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Abstract—Energy harvesting sources, such as solar, wind, or
vibration, combined with rechargeable batteries, are a promising
way to power LPWAN (low-power wide-area network) devices to
reduce the cost and frequency of redeploying single-use batteries.
However, being oblivious to the usage of rechargeable batteries
can severely reduce their capacity to store energy, which is also
known as the battery lifespan. Existing energy-aware protocols
mostly focus on network lifetime and pay little attention to
maximizing the battery lifespan of network nodes while the
latter can directly help reduce battery waste and enhance
environmental sustainability. In this paper, we propose the first
Media Access Control (MAC) protocol to maximize the minimum
battery lifespan among all nodes in an LPWAN based on LoRa.
Our approach differs from traditional objectives focusing on min-
imizing energy consumption or maximizing network lifetime as
they may not necessarily maximize battery lifespan. The proposed
MAC protocol leverages the concept of software-defined batteries
to regulate the energy stored and consumed by each node’s
battery based on estimated energy requirements, green energy
generation, and changes in data utility. To limit the degradation
of battery capacity due to continuous charging/discharging, the
underpinning idea is to determine an appropriate time for each
transmission considering its impact on battery degradation while
also minimizing the impact on data utility. Furthermore, the
energy stored in each battery is limited to reduce calendar
aging, the natural degradation of battery capacity over time. The
proposed protocol is local, online, and asynchronous, and incurs
low overhead. We evaluate our approach through experiments
on a LoRa network and large-scale simulations in NS-3. The
experiments show that the proposed MAC protocol improves
battery lifespan by up to 69.7% and data utility by up to 39%
in a current LoRa network while incurring a CPU utilization
overhead of only 12% at each LoRa node.

I. INTRODUCTION

Low-Power Wide-Area Network (LPWAN) has been gain-
ing popularity as a preferred technology for many Internet-of-
Things (IoT) applications due to its capability to support low-
power (milliwatts), low data rate (kbps) communication over
long distances (km) using narrowband (kHz) [1]. LPWANSs
are being used for a wide array of applications, including
smart agriculture, environment monitoring, and smart utilities
[2]. Many of these applications leverage thousands of sensors
(nodes) sparsely distributed over hundreds of square kilome-
ters in locations where line power is unavailable. Therefore,
nodes use alternate sources of energy, such as single-use
batteries, green energy sources, and rechargeable batteries.
Typically, LPWAN devices remain operational longer than a
single-use battery [3]. Moreover, in large-scale deployments,
frequently redeploying batteries is tedious and expensive. With
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the expected number of LPWAN devices growing to 1.3 billion
by 2026 [4], 78 million batteries from IoT devices could
be discarded every day [5], incurring severe environmental
and financial burden [6], [7]. Therefore, alternative energy
solutions that remain usable for a longer time are necessary
to reduce the maintenance cost and carbon footprint of IoT
applications.

Recently, energy harvesting sources, such as solar power
[8], wind [9], and vibration [10], are being used to power
the sensor nodes along with a small rechargeable battery to
account for periods with no energy generation [11], [12]. Such
hybrid energy sources present a sustainable, low-maintenance,
and cost-efficient alternative to the larger single-use batteries.
However, the ability to store energy, also known as the
maximum capacity of a rechargeable battery reduces over
time. Note that the maximum capacity of a battery is different
than the State of Charge (SoC) of the battery. For example, a
new/unused battery has 100% maximum capacity and can store
the highest amount of energy, while a battery with decreased
maximum capacity cannot store the same amount of energy,
even with 100% SoC. The decrease in the maximum capacity
is accelerated by a multitude of factors, including battery
chemical properties, environmental and device temperature,
number of charge-discharge cycles, average charge maintained
in the battery within each cycle, and maximum discharge
within each cycle (depth of discharge) [13]. A notable drop
in the maximum capacity (usually 20%) renders the battery
inoperable due to an exponential acceleration of capacity
deterioration [14]. We define Battery Lifespan as the time
elapsed from battery deployment until its maximum capacity
falls below a predetermined amount, typically 80%. This
work aims to maximize the battery lifespan for LPWANS.

Currently, LPWANs are not well-equipped to maximize
the battery lifespan of the network. For example, LoRa [1],
a leading LPWAN technology, relies on an ALOHA-like
Media Access control (MAC) protocol, where a node tries
to send a packet immediately after it is generated and does
not consider any of the factors mentioned above, thereby
ignoring battery lifespan. Existing work mostly focuses on
maximizing network lifetime in LPWANs [15], which is
significantly different than maximizing the lifespan of a
rechargeable battery. For example, packet transmissions with
energy-efficient parameters can significantly increase the
depth of discharge of the battery if green energy is scarce
at transmission time, thereby negatively impacting battery
lifespan - a phenomenon known as cycle aging. On the other
hand, when green energy is abundant and battery energy is
rarely needed, the battery remains at a high SoC for long



time, which also deteriorates battery lifespan - a phenomenon
known as calendar aging. Note that most of the network
lifetime maximization approaches aim to maximize the
operational time of a node for a single-use battery by keeping
the SoC high, which may not be beneficial for rechargeable
batteries’ lifespan. Thus, novel communication strategies that
focus on battery lifespan maximization are paramount for IoT.
In this paper, we propose the first MAC protocol for
LPWAN that maximizes the minimum battery lifespan among
all devices to increase the sustainability of the network. We
specifically focus on LoRa as it is a dominant LPWAN
technology that is commercially available across the world.
However, our approach is applicable to most other LPWANs
such as SigFox [16]. LPWANS are traditionally developed for
time-insensitive applications requiring infrequent communica-
tions. The proposed MAC protocol exploits this application
characteristic and leverages the concept of software-defined
batteries [17] to meticulously regulate a node’s battery energy
consumption based on current and future energy consumption
estimates. Specifically, it maximizes the lifespan of each
battery by (a) delaying a packet transmission to a time
when estimated green energy availability is high, thereby
minimizing the energy drawn from the battery and cycle
aging, and (b) limiting the energy stored in each battery to a
fixed and predetermined threshold, thereby reducing calendar
aging. Since typical LoRa applications are not time-sensitive,
delaying packets by a small interval has negligible impact
on their quality of service. However, long delays can decrease
the usefulness of the data. The proposed approach attempts
to balance the usefulness of the data and battery lifespan
through a joint optimization. Furthermore, while limiting the
energy stored in each battery may seem like a counter-intuitive
approach, this is effective in increasing the battery lifespan
by reducing calendar aging. Note that the proposed MAC
protocol carefully selects transmission time to coincide with
high green energy generation to limit battery usage. There-
fore, the counter-intuitive approach of limiting the SoC to a
predetermined threshold has a negligible effect on application
requirements such as packet reception rate and data usefulness,
while allowing for an increased battery lifespan.
Specifically, this paper makes the following contributions:
« We formulate the battery lifespan maximization problem
for a clairvoyant central network manager. However, gen-
erating an optimal solution using the clairvoyant network
manager has a high computational and synchronization
overhead and is infeasible for low-power devices. Using
the insights of this formulation, we develop a simple
MAC protocol for a LoRa network based on a heuristic
approach that enables each LoRa node to locally select
a time for each transmission considering its impact on
battery degradation and data utility based on the energy
availability, the battery’s SoC, and a utility function. The
proposed protocol is local, online, and asynchronous,
and incurs low overhead.
o We demonstrate the feasibility of our approach through
small-scale testbed experiments on a LoRa network. In

addition, due to the impossibility of running 10-20 year-
long experiments to measure battery lifespan on a real
testbed, we present our key evaluation results based on
NS-3 [18] simulations. Our approach provides up to
69.7% increase in battery lifespan with only 4% impact
on average data utility and low overhead.

In the rest of the paper, Section II provides necessary back-
ground and system model. Section III describes the battery
lifespan maximization problem and the proposed lightweight
MAC. Section IV presents evaluation results. Section V and
VI describe related work and conclusion, respectively.

II. BACKGROUND AND MODEL

Here we describe the background for LoRa and battery
degradation estimation in Section II-A and II-B, respectively.
Finally, Section II-C describes the system model and objective.

A. LoRa

LoRa is a pioneering LPWAN technology enabling
information collection from thousands of sensors at a
central node (gateway). It has over 600 known use cases
and 225 million deployed devices. ABI research predicts
communication on LoRa will account for 50% of all non-
cellular LPWAN communications by 2026 [19]. Thus, in this
paper, we focus on LoRa.

A typical LoRa network consists of three parts: gateway,
end-devices, and a network server. Nodes or end-devices are
sensors that communicate with the gateway via a single-hop
wireless link. Multiple gateways communicate with the net-
work server via a local LAN/the Internet. The network server
in a LoRa network maintains the application requirement,
security, and network parameters. A LoRa network divides
the available spectrum into multiple uplink and downlink
channels. Nodes send data to the gateway on the uplink
channels and the gateway responds on the downlink channels.

LoRa uses a Chirp Spread Spectrum (CSS) based modu-
lation. CSS provides robustness to interference and enables
the reception of packets at a low/negative SNR by spreading
the signal over the entire bandwidth. LoRa signal consists of
multiple chirps, and each chirp contains encoded information
[20]. The number of chirps present in a signal is controlled by
spreading factor (SF). LoRa supports SF in the range [7,12].
SF controls the data rate, the time on air, and the energy
consumption of the transmission. A higher SF reduces the data
rate, but increases the time on air and energy consumption.

Apart from SF, other configurable parameters for LoRa are
carrier frequency, channel, bandwidth, and coding rate. In the
US, LoRa operates in the unlicensed ISM band (902-928MHz)
and is allocated 64 channels of 125kHz bandwidth and 8
channels of 500kHz bandwidth for uplink communication. For
downlink communication, 8 channels of 500kHz bandwidth
are used. LoRa also supports different levels of forward error
correction (FEC), called coding rates in the range of 2 to 3.
A higher coding rate provides resilience against interference,
but increases the size of each packet.



The MAC protocol used with the LoRa physical layer is
called LoRa Wide Area Network (LoRaWAN). In LoRaWAN,
nodes transmit using pure ALOHA with pseudo-random
channel hopping [21]. Upon transmission, nodes open two
short receive windows to listen for packets from the gateway,
referred to as class A mode of operation. LoORaWAN supports
other modes of operation for downlink communication [21],
which are not considered in the paper.

B. Battery Degradation

Battery degradation models have been studied extensively,
and proposing a new model is out of scope for this paper.
Instead, the highly accurate and publicly available model
proposed in [13] is used.

Typically, battery degradation of a node u happens due to
two phenomena: cycle aging and calendar aging. Calendar
aging refers to the natural degradation of battery capacity
over time. It depends on the average internal temperature, the
time elapsed since the manufacturing of the battery ({), and
the average SoC across all charge-discharge cycles, calculated
as the ratio of the current energy stored and the original
maximum energy capacity of the battery. For a node u, the
number of charge-discharge cycles is represented as [V, and
the average internal temperature of a battery is represented as
T... We denote the average SoC of i charge-discharge cycle
as ¢, [t] and the set of average SoCs for all charge-discharge
cycles as ¢y, i.e., ¢, = {Pu]i]|]l < i < N,}. Considering
¢ to denote the average of all values in set ¢,, the calendar
aging is:

ka(Tu—ks5)(273+k5)
273+ Ty, (1)

D (¢, Ty du) = by x (PP 7he) e
where, k1, ko, ks, k4, k5 are constants specific to the battery.
Cycle aging refers to the degradation caused by frequent
charging and discharging of a battery. It depends on the
number of charge-discharge cycles (IV,), average SoC main-
tained within each cycle (¢, [i]), maximum discharge within a
cycle, and the average internal temperature of a battery within
each cycle (T),). We define cycle discharge as the difference
between the maximum and minimum SoC within a cycle. For
a node u, we represent the set of all cycle discharges as d,, and
that of the i charge-discharge cycle as §,[i]. Similarly, 7,,[]
represents the cycle type of the i charge-discharge cycle of
node u. Ny, dy, ¢y, and 7, can be computed from the battery
capacity trace ¥, (0, ¢) between time 0 to ¢ using the rainflow-
counting algorithm [13]. Considering that the set of 7, [i] for
all ¢ is denoted by 7, cycle aging of a battery is given by:
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where kg is a constant specific to the battery.
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Fig. 1: System Model.

The linear degradation of node u’s battery, represented by
DZI | is therefore calculated as:
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On the other hand, Solid Electrolyte Interphase (SEI) film
formation in batteries introduces non-linearities in the model,
which is not accounted for in Equation 3. Considering k is an
estimated constant and ay.; is the capacity lost due to SEI,
the degradation of node u’s battery (D,,) is a an exponential
function given by:
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C. System Model and Objective

We consider a LoRa network consisting of thousands of
nodes communicating with one or more gateways. Nodes are
low-power devices that sleep most of the time and wake up
periodically to sense the environment and report the collected
information to the gateway. Typically, LoRa networks support
applications that are not highly time-sensitive, such as data
collection for smart farming and wildlife monitoring. Thus,the
usefulness (or freshness) of the sampled data decreases slowly
over time. Note, for most applications, a decrease in utility
is acceptable while an intermittent operation (i.e., missed
packets) is undesirable. Thus, the application expects data to
be delivered within a reasonable delay.

As Figure 1 shows, nodes in the network have two energy
sources: (1) a local green energy source (e.g., small solar
panel) and (2) a rechargeable battery. The green energy source
is sized to sustain packet transmission at peak generation.
Furthermore, the battery is selected with a maximum capacity
that is sufficient to maintain 24 hours of operation without
recharging. The software-controlled switch regulates the power
source of a node by controlling when the battery is charged
and discharged. When the instantaneous power generated by
the green energy source is greater than the node’s power
demand, the switch powers the node using only the green
energy source, and the excess power generated can be used
to charge the battery. Otherwise, the battery and the green
energy source are used simultaneously to power the node.
The instantaneous power generated by the green energy source
varies with time. However, nodes can predict the amount of



green energy generated using a small neural network, trained
at the gateway, as described in [22].

Typically, the maximum capacity stored in a battery de-
creases with every charge and discharge cycle. We refer to
the original maximum capacity as the maximum energy that
can be stored in a new battery. The drop in maximum capacity
over time compared to the original maximum capacity is called
degradation of a battery and is computed as the ratio of current
maximum capacity and original maximum capacity. Upon
reaching 20% degradation a batteries degradation increases
exponentially, thus it is typically considered at the End of
Life (EoL) [13] and is flagged for replacement. We define
a node’s battery lifespan as the time when the node’s battery
reaches EoL. The time and effort required for replacing just
one battery is quite high and causes a severe disruption to
day to day operations. Also, battery waste in such large-scale
deployments can severely impact environmental sustainability.
Thus, we define the battery lifespan of the network, L, as the
time interval starting from initial network operation until the
first battery in the network reaches EoL. Note that, depending
on the application requirement, this definition can easily be
adapted to other percentages of nodes as well, such as the
time untill the first 10% of the batteries reach EoL.

Our goal is to minimize the maximum degradation by
regulating the energy stored and consumed in each nodes’
battery, which we refer to as the battery lifespan maximization
problem. Note, we mainly focus on the transmission energy
as it is generally higher than that of computation and sensing
[20]. However, in Section IV-B we show our solution leads to
a low resource consumption overhead.

III. PROPOSED BATTERY LIFESPAN-AWARE MAC
PrROTOCOL

The battery lifespan maximization problem is formulated as
a multi-objective mixed integer problem in Section III-A and
uses the battery degradation model described in Section II-B.
Since most battery models rely on the same parameters (e.g.,
average SoC, temperature), our formulation does not depend
on any specific battery degradation model and any other model
(with similar parameters) can be used. To the best of our
knowledge, this is the first attempt to formulate the battery
lifespan maximization problem in an LPWAN. However, the
multi-objective formulation is hard to solve, and hence, we
propose a heuristic solution in Section III-B.

A. Problem Formulation

The optimal solution for the battery lifespan maximization
problem is a MAC protocol that regulates the SoC and the
energy consumed during packet transmissions for each node,
considering their current green energy availability and SoC.
Since collisions increase communication energy consumption
and decrease battery lifespan, the MAC should minimize
packet collisions. Thus, we formulate a centralized problem
considering a Time Division Multiple Access (TDMA) MAC
protocol. Note that, TDMA-based MAC is only used for the
optimal formulation and not in our proposed solution.

In the TDMA MAC, each time slot is long enough for a
packet transmission and its acknowledgment (ACK) from the
gateway. Since different SFs in LoRa can cause different trans-
mission times, the time slot is long enough to transmit a packet
on the highest spreading factor. Furthermore, LoRa gateways
can receive multiple packets simultaneously on different chan-
nels. Therefore, each node transmits a packet on a unique
combination of time slot and channel to avoid collisions.

Since the problem formulation is defined over a discrete-
time model, we represent the degradation Equation 4 in the
discrete-time model as Dy (p, Ny, 6u, du, Tu, 7u), Where p is
number of time slots in the interval [0,(]. Furthermore, we can
consider a discrete time trace of energy stored in the battery.
Specifically, the discrete trace is generated after each time slot.

A solution to the battery lifespan maximization problem
must identify the transmission time slot for each node in the
network. Furthermore, it should also determine the percentage
of green energy used for packet transmission and battery
recharging within each time slot. Therefore, for node u, we
introduce two sets of decision variables for time slots between
0 and ¢, X,, and Y,,. The binary decision variable z,,[t] € X,
is equal to 1 if a packet transmission happens during time
slot ¢, 0 otherwise. y,,[t] € Y;, is a number in range [0,1] that
represents the fraction of green energy used in time slot ¢ for
powering the node, charge the battery, or both.

Considering a clairvoyant gateway having the energy gen-
eration EY[t] of each node w during time slot ¢, the energy
stored in the battery at time slot ¢ (1, [t]) is:

Gult] = Yult = 1+ gl B — w B — (1 - au[) B
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where, E5/°°P and E** represent the energy consumed during
sleep mode and energy consumed during packet transmission
by node u, respectively. The green energy generation for
each time slot can be predicted using existing algorithms as
proposed in [22]. Given that each time slot is generally short,
we safely assume it to be constant within each time slot. The
energy consumption for a packet transmission in LoRa is [23]:
SF,

2
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where P!® is the transmission power used by node u, L symbols
is the number of symbols in a packet, SF,, and BW,, is the
SF and the bandwidth used for transmission, respectively. The
number of symbols in a packet is given by the following:

LY — preamble,, + 4.25 4 8

m 8payload,, — ASF, +24] 1 0 @)
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where preamble, represents the length of the preamble,
payload,, represents the length of the payload, and DE,, is
binary variable that is 1 if low-data rate optimization is
enabled, 0 otherwise. The SF, coding rate, and DE used by
each node in the network is known to the clairvoyant gateway.

Upon proper substitutions of (6) and (5) in (4), the
degradation of a battery can be expressed in terms of a set




of decision variables X,, Yy, and p as D,(p, X,,Yy). A
simplistic approach would use an objective function that
purely minimizes the maximum degradation D, (p, X,,Y.,).
However, such an optimization can overly delay a packet’s
transmission. For example, when there is no green energy
source, the optimal solution can delay a packet’s transmission
until a green energy source is available to minimize cycle
aging. To avoid such scenarios, we propose a bi-objective
mixed integer non-linear problem where our objective is
to minimize the maximum degradation and maximize the
average utility (represented by 1, (X, )) of all packets. We
define the wtility of a packet as an indicator of the data
usefulness at transmission time. Considering node u generates
packets every 7, time slots, an example of utility of a single
packet is a monotonically decreasing function from 1 to 0
as packet transmission time slot increases from the current
packet’s arrival to the next packet’s arrival, and O after the
arrival of the next packet. Note that the system designer can
choose different utility functions for different nodes.
Since the average utility of a node is in the range [0, 1],
the optimization function on average utility can be expressed
as a minimization of (1 — u,,(X,)). Thus, the battery lifespan
maximization problem of node u for p time slots is given by:

min D, (p, X4, Yy)
min (1 - /jfu(Xu))

The above optimization function maximizes the utility, but
it does not imply transmissions of all packets. Therefore, we
set a constraint that during the p time slots, node u should
transmit all generated packets with the exception of the last
one, ie., [ 2] < 320 jay[t] < [£]. Here, the last packet
will be considered for transmission during the subsequent
runs of the optimization problem. Additionally, the objective
function should avoid packet collisions, i.e., the number of
transmissions made in the network at any time slot ¢ is equal to
the number of simultaneous receptions possible at the gateway.
Considering the gateway can receive at most w simultaneous
transmissions, the constraint is ) ., =, [t] < w. Finally, for
every time slot, the energy stored in node «’s battery is limited
between 0 and the current maximum capacity (¢;22*[t]). Note
that the current maximum capacity of the battery changes with
degradation. Therefore, we set a constraint as 0 < ,[t] <
Y[t Yy & Vit s.t. 0 < t < p. Thus, the battery lifespan
maximization problem is given as:

min  max Du(p, Xu, Ya) 8)
min max (1 — ,uu(Xu)) 9)
p
p p
s.t LUJ < ;x(t) < LJ Yu (10)
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Since the energy estimation is accurate for p time slots, the
above optimization can be executed at some arbitrary time
slot . Note that, battery degradation starts at the beginning
of time. Thus, X, and Y,, are of size  + p. However, only a
subset of X, and Y, are considered as decision variables of
the optimization function at time slot £. Specifically, the subset
of X, and Y, with values of ¢ that satisfy { <t < { + p are
decision variables. All other values are considered constants as
they are calculated during previous iterations of optimization.

The above multi-objective mixed-integer problem can be
hard to solve. The optimal algorithm generates decision vari-
ables for a short number of time slots, thereby has to be
executed frequently. Furthermore, it requires a (impractical)
clairvoyant network manager to estimate the green energy
generated at each node. Realizing this in practice requires a
lot of information to be collected from (and disseminated)
to the nodes. In addition, the optimal solution leverages a
TDMA-based MAC with no collisions to achieve low energy
consumption at the node requiring very strong time synchro-
nization, which causes high overhead and poor scalability.
Thus, a centralized TDMA-scheduler is ill-suited for large-
scale LoRa networks. For these reasons, we transform the
above centralized problem into a local problem and propose
an online MAC that solves it on each sensor.

B. On-Sensor Approach

Here, we propose a local and online MAC for battery lifes-
pan maximization. In the proposed MAC, each node locally
decides its transmission time and green energy usage for the
current sampling period by solving a on-sensor (simplified)
version of the battery lifespan maximization problem. The on-
sensor version of the battery lifespan maximization problem
uses a slotted-ALOHA like MAC where each node locally di-
vides its sensing period into several forecast windows for trans-
mission and thereby decides the best forecast window to trans-
mit. However, the nodes are not time-synchronized , eliminat-
ing overhead and making the proposed MAC highly scalable.

We aim to solve the battery lifespan maximization problem
locally avoiding the overheads of information collection from
and dissemination to the other nodes. There are three main
challenges to do this: (1) the estimation of green energy gener-
ation (2) packet collisions arising from lack of synchronization
between nodes and (3) computing and sharing the battery
degradation information. We first explain how we address
these challenges and then formulate the on-sensor problem.
On-Sensor Green Energy Estimation. The formulation in
Section III-A relies on a clairvoyant gateway with accurate
energy generation information of all nodes. This is difficult
in practice due to huge overheads. Hence, in the on-sensor
version energy generation of the local solar panel is estimated
on each sensor. We define forecast window as the interval for
which the node can accurately predict green energy generation.

Many existing photovoltaic (PV) power forecast solutions
rely on real-time weather data such as wind speed and hu-
midity for short (hours), medium (weeks), and long (months
to year) term predictions [24]. These solutions cannot be



applied in our case study, since the sensors do not have
expensive weather stations to sense weather data. Furthermore,
the maximum transmission time for a 10-byte packet in LoRa
is around 1.2 seconds, requiring a smaller forecast window.
However, estimation of green energy generation for one packet
transmission time is not feasible because (1) the green energy
generation remains mostly constant across a couple of seconds,
(2) a short forecast window length increases the overhead on
the low-power nodes, and (3) packet collisions in one forecast
window can cause a cascade effect of collisions in subsequent
forecast windows due to retransmissions, causing a significant
overhead. Thus, we consider the forecast window length to
be long enough for 8 retransmissions (maximum allowed by
LoRa) on the highest SF and to be aligned with the minimum
granularity of green energy forecast feasible at the node.
The models proposed in [22] use only locally-available
variables (e.g., recent PV power generation) to perform
very-short term forecasts (1 to 30 min) and thus may be used
at the low power LoRa nodes. As it is out of scope for us
to propose new green energy prediction models, we assume
these existing models are trained offline and deployed on
each sensor. Since LoRaWAN Class A devices open two
long receive windows after each transmission, it takes around
40 seconds to finish 8 retransmissions (including receive
windows) of a 10 byte packet at SF 10. Considering the
minimum granularity of very-short term forecast, we suggest
a forecast window length of 1-2 minutes. However, the length
of the forecast window may be set to an appropriate value
depending on the green energy source, the granularity of
green energy prediction model, and other network parameters.
Compensating for packet collisions. The centralized
formulation in Section III-A is based on a TDMA scheduler,
with no packet collisions. However, in the on-sensor approach,
the nodes are not time synchronized, and transmission time
selection is local to a node. Thus, multiple nodes may transmit
in the same forecast window, resulting in packet collisions
and retransmissions. If too many nodes transmit in the same
forecast window, some packets may fail to reach the gateway.
Furthermore, a high number of retransmissions results in
high energy consumption, which may hamper the lifespan
of a node. To solve this, we exploit the increased energy
consumption as an indicator to refrain from selecting the
crowded forecast windows through energy usage estimation.
The power and computational constraints in LoRa nodes
hinder the adoption of complex estimation methods. Thus,
we rely on simple but effective approaches to estimate en-
ergy usage. The energy usage in a forecast window depends
on (1) the energy consumed per transmission, and (2) the
number of retransmissions. In LoRa, the nodes can change
their transmission parameters dynamically as governed by the
underlying MAC layer or the network server. Parameters may
also change due to channel conditions. Directly using the
current transmission parameters to estimate the energy usage
in the next sampling period may result in high variance, which
is often not desirable. Thus, we use Exponentially Weighted
Moving Average (EWMA), which is often used to describe

time-series data. EWMA is designed to give more or less
importance to newer data compared to older one. Thus, the
transmission energy estimate is:

e lpl =8 Efp—1+(1-p5) e[p—1]

Here, e!*[p| is the transmission energy estimate in the current
sampling period p, E*[p—1] is the actual transmission energy
consumption in the previous period and [ is the importance
weight decided by the network manager.

Accurate estimation of retransmission for a packet is diffi-
cult as it depends on unpredictable channel conditions. How-
ever, our main objective is not a highly accurate retransmission
estimation strategy considering the channel dynamics. Our
goal is to provide a reasonable estimate of retransmissions
for the choice of forecast windows. We consider that if a
node experiences a high number of retransmission in the
previous forecast window, there is a high probability that
choosing the same forecast window again would result in
a high number of retransmissions. Thus, we calculate the
probability of retransmissions in a forecast window based
on historical data. As more data is gathered over time, we
expect the estimation to be more accurate. In our approach,
we assume that the transmissions on one forecast window have
a negligible effect on transmissions in other forecast windows.
Thus, we estimate the probability of retransmissions on each
forecast window independently. Specifically, the probability of
encountering r retransmissions in forecast window ¢ is:

13)

I .
stf =0
Pirft)=4 5 = 7

P(r —1]t) + %

14
if r>0 (14

where I, ; and S; are the number of times r retransmissions
are observed in forecast window ¢ and forecast window ¢ is
selected for transmission, respectively. We leave the analysis
of physical channel conditions across forecast windows as
future work. Note, any energy usage estimation technique with
reasonable overhead can be used in our approach.
Computing Battery Degradation. The solution in Sec-
tion III-A relies on the global knowledge of battery degrada-
tion of all nodes in the network. However, this is not practical
for the on-sensor version for two reasons. First, battery degra-
dation is calculated through a computation-intensive rainflow
algorithm, which may not be feasible for low-power nodes.
Second, a typical LPWAN network consists of thousands of
nodes, and sharing battery degradation can be time and energy
consuming. To this end, we propose to compute nodes’ battery
degradation at the gateway. However, the gateway requires the
SoC trace to compute battery degradation. Next, we quantify
the overhead of sharing the SoC trace.

Overhead of sharing battery trace. We observe that the SoC
(1), [t]) at the forecast window (t) when the battery transitions
from charging to discharging and vice-versa are sufficient to
generate the entire trace. Therefore, the nodes append forecast
window t and v, [t] at each battery transition time during the
last period to the packet. The size of ,[t] depends on the
number of times charging (or discharging) occurs within a



sampling period. Note that, energy consumed in sleep mode
remains similar for all forecast windows, therefore a node
significantly discharges in only one forecast window for packet
transmission. However, due to green energy variation, the node
may recharge multiple times during a sampling period. We
observe that only the last time of recharge is sufficient for
calculating battery degradation. Thus, we include data for only
two forecast windows, namely the forecast window where the
node discharges and the last forecast window of recharge. A
hardware interrupt is used to record the last forecast window of
recharge. Thus, the information generated is minimal and can
be appended to the subsequent packet with low overhead.
Specifically, packet size increases by 4 bytes (2 x 2 bytes for
t and 1), [t]) resulting in 41 ms of additional airtime using SF
10 and BW 125 kHz.

Disseminating battery degradation. The gateway maintains
the trace of energy stored in the battery and computes the
battery degradation of each node. The gateway also com-
putes the normalized battery degradation of each node. The
normalized battery degradation of node w in the network is
calculated as w, = DIZ e, where D,,,, is the maximum
degradation in the network. We propose to disseminate the
normalized degradation to each node in the network. The
normalized degradation can be used as the importance of
the degradation over packet utility. This lets nodes with low
degradation choose an early forecast window to maximize
utility, even if it slightly increases battery degradation. On
the other hand, the nodes with high degradation select forecast
windows with lower collisions and higher green energy source,
which reduces their degradation rate. Each node only needs
to know its own normalized degradation. Thus, this strategy
allows sensors to indirectly coordinate with each other and
increase the network battery lifespan without synchronization.
Overhead of sharing degradation. We observe that the per-
day change in the degradation of a typical battery is extremely
small (between 0.001 and 0.0001). Therefore, the normalized
battery degradation can be disseminated infrequently, i.e.,
once a day or month. Furthermore, the change in normalized
degradation is minimal. Thus, the approach can tolerate delays
in disseminating normalized battery degradation information,
and the nodes do not need to receive the battery degradation
information at the exact time. We propose to leverage on
the above observation and disseminate the normalized battery
degradation information once a day using piggy-backed ACKs.
This approach adds minimal overhead to each acknowledg-
ment packet. Specifically, the packet size increases by 1 byte,
as the gateway only adds the normalized degradation of the
node for which the ACK is intended. On-sensor Formulation.
Here, we present the on-sensor formulation of the battery
lifespan maximization problem where the decision variable X,
and Y,, pertain to one node only, i.e. for node u, X, = x,[t]
and Y, = y,[t]. To simplify the problem space, we only
consider the decision variables in the current sampling period.
However, as the battery degradation calculation is computa-
tionally expensive for the low-power nodes, we cannot directly
use the same objective as Section III-A. Instead, we need a new
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Fig. 2: Battery degradation.

objective that approximates the impact of packet transmission
(x4[t]) and green energy usage (y,[t]). Both decision variables
control the SoC of the battery. Specifically, x,,[t] controls the
discharge by selecting the forecast window for transmission,
and y,[t] controls the recharge by green energy.

In Figure 2, we show the battery degradation (using Equa-
tion 4) of a regular LoRa node over the timespan of 5 years
in a network consisting of 100 nodes where each node used a
random transmission interval within [16,60] minutes. As can
be seen from the figure, degradation due to calendar aging is
significantly higher than degradation due to cycle aging. As
such, calendar aging becomes the dominant factor in deter-
mining the final degradation. While it may seem like a high
SoC will be beneficial to the battery lifespan, we observe that
this assumption does not hold in case of a LoRa node due to
the high impact of calendar aging. According to Equation (1),
degradation monotonically increases with mean SoC of all
charge-discharge cycles. Thus, reducing the mean SoC limits
the calendar aging of a battery. To simplify the decision space
for the local problem we select the y,,[t] that limits the maxi-
mum energy stored in the battery to a predefined threshold 6,
i.e., for a node wu, ¥,[t] < 6 Vt. The network manager may
configure # considering the application requirement.

Next, we aim to reduce the cycle-aging component of the
overall degradation through a novel battery-lifespan aware
MAC protocol. As we have already limited the maximum
SoC by 6, we now aim to transmit the packet in a forecast
window that limits the discharge of the battery as much as
possible. This results in a lower number of charge-discharge
cycles and low cycle discharge, thereby resulting in a low cycle
aging according to Equation (2). We approximate the impact
of transmitting in a forecast window ¢ on degradation through
Degradation Impact Factor (DIF,[t]) as:

_ max(e,’, Ef[t]) — Eft]

DIF,[t] Ll (15)
where, E* . e” and EY[t] are the maximum energy con-

sumption for a transmission, estimated energy consumption,
and energy generation for forecast window t, respectively.
DIF,[t] is a real number in the range [0, 1] that indicates the
impact of transmitting in a forecast window ¢ on degradation.
In Equation (15), the SoC may decrease if e!* > E9[t], which
in turn increases the degradation due to cycle aging. In this



case DIF,[t] > 0. On the other hand, if e!* < E4][t], the SoC
either increases or remains unchanged, both of which have
negligible impact on cycle aging and thus DIF,[t] = 0.
Solely relying on DIF,[t] for deciding the forecast win-
dow for transmission may introduce large delays in packet
reception. To this end, like the centralized approach in Sec-
tion III-A, the on-sensor objective also takes packet utility into
account. However, the multi-objective optimization problem
in Section III-A is difficult to solve for the low-power LoRa
nodes. Thus, we approximate the multi-objective optimization
function as a weighted average of utility u,[t] and DIF,[t].
The utility u,[t] may be expressed with any monotonically
decreasing function of time such as:
o (X) = Tu — D piot * Ty [t]

Tu
Here, only one packet transmission of node u is considered and
Tu— D pito tX @, [t] is the difference between the arrival of the
next packet and transmission of the current packet. Note that,
our approach is not specific to the function in Equation 16
and can be used with any utility function.

The normalized degradation of a node u from the gateway
is represented by w,. The weight wy € [0, 1], chosen by the
network manager depending on the application requirement,
denotes the importance of degradation over the utility of a
packet. Considering 7 is the set of forecast windows within
a sampling period, the objective function for the on-sensor
approximation of battery lifespan maximization problem is:

min Z zy[t] - (1 — pu(Xy)) +wy - DIF,[t] - wy) (17)
teT

(16)

One goal of Equation (17) is to maximize the minimum battery
lifespan of the network. We realize this goal through the
normalized degradation w,,. For a node with a higher degraded
battery, the impact of DIF,[t] is higher on the objective,
thus the node will try to preserve its battery lifespan more
conservatively than other nodes. However, nodes with newer
batteries will have lower impact from the DIF,[t], so they
will prioritize utility of the packet. This inherently results in a
fair distribution of degradation in the network. The on-sensor
and online approximation of the battery lifespan maximization
problem is presented below:

mtin qu[t]'((1_NU(Xu))+wu'DIFu[t}'wb) (18)

teT

st Y mft]=1 (19)
teT
Yyt — 1] + e2[t] > z,[t] - e [t] (20)
Yult] = min(0, [t — 1] + E3[t] — 2z, []E) (2D

where 7 is the set of forecast windows in the current sampling
period. Equation (19) ensures exactly one forecast window is
chosen in a period, Equation (20) ensures that the battery can
sustain the transmissions in the chosen forecast window, while
Equation (21) updates the current energy stored in the battery
with the minimum of Equation (5) and 6. The above problem
where a forecast window is selected for transmitting a packet

Algorithm 1 On-Sensor Forecast Window Selection
Input: 7, energy level (1)), wy, wy {EJ[t]|t € T},
{ell[t]|t € T}
Output: SUCCESS/FAIL, Decision variable set (X, =
{zult]lt € TH
I X, < ¢
2: for t € T do
3 Ty ft] < 0
4 Yt < pyt] +wy - DIF,[t] - w,
5: X, X, U mu[t]
6
7
8
9

: end for
: T’ < Sort T in non-decreasing order of ~,
: By + 1/}
: fort €T do
10: Elt] < Elt — 1] + EY[¢]
11: end for
12: for t € 7' do
13: if E[t] —e![t] > 0 then
14: Ty < 1
15: Return SUCCESS, X,
16: end if
17: end for
18: Return FAIL, X,

from a node in the current period can be solved in polynomial
time, as w,, is constant for the day.

On-Sensor Forecast Window Selection. The pseudo-code to
select a forecast window at a node is shown in Algorithm 1.
It takes as input the set of forecast windows (7), current
energy level of the battery (v), degradation weight (w), sets
of estimated harvested energy ({E4[t]|t € T}) and estimated
energy consumption (e!*[¢t]|t € T7}). The loop in Line 2,
initializes the decision variable set X, and evaluates the
objective function for each forecast window, 7;. 7 is then
sorted in non-decreasing order of +; and the result is stored in
T'. After calculating the estimated SoC E|[t] for each forecast
window ¢ in Line 9, the loop in Line 12 traverses 7' and the
forecast window with the lowest objective value that satisfies
the constraint in Equation (20) is returned. Otherwise, the
algorithm returns FAIL and the packet is dropped. This may
be the result of a low 6, which was not sufficient to sustain
the network in the intervals without energy generation (e.g.,
night hours). Alternatively, there was no energy generation
for an extended period of time. Thus, it is understandable that
the node may not be able to deliver all packets. The time
complexity for this algorithm is O(|7T |log|T|). For a node
with 10 Min period and 1 Min forecast window, |7 | = 10.

Network dynamics and channel access. The transmission
time of a packet within a forecast window is configurable
and should be governed by the application requirement and
the utility function. For example, if the utility of the packet
does not change significantly between the interval [0, L], where
L < length of the forecast window, then the node may choose
a transmission time randomly within [0, L]. This reduces the
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chance of collisions in the same forecast window. The channel
and SF selection are similar to LoRaWAN in our protocol.
Finally, when a new node joins the network with an unused
battery, its normalized degradation is 0. Thus, it can run
Algorithm 1 without any communication with the gateway.

IV. EVALUATION

Here, we evaluate our approach to maximize the minimum
battery lifespan of a network. Note that evaluating network
battery lifespan through physical experiments is difficult as it
usually takes 10-20 years to reach 20% battery degradation.
The measurement precision is also not enough for capturing
the change in degradation in a feasible time. Thus, we run
long (e.g., 15 years), large-scale experiments using NS-3 [18].
To show the feasibility of our approach, we also complement
the large-scale results with short (e.g., 24 hours), small-scale
results from the physical testbed in our labs.

A. Large-Scale Results

1) Setup: We implemented Algorithm 1 and the battery
degradation model in [13] on top of the LoRaWAN NS-3
module [25] in our simulation.

We used up to 500 nodes and a single gateway. Nodes’
locations were selected randomly with a maximum distance
from the gateway of 5 km, simulating a dense deployment.
Nodes use a sampling period randomly chosen from [16, 60]
Min, forecast window of 1 min, and w, = 1. We consider
the battery to be insulated and thereby use a fixed internal
temperature of 25° Celsius. We used the year-long green
energy trace from a real solar panel [26]. The solar trace was
scaled to generate, at peak power, enough energy to support
two transmissions. Since the nodes are spread over a wide
area, random variations were introduced in the solar power
trace to emulate cloud cover and shades occurring over the
deployment area.

2) Baseline and metrics: To our knowledge, no other work
maximizes the minimum battery lifespan of an LPWAN.
Thus we compare our approach with regular LoRa. Note,
other MAC protocols that do not take the green energy
availability and current battery capacity into account when
transmitting packets will perform similarly to LoRaWAN
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in battery lifespan. The metrics used in our simulations are
avg retransmissions (RETX) attempts per packet, total
transmission (TX) energy (Equation (6)) for the network
operation time, battery degradation (Equation (4)), Packet
Reception Rate (PRR, the ratio of number of ACKs received
to number of packets generated), avg utility (Equation (16))
per packet, avg latency for each packet (interval between
packet generation and reception of ACK). We penalize failed
packets with a latency of the sampling period.

3) Effect of weight w, on forecast window selection:
Here, we use the same solar power trace and sampling period
for the highest and lowest degraded nodes in a 100-node
network. Figure 3 shows the forecast window selection of
two nodes with the highest and lowest degraded battery. In
sampling period pog the energy generation is higher than the
required energy for packet transmission. Thus, both nodes se-
lect forecast window 1 with high utility. However, in sampling
period pag when the harvested energy is lower than the energy
required for transmission, the highest degraded node selects
forecast window 2 to minimize cycle aging while the lowest
degraded node still selects forecast window 1 to maximize
utility. Thus, our approach reduces the network traffic for
nodes with degraded batteries using the weight w,,.

4) Effect of maximum SoC threshold (6): We run a sim-
ulation of 5 years with 500 nodes with unused batteries and
vary 6 from 5% to 100%. In all results, H-5, H-50, and H-100
denote Algorithm 1 with § = 0.05,0.5, and 1, respectively.
Forecast window selection. Figure 4 shows the forecast
window selection of the nodes in the network. Each bar
indicates the number of nodes that transmitted the majority
of their packets in the forecast window shown in x-axis.
LoRaWAN always selects the first forecast window. However,
for H-50, 38% of the nodes select forecast window 2 while
17% of the nodes select forecast window 1. Also, most of
the nodes transmit within the first 4 forecast windows for all
0. Thus, our algorithm distributes the nodes across different
forecast windows, regardless of 6.

Transmission energy and battery degradation. We show the
battery degradation, avg RETXs and TX energy consumption
of the network over 5 years in Figure 5. In Figure 5a, the
avg RETX attempts for all 6 is lower than LoRaWAN. In
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fact, H-50 reduces the RETX attempts by 69.9% compared to
LoRa. We observe a similar trend in TX energy consumption
in Figure 5b as our approach reduces collisions by selecting
different forecast windows for different nodes (see Figure 4).
In Figure 5c the mean degradation of H-100 is similar to
LoRaWAN with a lower variance (indicated by the lower
number of outliers). Note, H-100 uses # = 1, which does
not minimize calendar aging. However, H-50 minimizes the
mean degradation of the network by 21.88% and the variance
of the degradation by 91.5% compared to LoRaWAN. While
H-5 results in the minimum battery degradation, it may impact
network performance as discussed next.

Network and data performance. Figure 6 shows the avg
utility, PRR, and avg latency of the nodes over 5 years. In
Figure 6a and 6b, the avg utility and PRR for LoRaWAN
vary in a wide range (the lowest PRR is 63.9%) due to the
Pure ALOHA MAC. The PRR for H-5 is lower than H-50
and H-100, as most of the nodes deplete batteries due to low
6. As expected, 100% of the nodes using LoRaWAN have a
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latency lower than 35.11 s in Figure 6c. This is due to the
Pure ALOHA MAC used by default LoRaWAN, which tries
to transmit packets immediately. The avg latency for H-50
is 247.17 s. This is expected as we use w, = 1 and thus
nodes may transmit in a later forecast window to preserve
battery lifespan. While this latency increase may seem high,
it does not impact the avg utility in Figure 6a. In fact,
compared to LoRaWAN, H-50 improves the avg utility and
PRR by 39% and 54%, respectively. Thus, our approach results
in a high PRR providing higher utility than LoRaWAN. Note,
the latency is configurable by the weight w;,. Low values of wy,
result in a lower latency at the cost of a lower battery lifespan.
Battery lifespan. Here, we evaluate battery lifespan by simu-
lating the network until the first node reaches 20% degradation.
To reduce the execution time, we use 100 nodes and evaluate
H-50 and another variant of our approach, H-50C, which only
uses § = 0.5 without using our forecast window selection
algorithm. Figure 7 shows the maximum degradation in the
network at the end of every month for this simulation. The
rate of degradation for LoORaWAN is higher in Figure 7 than
H-50 and H-50C, resulting in a battery lifespan of 2980 days
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(8.1 years) in Figure 8, which is 41.09% lower compared
to H-50. Therefore, LoRaWAN is not able to sustain the
battery capacity for the planned deployment time (typically
10+ years [3]) and requires battery replacement after § years,
incurring high costs and wastage of natural resources. H-50
has a lifespan of 13.86 years providing additional 4 years
of lifespan compared to LoRaWAN. Note that, even if the
planned deployment time is less than 13.86 years, the batteries
can be reused in another deployment, thereby promoting
sustainability and reducing cost.

B. Small-Scale Testbed Results

Here, we use 10 Dragino SX1276 LoRa transceiver
HAT [27] on Raspberry pi 3 [28], as LoRa nodes and imple-
ment Algorithm 1 on top of LMIC 1.6 LoRa/LoRaWAN [29]
library. All nodes use 10 min sampling period and forecast
window of 1 min. We use the RAK2245 HAT [30] on
Raspberry Pi 3 as the gateway with a local chirpstack network
server [31]. To emulate a larger network, we use one 125 kHz
channel in US 902 MHz band with SF 10. The experiment
was conducted for 24 hours using a random day from the year-
long energy trace [26] in an indoor environment (Figure 10).
Note that the static energy consumption of the raspberry Pi is
significantly high, which would rapidly drain a battery leading
to high degradation values that are impractical for a LoRa
network. Since our goal is to show the effect of LoRa Tx on
battery degradation, we emulate the battery by a local variable
on every node and update it after each forecast window using
Equation (5). We evaluate our approach with 6 = 0.5 and
compare it with LoORaWAN.

11

1) Results: PRR is 100% for both approaches since
LoRaWAN can easily maintain PRR for a small network with
RETXs. Figure 9 shows the battery degradation, avg RETXSs,
and latency of the 10 nodes. In Figure 9a, the variance in
battery degradation for LoRa is and 99.7% higher compared to
our approach, which ensures a fair distribution of degradation.
The mean degradation in 24 hours is not sufficient for a
significant improvement in overall non-linear degradation.
However, even in 24 hours the cycle aging (Equation (2))
is 80% lower in our approach than LoRaWAN. Thus, in the
long run, our approach will gain significant improvement, as
verified by the results in Section IV-A. In Figure 9b, H-100
has lower number of RETXs than LoRa as we select different
forecast window for transmission based on the green energy
availability. In Figure 9c, the latency for LoRa is lower than

LoRaWAN | H-100
Avg CPU util (%) 19.9 22.4
Memory util (%) 0.067 0.07
Exe size (kB) 56 60
USS (kB) 242 248

TABLE I: System overhead

our approach, showing a similar trend as the large-scale results.

We used the psutil python package [32] to monitor the
system utilization shown in Table I on a node for 30 min for
regular LoORaWAN and the proposed MAC. The avg CPU and
memory utilization for our approach is 12.56% and 5.73%
higher, respectively. The Unique Set Size (USS) (memory
that is freed if the process terminates) increased by 2.61% in
our approach, while the executable code size is only 7.14%
higher, showing a small overhead.

V. RELATED WORK

Initial works on LoRa have focused on empirical evaluation,
while many works have also studied network performance en-
hancement such as throughput, latency, reliability, or scalabil-
ity and coverage [33]-[35]. However, none of these works con-
sider the problem of maximizing the minimum battery lifespan
of the network. Network lifetime maximization approaches
[15], [20] do not maximize battery lifespan, since reducing the



TX energy consumption may result in a high SoC being main-
tained in the battery. This can deteriorate battery degradation
due to calendar aging. Also, transmitting a packet when green
energy is scarce may result in a high depth of discharge even
with the most energy-efficient transmission parameters. Thus,
these approaches cannot be directly applied to prolong battery
lifespan. Reducing battery degradation in Electric Vehicles,
cell phones, and real-time task scheduling [36]-[38] focus on
regulating computation on the processor to minimize degrada-
tion and cannot be adapted to LPWANs. A recent work [39]
has proposed a hybrid power source with supercapacitors to
minimize the degradation of the battery for ultra-low traffic
scenarios (one packet every 3 hours) in LPWAN. Such hard-
ware models cannot support transmissions in periods with no
energy availability and thus do not eliminate the necessity of
batteries for periodic data collection. Therefore, the software-
defined battery-based approach proposed here is still applica-
ble to regulate the charging/discharging of the platform. We
leave the study of setups considering supercapacitors as future
work. In contrast, we propose a novel MAC protocol that
regulates the energy stored and consumed by the battery based
on estimated current and future energy requirements of a node.
To the best of our knowledge, this is the first MAC protocol that
regulates packet transmissions to maximize battery lifespan.

VI. CONCLUSION

Maximizing the battery lifespan of an LPWAN is crucial
for ensuring sustainability of IoT applications. This paper pro-
posed a lightweight MAC that preserves the battery lifespan of
LoRa networks, a leading LPWAN technology, with minimal
impact on utility. The proposed MAC can be easily extended
to support other LPWANS that support time-insensitive appli-
cations. The proposed MAC improves the battery lifespan by
a maximum of 69.7% and data utility by a maximum of 39%
compared to traditional LoRa.
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