asf?4]

N
con® = ), loa(® =pult =114 (23)
n=1

Note that this assumes that the BSs are conservative
in filling their caches, they do not. This backhaul
function can be realized, e.g., by BSs following the
method of Section 2.1, such that each BS keeps it
random variable U determining the cache content
static, while the probability weights of the files change
from time instant to next.

Thirdly, we investigate a power consumption metric
that arises from UEs downloading files according to
their preferences, and for updating their caches. We
assume that discarding files does not cost energy. As
each UE not caching file n attempts to download it
with probability d,(r), the power consumption metric
depends both on the state and the action vector:

M
Cuep() = Y (1= 5uD)PalD) +[du(D],)  (24)
n=1

This measures the average number of file download
attempts that users perform both to fulfill their
requests, and for proactive caching.
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We then formally define a weighted reward ry () to
be optimized as

rwi(t) = _(qus(t) + AphCoh(?) + /luepcuep(t)) (25)
where Ap, and Auep are the Lagrange multipliers for

backhaul
Considering the dynamics introduced by the stochastic

and UE power consumption costs.

difference Eq. (7), we formulate a discounted
cumulative reward starting from time-slot ¢ until a time

horizon T,
T
Roc(t) = ) Y7 E[r(®)] (26)
k=t

where E(-) is the expectation operator, y € [0,1) is the
discount factor, and T is the total number of time-slots
for the caching policy design. We maximize Ryc(¢)
considering the interplay between the state and action
reflecting the UE aggregated sum requests and
accordingly network cache policy.

The objective is to find a probabilistic cache policy
n(ulq), which defines the probability of action u(r)
given the observation ¢(r). This policy is obtained by
addressing the constrained optimization problem:

Pi: max R,.(1), 0<1<T,
{n(1)}
s.t., (p,w,dyeld 27

The utility cost function is defined in Egs. (22)—(26),
while the underlying file request dynamics are defined
in Egs. (2)—(7).

5 Reinforcement learning framework

We employ an RL agent to obtain the optimal policy
7*(-1q(®)) that solves problem P;. To facilitate this, we
utilize neural networks for functional approximation,
leveraging their universal approximation
capabilities30],

Among several RL algorithms, we use a policy
gradient algorithm: A2C. A2C offers several benefits
over Deep Q-Network (DQN) in various reinforcement
learning scenarios. A2C directly optimizes the policy
using the actor network, enabling it to learn stochastic
policies that can be advantageous in non-deterministic
environmentsB3!l or where exploration is crucial. In

contrast, DQN optimizes the action-value function.
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Consequently, A2C stochastic policy can lead to more
efficient exploration and faster convergence to an
optimal policy compared to DQN’s epsilon-greedy
strategy. A2C method, as on-policy algorithm, is
particularly adept at handling dynamic environments,
where file requests are non-stationary. It optimizes
policy based on ongoing experiences, providing an
effective exploration-exploitation trade-off, as the actor
learns the best policy and the critic evaluates it, often
aided by an entropy term to encourage further
exploration!?*], A2C continually learns from new
experiences, a feature less prominent in algorithms like
DQN which rely on a replay buffer of past experiences.

Furthermore, A2C is better suited for tasks with
continuous action spaces as it can handle them
naturally, while DQN requires discretization which can
lead to loss in precision32. The parallelism and
scalability of A2C make it an attractive choice for
large-scale problems, as it can be easily parallelized
Finally, A2C

function estimates the value of taking an action,

using multiple workers. advantage
reducing the variance of the policy gradient and
resulting in more stable learning and potentially better
convergence properties.

The A2C algorithm consists of two neural networks.
The actor network, embedded within the RL agent,
provides a policy distribution my4(-) parameterized by 6,
facilitating  interaction with the environment.
Additionally, the critic network approximates the state-

value function, which is defined as

V(g()=E

T
D A Rl ‘ q(r)l (28)
k=t

For this, the critic network is parameterized by ¢ and
denoted by V4(-).

5.1 LSTM cell

LSTM networks, a specialized subset of recurrent
neural networks, are crafted to tackle challenges in
learning long-term dependencies within sequential
data. Central to the LSTM is the cell state, acting as a
parallel memory unit that facilitates prolonged
information retention. The internal architecture features
three pivotal and output—

gates—input, forget,

regulating the influx, relevance, and output of
information. This enables LSTM to selectively update
and employ information, effectively addressing the
vanishing gradient problem inherent in traditional
recurrent networks. Additionally, the LSTM includes a
hidden state for short-term memory and incorporates
feedback connections!?Z 331 spanning various time
steps, allowing it to adeptly capture dependencies
across extended sequences. This dynamic interplay,
coupled with the adaptive updates of the cell state
through input and forget gates, enables LSTM to
distinguish and retain essential information while
discarding extraneous details. We incorporate LSTM
architecture to address the N-POMDP environment of

study formulated in Section 4.
5.2 Actor-critic and state processing network

The A2C architecture comprises of three distinct
networks: a state processing network, an actor network,
and a critic network as in Fig. 3. To address the non-
stationarity of the environment as formulated in
Section 4, we incorporate an LSTM architecture for
state processing. An LSTM cell includes feedback
connections(?2 231, a distinctive feature absent in Feed-
(FFNN). The state
processing network incorporates an LSTM layer and a
fully connected layer. With LSTM, the network
processes a sequence of observation vectors ranging

Forward Neural Networks

from two to six time-slots, generating input for the
fully connected layer. For example, LSTM with six
vectors
[qt—5),q(t—4),...,q(®)] and is denoted as LSTMg;.
The output of the fully connected layer serves as input

time-slots  processes the  observation

for both the actor and critic networks.

We bench mark LSTM-based state processing with a
two time slot FFNN state processing architecture,
denoted by FF,. It processes observation vectors
[q(t—1),q(1)], and consists of two fully connected
layers.

The actor and critic network take input from the state
processing network. The actor network produces a
probabilistic caching policy, while the critic network
provides an estimate of the value function. Each of the

actor and critic networks consists of an independent
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Po(t), wi(t), d'e(f)
A
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Fig.3 LSTM-based A2C architecture.

fully connected layer, receiving input from the state
processing unit.

To guarantee normalized outputs, we draw the action
vector at random from two independent Dirichlet
distributions such that

u(t) ~ [L;, Dirich(pj(r))", Dirich(wj(r))", dg(t)T]T ,

where p (1), wy(t), and dy(t) are the outputs of the actor
network parameterized by 6, and Dirich(:) stands for
Dirichlet

Dirichlet distributions offers notable benefits, such as

the multivariate distribution.  Utilizing
improved exploration-exploitation balance due to
providing random actions with learnable parameters
controlling the stochasticity. This approach allows the
model to capture uncertainty across multiple actions as
well as ensures compliance with control parameter

constraints Eq. (21).
5.3 A2C algorithm

The RL actor network generates an action for a given
state based on the parametric policy distribution
m(lq(f)). When the
environment, it receives an immediate reward and

agent interacts with the
progresses to the next state. The critic network
produces an estimate of the state-value function
Vs(q(?)) for the current observation. The immediate
and estimated state-value

reward, action vector,

function is stored in a buffer, which is used to update
the actor and critic parameters after T time-slots. This
entire process forms a single episodic trajectory, with
multiple trajectories needed for the training process.
The parameter of the actor and critic networks are
changed as[34]

T
A¢ =ay Z Ag(q(n),u()) Vy Vy(q(D),
=1

AG =y

T
[Ag(q(0), (1)) Vglog(ma(u(r)lq(1))+

=1

BVeH (mo(u(n)]q(1)))] 29)

where a4 and «y are the learning rates of the critic and
actor agents, respectively,

Ap(g(0),u() = ru(q(n),u(®) +y Ve(q(t + 1)) - Vy(q(1)

(30)
is an estimate of the accumulated reward Eq. (26), and
H(-) is the entropy term used with regularization factor
B for trading off between exploration and exploitation
in order to prevent A2C from converging to sub-
optimal policies.

Algorithm 2 shows the pseudo code for the modified
A2C algorithm used in this paper. Note that Ep,y is the
total number of updates involved in the training
process, and update is the iteration number after which

the model parameters are updated.
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Algorithm 2 Modified A2C algorithm

Input: A 9-parametrized policy distribution me(u(-)lq(-)), ¢-
parametrized approximation of state-value function Vy(q(-)).
Output: optimal solution 6 of problem P;.

for update = 1 to Ep,x do
if update == 1 then
Initialize observation vector ¢(1) to some random point.
else
Set ¢(1) = qr based on previous update.
end if
fort=1to T do
Draw action u(z) from policy mg(u(0)lg(?)).
Fit value function, V,(q(r)) from the critic network.
Evaluate the advantage function A,(g(?),u(r)) = r(z+ 1)+
YVo(q(t+ D)= Vy(q(®).
Get new observation vector g(z+ 1), and immediate reward
r(t+1).
Buffer V,(q(1), q(t), r(t+1), log(me(u(n)lq(n))), H(me(u()lq(1))).
end for
Update parameters for actor and critic networks based on the
updating rules Eq. (29).
Set g7 = q(T).
end for

6 Simulation and discussion

In order to assess the performance of the proposed
DRL cache policy, we examine a cellular network
consisting of BSs and UEs positioned according to two
independent PPPs.

In our experimental setup, we follow the urban Non-
Line of Sight (NLOS) conditions defined by 3GPPB3],
with carrier frequency 2 GHz and BS transmission
power of 28 dBm. The BS antenna gain is 8 dBi, while
UE antenna gain is 0 dBi. The noise power spectrum
density is —174 dBm, the noise figure of the UEs is
9 dB, and the bandwidth is 2 MHz. We consider the
path-loss exponent B, =4, with the path loss given by
L=128+pylgd, with distance
kilometers. Hence, the reference Signal to Noise Ratio

(SNR) at the reference distance of 1 km is % ~ 1, We

d measured in

set the BS density to Aps = 300 BSs per km?2.

For the diffusion model in Eq. (8), we employ a Zipf
7=0.6, while the
probability for a user to patient, used in Eq. (4) is

distribution with skewness

£ €{0.1,0.9}. The system parameters are summarized in
Table 1.

Table 1 Simulation parameters.

System parameter Value
BS capacity, L, 6
UE capacity, L, 3
Number of files, N 40
Total number of updates, Emax 10 000
Cost regularization parameters, Aoh, duep 0.05
Entropy regularization term, 8 0.005
File skewness, 1 0.6
Target spectral efficiency, o 0.1
BS intensity, Aps 300
RL update after T slots 256
Probability of UE patience, ¢ 0.1,0.9
In the state-processing unit of the LSTM

architecture, LSTM output is linked to a fully
connected hidden layer of 128 neurons with tanh
activation function. The actor and critic networks
consist of one fully connected hidden layer of 128
neurons activated by a tanh(-) function. The output
activation functions for the actor and critic networks
are Relu(-) and Softplus(-), respectively. The learning
rates are set to g = a4 = 1073, and Adam optimizer is
used.

For the hyperparameters of Algorithm 2, we set the
total number of updates to Engx = 10%, the Lagrange
multipliers of the weighted reward in Eq. (25) to
[Aph, Aduep] = [0.05,0.05], and the entropy regulation
term to 8 =0.005. The system parameters used in the
simulations are configured accordingly.

Figure 4 presents the training performance of FFNN
and LSTM architectures when they process the
of two

terms

observations time-slots. Performance is

measured in of normalized discounted
cumulative costs of QoS, backhaul and UE power

consumption;

T
1 _
Cqos = ? ;)’t 1cqos(l‘)7

|
Con = ¥ epn(t),
=1
|
Cuep = ? ZytilCuep(l‘),

T

plotted as a function of update samples. The results
indicate that LSTM outperforms FFNN in all cost
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Fig. 4 Training performance of LSTM and FFNN with two
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Normalized cumulative backhaul cost. (¢) Normalized
cumulative UE power consumption cost.
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metrics from a sample-efficiency standpoint. LSTM
converges in approximately one-third of the number of
samples as compared to FFNN.

The LSTM architecture is thus better at capturing the
non-stationarity of the POMDP environment than
conventional FFNN. This can be attributed to the
feedback connections of the LSTM network, which
play a crucial role in learning the evolution of file
popularity { f,,(t)}nN=1 that is latent in the observation
vector.

In order to establish a benchmark for the RL-based
cache policy, we consider a static cache solution
obtained using an interior-point algorithm. The policy
is independently optimized in each time-slot based on
the immediate reward rather than a cumulative reward.
We refer to this solution as “Static”.

Figures 5 and 6 showcase the test performance of the
static optimization solution in comparison to dynamic
RL-based solutions with various Neural Network (NN)
architectures. In Fig. 5, impatient users with £ = 0.1 are

consdered, while in Fig. 6, the users are patient, with
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Fig. 5 Test performance for impatient users with ¢ = 0.1 for static and RL-based solutions with different NN architectures as
a function of discount factor. (a) and (d) show QoS cost. (b) and (e) show backhaul cost. (¢) and (f) show UE power

consumption cost.
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¢ =0.9. For the RL-based solutions, the agent is trained
for different values of the discount factor y €[0.9,1),
after which the agent is evaluated during a test scenario
with discount factor y = 1. The cumulative costs cqs,
Ccoh, and cyep averaged over the testing time duration 7'

are shown.
Figures 5 and 6 show that the LSTM architecture
outperforms FFNN in terms of optimality.

Additionally, increasing the observation length of
LSTM cells leads to a decrease in all cumulative costs.
This implies that incorporating a longer observation
history improves the RL agent’s performance due to an
enhanced ability to uncover latent information. The
static solution performs better than the dynamic RL
solution of an FFNN with one state. However, when
compared to the dynamic RL solutions that exploit
multiple time slots, regardless of whether FFNN or
LSTM is used, the static solution performs poorly. This
outcome validates the use of cumulative reward
optimization as in P; for dynamic cache policy design.
Also, this demonstrates that the developed A2C

algorithm can find a near optimal solution for the
formulated POMDP problem. Comparing Figs. 5 and
6, we see that for patient users with £=0.9, all costs
are higher. This is understandable; if a user insists on
getting a rare file, the network is forced to use
resources for that file, which reduces the performance
related to more popular files.

In order to assess how the partial observability
an MDP

environment, where the state vector x(¢) from Eq. (18)

influences performance, we consider
is utilized instead of the observation vector gq(z).
Figures 7 and 8 compare the test performance in
POMDP and MDP environments in terms of average
cumulative costs with y =1. The POMDP approaches
are shown for training discount factors in the range
v €[0.9,1). The MDP solutions are trained for y = 0.98,
and are represented by dotted lines. Figure 7 shows
patient users ({=0.9) and Fig. 8 impatient ones
(¢=0.1).

Figures 7 and 8 show that the difference between
cumulative costs for MDP and POMDP is significantly
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Fig. 7 Test performance for patient users with ¢ = 0.9 for
POMDP and MDP environments. (a) Normalized cumulative
QoS cost. (b) Normalized cumulative backhaul cost. (c)
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smaller for the LSTM architecture as compared to the
FFNN architecture, suggesting that LSTM is more
capable of handling the complexity and uncertainties
associated with POMDP settings.

7 Conclusion

In this study, we present a dynamic cache placement
and delivery problem optimized by an RL algorithm.
Files are proactively cached both at the BSs and at
UEs. Our objective is to optimize the quality of service,
backhaul load,
leveraging the A2C algorithm. We first provide a

and UE power consumption by

distributed UE cache placement algorithm, where the
population of UEs achieves a target distribution of
the UE energy

cached files, which minimizes

consumption in terms of file decoding attempts. Next,
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Normalized cumulative backhaul cost. (¢) Normalized
cumulative UE power consumption cost.

we investigate the RL agents at the network side for

optimizing the cache placement and delivery
parameters in an orthogonal multipoint multicasting
networking scenario. Two types of architectures for the
RL agent are considered: FFNN and LSTM. The
motivation behind exploring these two architectures is
to identify the most suitable approach for addressing
the considered problem. Our simulation results not
only provide justification for utilizing the POMDP for
problem formulation but also demonstrate that the
proposed LSTM-based A2C surpasses the FFNN-based
A2C in terms of sample efficiency and optimality.
Moreover, our findings indicate that the LSTM-based
A2C can deliver significantly improved performance in

a POMDP environment compared to its FFNN
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counterpart. This highlights the potential of using

LSTM-based methods in

reinforcement learning

scenarios where the problem formulation requires
consideration of the POMDP framework.
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