2024 IEEE International Conference on Mobility, Operations, Services and Technologies (MOST) | 979-8-3503-0773-3/24/$31.00 ©2024 1EEE | DOI: 10.1109/MOST60774.2024.00026

2024 IEEE International Conference on Mobility, Operations, Services and Technologies (MOST)

L-MBOP-E: Latent-Model Based Offline
Planning with Extrinsic Policy Guided Exploration

Imran Adham*, Hang Wang!, Sen Lin?, and Junshan Zhang!
*Department of Computer Science, University of California, Davis, USA
TDepartment of Electrical and Computer Engineering, University of California, Davis, USA
IDepartment of Computer Science, University of Houston, USA
{imadham, whang, jazh}@ucdavis .edu,slin50@central.uh.edu

Abstract—Offline planning has recently emerged as a promis-
ing reinforcement learning (RL) paradigm for locomotion and
control tasks. In particular, model-based offline planning learns
an approximate dynamics model from the offline dataset, and
then uses it for rollout-aided decision-time planning. Nevertheless,
existing model-based offline planning algorithms could be overly
conservative and suffer from compounding modeling errors. To
tackle these challenges, we propose L-MBOP-E (Latent-Model
Based Offline Planning with Extrinsic policy guided exploration)
that is built on two key ideas: 1) low-dimensional latent model
learning to reduce the effects of compounding errors when
learning a dynamics model with limited offline data, and 2) a
Thompson Sampling based exploration strategy with an extrinsic
policy to guide planning beyond the behavior policy and hence
get the best out of these two policies, where the extrinsic policy
can be a meta-learned policy or a policy learned from another
similar RL task. Extensive experimental results demonstrate
that L-MBOP-E significantly outperforms the state-of-the-art
model-based offline planning algorithms on the MuJoCo D4RL
and Deepmind Control tasks, yielding more than 200% gains
in some cases. Furthermore, reduced model uncertainty and
superior performance on new tasks with zero-shot adaptation
indicates that L-MBOP-E provides a more flexible and light-
weight solution to offline planning.

I. INTRODUCTION

Development of model-based planning algorithms is a cen-
tral focus for applications in locomotion and robotic control.
Algorithms developed for locomotion must be flexible enough
to enable changes in the underlying dynamics or reward
signals by allowing for decision-time planning [1]. A number
of model-free offline reinforcement learning (RL) algorithms
have recently been proposed, including SAC-N, EDAC [2],
PBRL [3], RORL [4], and TD3-BC-N [5]; it is worth pointing
out that while these algorithms have demonstrated strong
performance, they are not readily amenable to decision-time
planning. Recent model-based RL works such as Dreamerv3
[6] and PlaNet [7] train a world model [8] to approximate
the environment, which can be leveraged for decision-time
planning or training a policy via reinforcement learning. A
general consensus is that although online planning algorithms
[9], [10], [11], [12] have demonstrated strong performance,
their need for continuous interactions with the environment can
incur prohibitively high cost. In contrast, offline RL algorithms
[13], [14], [15], [16] only require access to an offline dataset
collected by some behavior policy. By taking advantage of
both online planning and offline learning, model-based offline

planning algorithms learn an approximate dynamics model
from the offline dataset, which can be used to devise planning
algorithms for effective system control.

Locomotion control tasks commonly comprise of high-
dimensional observations which can contain redundant infor-
mation. Thus, a number of challenges arise when applying
model-based offline planning to robotic control tasks, includ-
ing 1) compounding modeling errors due to the inaccuracy
and uncertainty associated with the approximate dynamics
model learned from limited data, and 2) the distributional
shift between the distribution of visited state-action pairs
during planning and that of the offline dataset. To tackle these
challenges, existing approaches [17], [18], [19] for offline
planning typically employ model-predictive control (MPC)
[20] to re-plan at each iteration, and use a behavior cloned
policy to constrain trajectory rollouts while planning. Despite
the control flexibility, these offline planning algorithms still
face several key limitations. (1) Uncertainty and inaccuracy of
high-dimensional dynamics model. The dynamics models are
often trained in the high-dimensional observation space. While
re-planning at each state in MPC can help reduce the effect
of compounding modeling errors, offline planning still suffers
from out-of-distribution errors, because the states visited dur-
ing planning might differ from the states present in the offline
dataset. (2) Overly conservative planning. The constrained
trajectory rollouts will lead to planned actions that closely
follow the behavior policy, which is overly conservative and
hinges heavily upon the quality of the BC policy.

To address these two limitations, in this work we propose
L-MBOP-E, a model-based offline planning algorithm that
makes use of 1) low-dimensional latent dynamics model
learning and 2) guided exploration with an extrinsic policy.
As shown in Fig. 1, the underlying rationale is as follows:
(1) To deal with the inaccuracy of the dynamics model due
to the limited samples in the offline dataset, we advocate
a low-dimensional latent representation for the state space,
which can yield a higher-accuracy dynamics model and in turn
improve prediction quality and hence reduce the likelihood of
compounding errors. This resonates with human’s interactions
with an environment where we typically do not try to reason
directly with the observation space, but rather with some
abstracted features of the observations. (2) Further, to mitigate
the overly-conservative planning constrained by the BC policy,

979-8-3503-0773-3/24/$31.00 ©2024 IEEE 178
DOI 10.1109/MOST60774.2024.00026
Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 05,2024 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

Offline Learning

B]

Train latent
dynamics model

Train BC policy

Fig. 1: Overview of L-MBOP-E. A latent dynamics model and the

Thompson Sampling Guided Planning

|
Rollout from BC | | Run trajectory
policy : optimizer
|
Repeat N times :
|
Rollout from i Update T.S.
extrinsic policy ! parameters
|

BC policy are trained from the offline dataset. Leveraging the latent

model, a Thompson Sampling (T.S.) exploration procedure is used to guide exploration following the better one between the BC policy and

extrinsic policy.

it is plausible to take advantage of an extrinsic policy which
can be another policy obtained from either meta learning or a
related task [21], [22], [23], [24]. Based on the online returns
of both extrinsic policy and behavior policy, a Thompson
Sampling based exploration strategy is proposed to ensure that
the planning would mostly follow the guidance of the better
policy for specific state-action pairs. In particular, when both
the behavior policy and extrinsic policy are non-expert, there
will be regions of the state-space where the behavior policy
performs better and other regions where the extrinsic policy
performs better. As such, we can expect that the extrinsic
policy will complement the behavior policy in some subtle
way, and the planning using both policies will enable the
algorithm to selectively learn from both policies, leading to
improved performance.

II. RELATED WORK

Model-based offline planning [17], [18] seeks to directly
plan actions for execution in an environment by leveraging a
learned dynamics model from an offline dataset. This differs
from the online setting where one can collect additional data
during interaction to improve the dynamics model. MBOP
[17] extends the ideas of Planning with Deep Dynamics
Models (PDDM) [9] to the offline setting. In addition to
learning an approximate dynamics model, MBOP also trains a
behavior cloned (BC) policy from the offline dataset. MBOP
uses the BC policy to constrain the explored trajectories in
order to reduce distributional shift. However, constraining
the explored trajectories to only follow the BC policy limits
the potential of planning, therefore MOPP [18] attempts to
improve exploration by boosting the variance of the actions
produced by the BC policy, and using a pruning scheme based
on dynamics uncertainty to avoid potential out-of-distribution
(OOD) samples. While this approach enhances exploration
compared to the base BC policy, its performance still heavily
depends upon the quality of the BC policy. To overcome this
challenge, L-MBOP-E uses an extrinsic policy to help guide
exploration, in addition to the BC policy.

A number of recent studies on model-based RL have
investigated the use of latent state representations with dy-
namics models, which can capture higher-level features of the
environment and facilitate the learning. In related work, TD-

MPC [25] learns a latent state representation which encodes
the dynamics and reward signal, which it then leverages for
online planning. Dreamerv3 [6] utilizes world models [8] for
training a policy with synthetic data. World models encode
the history of observations encountered thus far into a hidden
state via recurrent neural networks, which is then used for
prediction with a latent dynamics model. Due to the additional
complexity, world models often require large amounts of
data to train. Different from the above approaches, L-MBOP-
E employs a state decoder, in addition to reward signals,
to facilitate zero-shot task adaptation, and as a result, the
dynamics model employed is lightweight and can be trained
offline with minimal data.

III. PROBLEM FORMULATION
A. Markov Decision Process

As is standard, we consider a Markov Decision Process
(MDP) defined by a tuple (S,.A, P,r,~), where S is the state
space, A is the action space, P(s¢11]$¢,a¢) is the transition
dynamics, 7 (s, a¢) is the reward function, and v € (0,1] is
the discounting factor. RL aims to learn an optimal policy
7* which can maximize the cumulative reward, ie., R =
Sooe o r(se, m (s¢)). Following recent studies [17], [18], we
fix v = 1 and thus only consider the finite-time horizon
return. In the offline setting, the algorithm only has access to a
static dataset D of trajectories of the form {(s;, as, ¢, S141)}
generated by some behavior policy .

B. Offline Planning with Learned Dynamics Models

Model-based Offline Planning. Model-based offline plan-
ning methods [17], [18] generally learn an approximated
dynamics model f,, through supervised learning and then
employ a planning algorithm to determine a trajectory with a
high return based on this learned model; which is subsequently
implemented in the online environment. Meanwhile, a value
function V}, is used to extend the planning horizon beyond H
steps. Hence, offline planning aims to find an optimal policy

7% such that the accumulated reward is maximized, i.e.,

op

H-1
Top(S0) = argmax E [Zt—o

a0:H—1

r(se, ae) + Vb(sH)}.

Specifically, MBOP [17] learns a behavior cloned policy
fv(ai—1,s¢) as a prior for action sampling when the planning

179

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 05,2024 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

algorithm is rolling out trajectories over the learned model

f m (5t7 at)~

Trajectory Optimization. After having a set of trajectories
and the associated return, MBOP employs an extended version
of the MPPI [26] optimizer to obtain the optimal action
sequence. Specifically, let A; be the set of action trajectories
which are sampled using the learned behavior policy f;
and Ry, = {Ry,---,Rja,|} be the associated cumulative
returns. Then the optimized trajectory of actions is obtained
by re-weighting the actions in each trajectory according their
exponentiated return, i.e.,

_ i exp (sRo[n])Au[n]
SoIA] exp (kRy[n])

where k is the re-weighting factor.

Limitations of Existing Approaches. The performance
of existing offline planning algorithms [17], [18] is often
limited by two factors: (1) the compounding model errors
and (2) the over-restrictive planning with the behavior cloned
policy. Specifically, in real-world applications such as video
games and robotics, the high-dimensional state observations
may contain redundant information and thus impose great
model uncertainty for RL agents trained from limited offline
data. Meanwhile, MBOP samples actions exclusively from the
learned behavior policy to relieve the out-of-distribution error
during offline learning. However, this over-restrictive planning
unavoidably hinders the full utilization of trajectory optimizers
such as MPPI, which requires sufficient state-action space
coverage in order to perform well [18]. These issues are still
present in MOPP [18] even though large deviation is allowed
from the behavior policy in sampling.

T*

IV. LATENT-MODEL BASED OFFLINE PLANNING WITH
EXTRINSIC POLICY GUIDED EXPLORATION (L-MBOP-E)

To address the limitations mentioned above, in this section
we introduce L-MBOP-E which is built on two key ideas.
First, we use a low-dimensional latent state space when
training the dynamics model from limited offline data, aiming
to mitigate the effects of compounding errors. Second, we
propose a Thompson Sampling based exploration strategy with
an extrinsic policy 7. to guide planning beyond the BC policy,
where the extrinsic policy can either be a meta-learned policy
or a policy acquired from a similar RL task.

A. Latent Model Representation

Instead of directly learning the dynamics models using
the offline dataset, we utilize insights from representation
learning literature [27], [28], [29], [30], [31] and employ latent
dynamics models to reduce model uncertainty. The rationale
behind incorporating latent models is to reduce dimensionality;
allowing for more accurate predictions by capturing the core
reasoning in higher-level input domains when using limited
samples. Specifically, L-MBOP-E first jointly learns the la-
tent dynamics model and a representation mapping between
original and latent state spaces with an encoder-decoder ar-
chitecture [32]. Then, a behavior policy and a Q function are
learned with the use of the latent state representation. In this

180

regard, the planning algorithm of L-MBOP-E incorporates five
parameterized function approximators, i.e.,

o 2z = e(s;) is the state encoder which maps the observa-
tions to the latent space, where we normalize the latent
states to lie on the hypersphere to improve convergence.

o d(zt) = s; is the state decoder, which decodes the latent
state back into the original space.

o fm(ze,ap) (2¢41,7¢) is the latent dynamics model,
which takes as input the current state encoding and an
action, and produces the latent representation for the
next state and the predicted reward. We use [, (2¢, a¢).
and f,,(z¢, a¢), to denote the predicted latent state and
reward, respectively.

o folarlze) = N(u(z),2(2¢)) is the behavior cloned
policy, which is modeled as a Gaussian distribution over
the actions for that iteration.

o Qu(zt,a4) is the learned Q function for the underlying
true behavior policy 7.

Latent Dynamics Model. Our proposed method trains
the autoencoder and dynamics model jointly. In this way,
the network can align the learned latent state representation
with the underlying dynamics captured by the latent model.
Specifically, denote the joint parameter for the latent model
and encoder-decoder to be 6. We design the loss function as
follows:

L(0|D) =Z lle(sis) = fm(e(si), ai)=||?

+ A1 (ri = fm(e(si), ai)r)® + Xallsi — d(e(si))]1?,

where the first term trains the dynamics model to predict the
latent representation of the next state, the second term trains
the dynamics model to predict the instantaneous reward for the
given state-action pair, and the last term is the reconstruction
loss for the encoder-decoder pair. A\; and A, are used to

balance the importance of each term.

Behavior Policy and Value Function Learning in the
Latent Space. After training the state encoder and latent
dynamics model, the BC policy is trained via maximum
likelihood on D with the latent state representations. The value
function V}, is obtained by learning a Q function via Fitted
Q Evaluation [33] on the latent representations of D. Let

k—1
Yi =1+ Qp (2it1, @iv1), (2, @iy Tis 2i41, @iv1) ~ D. Then
at the k-th iteration, the Q function is updated as follows,

o a) = min 4 S) g2
Qb(zuaz)—?ggNZizl [f(zual) yl])

where F is the function class and N is the number of samples
in the offline dataset D. The value function can be further
evaluated by Vj(s;) = Eqn, [Qb(2¢, a)]. As in MBOP [17],
the value function is used to guide exploration and provide a
terminal cost during the planning stage, which enables us to
effectively extend the length of the planning horizon.

B. Policy-guided Rollouts via Thompson Sampling

As opposed to MBOP [17], L-MBOP-E samples actions
from the behaviour cloned policy fp, as well as from an
extrinsic exploration policy 7.. The use of a secondary policy
aims to boost the exploration by allowing the algorithm to

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 05,2024 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

sample actions that might not be sampled if we exclusively
follow the behaviour policy. To determine which policy should
be used during rollouts, we model the policy selection process
as a two-armed bandit problem, and use Gaussian Thompson
sampling to learn which policy performs better. In particular,
we model the return of the behavior policy x; and the return of
the extrinsic exploration x. policy as Gaussian distributions.
More specifically, at each iteration ¢, we are given the
current state s; of the environment and initialize two sets R}
and R, to store the associated cumulative returns from running
policies f; and 7., respectively. N trajectory rollouts will be
generated from the current state using the latent dynamics

model f,.

Action Selection. For the n-th rollout trajectory, n
1,..., N, the algorithm uses the sampled return based on
parameters learned through Thompson Sampling to determine
which policy should be used for the rollout:

w(s¢) = {fb(st)

if xp > !

T t t
. xp ~ N (pp, 0
otherwise b (/’va b)7

e ~ N(pe, o0)

(€]

me(St)

where 7, is given and f; is given by:
fb(st) = argmaXaEAh Qb(z}M (l),
An={ai 18, ah ~ N(p(en), diag(or - o(2))°)

where o7 > 0 is a hyperparameter for scaling the standard de-
viation of the predicted actions. Following MBOP and MOPP,
the sampled action 7(s;) is mixed with the trajectory from the
previous timestep with a mixing parameter 5 to produce the
action for the next step in the rollout (ref. Algorithm 1 line
11).

Parameter Updates. At the end of each rollout, the
cumulative reward is obtained by the summation of the total
return over the H steps rollout and the terminal cost for the
final state, V,(zp). The total return is then added either to
R} or to RY, depending on which policy was used during the
rollout. Let n; denote the number of rollouts taken from f;
at iteration t, le the total number of rollouts taken from f;
up until iteration ¢, RZ be the mean return from the set of
generated rollouts, and R [i] the i-th element of the set R}. At
the end of iteration ¢, we use Welford’s algorithm [34] adapted
for batch data to update the Gaussian distribution parameters
for the policy returns:

N{ -ty + o - Rp
N} +ns
Nyt = Ny +

t+1
Ky =

ny
devy ™ = devy + m(up, — 1) + Y _(RY[] — pi)®. (@)
i=1
T
The standard deviation is computed as of = |/ . We
b

update !, ol and N! in the same way.

C. Algorithm Design

L-MBOP-E is outlined in Algorithm 1, which follows the
finite-horizon Model Predictive Control (MPC) framework.
Based on the dynamics model, MPC computes a locally
optimal policy by returning a sequence of actions of length

181

Algorithm 1 L-MBOP-E Algorithm

1: Initialize Thompson Sampling parameters: Nl} = N} =1, ,u;, ul,
dev;,devé =0.
2: fort=1,2... do
3: Observe current environment state s¢, and encode state s; into latent
state z¢
4: Initialize R, and R as empty sets to contain trajectory scores
5: Set AN,HZON,H
6: forn=1,...,N do
7: Initialize Ry, = 0 and sample @, ~ N (ul, o), zc ~ N (pk, ol)
8: Select policy 7, based on the maximum between z; and x.
9: for h =1..H do
10: Sample aj, from policy 7, using Eqn. (IV-B)
11 An,h, = (1 - B)ah + BTi:min(h,H)v Ry « Rn +
f'm(ZhyAn,h)'r'! Zh4+1 fm(zh:An,h)s
12: end for
13: if 7, = f, then
14: Estimate Vj(zp) by sampling actions from fj(zp) and aver-
aging Qy(zp, a)
15: Ry < Ry + Vi(zpH), and add R, to Ry,
16: else
17: Estimate V. (zg) by sampling actions from 7. (zg) and aver-
aging Qc (217, a)
18: Ry, + Ry + Ve(zg), and add Ry, to Re
19: end if
20: end for
21: Update Thompson Sampling parameters for f; and 7. using Eqn. (2)
N _kRp
2 Té:%,\me[lﬂ],m:mum
23: Exccute action T in real environment
24: end for

H. At each iteration t, MPC executes the first planned action
of the returned sequence, and then re-plans a new sequence
for the newly observed state.

At each iteration t, L-MBOP-E performs N rollouts from
the current state; to determine whether the rollout is following
fp or m., samples of policy returns are generated from the
Gaussian distributions for f; and 7., and the policy cor-
responding to the larger return is selected. At the end of
the rollout, a terminal cost is added by using @, or Q.,
respectively. After all IV rollouts are performed, the Gaussian
distributions for the returns of f, and 7. are updated via
Welford’s algorithm, and then the MPPI trajectory optimizer
is employed to return a final trajectory from the set of N
rollouts, where the first action is executed for online planning
in the environment.

V. EXPERIMENTS

To evaluate the effectiveness of L-MBOP-E, we consider the
standard offline RL benchmark D4RL [35] and the Deepmind
Control (DMC) [36] tasks, and use state-of-the-art offline
planning methods as the baselines. In what follows, we first
show how L-MBOP-E performs compared to the baseline
algorithms. Next, we provide a comprehensive ablation study
to investigate the impact of each key design component.
Finally, we evaluate the adaptability of L-MBOP-E through
experiments on zero-shot adaptation for new tasks.

A. Performance on MuJoCo and Deepmind Control (DMC)
Tasks

We perform experiments on three D4RL environments:
halfcheetah, hopper, and walker2d, and on two DMC tasks:

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 05,2024 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

Dataset Environment BC MBOP MOPP L-MBOP-E MBOP-E L-MBOP
random halfcheetah 0.0 6.3 9.4 21.2 20.1 9.3
random walker2d 0.1 8.1 6.3 23.7 19.2 8.0
random hopper 0.8 10.8 13.7 20.2 18.8 11.3
random humanoid 0.0 0.3 - 5.1 49 0.4
random quadruped 0.1 4.0 - 11.8 11.1 3.8
medium halfcheetah 38.9 44.6 44.7 56.2 48.6 55.2
medium walker2d 60.6 41.0 80.7 84.7 82.1 85.6
medium hopper 40.9 48.8 31.8 63.8 51.1 553
medium humanoid 12.1 14.9 - 21.5 20.1 152
medium quadruped 21.7 28.0 - 35.5 33.7 30.2
medium-replay halfcheetah 27.7 423 43.1 46.8 434 439
medium-replay walker2d 17.7 9.7 18.5 35.6 32.1 28.5
medium-replay ~ hopper 135 12.4 32.3 42.7 352 30.6
medium-replay ~ humanoid 10.8 15.3 - 19.0 16.7 15.5
medium-replay ~ quadruped 16.6 21.5 - 294 29.1 21.1
med-expert halfcheetah 572 105.9 106.2 91.6 92.1 94.3
med-expert walker2d 79.7 70.2 92.9 112.1 94.1 110.7
med-expert hopper 50.4 55.1 95.4 96.7 96.5 97.1
med-expert humanoid 14.9 19.6 - 32.8 30.4 19.9
med-expert quadruped 87.7 90.1 - 91.2 90.9 89.9

TABLE I: Experimental results. Scores are normalized between 0 and 100, where 100 represents the score of the expert policy. The scores
for MBOP and MOPP are taken from their respective papers where possible.

humanoid and quadruped. For each environment, we consider
four different qualities of offline datasets (random, medium,
medium-replay, and med-expert). We compare the perfor-
mance of L-MBOP-E to two offline planning algorithms:
MBOP [17] and MOPP [18]. We also consider the BC policy
learnt with behavior cloning as a baseline. For convenience,
the extrinsic policy is obtained as a variant by training a policy
using SAC [37] on the same task until it performs reasonably
well as the BC policy.

The results are reported in Table I. L-MBOP-E outperforms
all the baselines in almost every task. As expected, the
performance gain is more significant when the quality of the
offline data is lower, because the extrinsic policy is more likely
to complement the BC policy for a better exploration of the
state-action space.

In particular, in the case with random datasets where the
BC policy is of very-low quality, BC-guided exploration is
clearly not productive. As a result, both MBOP and MOPP,
which only use the BC policy for guidance, degrade in
performance. In contrast, L-MBOP-E can yield a substantial
performance gain by training the latent dynamics model and
using the Thompson Sampling exploration scheme to follow
the guidance of the better policy.

B. Ablation Study

To clearly understand the impact of the different design
choices in the proposed algorithm, we next conduct ablation
studies on the hopper-medium dataset.

Latent Dynamics Model. We begin by examining the
impact of the latent dynamics model. We first compare the
performance of L-MBOP-E to that of MBOP-E which learns
a standard dynamics model, to determine how the latent dy-
namics model helps to improve planning. As shown in Table I,
L-MBOP-E clearly outperforms MBOP-E by leveraging the
latent dynamics model. To further justify this, we also compare

182

the performance between MBOP and L-MBOP with the latent
model in Table I, where substantial performance gains can be
achieved in L-MBOP by using the latent model to replace the
standard dynamics model.

To understand how the dimension of the latent space affects
the performance, we run the experiments with different values
of the size of the latent dimension, with dataset size set to
50,000. The results are reported in Figure 2a, which show
that the algorithm performs well on most latent dimension
sizes where the latent model is sufficient to capture the main
characterizations of the dynamic model.

Another benefit of leveraging the latent model is to improve
the data efficiency. To justify this, we next conduct experi-
ments under different sizes of the dataset, ranging from 20,000
to 1,000,000 samples, fixed with latent dimension size of 9. We
observe that even with a smaller training dataset, L-MBOP-E
can outperform MBOP, as demonstrated by MBOP achieving
a score of 1578 on 1,000,000 samples. By learning a latent
space that captures the features for the environment dynamics,
L-MBOP-E can attain higher data efficiency than attempting
to learn the dynamics in the original space.

Benefits of Using the Extrinsic Policy. First, to understand
the benefit of the extrinsic policy, we compare the performance
between L-MBOP and L-MBOP-E. As seen in Table I, when
Thompson Sampling is used to explore with an additional
extrinsic policy, L-MBOP-E can leverage the extrinsic policy
to provide additional guidance for planning and improves upon
L-MBOP.

Next, we investigate how the quality of the extrinsic policy
affects the performance of the proposed algorithm L-MBOP-E.
To this end, we run the experiments under different qualities
of the extrinsic policy, i.e., low, medium, medium-expert and
expert, and compare to just using L-MBOP; the results are
shown in Figure 3b. Our findings indicate that increasing
the extrinsic policy quality from low to expert consistently

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 05,2024 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

Impact of Latent Dimension Size

3000 ° S
£ 2000 8
=]
)
2 ;
1000
ol =+ = -
3 5 7 9 11 13 15 17 19
Dimension

(a) Return vs. latent dimension

Impact of Data Quantity

éiil?

100k 500k
Data Quantity

iMm

(b) Return vs. dataset sizes

Fig. 2: Performance of L-MBOP-E trained with varying amounts of data and latent dimension sizes. In Figure 2a, the size of the latent
dimension is varied between 3 and 19, in the case where the dataset size is 50,000. In Figure 2b, the dataset is set to sizes between 20,000

and 1,000,000, and the latent dimension is fixed to 9.

improve the quality of the planning. By using Thompson
Sampling, even in the case where we use a low-quality
extrinsic policy, L-MBOP-E can selectively sample actions
from it and still improve upon the overall performance of L-
MBOP. As the quality of the extrinsic policy increases, p; will
get closer to 0 and the algorithm learns to follow the extrinsic
policy.

Impact of Thompson Sampling. We conduct experiments
under different qualities of the offline dataset and extrinsic
policy in order to determine whether Thompson Sampling
can correctly identify which policy is stronger. Intuitively,
Thompson Sampling should converge to a low p; value when
the extrinsic policy is better than the BC policy and a high p;
value when the BC policy is better. As shown in Figure 3a, in
the random dataset where the performance of the BC policy is
of low quality, the value of p; converges to near 0.0 so that the
exploration would tend to follow the guidance of the extrinsic
policy. In the other extreme case where the BC policy is of
high quality and the extrinsic policy is of low quality, p; will
converge to a value close to 1.0.

Next, we investigate the impact of the variance scaling
factor op; on the learning performance. Specifically, for the
Hopper-medium task, we test different variance scale values
ranging from 0.2 to 2.0. As shown in Figure 3c, as we increase
o, the performance initially increases because the algorithm
will sample more diverse actions for better exploration. The
performance decreases if o,; is too large, because of the
increased distributional shift between the sampled actions and
the BC policy. However, the performance of our algorithm is
robust to the selection of .

The Thompson Sampling algorithm allows L-MBOP-E to
sample actions from both the BC policy and extrinsic policy,
and follow the better policy for different states. To verify this,
we perform Principal Component Analysis on a sample tra-
jectory from the Hopper environment. In order to distinguish
which states the extrinsic policy performs better, we use the N
trajectory rollouts generated by L-MBOP-E during planning.
We compute the average return of the trajectories generated by
either policy, and color red the states where the extrinsic policy
has higher average return. The visualizations are shown in
Figure 4a and Figure 4b. As we can see, the latent state space

183

has a very clear structure which makes the characterization of
the dynamics easier and more accurate. Moreover, it is clear
that the planning deviates from the BC policy and follows the
guidance of the extrinsic policy in the red states, leading to
the improved overall performance.

C. Zero-shot Task Adaptation

One of the main advantages to using the model-based
planning framework is the ability to adapt to new reward
signals without having to re-train a policy. We can use a
new reward signal by simply replacing the predicted reward
received during the synthetic rollouts with the new reward
function. This will allow L-MBOP-E to optimize the trajecto-
ries according to the new reward function, and enable zero-shot
task adaptation.

To verify this, we consider a new task, Hopper-Jump, which
uses the original Hopper environment but encourages the agent
to jump by rewarding the agent for its z-position. The new
reward function is defined as follows:

Tnew = Qr * Toriginal + (1 - O"r') -10- 2

where 7,igina 15 the reward function from Hopper, z is the z-
position of the Hopper, and «,. € [0, 1] is a mixing parameter,
which we set to «,, = 0.5.

Because the Q function was learnt based on the reward
function from the offline dataset D, using it as the terminal
cost could degrade the performance if the new reward for
the modified environment differs greatly from the reward
in the dataset. A new Q function can be trained from the
offline dataset by using the new reward function to replace
the original reward. This allows L-MBOP-E to use a more
accurate terminal cost for better adaptation performance.

We compare the performance of MBOP and L-MBOP-E,
along with two variants of L-MBOP-E: L-MBOP-E with the
new reward function (New-Reward), and L-MBOP-E with
both the new reward function and the Q function re-trained on
the new reward (New-Q). Results are plotted in Figure 4c. As
shown, L-MBOP-E improves upon the performance of MBOP.
Using the new reward function allows L-MBOP-E to optimize
trajectories for the new task to improve the performance. If a
new Q function is further trained, long-term consequences can

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 05,2024 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

Impact of Extrinsic Policy Quality

3250
3000

1750

2 expert 0.8

= 2750
3

> 0.6 c 2500
3 E

= 3 2250
S medium =

S 04 & 2000
‘0

2

£

g

X

5

1500
1250

Impact of Variance Scaling Factor
3000

T

2500

2000

Return

1500

1000

random medium

Dataset

Low

med-expert

(a)

Medium

(b)

Med-Expert
Extrinsic Policy Quality

02 04 06 08 10 12 14 16 18 20
Variance Scaling Factor

(©)

Expert

Fig. 3: (a) Converged p; value from Thompson Sampling vs. various qualities of datasets and extrinsic policies. The darker the shade, the
higher the converged p; value (higher probability of sampling from BC policy). (b) Performance of L-MBOP-E with varying qualities of
the extrinsic policy. The red line represents the score of L-MBOP as a baseline. (c) Sensitivity to the variance scaling factor o ;.

Observation Space

Latent Space

Zero-shot Adaptation to Hopper-Jump

0.75
0.50 8000 °
0.25 £ 6000
0.00 2
' & 4000
-0.25 .
—0.50 2000
MBOP L-MBOP-E New-Reward New-Q
Algorithm
(a) (b) (©)

Fig. 4: (a-b) Visualization of states visited in the observation and latent spaces. States where the extrinsic policy outperforms the BC policy
are colored red. (c) Zero-shot adaptation experiments for Hopper-Jump. It can be seen that L-MBOP-E clearly outperforms MBOP by using
the new reward and the improvement is more significant when a new Q function can be trained with the new reward.

be considered and the planning quality is greatly improved.
All these results clearly demonstrate the superior zero-shot
adaptation capability of L-MBOP-E, which is built on the
latent model learning and better exploration with Thompson
Sampling and the extrinsic policy.

VI. DISCUSSION AND CONCLUSION

We develop Latent-Model Based Offline Planning with
Extrinsic Policy-Guided Exploration (L-MBOP-E), which is
built on two key ideas: 1) low-dimensional latent model
learning to reduce the effects of compounding errors when
learning a dynamics model with limited offline data, and 2)
a Thompson Sampling based exploration strategy with an
extrinsic policy to guide planning beyond the behavior policy
and hence get the best out of these two policies. Experimental
results demonstrate that L-MBOP-E significantly outperforms
the state-of-the-art algorithms on the D4RL and DMC tasks,
and performs especially well when given access to an extrinsic
policy which complements the BC policy.

Our proposed method has several limitations. We improve
exploration under distributional shift by employing an extrinsic
policy. This requires access to a reasonably-well performing
policy from the same or similar task. Additionally, this policy
must complement the behavior cloned policy and must not lead
to states which stray too far from those in the offline dataset.
While we demonstrate that the Thompson Sampling procedure
allows the algorithm to select the best of both policies, if the
distributional shift is too great, the predicted returns could

184

be incorrect and lead to degraded performance. While model-
based planning methods such as L-MBOP-E are lightweight
and flexible enough to enable zero-shot task adaptation, when
using a high-variance dataset the performance might not as be
as strong when compared to a traditional offline RL approach
on that single task [17].

There are many scenarios where the system is controlled by
several human operators with varying behavior. The resulting
behavior policy and extrinsic policy would be consistent and
complement each other, and could benefit from considering
actions from both policies. In these type of scenarios, we
believe that L-MBOP-E could provide an effective solution
for automating the control of the system while incorporating
the behavior from multiple operators to improve overall per-
formance.

ACKNOWLEDGEMENTS

This work is supported in part by NSF Grants CNS-
2203239, CNS-2203412, and RINGS-2148253.

REFERENCES

[1] J. B. Hamrick, A. L. Friesen, F. Behbahani, A. Guez, FE. Viola, S. With-
erspoon, T. Anthony, L. Buesing, P. Velickovi¢, and T. Weber, “On the
role of planning in model-based deep reinforcement learning,” 2021.
G. An, S. Moon, J.-H. Kim, and H. O. Song, “Uncertainty-
based offline reinforcement learning with diversified g-ensemble,” in
Neural Information Processing Systems, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:238259863

C. Bai, L. Wang, Z. Yang, Z. Deng, A. Garg, P. Liu, and Z. Wang,
“Pessimistic bootstrapping for uncertainty-driven offline reinforcement
learning,” 2022.

[2]

[3]

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 05,2024 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

[4]
[51

[71

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

R. Yang, C. Bai, X. Ma, Z. Wang, C. Zhang, and L. Han, “Rorl: Robust
offline reinforcement learning via conservative smoothing,” 2022.

S. Fujimoto and S. S. Gu, “A minimalist approach to offline reinforce-
ment learning,” 2021.

D. Hafner, J. Pavukonis, J. Ba, and T. P. Lillicrap, “Mastering
diverse domains through world models,” ArXiv, vol. abs/2301.04104,
2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:
255569874

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
International conference on machine learning. PMLR, 2019, pp. 2555—
2565.

D. R. Ha and J. Schmidhuber, “World models,” ArXiv, vol.
abs/1803.10122, 2018. [Online]. Available: https://api.semanticscholar.
org/CorpusID:4807711

A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Conference on Robot
Learning. PMLR, 2020, pp. 1101-1112.

K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep
reinforcement learning in a handful of trials using probabilistic
dynamics models,” in Advances in Neural Information Processing
Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates, Inc.,
2018. [Online]. Available: https:/proceedings.neurips.cc/paper_files/
paper/2018/file/3de568{8597b94bda53149¢7d7f5958c-Paper.pdf

K. Lowrey, A. Rajeswaran, S. M. Kakade, E. Todorov, and I. Mordatch,
“Plan online, learn offline: Efficient learning and exploration via model-
based control,” ArXiv, vol. abs/1811.01848, 2018.

T. Wang and J. Ba, “Exploring model-based planning with policy
networks,” ArXiv, vol. abs/1906.08649, 2019.

R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims, “Morel:
Model-based offline reinforcement learning,” Advances in neural infor-
mation processing systems, vol. 33, pp. 21 810-21 823, 2020.

T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine,
C. Finn, and T. Ma, “Mopo: Model-based offline policy
optimization,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 14 129—
14 142. [Online]. Available: https://proceedings.neurips.cc/paper._files/
paper/2020/file/a322852ce0df73e204b7e67cbbef0dOa- Paper.pdf

A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning
for offline reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 1179-1191, 2020.

S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International Conference on Machine
Learning, 2018.

A. Argenson and G. Dulac-Arnold, “Model-based offline planning,”
arXiv preprint arXiv:2008.05556, 2020.

X. Zhan, X. Zhu, and H. Xu, “Model-based offline planning with
trajectory pruning,” arXiv preprint arXiv:2105.07351, 2021.

C. P. Diehl, T. Sievernich, M. Kriiger, F. Hoffmann, and T. Bertram,
“Umbrella: Uncertainty-aware model-based offline reinforcement learn-
ing leveraging planning,” ArXiv, vol. abs/2111.11097, 2021.

J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model predictive
heuristic control: Applications to industrial processes,” Autom., vol. 14,
pp. 413-428, 1978.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” ArXiv, vol. abs/1703.03400, 2017.
S. Lin, J. Wan, T. Xu, Y. Liang, and J. Zhang, “Model-based offline
meta-reinforcement learning with regularization,” in International Con-
ference on Learning Representations, 2022.

S. Yue, G. Wang, W. Shao, Z. Zhang, S. Lin, J. Ren, and J. Zhang,
“Clare: Conservative model-based reward learning for offline inverse
reinforcement learning,” ArXiv, vol. abs/2302.04782, 2023.

J. Li, Q. Vwong, S. Liu, M. Liu, K. Ciosek, H. Christensen,
and H. Su, “Multi-task batch reinforcement learning with metric
learning,” in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33. Curran Associates, Inc., 2020, pp. 6197-6210.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2020/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf

N. Hansen, X. Wang, and H. Su, “Temporal difference learning for
model predictive control,” 2022.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal of
Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344-357, 2017.
A. Srinivas, M. Laskin, and P. Abbeel, “Curl: Contrastive unsupervised
representations for reinforcement learning,” in International Conference
on Machine Learning, 2020.

Y. Chandak, G. Theocharous, J. Kostas, S. M. Jordan, and P. S.
Thomas, “Learning action representations for reinforcement learning,”
in International Conference on Machine Learning, 2019.

D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, “Reinforcement learn-
ing with prototypical representations,” in International Conference on
Machine Learning, 2021.

A. D. Edwards, H. Sahni, Y. Schroecker, and C. L. Isbell, “Imitating
latent policies from observation,” ArXiv, vol. abs/1805.07914, 2018.
M. Watter, J. T. Springenberg, J. Boedecker, and M. A. Riedmiller,
“Embed to control: A locally linear latent dynamics model for control
from raw images,” ArXiv, vol. abs/1506.07365, 2015.

G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, pp. 504 — 507, 2006.

H. Le, C. Voloshin, and Y. Yue, “Batch policy learning under con-
straints,” in International Conference on Machine Learning. PMLR,
2019, pp. 3703-3712.

B. P. Welford, “Note on a method for calculating corrected sums of
squares and products,” Technometrics, vol. 4, no. 3, pp. 419-420, 1962.
J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl:
Datasets for deep data-driven reinforcement learning,” ArXiv, vol.
abs/2004.07219, 2020.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas,
D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, T. P. Lillicrap, and
M. A. Riedmiller, “Deepmind control suite,” ArXiv, vol. abs/1801.00690,
2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:
6315299

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmdissan, Stockholm, Sweden, July
10-15, 2018, ser. Proceedings of Machine Learning Research, J. G. Dy
and A. Krause, Eds., vol. 80. PMLR, 2018, pp. 1856-1865. [Online].
Available: http://proceedings.mlr.press/v80/haarnojal8b.html

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on September 05,2024 at 16:12:10 UTC from IEEE Xplore. Restrictions apply.

