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Abstract—Offline planning has recently emerged as a promis-
ing reinforcement learning (RL) paradigm for locomotion and
control tasks. In particular, model-based offline planning learns
an approximate dynamics model from the offline dataset, and
then uses it for rollout-aided decision-time planning. Nevertheless,
existing model-based offline planning algorithms could be overly
conservative and suffer from compounding modeling errors. To
tackle these challenges, we propose L-MBOP-E (Latent-Model
Based Offline Planning with Extrinsic policy guided exploration)
that is built on two key ideas: 1) low-dimensional latent model
learning to reduce the effects of compounding errors when
learning a dynamics model with limited offline data, and 2) a
Thompson Sampling based exploration strategy with an extrinsic
policy to guide planning beyond the behavior policy and hence
get the best out of these two policies, where the extrinsic policy
can be a meta-learned policy or a policy learned from another
similar RL task. Extensive experimental results demonstrate
that L-MBOP-E significantly outperforms the state-of-the-art
model-based offline planning algorithms on the MuJoCo D4RL
and Deepmind Control tasks, yielding more than 200% gains
in some cases. Furthermore, reduced model uncertainty and
superior performance on new tasks with zero-shot adaptation
indicates that L-MBOP-E provides a more flexible and light-
weight solution to offline planning.

I. INTRODUCTION

Development of model-based planning algorithms is a cen-

tral focus for applications in locomotion and robotic control.

Algorithms developed for locomotion must be flexible enough

to enable changes in the underlying dynamics or reward

signals by allowing for decision-time planning [1]. A number

of model-free offline reinforcement learning (RL) algorithms

have recently been proposed, including SAC-N, EDAC [2],

PBRL [3], RORL [4], and TD3-BC-N [5]; it is worth pointing

out that while these algorithms have demonstrated strong

performance, they are not readily amenable to decision-time

planning. Recent model-based RL works such as Dreamerv3

[6] and PlaNet [7] train a world model [8] to approximate

the environment, which can be leveraged for decision-time

planning or training a policy via reinforcement learning. A

general consensus is that although online planning algorithms

[9], [10], [11], [12] have demonstrated strong performance,

their need for continuous interactions with the environment can

incur prohibitively high cost. In contrast, offline RL algorithms

[13], [14], [15], [16] only require access to an offline dataset

collected by some behavior policy. By taking advantage of

both online planning and offline learning, model-based offline

planning algorithms learn an approximate dynamics model

from the offline dataset, which can be used to devise planning

algorithms for effective system control.

Locomotion control tasks commonly comprise of high-

dimensional observations which can contain redundant infor-

mation. Thus, a number of challenges arise when applying

model-based offline planning to robotic control tasks, includ-

ing 1) compounding modeling errors due to the inaccuracy

and uncertainty associated with the approximate dynamics

model learned from limited data, and 2) the distributional

shift between the distribution of visited state-action pairs

during planning and that of the offline dataset. To tackle these

challenges, existing approaches [17], [18], [19] for offline

planning typically employ model-predictive control (MPC)

[20] to re-plan at each iteration, and use a behavior cloned

policy to constrain trajectory rollouts while planning. Despite

the control flexibility, these offline planning algorithms still

face several key limitations. (1) Uncertainty and inaccuracy of
high-dimensional dynamics model. The dynamics models are

often trained in the high-dimensional observation space. While

re-planning at each state in MPC can help reduce the effect

of compounding modeling errors, offline planning still suffers

from out-of-distribution errors, because the states visited dur-

ing planning might differ from the states present in the offline

dataset. (2) Overly conservative planning. The constrained

trajectory rollouts will lead to planned actions that closely

follow the behavior policy, which is overly conservative and

hinges heavily upon the quality of the BC policy.

To address these two limitations, in this work we propose

L-MBOP-E, a model-based offline planning algorithm that

makes use of 1) low-dimensional latent dynamics model

learning and 2) guided exploration with an extrinsic policy.

As shown in Fig. 1, the underlying rationale is as follows:

(1) To deal with the inaccuracy of the dynamics model due
to the limited samples in the offline dataset, we advocate
a low-dimensional latent representation for the state space,
which can yield a higher-accuracy dynamics model and in turn
improve prediction quality and hence reduce the likelihood of
compounding errors. This resonates with human’s interactions

with an environment where we typically do not try to reason

directly with the observation space, but rather with some

abstracted features of the observations. (2) Further, to mitigate

the overly-conservative planning constrained by the BC policy,
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Fig. 1: Overview of L-MBOP-E. A latent dynamics model and the BC policy are trained from the offline dataset. Leveraging the latent
model, a Thompson Sampling (T.S.) exploration procedure is used to guide exploration following the better one between the BC policy and
extrinsic policy.

it is plausible to take advantage of an extrinsic policy which

can be another policy obtained from either meta learning or a

related task [21], [22], [23], [24]. Based on the online returns
of both extrinsic policy and behavior policy, a Thompson
Sampling based exploration strategy is proposed to ensure that
the planning would mostly follow the guidance of the better
policy for specific state-action pairs. In particular, when both

the behavior policy and extrinsic policy are non-expert, there

will be regions of the state-space where the behavior policy

performs better and other regions where the extrinsic policy

performs better. As such, we can expect that the extrinsic

policy will complement the behavior policy in some subtle

way, and the planning using both policies will enable the

algorithm to selectively learn from both policies, leading to

improved performance.

II. RELATED WORK

Model-based offline planning [17], [18] seeks to directly

plan actions for execution in an environment by leveraging a

learned dynamics model from an offline dataset. This differs

from the online setting where one can collect additional data

during interaction to improve the dynamics model. MBOP

[17] extends the ideas of Planning with Deep Dynamics

Models (PDDM) [9] to the offline setting. In addition to

learning an approximate dynamics model, MBOP also trains a

behavior cloned (BC) policy from the offline dataset. MBOP

uses the BC policy to constrain the explored trajectories in

order to reduce distributional shift. However, constraining

the explored trajectories to only follow the BC policy limits

the potential of planning, therefore MOPP [18] attempts to

improve exploration by boosting the variance of the actions

produced by the BC policy, and using a pruning scheme based

on dynamics uncertainty to avoid potential out-of-distribution

(OOD) samples. While this approach enhances exploration

compared to the base BC policy, its performance still heavily

depends upon the quality of the BC policy. To overcome this

challenge, L-MBOP-E uses an extrinsic policy to help guide

exploration, in addition to the BC policy.

A number of recent studies on model-based RL have

investigated the use of latent state representations with dy-

namics models, which can capture higher-level features of the

environment and facilitate the learning. In related work, TD-

MPC [25] learns a latent state representation which encodes

the dynamics and reward signal, which it then leverages for

online planning. Dreamerv3 [6] utilizes world models [8] for

training a policy with synthetic data. World models encode

the history of observations encountered thus far into a hidden

state via recurrent neural networks, which is then used for

prediction with a latent dynamics model. Due to the additional

complexity, world models often require large amounts of

data to train. Different from the above approaches, L-MBOP-
E employs a state decoder, in addition to reward signals,
to facilitate zero-shot task adaptation, and as a result, the
dynamics model employed is lightweight and can be trained
offline with minimal data.

III. PROBLEM FORMULATION

A. Markov Decision Process

As is standard, we consider a Markov Decision Process

(MDP) defined by a tuple (S,A, P, r, γ), where S is the state

space, A is the action space, P (st+1|st, at) is the transition

dynamics, r(st, at) is the reward function, and γ ∈ (0, 1] is

the discounting factor. RL aims to learn an optimal policy

π∗ which can maximize the cumulative reward, i.e., R =∑∞
t=0 γ

tr(st, π
∗(st)). Following recent studies [17], [18], we

fix γ = 1 and thus only consider the finite-time horizon

return. In the offline setting, the algorithm only has access to a

static dataset D of trajectories of the form {(st, at, rt, st+1)}
generated by some behavior policy πb.

B. Offline Planning with Learned Dynamics Models
Model-based Offline Planning. Model-based offline plan-

ning methods [17], [18] generally learn an approximated
dynamics model fm through supervised learning and then
employ a planning algorithm to determine a trajectory with a
high return based on this learned model; which is subsequently
implemented in the online environment. Meanwhile, a value
function Vb is used to extend the planning horizon beyond H
steps. Hence, offline planning aims to find an optimal policy
π∗
op such that the accumulated reward is maximized, i.e.,

π∗
op(s0) = argmax

a0:H−1

E

[∑H−1

t=0
r(st, at) + Vb(sH)

]
.

Specifically, MBOP [17] learns a behavior cloned policy

fb(at−1, st) as a prior for action sampling when the planning
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algorithm is rolling out trajectories over the learned model

fm(st, at).
Trajectory Optimization. After having a set of trajectories

and the associated return, MBOP employs an extended version
of the MPPI [26] optimizer to obtain the optimal action
sequence. Specifically, let Ab be the set of action trajectories
which are sampled using the learned behavior policy fb
and Rb = {R1, · · · , R|Ab|} be the associated cumulative
returns. Then the optimized trajectory of actions is obtained
by re-weighting the actions in each trajectory according their
exponentiated return, i.e.,

T∗ =

∑|Ab|
n=1 exp (κRb[n])Ab[n]∑|Ab|

n=1 exp (κRb[n])
,

where κ is the re-weighting factor.

Limitations of Existing Approaches. The performance

of existing offline planning algorithms [17], [18] is often

limited by two factors: (1) the compounding model errors

and (2) the over-restrictive planning with the behavior cloned

policy. Specifically, in real-world applications such as video

games and robotics, the high-dimensional state observations

may contain redundant information and thus impose great

model uncertainty for RL agents trained from limited offline

data. Meanwhile, MBOP samples actions exclusively from the

learned behavior policy to relieve the out-of-distribution error

during offline learning. However, this over-restrictive planning

unavoidably hinders the full utilization of trajectory optimizers

such as MPPI, which requires sufficient state-action space

coverage in order to perform well [18]. These issues are still

present in MOPP [18] even though large deviation is allowed

from the behavior policy in sampling.

IV. LATENT-MODEL BASED OFFLINE PLANNING WITH

EXTRINSIC POLICY GUIDED EXPLORATION (L-MBOP-E)

To address the limitations mentioned above, in this section

we introduce L-MBOP-E which is built on two key ideas.

First, we use a low-dimensional latent state space when

training the dynamics model from limited offline data, aiming

to mitigate the effects of compounding errors. Second, we

propose a Thompson Sampling based exploration strategy with

an extrinsic policy πc to guide planning beyond the BC policy,

where the extrinsic policy can either be a meta-learned policy

or a policy acquired from a similar RL task.

A. Latent Model Representation

Instead of directly learning the dynamics models using

the offline dataset, we utilize insights from representation

learning literature [27], [28], [29], [30], [31] and employ latent

dynamics models to reduce model uncertainty. The rationale

behind incorporating latent models is to reduce dimensionality;

allowing for more accurate predictions by capturing the core

reasoning in higher-level input domains when using limited

samples. Specifically, L-MBOP-E first jointly learns the la-

tent dynamics model and a representation mapping between

original and latent state spaces with an encoder-decoder ar-

chitecture [32]. Then, a behavior policy and a Q function are

learned with the use of the latent state representation. In this

regard, the planning algorithm of L-MBOP-E incorporates five

parameterized function approximators, i.e.,

• zt = e(st) is the state encoder which maps the observa-

tions to the latent space, where we normalize the latent

states to lie on the hypersphere to improve convergence.

• d(zt) = st is the state decoder, which decodes the latent

state back into the original space.

• fm(zt, at) = (zt+1, rt) is the latent dynamics model,

which takes as input the current state encoding and an

action, and produces the latent representation for the

next state and the predicted reward. We use fm(zt, at)z
and fm(zt, at)r to denote the predicted latent state and

reward, respectively.

• fb(at|zt) = N (μ(zt),Σ(zt)) is the behavior cloned

policy, which is modeled as a Gaussian distribution over

the actions for that iteration.

• Qb(zt, at) is the learned Q function for the underlying

true behavior policy πb.

Latent Dynamics Model. Our proposed method trains
the autoencoder and dynamics model jointly. In this way,
the network can align the learned latent state representation
with the underlying dynamics captured by the latent model.
Specifically, denote the joint parameter for the latent model
and encoder-decoder to be θ. We design the loss function as
follows:

L(θ|D) =
N∑
i=1

‖e(si+1)− fm(e(si), ai)z‖2

+ λ1(ri − fm(e(si), ai)r)
2 + λ2‖si − d(e(si))‖2,

where the first term trains the dynamics model to predict the

latent representation of the next state, the second term trains

the dynamics model to predict the instantaneous reward for the

given state-action pair, and the last term is the reconstruction

loss for the encoder-decoder pair. λ1 and λ2 are used to

balance the importance of each term.
Behavior Policy and Value Function Learning in the

Latent Space. After training the state encoder and latent
dynamics model, the BC policy is trained via maximum
likelihood on D with the latent state representations. The value
function Vb is obtained by learning a Q function via Fitted
Q Evaluation [33] on the latent representations of D. Let
yi = ri +Qk−1

b (zi+1, ai+1), (zi, ai, ri, zi+1, ai+1) ∼ D. Then
at the k-th iteration, the Q function is updated as follows,

Qk
b (zi, ai) = min

f∈F
1

N

∑N

i=1
[f(zi, ai)− yi]

2,

where F is the function class and N is the number of samples

in the offline dataset D. The value function can be further

evaluated by Vb(st) = Ea∼πb
[Qb(zt, a)]. As in MBOP [17],

the value function is used to guide exploration and provide a

terminal cost during the planning stage, which enables us to

effectively extend the length of the planning horizon.

B. Policy-guided Rollouts via Thompson Sampling

As opposed to MBOP [17], L-MBOP-E samples actions

from the behaviour cloned policy fb, as well as from an

extrinsic exploration policy πc. The use of a secondary policy

aims to boost the exploration by allowing the algorithm to
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sample actions that might not be sampled if we exclusively

follow the behaviour policy. To determine which policy should

be used during rollouts, we model the policy selection process

as a two-armed bandit problem, and use Gaussian Thompson

sampling to learn which policy performs better. In particular,

we model the return of the behavior policy xb and the return of

the extrinsic exploration xc policy as Gaussian distributions.

More specifically, at each iteration t, we are given the

current state st of the environment and initialize two sets Rt
b

and Rt
c to store the associated cumulative returns from running

policies fb and πc, respectively. N trajectory rollouts will be

generated from the current state using the latent dynamics

model fm.
Action Selection. For the n-th rollout trajectory, n =

1, ..., N , the algorithm uses the sampled return based on
parameters learned through Thompson Sampling to determine
which policy should be used for the rollout:

π(st) =

{
fb(st) if xt

b ≥ xt
c

πc(st) otherwise
, xt

b ∼ N (μt
b, σ

t
b), xt

c ∼ N (μt
c, σ

t
c)

(1)

where πc is given and fb is given by:

fb(st) = argmaxa∈Ah
Qb(zh, a),

Ah = {ai
h}KQ

i=1, ai
h ∼ N (μ(zh), diag(σM · σ(zh))2)

where σM > 0 is a hyperparameter for scaling the standard de-

viation of the predicted actions. Following MBOP and MOPP,

the sampled action π(st) is mixed with the trajectory from the

previous timestep with a mixing parameter β to produce the

action for the next step in the rollout (ref. Algorithm 1 line

11).
Parameter Updates. At the end of each rollout, the

cumulative reward is obtained by the summation of the total
return over the H steps rollout and the terminal cost for the
final state, Vb(zH). The total return is then added either to
Rt

b or to Rt
c, depending on which policy was used during the

rollout. Let nb denote the number of rollouts taken from fb
at iteration t, N t

b the total number of rollouts taken from fb
up until iteration t, Rt

b be the mean return from the set of
generated rollouts, and Rt

b[i] the i-th element of the set Rt
b. At

the end of iteration t, we use Welford’s algorithm [34] adapted
for batch data to update the Gaussian distribution parameters
for the policy returns:

μt+1
b =

N t
b · μt

b + nb · Rt
b

N t
b + nb

,

N t+1
b = N t

b + nb,

devt+1
b = devtb + nb(μ

t
b − μt+1

b )2 +

nb∑
i=1

(Rt
b[i]− μt

b)
2. (2)

The standard deviation is computed as σt
b =

√
devt

b

Nt
b−1

. We

update μt
c, σ

t
c, and N t

c in the same way.

C. Algorithm Design

L-MBOP-E is outlined in Algorithm 1, which follows the

finite-horizon Model Predictive Control (MPC) framework.

Based on the dynamics model, MPC computes a locally

optimal policy by returning a sequence of actions of length

Algorithm 1 L-MBOP-E Algorithm

1: Initialize Thompson Sampling parameters: N1
b = N1

c = 1, μ1
b , μ1

c ,

dev1b , dev
1
c = 0.

2: for t = 1, 2 . . . do
3: Observe current environment state st, and encode state st into latent

state zt
4: Initialize Rb and Rc as empty sets to contain trajectory scores
5: Set AN,H = �0N,H

6: for n = 1, . . . , N do
7: Initialize Rn = 0 and sample xb ∼ N (μt

b, σ
t
b), xc ∼ N (μt

c, σ
t
c)

8: Select policy πn based on the maximum between xb and xc

9: for h = 1..H do
10: Sample ah from policy πn using Eqn. (IV-B)
11: An,h = (1 − β)ah + βTi=min(h,H), Rn ← Rn +

fm(zh,An,h)r , zh+1 ∼ fm(zh,An,h)s
12: end for
13: if πn = fb then
14: Estimate Vb(zH) by sampling actions from fb(zH) and aver-

aging Qb(zH , a)
15: Rn ← Rn + Vb(zH), and add Rn to Rb

16: else
17: Estimate Vc(zH) by sampling actions from πc(zH) and aver-

aging Qc(zH , a)
18: Rn ← Rn + Vc(zH), and add Rn to Rc

19: end if
20: end for
21: Update Thompson Sampling parameters for fb and πc using Eqn. (2)

22: T ′
h =

∑N
n=1 eκRnAn,h
∑N

n=1 eκRn
,∀h ∈ [1, H],Rn = Rb ∪ Rc

23: Execute action T ′
1 in real environment

24: end for

H . At each iteration t, MPC executes the first planned action

of the returned sequence, and then re-plans a new sequence

for the newly observed state.

At each iteration t, L-MBOP-E performs N rollouts from

the current state; to determine whether the rollout is following

fb or πc, samples of policy returns are generated from the

Gaussian distributions for fb and πc, and the policy cor-

responding to the larger return is selected. At the end of

the rollout, a terminal cost is added by using Qb or Qc,

respectively. After all N rollouts are performed, the Gaussian

distributions for the returns of fb and πc are updated via

Welford’s algorithm, and then the MPPI trajectory optimizer

is employed to return a final trajectory from the set of N
rollouts, where the first action is executed for online planning

in the environment.

V. EXPERIMENTS

To evaluate the effectiveness of L-MBOP-E, we consider the

standard offline RL benchmark D4RL [35] and the Deepmind

Control (DMC) [36] tasks, and use state-of-the-art offline

planning methods as the baselines. In what follows, we first

show how L-MBOP-E performs compared to the baseline

algorithms. Next, we provide a comprehensive ablation study

to investigate the impact of each key design component.

Finally, we evaluate the adaptability of L-MBOP-E through

experiments on zero-shot adaptation for new tasks.

A. Performance on MuJoCo and Deepmind Control (DMC)
Tasks

We perform experiments on three D4RL environments:

halfcheetah, hopper, and walker2d, and on two DMC tasks:
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Dataset Environment BC MBOP MOPP L-MBOP-E MBOP-E L-MBOP

random halfcheetah 0.0 6.3 9.4 21.2 20.1 9.3
random walker2d 0.1 8.1 6.3 23.7 19.2 8.0
random hopper 0.8 10.8 13.7 20.2 18.8 11.3
random humanoid 0.0 0.3 - 5.1 4.9 0.4
random quadruped 0.1 4.0 - 11.8 11.1 3.8

medium halfcheetah 38.9 44.6 44.7 56.2 48.6 55.2
medium walker2d 60.6 41.0 80.7 84.7 82.1 85.6
medium hopper 40.9 48.8 31.8 63.8 51.1 55.3
medium humanoid 12.1 14.9 - 21.5 20.1 15.2
medium quadruped 21.7 28.0 - 35.5 33.7 30.2

medium-replay halfcheetah 27.7 42.3 43.1 46.8 43.4 43.9
medium-replay walker2d 17.7 9.7 18.5 35.6 32.1 28.5
medium-replay hopper 13.5 12.4 32.3 42.7 35.2 30.6
medium-replay humanoid 10.8 15.3 - 19.0 16.7 15.5
medium-replay quadruped 16.6 21.5 - 29.4 29.1 21.1

med-expert halfcheetah 57.2 105.9 106.2 91.6 92.1 94.3
med-expert walker2d 79.7 70.2 92.9 112.1 94.1 110.7
med-expert hopper 50.4 55.1 95.4 96.7 96.5 97.1
med-expert humanoid 14.9 19.6 - 32.8 30.4 19.9
med-expert quadruped 87.7 90.1 - 91.2 90.9 89.9

TABLE I: Experimental results. Scores are normalized between 0 and 100, where 100 represents the score of the expert policy. The scores
for MBOP and MOPP are taken from their respective papers where possible.

humanoid and quadruped. For each environment, we consider

four different qualities of offline datasets (random, medium,

medium-replay, and med-expert). We compare the perfor-

mance of L-MBOP-E to two offline planning algorithms:

MBOP [17] and MOPP [18]. We also consider the BC policy

learnt with behavior cloning as a baseline. For convenience,

the extrinsic policy is obtained as a variant by training a policy

using SAC [37] on the same task until it performs reasonably

well as the BC policy.

The results are reported in Table I. L-MBOP-E outperforms

all the baselines in almost every task. As expected, the

performance gain is more significant when the quality of the

offline data is lower, because the extrinsic policy is more likely

to complement the BC policy for a better exploration of the

state-action space.

In particular, in the case with random datasets where the

BC policy is of very-low quality, BC-guided exploration is

clearly not productive. As a result, both MBOP and MOPP,

which only use the BC policy for guidance, degrade in

performance. In contrast, L-MBOP-E can yield a substantial

performance gain by training the latent dynamics model and

using the Thompson Sampling exploration scheme to follow

the guidance of the better policy.

B. Ablation Study

To clearly understand the impact of the different design

choices in the proposed algorithm, we next conduct ablation

studies on the hopper-medium dataset.

Latent Dynamics Model. We begin by examining the

impact of the latent dynamics model. We first compare the

performance of L-MBOP-E to that of MBOP-E which learns

a standard dynamics model, to determine how the latent dy-

namics model helps to improve planning. As shown in Table I,

L-MBOP-E clearly outperforms MBOP-E by leveraging the

latent dynamics model. To further justify this, we also compare

the performance between MBOP and L-MBOP with the latent

model in Table I, where substantial performance gains can be

achieved in L-MBOP by using the latent model to replace the

standard dynamics model.

To understand how the dimension of the latent space affects

the performance, we run the experiments with different values

of the size of the latent dimension, with dataset size set to

50,000. The results are reported in Figure 2a, which show

that the algorithm performs well on most latent dimension

sizes where the latent model is sufficient to capture the main

characterizations of the dynamic model.

Another benefit of leveraging the latent model is to improve

the data efficiency. To justify this, we next conduct experi-

ments under different sizes of the dataset, ranging from 20,000

to 1,000,000 samples, fixed with latent dimension size of 9. We

observe that even with a smaller training dataset, L-MBOP-E

can outperform MBOP, as demonstrated by MBOP achieving

a score of 1578 on 1,000,000 samples. By learning a latent

space that captures the features for the environment dynamics,

L-MBOP-E can attain higher data efficiency than attempting

to learn the dynamics in the original space.

Benefits of Using the Extrinsic Policy. First, to understand

the benefit of the extrinsic policy, we compare the performance

between L-MBOP and L-MBOP-E. As seen in Table I, when

Thompson Sampling is used to explore with an additional

extrinsic policy, L-MBOP-E can leverage the extrinsic policy

to provide additional guidance for planning and improves upon

L-MBOP.

Next, we investigate how the quality of the extrinsic policy

affects the performance of the proposed algorithm L-MBOP-E.

To this end, we run the experiments under different qualities

of the extrinsic policy, i.e., low, medium, medium-expert and

expert, and compare to just using L-MBOP; the results are

shown in Figure 3b. Our findings indicate that increasing

the extrinsic policy quality from low to expert consistently
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(a) Return vs. latent dimension (b) Return vs. dataset sizes

Fig. 2: Performance of L-MBOP-E trained with varying amounts of data and latent dimension sizes. In Figure 2a, the size of the latent
dimension is varied between 3 and 19, in the case where the dataset size is 50,000. In Figure 2b, the dataset is set to sizes between 20,000
and 1,000,000, and the latent dimension is fixed to 9.

improve the quality of the planning. By using Thompson

Sampling, even in the case where we use a low-quality

extrinsic policy, L-MBOP-E can selectively sample actions

from it and still improve upon the overall performance of L-

MBOP. As the quality of the extrinsic policy increases, pt will

get closer to 0 and the algorithm learns to follow the extrinsic

policy.

Impact of Thompson Sampling. We conduct experiments

under different qualities of the offline dataset and extrinsic

policy in order to determine whether Thompson Sampling

can correctly identify which policy is stronger. Intuitively,

Thompson Sampling should converge to a low pt value when

the extrinsic policy is better than the BC policy and a high pt
value when the BC policy is better. As shown in Figure 3a, in

the random dataset where the performance of the BC policy is

of low quality, the value of pt converges to near 0.0 so that the

exploration would tend to follow the guidance of the extrinsic

policy. In the other extreme case where the BC policy is of

high quality and the extrinsic policy is of low quality, pt will

converge to a value close to 1.0.

Next, we investigate the impact of the variance scaling

factor σM on the learning performance. Specifically, for the

Hopper-medium task, we test different variance scale values

ranging from 0.2 to 2.0. As shown in Figure 3c, as we increase

σM , the performance initially increases because the algorithm

will sample more diverse actions for better exploration. The

performance decreases if σM is too large, because of the

increased distributional shift between the sampled actions and

the BC policy. However, the performance of our algorithm is

robust to the selection of σM .

The Thompson Sampling algorithm allows L-MBOP-E to

sample actions from both the BC policy and extrinsic policy,

and follow the better policy for different states. To verify this,

we perform Principal Component Analysis on a sample tra-

jectory from the Hopper environment. In order to distinguish

which states the extrinsic policy performs better, we use the N
trajectory rollouts generated by L-MBOP-E during planning.

We compute the average return of the trajectories generated by

either policy, and color red the states where the extrinsic policy

has higher average return. The visualizations are shown in

Figure 4a and Figure 4b. As we can see, the latent state space

has a very clear structure which makes the characterization of

the dynamics easier and more accurate. Moreover, it is clear

that the planning deviates from the BC policy and follows the

guidance of the extrinsic policy in the red states, leading to

the improved overall performance.

C. Zero-shot Task Adaptation

One of the main advantages to using the model-based

planning framework is the ability to adapt to new reward

signals without having to re-train a policy. We can use a

new reward signal by simply replacing the predicted reward

received during the synthetic rollouts with the new reward

function. This will allow L-MBOP-E to optimize the trajecto-

ries according to the new reward function, and enable zero-shot

task adaptation.

To verify this, we consider a new task, Hopper-Jump, which

uses the original Hopper environment but encourages the agent

to jump by rewarding the agent for its z-position. The new

reward function is defined as follows:

rnew = αr · roriginal + (1− αr) · 10 · z
where roriginal is the reward function from Hopper, z is the z-

position of the Hopper, and αr ∈ [0, 1] is a mixing parameter,

which we set to αr = 0.5.

Because the Q function was learnt based on the reward

function from the offline dataset D, using it as the terminal

cost could degrade the performance if the new reward for

the modified environment differs greatly from the reward

in the dataset. A new Q function can be trained from the

offline dataset by using the new reward function to replace

the original reward. This allows L-MBOP-E to use a more

accurate terminal cost for better adaptation performance.

We compare the performance of MBOP and L-MBOP-E,

along with two variants of L-MBOP-E: L-MBOP-E with the

new reward function (New-Reward), and L-MBOP-E with

both the new reward function and the Q function re-trained on

the new reward (New-Q). Results are plotted in Figure 4c. As

shown, L-MBOP-E improves upon the performance of MBOP.

Using the new reward function allows L-MBOP-E to optimize

trajectories for the new task to improve the performance. If a

new Q function is further trained, long-term consequences can
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(a) (b) (c)

Fig. 3: (a) Converged pt value from Thompson Sampling vs. various qualities of datasets and extrinsic policies. The darker the shade, the
higher the converged pt value (higher probability of sampling from BC policy). (b) Performance of L-MBOP-E with varying qualities of
the extrinsic policy. The red line represents the score of L-MBOP as a baseline. (c) Sensitivity to the variance scaling factor σM .

(a) (b) (c)

Fig. 4: (a-b) Visualization of states visited in the observation and latent spaces. States where the extrinsic policy outperforms the BC policy
are colored red. (c) Zero-shot adaptation experiments for Hopper-Jump. It can be seen that L-MBOP-E clearly outperforms MBOP by using
the new reward and the improvement is more significant when a new Q function can be trained with the new reward.

be considered and the planning quality is greatly improved.

All these results clearly demonstrate the superior zero-shot

adaptation capability of L-MBOP-E, which is built on the

latent model learning and better exploration with Thompson

Sampling and the extrinsic policy.

VI. DISCUSSION AND CONCLUSION

We develop Latent-Model Based Offline Planning with

Extrinsic Policy-Guided Exploration (L-MBOP-E), which is

built on two key ideas: 1) low-dimensional latent model

learning to reduce the effects of compounding errors when

learning a dynamics model with limited offline data, and 2)

a Thompson Sampling based exploration strategy with an

extrinsic policy to guide planning beyond the behavior policy

and hence get the best out of these two policies. Experimental

results demonstrate that L-MBOP-E significantly outperforms

the state-of-the-art algorithms on the D4RL and DMC tasks,

and performs especially well when given access to an extrinsic

policy which complements the BC policy.

Our proposed method has several limitations. We improve

exploration under distributional shift by employing an extrinsic

policy. This requires access to a reasonably-well performing

policy from the same or similar task. Additionally, this policy

must complement the behavior cloned policy and must not lead

to states which stray too far from those in the offline dataset.

While we demonstrate that the Thompson Sampling procedure

allows the algorithm to select the best of both policies, if the

distributional shift is too great, the predicted returns could

be incorrect and lead to degraded performance. While model-

based planning methods such as L-MBOP-E are lightweight

and flexible enough to enable zero-shot task adaptation, when

using a high-variance dataset the performance might not as be

as strong when compared to a traditional offline RL approach

on that single task [17].

There are many scenarios where the system is controlled by

several human operators with varying behavior. The resulting

behavior policy and extrinsic policy would be consistent and

complement each other, and could benefit from considering

actions from both policies. In these type of scenarios, we

believe that L-MBOP-E could provide an effective solution

for automating the control of the system while incorporating

the behavior from multiple operators to improve overall per-

formance.
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