L-MBOP-E: Latent-Model Based Offline Planning with Extrinsic Policy Guided Exploration

Imran Adham*, Hang Wang[†], Sen Lin[‡], and Junshan Zhang[†]
*Department of Computer Science, University of California, Davis, USA
[†]Department of Electrical and Computer Engineering, University of California, Davis, USA
[‡]Department of Computer Science, University of Houston, USA
{imadham, whang, jazh}@ucdavis.edu,slin50@central.uh.edu

Abstract—Offline planning has recently emerged as a promising reinforcement learning (RL) paradigm for locomotion and control tasks. In particular, model-based offline planning learns an approximate dynamics model from the offline dataset, and then uses it for rollout-aided decision-time planning. Nevertheless, existing model-based offline planning algorithms could be overly conservative and suffer from compounding modeling errors. To tackle these challenges, we propose L-MBOP-E (Latent-Model Based Offline Planning with Extrinsic policy guided exploration) that is built on two key ideas: 1) low-dimensional latent model learning to reduce the effects of compounding errors when learning a dynamics model with limited offline data, and 2) a Thompson Sampling based exploration strategy with an extrinsic policy to guide planning beyond the behavior policy and hence get the best out of these two policies, where the extrinsic policy can be a meta-learned policy or a policy learned from another similar RL task. Extensive experimental results demonstrate that L-MBOP-E significantly outperforms the state-of-the-art model-based offline planning algorithms on the MuJoCo D4RL and Deepmind Control tasks, yielding more than 200% gains in some cases. Furthermore, reduced model uncertainty and superior performance on new tasks with zero-shot adaptation indicates that L-MBOP-E provides a more flexible and lightweight solution to offline planning.

I. INTRODUCTION

Development of model-based planning algorithms is a central focus for applications in locomotion and robotic control. Algorithms developed for locomotion must be flexible enough to enable changes in the underlying dynamics or reward signals by allowing for decision-time planning [1]. A number of model-free offline reinforcement learning (RL) algorithms have recently been proposed, including SAC-N, EDAC [2], PBRL [3], RORL [4], and TD3-BC-N [5]; it is worth pointing out that while these algorithms have demonstrated strong performance, they are not readily amenable to decision-time planning. Recent model-based RL works such as Dreamerv3 [6] and PlaNet [7] train a world model [8] to approximate the environment, which can be leveraged for decision-time planning or training a policy via reinforcement learning. A general consensus is that although online planning algorithms [9], [10], [11], [12] have demonstrated strong performance, their need for continuous interactions with the environment can incur prohibitively high cost. In contrast, offline RL algorithms [13], [14], [15], [16] only require access to an offline dataset collected by some behavior policy. By taking advantage of both online planning and offline learning, model-based offline planning algorithms learn an approximate dynamics model from the offline dataset, which can be used to devise planning algorithms for effective system control.

Locomotion control tasks commonly comprise of highdimensional observations which can contain redundant information. Thus, a number of challenges arise when applying model-based offline planning to robotic control tasks, including 1) compounding modeling errors due to the inaccuracy and uncertainty associated with the approximate dynamics model learned from limited data, and 2) the distributional shift between the distribution of visited state-action pairs during planning and that of the offline dataset. To tackle these challenges, existing approaches [17], [18], [19] for offline planning typically employ model-predictive control (MPC) [20] to re-plan at each iteration, and use a behavior cloned policy to constrain trajectory rollouts while planning. Despite the control flexibility, these offline planning algorithms still face several key limitations. (1) Uncertainty and inaccuracy of high-dimensional dynamics model. The dynamics models are often trained in the high-dimensional observation space. While re-planning at each state in MPC can help reduce the effect of compounding modeling errors, offline planning still suffers from out-of-distribution errors, because the states visited during planning might differ from the states present in the offline dataset. (2) Overly conservative planning. The constrained trajectory rollouts will lead to planned actions that closely follow the behavior policy, which is overly conservative and hinges heavily upon the quality of the BC policy.

To address these two limitations, in this work we propose L-MBOP-E, a model-based offline planning algorithm that makes use of 1) low-dimensional latent dynamics model learning and 2) guided exploration with an extrinsic policy. As shown in Fig. 1, the underlying rationale is as follows: (1) To deal with the inaccuracy of the dynamics model due to the limited samples in the offline dataset, we advocate a low-dimensional latent representation for the state space, which can yield a higher-accuracy dynamics model and in turn improve prediction quality and hence reduce the likelihood of compounding errors. This resonates with human's interactions with an environment where we typically do not try to reason directly with the observation space, but rather with some abstracted features of the observations. (2) Further, to mitigate the overly-conservative planning constrained by the BC policy,

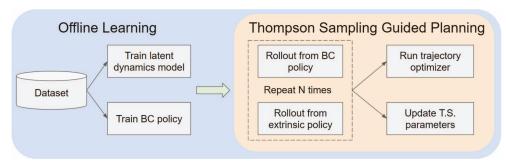


Fig. 1: Overview of L-MBOP-E. A latent dynamics model and the BC policy are trained from the offline dataset. Leveraging the latent model, a Thompson Sampling (T.S.) exploration procedure is used to guide exploration following the better one between the BC policy and extrinsic policy.

it is plausible to take advantage of an extrinsic policy which can be another policy obtained from either meta learning or a related task [21], [22], [23], [24]. Based on the online returns of both extrinsic policy and behavior policy, a Thompson Sampling based exploration strategy is proposed to ensure that the planning would mostly follow the guidance of the better policy for specific state-action pairs. In particular, when both the behavior policy and extrinsic policy are non-expert, there will be regions of the state-space where the behavior policy performs better and other regions where the extrinsic policy performs better. As such, we can expect that the extrinsic policy will complement the behavior policy in some subtle way, and the planning using both policies will enable the algorithm to selectively learn from both policies, leading to improved performance.

II. RELATED WORK

Model-based offline planning [17], [18] seeks to directly plan actions for execution in an environment by leveraging a learned dynamics model from an offline dataset. This differs from the online setting where one can collect additional data during interaction to improve the dynamics model. MBOP [17] extends the ideas of Planning with Deep Dynamics Models (PDDM) [9] to the offline setting. In addition to learning an approximate dynamics model, MBOP also trains a behavior cloned (BC) policy from the offline dataset. MBOP uses the BC policy to constrain the explored trajectories in order to reduce distributional shift. However, constraining the explored trajectories to only follow the BC policy limits the potential of planning, therefore MOPP [18] attempts to improve exploration by boosting the variance of the actions produced by the BC policy, and using a pruning scheme based on dynamics uncertainty to avoid potential out-of-distribution (OOD) samples. While this approach enhances exploration compared to the base BC policy, its performance still heavily depends upon the quality of the BC policy. To overcome this challenge, L-MBOP-E uses an extrinsic policy to help guide exploration, in addition to the BC policy.

A number of recent studies on model-based RL have investigated the use of latent state representations with dynamics models, which can capture higher-level features of the environment and facilitate the learning. In related work, TD-

MPC [25] learns a latent state representation which encodes the dynamics and reward signal, which it then leverages for online planning. Dreamerv3 [6] utilizes world models [8] for training a policy with synthetic data. World models encode the history of observations encountered thus far into a hidden state via recurrent neural networks, which is then used for prediction with a latent dynamics model. Due to the additional complexity, world models often require large amounts of data to train. Different from the above approaches, L-MBOP-E employs a state decoder, in addition to reward signals, to facilitate zero-shot task adaptation, and as a result, the dynamics model employed is lightweight and can be trained offline with minimal data.

III. PROBLEM FORMULATION

A. Markov Decision Process

As is standard, we consider a Markov Decision Process (MDP) defined by a tuple $(\mathcal{S},\mathcal{A},P,r,\gamma)$, where \mathcal{S} is the state space, \mathcal{A} is the action space, $P(s_{t+1}|s_t,a_t)$ is the transition dynamics, $r(s_t,a_t)$ is the reward function, and $\gamma \in (0,1]$ is the discounting factor. RL aims to learn an optimal policy π^* which can maximize the cumulative reward, i.e., $R = \sum_{t=0}^{\infty} \gamma^t r(s_t,\pi^*(s_t))$. Following recent studies [17], [18], we fix $\gamma=1$ and thus only consider the finite-time horizon return. In the offline setting, the algorithm only has access to a static dataset \mathcal{D} of trajectories of the form $\{(s_t,a_t,r_t,s_{t+1})\}$ generated by some behavior policy π_b .

B. Offline Planning with Learned Dynamics Models

Model-based Offline Planning. Model-based offline planning methods [17], [18] generally learn an approximated dynamics model f_m through supervised learning and then employ a planning algorithm to determine a trajectory with a high return based on this learned model; which is subsequently implemented in the online environment. Meanwhile, a value function V_b is used to extend the planning horizon beyond H steps. Hence, offline planning aims to find an optimal policy π_{op}^* such that the accumulated reward is maximized, i.e.,

$$\pi_{op}^{*}(s_{0}) = \operatorname*{argmax}_{a_{0:H-1}} \mathbb{E}\left[\sum\nolimits_{t=0}^{H-1} r(s_{t}, a_{t}) + V_{b}(s_{H})\right].$$

Specifically, MBOP [17] learns a behavior cloned policy $f_b(a_{t-1}, s_t)$ as a prior for action sampling when the planning

algorithm is rolling out trajectories over the learned model $f_m(s_t, a_t)$.

Trajectory Optimization. After having a set of trajectories and the associated return, MBOP employs an extended version of the MPPI [26] optimizer to obtain the optimal action sequence. Specifically, let \mathbf{A}_b be the set of action trajectories which are sampled using the learned behavior policy f_b and $\mathbf{R}_b = \{R_1, \cdots, R_{|\mathbf{A}_b|}\}$ be the associated cumulative returns. Then the optimized trajectory of actions is obtained by re-weighting the actions in each trajectory according their exponentiated return, i.e.,

$$\mathbf{T}^* = \frac{\sum_{n=1}^{|\mathbf{A}_b|} \exp\left(\kappa \mathbf{R}_b[n]\right) \mathbf{A}_b[n]}{\sum_{n=1}^{|\mathbf{A}_b|} \exp\left(\kappa \mathbf{R}_b[n]\right)},$$

where κ is the re-weighting factor.

Limitations of Existing Approaches. The performance of existing offline planning algorithms [17], [18] is often limited by two factors: (1) the compounding model errors and (2) the over-restrictive planning with the behavior cloned policy. Specifically, in real-world applications such as video games and robotics, the high-dimensional state observations may contain redundant information and thus impose great model uncertainty for RL agents trained from limited offline data. Meanwhile, MBOP samples actions exclusively from the learned behavior policy to relieve the out-of-distribution error during offline learning. However, this over-restrictive planning unavoidably hinders the full utilization of trajectory optimizers such as MPPI, which requires sufficient state-action space coverage in order to perform well [18]. These issues are still present in MOPP [18] even though large deviation is allowed from the behavior policy in sampling.

IV. LATENT-MODEL BASED OFFLINE PLANNING WITH EXTRINSIC POLICY GUIDED EXPLORATION (L-MBOP-E)

To address the limitations mentioned above, in this section we introduce L-MBOP-E which is built on two key ideas. First, we use a low-dimensional latent state space when training the dynamics model from limited offline data, aiming to mitigate the effects of compounding errors. Second, we propose a Thompson Sampling based exploration strategy with an extrinsic policy π_c to guide planning beyond the BC policy, where the extrinsic policy can either be a meta-learned policy or a policy acquired from a similar RL task.

A. Latent Model Representation

Instead of directly learning the dynamics models using the offline dataset, we utilize insights from representation learning literature [27], [28], [29], [30], [31] and employ latent dynamics models to reduce model uncertainty. The rationale behind incorporating latent models is to reduce dimensionality; allowing for more accurate predictions by capturing the core reasoning in higher-level input domains when using limited samples. Specifically, L-MBOP-E first jointly learns the latent dynamics model and a representation mapping between original and latent state spaces with an encoder-decoder architecture [32]. Then, a behavior policy and a Q function are learned with the use of the latent state representation. In this

regard, the planning algorithm of L-MBOP-E incorporates five parameterized function approximators, i.e.,

- $z_t = e(s_t)$ is the state encoder which maps the observations to the latent space, where we normalize the latent states to lie on the hypersphere to improve convergence.
- $d(z_t) = s_t$ is the state decoder, which decodes the latent state back into the original space.
- $f_m(z_t, a_t) = (z_{t+1}, r_t)$ is the latent dynamics model, which takes as input the current state encoding and an action, and produces the latent representation for the next state and the predicted reward. We use $f_m(z_t, a_t)_z$ and $f_m(z_t, a_t)_r$ to denote the predicted latent state and reward, respectively.
- $f_b(a_t|z_t) = \mathcal{N}(\mu(z_t), \Sigma(z_t))$ is the behavior cloned policy, which is modeled as a Gaussian distribution over the actions for that iteration.
- $Q_b(z_t, a_t)$ is the learned Q function for the underlying true behavior policy π_b .

Latent Dynamics Model. Our proposed method trains the autoencoder and dynamics model jointly. In this way, the network can align the learned latent state representation with the underlying dynamics captured by the latent model. Specifically, denote the joint parameter for the latent model and encoder-decoder to be θ . We design the loss function as follows:

$$\mathcal{L}(\theta|\mathcal{D}) = \sum_{i=1}^{N} \|e(s_{i+1}) - f_m(e(s_i), a_i)_z\|^2 + \lambda_1 (r_i - f_m(e(s_i), a_i)_r)^2 + \lambda_2 \|s_i - d(e(s_i))\|^2,$$

where the first term trains the dynamics model to predict the latent representation of the next state, the second term trains the dynamics model to predict the instantaneous reward for the given state-action pair, and the last term is the reconstruction loss for the encoder-decoder pair. λ_1 and λ_2 are used to balance the importance of each term.

Behavior Policy and Value Function Learning in the Latent Space. After training the state encoder and latent dynamics model, the BC policy is trained via maximum likelihood on $\mathcal D$ with the latent state representations. The value function V_b is obtained by learning a Q function via Fitted Q Evaluation [33] on the latent representations of $\mathcal D$. Let $y_i = r_i + Q_b^{k-1}(z_{i+1}, a_{i+1}), (z_i, a_i, r_i, z_{i+1}, a_{i+1}) \sim \mathcal D$. Then at the k-th iteration, the Q function is updated as follows,

$$Q_b^k(z_i, a_i) = \min_{f \in \mathcal{F}} \frac{1}{N} \sum\nolimits_{i=1}^{N} \left[f(z_i, a_i) - y_i \right]^2,$$

where \mathcal{F} is the function class and N is the number of samples in the offline dataset \mathcal{D} . The value function can be further evaluated by $V_b(s_t) = \mathbb{E}_{a \sim \pi_b}[Q_b(z_t,a)]$. As in MBOP [17], the value function is used to guide exploration and provide a terminal cost during the planning stage, which enables us to effectively extend the length of the planning horizon.

B. Policy-guided Rollouts via Thompson Sampling

As opposed to MBOP [17], L-MBOP-E samples actions from the behaviour cloned policy f_b , as well as from an extrinsic exploration policy π_c . The use of a secondary policy aims to boost the exploration by allowing the algorithm to

sample actions that might not be sampled if we exclusively follow the behaviour policy. To determine which policy should be used during rollouts, we model the policy selection process as a *two-armed bandit problem*, and use Gaussian Thompson sampling to learn which policy performs better. In particular, we model the return of the behavior policy x_b and the return of the extrinsic exploration x_c policy as Gaussian distributions.

More specifically, at each iteration t, we are given the current state s_t of the environment and initialize two sets \mathbf{R}_b^t and \mathbf{R}_c^t to store the associated cumulative returns from running policies f_b and π_c , respectively. N trajectory rollouts will be generated from the current state using the latent dynamics model f_m .

Action Selection. For the n-th rollout trajectory, n=1,...,N, the algorithm uses the sampled return based on parameters learned through Thompson Sampling to determine which policy should be used for the rollout:

$$\pi(s_t) = \begin{cases} f_b(s_t) & \text{if } x_b^t \ge x_c^t \\ \pi_c(s_t) & \text{otherwise} \end{cases}, \quad x_b^t \sim \mathcal{N}(\mu_b^t, \sigma_b^t), \quad x_c^t \sim \mathcal{N}(\mu_c^t, \sigma_c^t) \end{cases}$$
(1)

where π_c is given and f_b is given by:

$$\begin{split} f_b(s_t) &= \operatorname{argmax}_{a \in A_h} Q_b(z_h, a), \\ A_h &= \{a_h^i\}_{i=1}^{K_Q}, \quad a_h^i \sim \mathcal{N}(\pmb{\mu}(z_h), \operatorname{diag}(\sigma_M \cdot \pmb{\sigma}(z_h))^2) \end{split}$$

where $\sigma_M > 0$ is a hyperparameter for scaling the standard deviation of the predicted actions. Following MBOP and MOPP, the sampled action $\pi(s_t)$ is mixed with the trajectory from the previous timestep with a mixing parameter β to produce the action for the next step in the rollout (ref. Algorithm 1 line 11).

Parameter Updates. At the end of each rollout, the cumulative reward is obtained by the summation of the total return over the H steps rollout and the terminal cost for the final state, $V_b(z_H)$. The total return is then added either to \mathbf{R}_b^t or to \mathbf{R}_c^t , depending on which policy was used during the rollout. Let n_b denote the number of rollouts taken from f_b at iteration t, N_b^t the total number of rollouts taken from f_b up until iteration t, $\overline{\mathbf{R}}_b^t$ be the mean return from the set of generated rollouts, and $\mathbf{R}_b^t[i]$ the i-th element of the set \mathbf{R}_b^t . At the end of iteration t, we use Welford's algorithm [34] adapted for batch data to update the Gaussian distribution parameters for the policy returns:

$$\mu_b^{t+1} = \frac{N_b^t \cdot \mu_b^t + n_b \cdot \overline{\mathbf{R}_b^t}}{N_b^t + n_b},$$

$$N_b^{t+1} = N_b^t + n_b,$$

$$dev_b^{t+1} = dev_b^t + n_b(\mu_b^t - \mu_b^{t+1})^2 + \sum_{i=1}^{n_b} (\mathbf{R}_b^t[i] - \mu_b^t)^2.$$
 (2)

The standard deviation is computed as $\sigma_b^t = \sqrt{\frac{dev_b^t}{N_b^t - 1}}$. We update μ_c^t, σ_c^t , and N_c^t in the same way.

C. Algorithm Design

L-MBOP-E is outlined in Algorithm 1, which follows the finite-horizon Model Predictive Control (MPC) framework. Based on the dynamics model, MPC computes a locally optimal policy by returning a sequence of actions of length

Algorithm 1 L-MBOP-E Algorithm

```
1: Initialize Thompson Sampling parameters: N_b^1=N_c^1=1,\ \mu_b^1,\ \mu_c^1,
     dev_h^1, dev_c^1 = 0.
 2: for t = 1, 2 \dots do
         Observe current environment state s_t, and encode state s_t into latent
          Initialize \mathbf{R}_b and \mathbf{R}_c as empty sets to contain trajectory scores
 5:
          Set \mathbf{A}_{N,H} = \vec{0}_{N,H}
          for n=1,\ldots,N do
              Initialize R_n = 0 and sample x_b \sim \mathcal{N}(\mu_b^t, \sigma_b^t), x_c \sim \mathcal{N}(\mu_c^t, \sigma_c^t)
 7:
 8:
              Select policy \pi_n based on the maximum between x_b and x_c
 9.
10:
                   Sample a_h from policy \pi_n using Eqn. (IV-B)
                  \mathbf{A}_{n,h} = (1 - \beta)a_h + \beta \mathbf{T}_{i=\min(h,H)}, \quad R_n \leftarrow R_n + f_n(z_h, \mathbf{A}_{n,h})_r, \quad z_{h+1} \sim f_m(z_h, \mathbf{A}_{n,h})_s
12:
13:
14:
                   Estimate V_b(z_H) by sampling actions from f_b(z_H) and aver-
                  aging Q_b(z_H, a)
15:
                   R_n \leftarrow R_n + V_b(z_H), and add R_n to \mathbf{R}_b
16:
                   Estimate V_c(z_H) by sampling actions from \pi_c(z_H) and aver-
17:
                  aging Q_c(z_H, a)
18:
                   R_n \leftarrow R_n + V_c(z_H), and add R_n to \mathbf{R}_c
19:
20.
21:
          Update Thompson Sampling parameters for f_b and \pi_c using Eqn. (2)
           \boldsymbol{T}_h' = \frac{\sum_{n=1}^N e^{\kappa \mathbf{R}_n} \mathbf{A}_{n,h}}{\sum_{n=1}^N e^{\kappa \mathbf{R}_n}}, \forall h \in [1,H], \mathbf{R}_n = \mathbf{R}_b \cup \mathbf{R}_c  Execute action \boldsymbol{T}_1' in real environment
24: end for
```

H. At each iteration t, MPC executes the first planned action of the returned sequence, and then re-plans a new sequence for the newly observed state.

At each iteration t, L-MBOP-E performs N rollouts from the current state; to determine whether the rollout is following f_b or π_c , samples of policy returns are generated from the Gaussian distributions for f_b and π_c , and the policy corresponding to the larger return is selected. At the end of the rollout, a terminal cost is added by using Q_b or Q_c , respectively. After all N rollouts are performed, the Gaussian distributions for the returns of f_b and π_c are updated via Welford's algorithm, and then the MPPI trajectory optimizer is employed to return a final trajectory from the set of N rollouts, where the first action is executed for online planning in the environment.

V. EXPERIMENTS

To evaluate the effectiveness of L-MBOP-E, we consider the standard offline RL benchmark D4RL [35] and the Deepmind Control (DMC) [36] tasks, and use state-of-the-art offline planning methods as the baselines. In what follows, we first show how L-MBOP-E performs compared to the baseline algorithms. Next, we provide a comprehensive ablation study to investigate the impact of each key design component. Finally, we evaluate the adaptability of L-MBOP-E through experiments on zero-shot adaptation for new tasks.

A. Performance on MuJoCo and Deepmind Control (DMC) Tasks

We perform experiments on three D4RL environments: halfcheetah, hopper, and walker2d, and on two DMC tasks:

Dataset	Environment	ВС	MBOP	MOPP	L-MBOP-E	МВОР-Е	L-MBOP
random	halfcheetah	0.0	6.3	9.4	21.2	20.1	9.3
random	walker2d	0.1	8.1	6.3	23.7	19.2	8.0
random	hopper	0.8	10.8	13.7	20.2	18.8	11.3
random	humanoid	0.0	0.3	-	5.1	4.9	0.4
random	quadruped	0.1	4.0	-	11.8	11.1	3.8
medium	halfcheetah	38.9	44.6	44.7	56.2	48.6	55.2
medium	walker2d	60.6	41.0	80.7	84.7	82.1	85.6
medium	hopper	40.9	48.8	31.8	63.8	51.1	55.3
medium	humanoid	12.1	14.9	-	21.5	20.1	15.2
medium	quadruped	21.7	28.0	-	35.5	33.7	30.2
medium-replay	halfcheetah	27.7	42.3	43.1	46.8	43.4	43.9
medium-replay	walker2d	17.7	9.7	18.5	35.6	32.1	28.5
medium-replay	hopper	13.5	12.4	32.3	42.7	35.2	30.6
medium-replay	humanoid	10.8	15.3	-	19.0	16.7	15.5
medium-replay	quadruped	16.6	21.5	-	29.4	29.1	21.1
med-expert	halfcheetah	57.2	105.9	106.2	91.6	92.1	94.3
med-expert	walker2d	79.7	70.2	92.9	112.1	94.1	110.7
med-expert	hopper	50.4	55.1	95.4	96.7	96.5	97.1
med-expert	humanoid	14.9	19.6	-	32.8	30.4	19.9
med-expert	quadruped	87.7	90.1	-	91.2	90.9	89.9

TABLE I: Experimental results. Scores are normalized between 0 and 100, where 100 represents the score of the expert policy. The scores for MBOP and MOPP are taken from their respective papers where possible.

humanoid and quadruped. For each environment, we consider four different qualities of offline datasets (random, medium, medium-replay, and med-expert). We compare the performance of L-MBOP-E to two offline planning algorithms: MBOP [17] and MOPP [18]. We also consider the BC policy learnt with behavior cloning as a baseline. For convenience, the extrinsic policy is obtained as a variant by training a policy using SAC [37] on the same task until it performs reasonably well as the BC policy.

The results are reported in Table I. L-MBOP-E outperforms all the baselines in almost every task. As expected, the performance gain is more significant when the quality of the offline data is lower, because the extrinsic policy is more likely to complement the BC policy for a better exploration of the state-action space.

In particular, in the case with random datasets where the BC policy is of very-low quality, BC-guided exploration is clearly not productive. As a result, both MBOP and MOPP, which only use the BC policy for guidance, degrade in performance. In contrast, L-MBOP-E can yield a substantial performance gain by training the latent dynamics model and using the Thompson Sampling exploration scheme to follow the guidance of the better policy.

B. Ablation Study

To clearly understand the impact of the different design choices in the proposed algorithm, we next conduct ablation studies on the hopper-medium dataset.

Latent Dynamics Model. We begin by examining the impact of the latent dynamics model. We first compare the performance of L-MBOP-E to that of MBOP-E which learns a standard dynamics model, to determine how the latent dynamics model helps to improve planning. As shown in Table I, L-MBOP-E clearly outperforms MBOP-E by leveraging the latent dynamics model. To further justify this, we also compare

the performance between MBOP and L-MBOP with the latent model in Table I, where substantial performance gains can be achieved in L-MBOP by using the latent model to replace the standard dynamics model.

To understand how the dimension of the latent space affects the performance, we run the experiments with different values of the size of the latent dimension, with dataset size set to 50,000. The results are reported in Figure 2a, which show that the algorithm performs well on most latent dimension sizes where the latent model is sufficient to capture the main characterizations of the dynamic model.

Another benefit of leveraging the latent model is to improve the data efficiency. To justify this, we next conduct experiments under different sizes of the dataset, ranging from 20,000 to 1,000,000 samples, fixed with latent dimension size of 9. We observe that even with a smaller training dataset, L-MBOP-E can outperform MBOP, as demonstrated by MBOP achieving a score of 1578 on 1,000,000 samples. By learning a latent space that captures the features for the environment dynamics, L-MBOP-E can attain higher data efficiency than attempting to learn the dynamics in the original space.

Benefits of Using the Extrinsic Policy. First, to understand the benefit of the extrinsic policy, we compare the performance between L-MBOP and L-MBOP-E. As seen in Table I, when Thompson Sampling is used to explore with an additional extrinsic policy, L-MBOP-E can leverage the extrinsic policy to provide additional guidance for planning and improves upon L-MBOP.

Next, we investigate how the quality of the extrinsic policy affects the performance of the proposed algorithm L-MBOP-E. To this end, we run the experiments under different qualities of the extrinsic policy, i.e., low, medium, medium-expert and expert, and compare to just using L-MBOP; the results are shown in Figure 3b. Our findings indicate that increasing the extrinsic policy quality from low to expert consistently

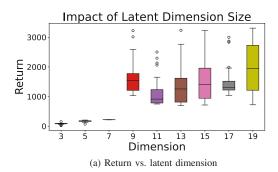




Fig. 2: Performance of L-MBOP-E trained with varying amounts of data and latent dimension sizes. In Figure 2a, the size of the latent dimension is varied between 3 and 19, in the case where the dataset size is 50,000. In Figure 2b, the dataset is set to sizes between 20,000 and 1,000,000, and the latent dimension is fixed to 9.

improve the quality of the planning. By using Thompson Sampling, even in the case where we use a low-quality extrinsic policy, L-MBOP-E can selectively sample actions from it and still improve upon the overall performance of L-MBOP. As the quality of the extrinsic policy increases, p_t will get closer to 0 and the algorithm learns to follow the extrinsic policy.

Impact of Thompson Sampling. We conduct experiments under different qualities of the offline dataset and extrinsic policy in order to determine whether Thompson Sampling can correctly identify which policy is stronger. Intuitively, Thompson Sampling should converge to a low p_t value when the extrinsic policy is better than the BC policy and a high p_t value when the BC policy is better. As shown in Figure 3a, in the random dataset where the performance of the BC policy is of low quality, the value of p_t converges to near 0.0 so that the exploration would tend to follow the guidance of the extrinsic policy. In the other extreme case where the BC policy is of high quality and the extrinsic policy is of low quality, p_t will converge to a value close to 1.0.

Next, we investigate the impact of the variance scaling factor σ_M on the learning performance. Specifically, for the Hopper-medium task, we test different variance scale values ranging from 0.2 to 2.0. As shown in Figure 3c, as we increase σ_M , the performance initially increases because the algorithm will sample more diverse actions for better exploration. The performance decreases if σ_M is too large, because of the increased distributional shift between the sampled actions and the BC policy. However, the performance of our algorithm is robust to the selection of σ_M .

The Thompson Sampling algorithm allows L-MBOP-E to sample actions from both the BC policy and extrinsic policy, and follow the better policy for different states. To verify this, we perform Principal Component Analysis on a sample trajectory from the Hopper environment. In order to distinguish which states the extrinsic policy performs better, we use the N trajectory rollouts generated by L-MBOP-E during planning. We compute the average return of the trajectories generated by either policy, and color red the states where the extrinsic policy has higher average return. The visualizations are shown in Figure 4a and Figure 4b. As we can see, the latent state space

has a very clear structure which makes the characterization of the dynamics easier and more accurate. Moreover, it is clear that the planning deviates from the BC policy and follows the guidance of the extrinsic policy in the red states, leading to the improved overall performance.

C. Zero-shot Task Adaptation

One of the main advantages to using the model-based planning framework is the ability to adapt to new reward signals without having to re-train a policy. We can use a new reward signal by simply replacing the predicted reward received during the synthetic rollouts with the new reward function. This will allow L-MBOP-E to optimize the trajectories according to the new reward function, and enable zero-shot task adaptation.

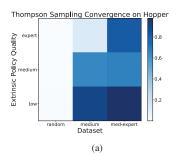
To verify this, we consider a new task, Hopper-Jump, which uses the original Hopper environment but encourages the agent to jump by rewarding the agent for its z-position. The new reward function is defined as follows:

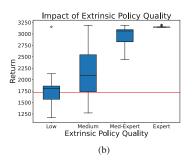
$$r_{new} = \alpha_r \cdot r_{original} + (1 - \alpha_r) \cdot 10 \cdot z$$

where $r_{original}$ is the reward function from Hopper, z is the z-position of the Hopper, and $\alpha_r \in [0,1]$ is a mixing parameter, which we set to $\alpha_r = 0.5$.

Because the Q function was learnt based on the reward function from the offline dataset \mathcal{D} , using it as the terminal cost could degrade the performance if the new reward for the modified environment differs greatly from the reward in the dataset. A new Q function can be trained from the offline dataset by using the new reward function to replace the original reward. This allows L-MBOP-E to use a more accurate terminal cost for better adaptation performance.

We compare the performance of MBOP and L-MBOP-E, along with two variants of L-MBOP-E: L-MBOP-E with the new reward function (New-Reward), and L-MBOP-E with both the new reward function and the Q function re-trained on the new reward (New-Q). Results are plotted in Figure 4c. As shown, L-MBOP-E improves upon the performance of MBOP. Using the new reward function allows L-MBOP-E to optimize trajectories for the new task to improve the performance. If a new Q function is further trained, long-term consequences can





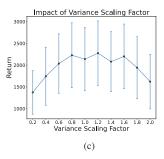
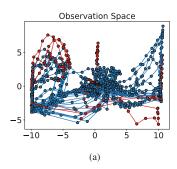
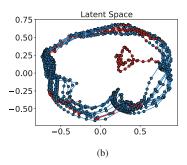


Fig. 3: (a) Converged p_t value from Thompson Sampling vs. various qualities of datasets and extrinsic policies. The darker the shade, the higher the converged p_t value (higher probability of sampling from BC policy). (b) Performance of L-MBOP-E with varying qualities of the extrinsic policy. The red line represents the score of L-MBOP as a baseline. (c) Sensitivity to the variance scaling factor σ_M .





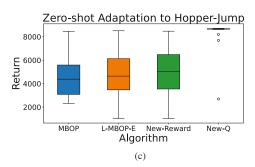


Fig. 4: (a-b) Visualization of states visited in the observation and latent spaces. States where the extrinsic policy outperforms the BC policy are colored red. (c) Zero-shot adaptation experiments for Hopper-Jump. It can be seen that L-MBOP-E clearly outperforms MBOP by using the new reward and the improvement is more significant when a new Q function can be trained with the new reward.

be considered and the planning quality is greatly improved. All these results clearly demonstrate the superior zero-shot adaptation capability of L-MBOP-E, which is built on the latent model learning and better exploration with Thompson Sampling and the extrinsic policy.

VI. DISCUSSION AND CONCLUSION

We develop Latent-Model Based Offline Planning with Extrinsic Policy-Guided Exploration (L-MBOP-E), which is built on two key ideas: 1) low-dimensional latent model learning to reduce the effects of compounding errors when learning a dynamics model with limited offline data, and 2) a Thompson Sampling based exploration strategy with an extrinsic policy to guide planning beyond the behavior policy and hence get the best out of these two policies. Experimental results demonstrate that L-MBOP-E significantly outperforms the state-of-the-art algorithms on the D4RL and DMC tasks, and performs especially well when given access to an extrinsic policy which complements the BC policy.

Our proposed method has several limitations. We improve exploration under distributional shift by employing an extrinsic policy. This requires access to a reasonably-well performing policy from the same or similar task. Additionally, this policy must complement the behavior cloned policy and must not lead to states which stray too far from those in the offline dataset. While we demonstrate that the Thompson Sampling procedure allows the algorithm to select the best of both policies, if the distributional shift is too great, the predicted returns could

be incorrect and lead to degraded performance. While model-based planning methods such as L-MBOP-E are lightweight and flexible enough to enable zero-shot task adaptation, when using a high-variance dataset the performance might not as be as strong when compared to a traditional offline RL approach on that single task [17].

There are many scenarios where the system is controlled by several human operators with varying behavior. The resulting behavior policy and extrinsic policy would be consistent and complement each other, and could benefit from considering actions from both policies. In these type of scenarios, we believe that L-MBOP-E could provide an effective solution for automating the control of the system while incorporating the behavior from multiple operators to improve overall performance.

ACKNOWLEDGEMENTS

This work is supported in part by NSF Grants CNS-2203239, CNS-2203412, and RINGS-2148253.

REFERENCES

- J. B. Hamrick, A. L. Friesen, F. Behbahani, A. Guez, F. Viola, S. Witherspoon, T. Anthony, L. Buesing, P. Veličković, and T. Weber, "On the role of planning in model-based deep reinforcement learning," 2021.
- [2] G. An, S. Moon, J.-H. Kim, and H. O. Song, "Uncertainty-based offline reinforcement learning with diversified q-ensemble," in *Neural Information Processing Systems*, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:238259863
- [3] C. Bai, L. Wang, Z. Yang, Z. Deng, A. Garg, P. Liu, and Z. Wang, "Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning," 2022.

- [4] R. Yang, C. Bai, X. Ma, Z. Wang, C. Zhang, and L. Han, "Rorl: Robust offline reinforcement learning via conservative smoothing," 2022.
- [5] S. Fujimoto and S. S. Gu, "A minimalist approach to offline reinforcement learning," 2021.
- [6] D. Hafner, J. Pavukonis, J. Ba, and T. P. Lillicrap, "Mastering diverse domains through world models," *ArXiv*, vol. abs/2301.04104, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID: 255569874
- [7] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson, "Learning latent dynamics for planning from pixels," in *International conference on machine learning*. PMLR, 2019, pp. 2555– 2565.
- [8] D. R. Ha and J. Schmidhuber, "World models," ArXiv, vol. abs/1803.10122, 2018. [Online]. Available: https://api.semanticscholar. org/CorpusID:4807711
- [9] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, "Deep dynamics models for learning dexterous manipulation," in *Conference on Robot Learning*. PMLR, 2020, pp. 1101–1112.
- [10] K. Chua, R. Calandra, R. McAllister, and S. Levine, "Deep reinforcement learning in a handful of trials using probabilistic dynamics models," in *Advances in Neural Information Processing Systems*, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018. [Online]. Available: https://proceedings.neurips.cc/paper_files/ paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
- [11] K. Lowrey, A. Rajeswaran, S. M. Kakade, E. Todorov, and I. Mordatch, "Plan online, learn offline: Efficient learning and exploration via model-based control," *ArXiv*, vol. abs/1811.01848, 2018.
- [12] T. Wang and J. Ba, "Exploring model-based planning with policy networks," ArXiv, vol. abs/1906.08649, 2019.
- [13] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims, "Morel: Model-based offline reinforcement learning," *Advances in neural information processing systems*, vol. 33, pp. 21810–21823, 2020.
- [14] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma, "Mopo: Model-based offline policy optimization," in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 14129–14142. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf
- [15] A. Kumar, A. Zhou, G. Tucker, and S. Levine, "Conservative q-learning for offline reinforcement learning," Advances in Neural Information Processing Systems, vol. 33, pp. 1179–1191, 2020.
- [16] S. Fujimoto, D. Meger, and D. Precup, "Off-policy deep reinforcement learning without exploration," in *International Conference on Machine Learning*, 2018.
- [17] A. Argenson and G. Dulac-Arnold, "Model-based offline planning," arXiv preprint arXiv:2008.05556, 2020.
- [18] X. Zhan, X. Zhu, and H. Xu, "Model-based offline planning with trajectory pruning," arXiv preprint arXiv:2105.07351, 2021.
- [19] C. P. Diehl, T. Sievernich, M. Krüger, F. Hoffmann, and T. Bertram, "Umbrella: Uncertainty-aware model-based offline reinforcement learning leveraging planning," ArXiv, vol. abs/2111.11097, 2021.
- [20] J. Richalet, A. Rault, J. L. Testud, and J. Papon, "Model predictive heuristic control: Applications to industrial processes," *Autom.*, vol. 14, pp. 413–428, 1978.
- [21] C. Finn, P. Abbeel, and S. Levine, "Model-agnostic meta-learning for fast adaptation of deep networks," ArXiv, vol. abs/1703.03400, 2017.
- [22] S. Lin, J. Wan, T. Xu, Y. Liang, and J. Zhang, "Model-based offline meta-reinforcement learning with regularization," in *International Con*ference on Learning Representations, 2022.
- [23] S. Yue, G. Wang, W. Shao, Z. Zhang, S. Lin, J. Ren, and J. Zhang, "Clare: Conservative model-based reward learning for offline inverse reinforcement learning," ArXiv, vol. abs/2302.04782, 2023.
- [24] J. Li, Q. Vuong, S. Liu, M. Liu, K. Ciosek, H. Christensen, and H. Su, "Multi-task batch reinforcement learning with metric learning," in *Advances in Neural Information Processing Systems*, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 6197–6210. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2020/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
- [25] N. Hansen, X. Wang, and H. Su, "Temporal difference learning for model predictive control," 2022.

- [26] G. Williams, A. Aldrich, and E. A. Theodorou, "Model predictive path integral control: From theory to parallel computation," *Journal of Guidance, Control, and Dynamics*, vol. 40, no. 2, pp. 344–357, 2017.
- [27] A. Srinivas, M. Laskin, and P. Abbeel, "Curl: Contrastive unsupervised representations for reinforcement learning," in *International Conference* on Machine Learning, 2020.
- [28] Y. Chandak, G. Theocharous, J. Kostas, S. M. Jordan, and P. S. Thomas, "Learning action representations for reinforcement learning," in *International Conference on Machine Learning*, 2019.
- [29] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, "Reinforcement learning with prototypical representations," in *International Conference on Machine Learning*, 2021.
- [30] A. D. Edwards, H. Sahni, Y. Schroecker, and C. L. Isbell, "Imitating latent policies from observation," ArXiv, vol. abs/1805.07914, 2018.
- [31] M. Watter, J. T. Springenberg, J. Boedecker, and M. A. Riedmiller, "Embed to control: A locally linear latent dynamics model for control from raw images," *ArXiv*, vol. abs/1506.07365, 2015.
- [32] G. E. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," *Science*, vol. 313, pp. 504 507, 2006.
 [33] H. Le, C. Voloshin, and Y. Yue, "Batch policy learning under con-
- 33] H. Le, C. Voloshin, and Y. Yue, "Batch policy learning under constraints," in *International Conference on Machine Learning*. PMLR, 2019, pp. 3703–3712.
- [34] B. P. Welford, "Note on a method for calculating corrected sums of squares and products," *Technometrics*, vol. 4, no. 3, pp. 419–420, 1962.
- [35] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, "D4rl: Datasets for deep data-driven reinforcement learning," ArXiv, vol. abs/2004.07219, 2020.
- [36] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, T. P. Lillicrap, and M. A. Riedmiller, "Deepmind control suite," ArXiv, vol. abs/1801.00690, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID: 6315299
- [37] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor," in *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*, ser. Proceedings of Machine Learning Research, J. G. Dy and A. Krause, Eds., vol. 80. PMLR, 2018, pp. 1856–1865. [Online]. Available: http://proceedings.mlr.press/v80/haarnoja18b.html