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Abstract—Due to its higher data density, longevity, energy

efficiency, and ease of generating copies, DNA is considered

a promising technology for satisfying future storage needs.

However, a diverse set of errors including deletions, insertions,

duplications, and substitutions may arise in DNA at different

stages of data storage and retrieval. The current paper constructs

error-correcting codes for simultaneously correcting short (tan-

dem) duplications and at most p edits, where a short duplication

generates a copy of a substring with length  3 and inserts the

copy following the original substring, and an edit is a substitution,

deletion, or insertion. Compared to the state-of-the-art codes

for duplications only, the proposed codes correct up to p edits

(in addition to duplications) at the additional cost of roughly

8p(logq n)(1 + o(1)) symbols of redundancy, thus achieving the

same asymptotic rate, where q � 4 is the alphabet size and p
is a constant. Furthermore, the time complexities of both the

encoding and decoding processes are polynomial when p is a

constant with respect to the code length.

Index Terms—DNA data storage, error-correcting codes, short

tandem duplications, edit errors, redundancy, time complexity.

I. INTRODUCTION

W
ITH recent advances in sequencing and synthesis, de-
oxyribonucleic acid (DNA) is considered a promising

candidate for satisfying future data storage needs [3], [4].
In particular, experiments in [3], [5]–[9] demonstrate that
data can be stored on and subsequently retrieved from DNA.
Compared to traditional data storage media, DNA has the
advantages of higher data density, longevity, energy efficiency,
and ease of generating copies [3], [9]. However, a diverse set
of errors may occur at different stages of the data storage and
retrieval processes, such as deletions, insertions, duplications,
and substitutions. Many recent works, such as [9]–[26], have
been devoted to protecting the data against these errors. The
current paper constructs error-correcting codes for duplication
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and edit errors, where an edit error is an insertion, deletion,
or substitution.

A (tandem) duplication in a DNA sequence generates a
copy of a substring and then inserts it directly following the
original substring [10], where the duplication length is the
length of the copy. For example, given ACTG, a tandem du-
plication may generate ACTCTG, where CTCT is a (tandem)

repeat of length 4 (i.e., twice the length of the duplication).
Bounded-length duplications are those whose lengths are at
most a given constant. In particular, we refer to duplications
of length at most 3 as short duplications. Correcting fixed-
length duplications [10], [12]–[14], [27] and bounded-length
duplications [10], [25], [28]–[31] have both been studied re-
cently. In particular, the code in [10], which has a polynomial-
time encoder, provides the highest possible asymptotic rate
for correcting any number of short duplications [29]. For an
alphabet of size 4, corresponding to DNA data storage, this
rate is log 2.6590 and as the alphabet size q increases, the rate
is approximately log(q � 1) [32].

For channels with both duplication and substitution errors,
restricted substitutions [14], [27], which occur only in du-
plicated copies, and unrestricted substitutions [14], [31]–[33],
which may occur anywhere, have been studied. The closest
work to the current paper, [32], constructed error-correcting
codes for short duplications and at most one (unrestricted) edit.
However, compared to the codes in [10] for only duplications,
the codes in [32] incur an asymptotic rate loss when q = 4 in
order to correct the additional edit. The current paper provides
codes for correcting any number of short duplications and at
most p (unrestricted) edits with no asymptotic rate penalty
compared to correcting short duplications only, where p and
the alphabet size q are constants.

One of the challenging aspects of correcting multiple types
of errors, even when optimal codes for individual error types
exist, is that codes for each type may utilize incompatible
strategies. In particular, correcting duplications relies on con-
strained codes (local constraints) while edits are corrected us-
ing error-correcting codes with codewords that satisfy certain
global constraints. Combining these strategies is not straight-
forward as encoding one set of constraints may violate the
other, or alter how errors affect the data. Our strategy, which
can be viewed as modified concatenation described in [34], is
to first encode user data as a constrained sequence x, which
does not contain any repeats of length  6 (such sequences
are called irreducible). Then using syndrome compression, we
compute and append to x a “parity” sequence r to help correct
errors that occur in x. Syndrome compression has recently
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been used to provide explicit constructions for correcting a
wide variety of errors with redundancy as low as roughly twice
the Gilbert-Varshamov bound [35]–[38].

Another challenge arises from the interaction between the
errors. When both short duplications and edits are present,
a single edited symbol may be duplicated many times and
affect an unbounded segment. However, when the input is an
irreducible sequence, after removing all tandem copies with
length  3 from the output, the effects of short duplications
and at most p edits can be localized in at most p substrings,
each with length  17 [32]. Using the structure of these
localized alterations, we describe the set of strings that can be
confused with x and bound its size, allowing us to leverage
syndrome compression to reduce redundancy.

A third challenge is ensuring that the appended vector r is
itself protected against errors and can be decoded correctly.
We do this by introducing a higher-redundancy MDS-based
code over irreducible sequences. After decoding the appended
vector, we use it to recover the data by eliminating incorrect
confusable inputs.

Compared to the explicit code for short duplications
only [10], the proposed code corrects  p edits in addition
to the duplications at the extra cost of roughly 8p(logq n)(1+
o(1)) symbols of redundancy for q � 4, and achieves the
same asymptotic code rate. We note that the state-of-the-art
redundancy for correcting p edits is no less than 4p logq n(1+
o(1)) [37]. Time complexities of both the encoding and
decoding processes are polynomial when p is a constant.

For simplicity of exposition, we first consider the channel
with short duplications and substitutions only and construct
codes for it. Then, in Subsection IV-B, we show that the
same codes can correct short duplications and edit errors. We
note that short duplications and edits may occur in any order.
Henceforth, the term duplication refers to short duplications
only.

The paper is organized as follows. Section II presents the
notation and preliminaries. In Section III, we derive an upper
bound on the size of the confusable set for an irreducible
string, which is a key step of the syndrome compression
technique used to construct our error-correcting codes. Then,
Section IV presents the code construction as well as a discus-
sion of the redundancy and the encoding/decoding complexi-
ties, under the assumption that the syndrome information can
be recovered correctly by an auxiliary error-correcting code,
which is described in Section V. Finally, Section VI concludes
the main results.

II. NOTATION AND PRELIMINARIES

Let ⌃q = {0, 1, 2, . . . , q � 1} represent a finite alphabet
of size q and ⌃n

q the set of all strings of length n over ⌃q .
Furthermore, let ⌃⇤

q be the set of all finite strings over ⌃q ,
including the empty string ⇤. Given two integers a, b with
a  b, the set {a, a+1, . . . , b} is shown as [a, b]. We simplify
[1, b] as [b]. For an integer a � 1, we define b mod+ a as
the integer in [a] whose remainder when divided by a is the
same as that of b. Unless otherwise stated, logarithms are to
the base 2.

We use bold symbols to denote strings over ⌃q , i.e.,
x,yj 2 ⌃⇤

q . The entries of a string are represented by plain
typeface, e.g., the ith elements of x,yj 2 ⌃⇤

q are xi, yji 2 ⌃q ,
respectively. For two strings x,y 2 ⌃⇤

q , let xy denote
their concatenation. Given four strings x,u,v,w 2 ⌃⇤

q , if
x = uvw, then v is called a substring of x. Furthermore, we
let |x| represent the length of a string x 2 ⌃n

q , and let kSk
denote the size (the number of elements) of a set S.

A (tandem) duplication of length k is the operation of gen-
erating a copy of a substring and inserting it directly following
the substring, where k is the length of the copy. For example,
for x = uvw with |v| = k, a (tandem) duplication may
generate uvvw, where vv is called a (tandem) repeat with
length 2k. A duplication of length at most 3 is called a short

duplication. Unless otherwise stated, the term duplication is
used to refer to short duplications in the rest of the paper. For
example, given x = 213012 2 ⌃⇤

4, a sequence of duplications
may produce

x = 213012 ! 213213012 ! 21321303012

! 213221303012 = x0
,

(1)

where the duplicated copies are marked with underlines. We
call x0 a descendant of x, i.e., a string generated from x by
a sequence of duplications. Furthermore, for a string x 2 ⌃⇤

q ,
let D(x) ✓ ⌃⇤

q be the set of all descendants generated from
x by an arbitrary number of duplications. Note that, unless
x = ⇤, D(x) is an infinite set.

A deduplication of length k replaces a repeat vv by v with
|v| = k. In the rest of the paper, unless otherwise stated,
dedulications are assumed to be of length at most 3. For
example, the string x in (1) can be recovered from x0 by
three deduplications.

The set of irreducible strings of length n over ⌃q , denoted
Irrq(n), consists of strings without repeats vv, where |v|  3.
Furthermore, Irrq(⇤) represents all irreducible strings of finite
length over ⌃q . The duplication root of x0 is an irreducible
string x such that x0 is a descendant of x. Equivalently, x can
be obtained from x0 by performing all possible deduplications.
Any string x0 has one and only one duplication root [10]1,
denoted R(x0). The uniqueness of the root implies that if x00

is a descendant of x0, we have R(x0) = R(x00). For a set S
of strings, we define R(S) = {R(s) : s 2 S} as the set of the
duplication roots of the elements of S.

Besides duplications, we also consider edit errors. An edit
may be a substitution, which replaces a symbol by another
one from the same alphabet; a deletion, which removes a
symbol; or an insertion, which inserts a symbol from the same
alphabet. Continuing the example in (1), two substitutions and
two duplications applied to x0 may produce

x0 = 213221303012 ! 213211303012

! 213213211303012 ! 213213211323012

! 213213211323323012 = x00
,

where the substituted symbols are marked in red. Let
Dp(x) ✓ ⌃⇤

q represent the set of strings derived from x by an

1Note that this statement only applies to duplications of length at most 3.
For duplications of length at most 4, the root is not necessarily unique.
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arbitrary number of duplications and at most p substitutions.
In the example above, we have x00 2 D2(x). Note that the
alphabet over which Dp(x) is defined affects its contents. For
example, for x = 012, D1(x) contains 013 if the alphabet
is ⌃4 but not if the alphabet is ⌃3. Unless x = ⇤, Dp(x) is
infinite.

We define a substring edit in a string x 2 ⌃⇤
q as the

operation of replacing a substring u with a string v 2 ⌃⇤
q ,

where at least one of u,v is nonempty. The length of the
substring edit is max{|u|, |v|}. An L-substring edit is one
whose length is at most L. For example, given x = 0123456,
a 4-substring edit can generate the sequence y = 078956 or
the sequence z = 018923456, where the inserted strings are
underlined. Furthermore, a burst deletion in x 2 ⌃⇤

q is defined
as removing a substring v of x, where |v| is the length of the
burst deletion.

Given a sequence x 2 ⌃n
q , we define the binary matrix

U(x) of x with dimensions dlog qe ⇥ n as
2

6664

u1,1 u1,2 · · · u1,n

u2,1 u2,2 · · · u2,n
...

...
. . .

...
udlog qe,1 udlog qe,2 · · · udlog qe,n

3

7775
, (2)

where the jth column of U(x) is the binary representation
of the jth symbol of x for j 2 [n]. The ith row of U(x) is
denoted as Ui(x) for i 2 dlog qe.

The redundancy of a code C ✓ ⌃n
q of length n is defined

as n � logq kCk symbols, and its rate as 1
n log kCk bits per

symbol. Asymptotic rate is the limit superior of the rate as
the length n grows.

In order to construct error-correcting codes by applying the
syndrome compression technique [35], we first introduce some
auxiliary definitions and a theorem.

Suppose q � 3 is a constant. We start with the definition of
confusable sets for a given channel and a given set of strings
S ✓ ⌃n

q . In our application, S is the set of irreducible strings,
upon which the proposed codes will be constructed.

Definition 1. A confusable set B(x) ✓ S of x 2 S consists

of all y 2 S, excluding x, such that x and y can produce the

same output when passed through the channel.

Definition 2. Let R(n) be an integer function of n. A labeling
function for the confusable sets B(x),x 2 S, is a function

f : ⌃n
q ! ⌃2R(n)

such that, for any x 2 S and y 2 B(x), f(x) 6= f(y).

Theorem 3. (c.f. [35, Theorem 5]) Let f : ⌃n
q ! ⌃2R(n) ,

where R(n) = o(log log n · log n), be a labeling function for

the confusable sets B(x),x 2 S. Then there exists an integer

a  2log kB(x)k+o(logn)
such that for all y 2 B(x), we have

f(x) 6⌘ f(y) mod a.

The above definitions and theorem are used in our code
construction based on syndrome compression, presented in
Section IV. The construction and analysis rely on the con-
fusable sets for the channel, discussed in the next section.

Dups,  p subs

(a) DS(p) channel

Dups,  p subs Root

(b) DSD(p) channel

Dups  1 sub Root

(c) DSD(1) channel

Figure 1: Any error-correcting code for channel (b) is also an
error-correcting code for channel (a). The confusable set for
a channel obtained by concatenating p copies of channel (c)
contains the confusable set for channel (b).

III. CONFUSABLE SETS FOR CHANNELS WITH SHORT
DUPLICATION AND SUBSTITUTION ERRORS

In this section, we study the size of confusable sets of input
strings passing through channels with an arbitrary number of
duplications and at most p substitutions. This quantity will be
used to derive a Gilbert-Varshamov bound and, in the next
section, to construct our error-correcting codes.

Since the duplication root is unique, and duplications and
deduplications do not alter the duplication root of the input,
Irrq(n) is a code capable of correcting duplications. The
decoding process simply removes all tandem repeats. In other
words, if we append a root block, which deduplicates all
repeats and produces the root of its input, to the channel with
duplication errors, any irreducible sequence passes through
this concatenated channel with no errors. This approach pro-
duces codes with the same asymptotic rate as that of [10],
achieving the highest possible asymptotic rate.

Similar to [32], we extend this strategy to design codes for
the channel with duplication and at most p substitution errors,
denoted the DS(p) channel and shown in Figure 1a. Note that
the duplications and substitutions can occur in any order. We
take the code to be a subset of irreducible strings and find the
code for a new channel obtained by concatenating a root block
to the channel with duplication and substitution errors, denoted
as the DSD(p) channel and shown in Figure 1b. Clearly, any
error-correcting code for DSD(p) is also an error-correcting
code for the DS(p) channel.

We now define the confusable sets over Irrq(n) for the
DSD(p) channel and bound its size, which is needed to
construct the code and determine its rate.

Definition 4. For x 2 Irrq(n), let

B
p
Irr (x) = {y 2 Irrq(n) : y 6= x,

R(Dp(x)) \R(Dp(y)) 6= ?}
(3)

denote the irreducible-confusable set of x.

Note that the DSD(1) channel can be represented as shown
in Figure 1c. This is because the sequence of errors consists
of duplications, substitutions, more duplications, and finally
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Figure 2: A sequence z = xp = yp that can be obtained
from both x and y through channels resulting from the
concatenation of p DSD(1) channels, each shown by a solid
arrow. The dashed arrows represent the reverse relationships
and each yi�1 can be obtained by passing yi through a DSD(1)
channel.

all deduplications. Hence, duplications that occur after the
substitutions are all deduplicated and we may equivalently as-
sume they have not occurred. Next, observe that the confusable
set for the concatenation of p DSD(1) channels contains the
confusable set for a DSD(p) channel. In other words, if the
same string is input to the concatenation of p DSD(1) channels
and to a DSD(p) channel, the set of possible outputs of the
former is a superset of the set of possible outputs of the latter.
Hence, we have the following lemma.

Lemma 5. An error-correcting code for the concatenation of

p DSD(1) channels is also an error-correcting code for the

DSD(p) channel.

We can thus focus on this concatenated channel. The
advantage of considering DSD(1) is that it is reversible in the
sense that if v can be obtained from an input u, then u can
be obtained from the input v, and this simplifies our analysis.
In particular, we have u 2 R(D1(v)) and v 2 R(D1(u)).

Figure 2 shows a confusable string z obtainable from
irreducible sequences x 2 Irrq(n) and y 2 B

p
Irr (x), after

passing through p DSD(1) channels, each represented by
a solid arrow. More precisely, xi 2 R(D1(xi�1)) and
yi 2 R(D1(yi�1)), where x = x0,y = y0, z = xp = yp.
Furthermore, yi�1 2 R(D1(yi)). Hence, y can be generated
from x by concatenating the solid-line path from x to z and
the dashed-line path from z to y, i.e., x ! x1 ! · · · !
z ! yp�1 ! · · · ! y, where each ! represents a DSD(1)
channel. Considering the number of possibilities in each step
gives the following lemma.

Lemma 6. For x 2 Irrq(n),

kBp
Irr (x)k  max

xi,yi

p�1Y

i=0

kR(D1(xi))k
pY

i=1

kR(D1(yi))k

where the maximum for xi (resp. yi) is over sequences that

can result from x (resp. y) passing through the concatenation

of i DSD(1) channels.

It thus suffices to find kR(D1(x))k for x 2 Irrq(⇤). As

kR(D1(x))k  kR(D1(x))k+ kR(D(x))k
= kR(D1(x))k+ 1,

we find an upper bound on kR(D1(x))k, in Lemma 8, using
the following lemma from [32].

Lemma 7. [32, Lemma 3] Let x be any string of length at

least 5 and x0 2 D(x). For any decomposition of x as

x = r ab c de s,

for a, b, c, d, e 2 ⌃q and r, s 2 ⌃⇤
q , there is a decomposition

of x0
as

x0 = u ab w de v

such that u,w,v 2 ⌃⇤
q , uab 2 D(rab), abwde 2 D(abcde),

and dev 2 D(des).

Lemma 8. For an irreducible string x 2 ⌃n
q ,

kR(D1(x))k  nmax
t2⌃5

q

kR(D1(t))k.

Proof: Given an irreducible string x 2 Irrq(n), let
x0 2 D(x) be obtained from x through duplications and x00

obtained from x0 by a substitution. For a given x, kR(D1(x))k
equals the number of possibilities for R(x00) as x00 varies. Note
that duplications that occur after the substitution do not affect
the root. So we have assumed that the substitution is the last
error before the root is found.

Decompose x as x = rabcdes with r, s 2 Irrq(⇤) and
a, b, c, d, e 2 ⌃q , so that the substituted symbol in x0 is a
copy of c. Note that if |x| < 5 or if a copy of one of its
first two symbols or its last two symbols is substituted, then
we can no longer write x as described. To avoid considering
these cases separately, we may append two dummy symbols
to the beginning of x and two dummy symbols to the end
of x, where the four dummy symbols are distinct and do not
belong to ⌃q , and prove the result for this new string. Since
these dummy symbols do not participate in any duplication,
substitution, or deduplication events, the proof is also valid for
the original x.

By Lemma 7, we can write

x = r ab c de s

x0 = u ab w de v,

x00 = u ab z de v,

(4)

where uab 2 D(rab), abwde 2 D(abcde), dev 2 D(des),
and z is obtained from w by substituting a copy of c. From (4),
R(x00) = R(rR(abzde)s), where R(abzde) starts with ab

and ends with de (which may fully or partially overlap).
To determine kR(D1(x))k, we count the number of possi-
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Figure 3: Finite automaton for the regular language D
⇤(01234) based on [28].

bilities for R(x00) as x00 varies. Considering the decomposition
of x00 into uabzdev given in (4), we note that if R(abzde) is
given, then R(x00) = R(rR(abzde)s) is uniquely determined.
So to find an upper bound, it suffices to count the number of
possibilities for R(abzde). We thus have

kR(D1(x))k 
X

k{R(abzde) : abzde 2 D1(abcde)}k,

where the sum is over the choices of c in x, or equivalently
the decompositions of x into rabcdes, in (4). As there are n

choices for c, we have

kR(D1(x))k  nmax
t2⌃5

q

kR(D1(t))k.

The next lemma provides a bound on kR(D1(t))k for
t 2 ⌃5

q by identifying the “worst case”. The proof is given
in Appendix A.

Lemma 9. Given q � 3, we have

max
t2⌃5

q

kR(D1(t))k  kR(D1(01234))k,

where D1(01234) ✓ ⌃⇤
q+4 (the substituted symbol can be

replaced with another symbol from ⌃q+4).

As shown in [28], D(01234) is a regular language whose
words can be described as paths from ‘Start’ to S9 in the finite
automaton given in Figure 3. Then D1(01234) is equivalent
to the set of paths from ‘Start’ to S9 but with the label on
one edge substituted. We will use this observation to bound
kR(D1(01234))k in Lemma 11. The next lemma establishes
a symmetric property of the automaton that will be useful
in Lemma 11. Lemma 10 is proved by showing that there
is a bijective function h : U ! V between U and V and
between R(U) and R(V ). Specifically, for u = u1 · · ·un, we
let v = h(u) = ūnūn�1 . . . ū1, where for a 2 {0, 1, 2, 3, 4},
ā = 4� a. A detailed proof is given in Appendix B.

Lemma 10. Let U and V be the sets of labels of all paths

from Start to any state and from any state to S9, respectively,

in the finite automaton of Figure 3. Then kUk = kV k and

kR(U)k = kR(V )k.

Lemma 11. For q̂ � 5 and D1(01234) ✓ ⌃⇤
q̂ , where the

substitution replaces a symbol with any symbol from ⌃q̂ , we

have

kR(D1(01234))k  222(q̂ � 1).

Proof: Based on [28], recall that D(01234) is a regular
language whose words can be described as paths from ‘Start’
to S9 in the finite automaton given in Figure 3, where the
word associated with each path is the sequence of the edge
labels. Let x0 2 D(01234) and let x00 be generated from x0

by a substitution. Assume x0 = uwv and x00 = uŵv, where
u,v 2 ⌃⇤

5, w 2 ⌃5 and ŵ 2 ⌃q̂ \ {w}. So there are q̂ � 1
choices for ŵ. The string u represents a path from ‘Start’ to
some state su and the string v represents a path from some
state sv to S9 in the automaton, where there is an edge with
label w from su to sv .

As x00 = uŵv, we have R(x00) = R(R(u)ŵR(v)),
where R(u) is an irreducible string represented by a path
from “Start” to state su, and R(v) is an irreducible string
represented by a path from sv to S9. Define U and V as in
Lemma 10. We thus have kR(D1(x))k  ||R(U)||⇥(q̂�1)⇥
||R(V )|| = ||R(U)||2 ⇥ (q̂ � 1). By inspection, we can show
that

R(U) = {⇤, 0, 01, 01201, 012, 0120, 010, 012010,
0121, 01202, 0123, 01232, 01231, 012313, 012312,

0123121, 01234, 012343, 012342, 0123424,

0123423, 01234232},

and hence ||R(U)|| = 22, completing the proof.

Theorem 12. For an irreducible string x 2 ⌃n
q , with q � 3,

kR(D1(x))k  968nq + 1.

Proof: From Lemmas 8, 9, and 11, it follows that
kR(D1(x))k  222n(q̂ � 1)  2q · 222n = 968nq with
q̂ = q + 4. Furthermore, kR(D1(x))k  kR(D1(x))k + 1.

We can now use Theorem 12 along with Lemma 6, to find a
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bound on kBp
Irr (x)k. To do so, we need to bound the size of xi

and yi shown in Figure 2, for which the following theorem is
of use. The theorem is a direct extension of [32, Theorem 5]
and thus requires no proof. An example demonstrating the
theorem is given in Appendix E.

Theorem 13 (c.f. [32, Theorem 5]). Given strings x 2 ⌃n
q

and v 2 Dp(x), R(v) can be obtained from R(x) by at

most p L-substring edits, where L = 17.

It follows from the theorem that for 1  i  p,

|xi|  n+ pL, |yi|  n+ pL. (5)

The next theorem then follows from Lemmas 6 and 12.

Theorem 14. Let x 2 Irrq(n) ✓ ⌃n
q be an irreducible string

of length n with q � 3. The irreducible-confusable set B
p
Irr (x)

of x satisfies

kBp
Irr (x)k  (968q(n+ pL) + 1)2p.

The size of the confusable sets will be used for our code
construction. It also allows us to derive a Gilbert-Varshamov
(GV) bound, as follows.

Theorem 15. There exists a code of length n capable of cor-

recting any number of duplications and at most p substitutions

with size at least

k Irrq(n)k
(968q(n+ pL) + 1)2p

·

We will show in Lemma 23 that the size of the code with
the highest asymptotic rate for correcting duplications only is
essentially k Irrq(n)k. Assuming that p and q are constants,
this GV bound shows that a code exists for additionally
correcting up to p substitution errors with extra redundancy
of approximately 2p logq n symbols. The two constructions
presented in the next section have extra redundancies of
4p logq n and 8p logq n, which are only small constant factors
away from this existential bound.

IV. LOW-REDUNDANCY ERROR-CORRECTING CODES

As stated in Section III, our code for correcting duplications
and substitutions is a subset of irreducible strings of a given
length. In this section, we construct this subset by applying the
syndrome compression technique [35], where we will make
use of the size of the irreducible-confusable set kBp

Irr (x)k
derived in Section III. In this section, unless otherwise stated,
we assume that both q � 4 and p are constant.

We begin by presenting the code constructions for cor-
recting duplications and substitutions in Subsection IV-A,
assuming the existence of appropriate labeling functions used
to produce the syndrome information and an auxiliary error-
correcting code used to protect it. The labeling functions will
be discussed in Subsection IV-C, while the auxiliary ECC is
presented in Section V. In Subsection IV-B, we show that the
proposed codes can in fact correct duplications and edits. The
redundancy of the codes and the computational complexities of
their encoding and decoding are discussed in Subsections IV-D
and IV-E, respectively.

A. Code constructions

We first present a code in Construction A that assumes an
error-free side channel is available, where the length of the
sequence passing through the side channel is logarithmic in
the length of the sequence passing through the main channel.
We then present the main result of this section, Construction B,
which does not make such an assumption and is intended for
a single noisy channel. Construction A helps motivate certain
components of Construction B and make its proof of correct-
ness more clear. In addition, it may have potential practical
applications. For example, in a DNA storage system, metadata
of the data stored on DNA may be stored on silicon-based
devices such as disk or flash. Due to the maturity of these
technologies, they may provide a nearly error-free channel,
suitable for storing a small amount of side information.

1) Channels with error-free side channels: In the construc-
tion below, x is transmitted through the noisy channel, while r,
which encodes the information (a, f(x) mod a) is transmitted
through an error-free channel.

Construction A. Let n, p, q be positive integers. Furthermore,

let f be a (labeling) function and, for each x 2 Irrq(n), ax
be a positive integer, such that for any y 2 B

p
Irr (x), f(x) 6⌘

f(y) mod ax. Define

CA
n = {(x, r) : x 2 Irrq(n), r = (ax, f(x) mod ax)},

where r is assumed to be the q-ary representation of

(ax, f(x) mod ax).

We consider the length of this code to be N = n+ |r|. As
will be observed in (8), |r| = O(logq n) and so the sequence
carried by the side channel is logarithmic in length. Recall
that the existence of the labeling functions is discussed in
Subsection IV-C.

Theorem 16. The code in Construction A, assuming the

labeling function f and ax (for each x 2 Irrq(n)) exist, can

correct any number of duplications and at most p substitutions

applied to x, provided that r is transmitted through an error-

free channel.

Proof: Let the retrieved word from storing x be v 2
R(Dp(x)). Note that ax and f(x) mod ax can be recovered
error-free from r. By definition, for all y 6= x that could
produce the same v, we have y 2 B

p
Irr (x). But then, f(y) 6⌘

f(x) mod ax, and so we can determine x by exhaustive
search.

2) Channels with no side channels: To better illustrate the
construction with no side channels, let us first observe what
the issues are with simply concatenating x and r and forming
codewords of the form xr.

• The code in Construction A relies on a sequence v 2
R(Dp(x)) but if xr is stored, the output of the channel
is a sequence w 2 R(Dp(xr)). As the boundary
between x and r becomes unclear after duplication and
substitution errors, it is difficult to find v 2 R(Dp(x))
from w 2 R(Dp(xr)). To address this, instead of
finding v, we find a sufficiently long prefix, as discussed
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in Lemma 17. This will also require us to modify the
labeling function.

• The decoding process requires the information encoded
in r, which is now subject to errors. We will address this
by using a high-redundancy code that can protect this
information, introduced in Lemma 18 and discussed in
detail in Subsection V-C.

• The codewords need to be irreducible. This is discussed
in Lemma 19.

For integers p, j, denote by Dp
j (x) the set of strings that

can be obtained by deleting a suffix of length at most j from
some v 2 R(Dp(x)). Note that Dp

j (x) ✓ Irrq(⇤).

Lemma 17. Let x be an irreducible string of length n and r
any string such that xr is irreducible. Let w 2 R(Dp(xr))
and s be the prefix of w of length n�pL. Then s 2 Dp

2pL(x).

The lemma is proved in Appendix C.
By choosing the first n�pL elements of w 2 R(Dp(xr)),

we find s 2 Dp
2pL(x), which is a function of only x rather

than xr. But in doing so, we have introduced an additional
error, namely deleting a suffix of length at most 2pL. As
a result, we need to replace the labeling function f with a
stronger labeling function f

0 that, in addition to handling both
substitutions and duplications, can handle deleting a suffix of
x. More precisely, f 0 is a labeling function for the confusable
set

B
p,2pL
Irr (x) = {y 2 Irrq(n) :

y 6= x,Dp
2pL(x) \Dp

2pL(y) 6= ?}.
(6)

The details of determining f
0 will be discussed in Sec-

tion IV-C. Assuming the existence of the labeling function,
r encodes (a0x, f

0(x) mod a
0
x), where for x 2 Irrq(x), a0x is

chosen such that

f
0(x) 6⌘ f

0(y) mod a
0
x, 8y 2 B

p,2pL
Irr (x).

To address the second difficulty raised above, i.e., protecting
the information encoded in r, we use an auxiliary high-
redundancy code given in Section V. The following lemma,
which is proved in Subsection V-C, provides an encoder for
this code.

Lemma 18. Let � = 01020. There exists an encoder E1 :
⌃L

2 ! Irrq(L0) such that i) �E1(u) 2 Irrq(⇤) and ii) for any

string x 2 Irrq(⇤) with x�E1(u) 2 Irrq(⇤), we can recover

u from any w 2 R(Dp(x�E1(u))). Asymptotically, L
0 

L
log(q�2) (1 + o(1)).

We use E1(a0x, f 0(x) mod a
0
x) to denote E1(u), where u is

a binary sequence representing the pair (a0x, f
0(x) mod a

0
x).

For x 2 Irrq(n), by letting r = E1(a0x, f 0(x) mod a
0
x), we

can construct codewords of the form x�r. But such codewords
would not necessarily be irreducible. Irreducibility can be
ensured by adding a buffer bx between x and �r, as described
by the next lemma, proved in Appendix D.

Lemma 19. For q � 3 and any irreducible string x over ⌃q ,

there is a string bx of length cq such that xbx� is irreducible.

Furthermore, c3 = 13, c4 = 7, c5 = 6, and cq = 5 for q � 6.

The lemma implies that xbx�r is irreducible. This is
because any substring of length at most 6 is either in xbx�
or in �r but cannot span both as |�| = 5. But xbx� and �r
are both irreducible, as shown in Lemma 19 and Lemma 18.i,
respectively.

We are now ready to present the code construction.

Construction B. Let f
0

be a labeling function for the confus-

able sets B
p,2pL
Irr (x),x 2 Irrq(n). Furthermore, for each

x, let a
0
x be an integer such that f

0(x) 6⌘ f
0(y) mod a

0
x for

y 2 B
p,2pL
Irr (x). Let

CB
n = {xbx�r : x 2 Irrq(n), r = E1(a0x, f 0(x) mod a

0
x)}.

Note that for simplicity, we index the code by the length of
x rather than the length of the codewords xbx�r, i.e., n in
CB
n refers to the length of x. The length of r is discussed in

Subsection IV-D below.

Theorem 20. The code in Construction B can correct any

number of short duplications and at most p substitutions.

Proof: Let the retrieved word be w 2 R(Dp(xbx�r)).
From Lemma 18, given w, we can find a

0
x and f

0(x) mod a
0
x.

By Lemma 19, xbx�r is irreducible. Then, by Lemma 17, the
(n� pL)-prefix of w, denoted s, satisfies s 2 Dp

2pL(x). By
definition, for all y 6= x that could produce the same s, we
have y 2 B

p,2pL
Irr (x). But then, f

0(y) 6⌘ f
0(x) mod a

0
x,

and so we can determine x by exhaustive search.

B. Extension to edit errors

We now show that the codes in Constructions A and B
are able to correct an arbitrary number of duplications and at
most p edit errors, where an edit error may be a deletion, an
insertion, or a substitution.

Define the DED(1) and DED(p) channels analogously to the
DSD(1) and DSD(p) channels by replacing substitutions with
edit errors. Any error-correcting code for a concatenation of p
DED(1) channels is also an error-correcting code for DED(p).

Additionally, any error-correcting code for a DSD(1) chan-
nel is also an error-correcting code for the DED(1) channel.
This is because any input-output pair (x,y) for DED(1),
shown in Figure 4b, is also an input-output pair for the
DSD(1) channel, shown in Figure 4a. This claim is proved
in [32, Corollary 12], where it was shown that a deletion
can be represented as a substitution and a deduplication,
e.g., abc ! ac as abc ! aac ! ac, and an insertion
as a duplication and a substitution, e.g., abc ! abdc as
abc ! abbc ! abdc.

Since CA and CB can correct errors arising from a con-
catenation of p DSD(1) channels, they can also correct errors
arising from a concatenation of p DED(1) channels and thus
a DED(p) channel, leading to the following theorem.

Theorem 21. The codes in Constructions A and B can correct

any number of duplications and at most p edit errors.

C. The labeling function

In this subsection, we first present the labeling function
f such that f(x) 6= f(y) for y 2 B

p
Irr (x), used in Con-

struction A. By Theorem 13, z 2 R(Dp(x)) \ R(Dp(y))
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Dups  1 sub Root

(a) DSD(1) channel

Dups  1 edit Root

(b) DED(1) channel

Figure 4: Any error-correcting code for channel (a) is also an
error-correcting code for channel (b).

can be obtained from x and from y by at most 2pL indels.
Hence, it suffices to find f such that f(x) 6= f(y) if there is a
string z that can be obtained from both x and y through 2pL
indels. Note that since we are utilizing syndrome compres-
sion, choosing a more “powerful” labeling function does not
increase the redundancy, which is still primarily controlled by
maxx2Irrq(n) kB

p
Irr (x)k. We use the next theorem for binary

sequences to find f .

Theorem 22. [38] There exists a labeling function g :
{0, 1}n ! ⌃2R(t,n) such that for any two distinct strings

c1 and c2 confusable under at most t insertions, deletions,

and substitutions, we have g(c1) 6= g(c2), where R(t, n) =
[(t2 + 1)(2t2 + 1) + 2t2(t� 1)] log n+ o(log n).

Since z 2 R(Dp(x)) can be obtained from x via at
most 2pL indels, Ui(z) can be derived from Ui(x) by at
most 2pL indels, for i 2 [dlog qe]. Based on Theorem 22 and
the work [38], by letting t = 2pL, we can obtain a labeling
function g for recovering Ui(x) from Ui(z) under at most 2pL
indels. Therefore, f : ⌃n

q ! ⌃2dlog qeR(t,n) ,

f(x) =

dlog qeX

i=1

2R(t,n)(i�1)
g(Ui(x)), (7)

where t = 2pL, is a labeling function for the confusable
sets B

p
Irr (x), x 2 Irrq(n). For each x, a value ax needs

to be also determined such that f(x) 6⌘ f(y) mod ax for
y 2 B

p
Irr (x). The existence of such ax, satisfying log ax 

log kBp
Irr (x)k+ o(log n), is guaranteed by Theorem 3 pro-

vided that p is a constant (ensuring that p
4 = o(log log n)).

The labeling function f and integers ax are used in Construc-
tion A.

In a similar manner, we can construct f
0 as a labeling

function for B
p,2pL
Irr (x),x 2 Irrq(n) and integers a

0
x,

by setting t = 4pL to account for the deletion of length
at most 2pL. This time, for all x 2 Irrq(n), log a0x 
log kBp,2pL

Irr (x)k+ o(log n). The labeling function f
0 and

integers a
0
x are used in Construction B.

D. The redundancy of the error-correcting codes

In this section, we study the rate and the redundancy of the
codes proposed in Constructions A and B and compare these to
those of the state-of-the-art short-duplication-correcting code
given in [10], which has the highest possible asymptotic rate.
For an alphabet of size q, the asymptotic rate of this code for

short duplications is log �, where � is the largest positive real
root of x3 � (q � 2)x2 � (q � 3)x� (q � 2) = 0 [25].

The following lemma shows that the code proposed in [10]
essentially has size Irrq(N), where N is the length of the code,
a fact that will be helpful for comparing the redundancies of
the codes proposed here with this baseline.

Lemma 23. Let CD
N be the code of length N over alphabet ⌃q

introduced by [10] for correcting any number of duplication

errors. For q � 4,

k Irrq(N)k  kCD
N k  q � 2

q � 3
k Irrq(N)k.

Proof: As shown in [10], kCD
N k =

PN
i=1 k Irrq(i)k. Based

on [32, Lemma 14], given u 2 Irrq(N � 1), there are at least
q � 2 choices for a 2 ⌃q such that x = ua 2 Irrq(N).
Thus, (q� 2)k Irrq(N � 1)k  k Irrq(N)k and, consequently,
k Irrq(N � i)k  k Irrq(N)k

(q�2)i . Then we have
PN

i=1 k Irrq(i)k
k Irrq(N)k 

N�1X

j=0

1

(q � 2)j
 q � 2

q � 3
.

We now compare the redundancy of the code CA of Con-
struction A with the code CD of [10] for correcting only
duplications. The length N of CA

n is N = n+ |r|, where

|r| = 2 logq ax  2logq kB
p
Irr (x)k+ o(logq n)

 4p logq n+ o(logq n)
(8)

symbols. Hence, N = n + 4p logq n + o(logq n). Then, the
difference in redundancies between CA

n and CD
N , both of length

N , is

logq kCD
N k � logq kCA

n k = logq
k Irrq(N)k
k Irrq(n)k

+O(1) (9)

 logq q
N�n +O(1) (10)

 4p logq n+ o(logq n), (11)

where the equality follows from Lemma 23 and the first
inequality from the fact that k Irrq(i + 1)k  qk Irrq(i)k.
Noting that logq n = logq N + o(logq N) yields the following
theorem.

Theorem 24. For constants q � 4 and p, the redundancy of

the code CA
n of length N is larger than the redundancy of the

code CD
N of the same length by at most 4 logq N + o(logq N).

We now turn our attention to comparing the redundancy
of CB

n of length N with CD
N . Here, N � n = |r| + O(1) =

|E1(a0x, f 0(x) mod a
0
x)|+O(1). Similar to (9), the extra re-

dundancy is then |r| + O(1), which through a
0
x depends on

kBp,2pL
Irr (x)k, investigated in the next lemma. The proof of

the lemma is in Appendix F.

Lemma 25. For x 2 Irrq(n) with q � 3,

kBp,2pL
Irr (x)k  q

4pL(n+ pL)2p.

Lemma 26. For constants q � 4 and p, and x 2 Irrq(n), the

length |r| of r = E1(a0x, f 0(x) mod a
0
x) satisfies

|r|  8p logq n+ o(logq n).
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Proof: From the previous subsection, assuming p is
a constant, we have that log a0x  log kBp,2pL

Irr (x)k +
o(log n)  2p log n + o(log n). Since (f 0(x) mod a

0
x) 

a
0
x, we need 4p log n + o(log n) bits to represent the pair

(a0x, f
0(x) mod a

0
x). Then, by Lemma 18, |E1(a0x, f 0(x) mod

a
0
x))|  4p log n(1 + o(1))/ log(q � 2). The lemma follows

from log q
log(q�2)  2 for q � 4.

Using Lemma 26, the next theorem gives the extra redun-
dancy of correcting p substitutions compared to [10] and shows
that there is no relative asymptotic rate penalty.

Theorem 27. For constants q � 4 and p, the redundancy of

the code CB
n of length N is larger than the redundancy of the

code CD
N of the same length by at most 8 logq N + o(logq N).

The codes have the same asymptotic rate, which, for q = 4,

equals log 2.6590.

E. Time complexity of encoding and decoding

Suppose q � 4 is a constant. The time complexities of
both the encoding and decoding processes are polynomial in
the lengths of the stored and retrieved sequences, respectively.
The encoding process consists of four main parts:

1) Generating x 2 Irrq(n) by the state-splitting algorithm,
which has polynomial-time complexity [25].

2) Determining bx such that xbx� 2 Irrq(⇤), which has
constant time complexity as the relevant subgraph of the
De Bruijn graph (see Appendix D) has a constant size
(no more than q

5 vertices).
3) Determining a

0
x and f

0(x) mod a
0
x. This is done in three

steps, with polynomial time complexity. i) Given x 2
Irrq(n), we find the elements of a set B̂ ◆ B

p,2pL
Irr (x)

whose size satisfies the upper bound given in Lemma 25.
Specifically, given x we find all sequences that can be ob-
tained from it through  p short substring substitutions,
one deletion of a suffix of length  2pL, one insertion of
a suffix of length  2pL, and another  p short substring
substitutions, where in each short substring substitution
step, we replace a substring abcde 2 Irrq(5) by another
irreducible substring from the set R(D1(abcde)) and then
deduplicate all copies. The total time complexity of this
step is O(n2p) as each element of B̂ is obtained by a
bounded number of operations and kB̂k = O(n2p). ii)
Since computing f

0(·) from [38] has time complexity
O(n log n), computing it for all elements of B̂ takes
O(n3p log n) steps. iii) Computing the remainder of these
values modulo the  2logO(n2p) possible values for a

0
x

also has polynomial complexity.
4) Generating r = E1(a0x, f 0(x) mod a

0
x) using the encoder

E1 for the code in Construction E, which has complexity
polynomial in |r| based on Subsection V-D. Hence, by
Lemma 26, the complexity is at most polynomial.

Therefore, when p is a constant, the time complexity of the
encoding process is polynomial with respect to N (as well
as n).

Decoding requires finding the root of the retrieved word,
which is linear in its length; decoding a

0
x and f

0(x) mod a
0
x,

which is polynomial as discussed in Subsection V-D; and

determining x through a brute-force search among all inputs
that can lead to the same (n � pL)-prefix of the root of the
retrieved sequence. Similar to the discussion about finding
B̂ above, the brute-force search is polynomial in n. Hence,
decoding is polynomial in the length of the retrieved sequence.

V. AUXILIARY HIGH-REDUNDANCY ERROR-CORRECTING
CODES

Based on lemma 18 in Section IV, the error-correcting
codes for short duplications and at most p substitutions
with low redundancy rely on an error-correcting code to
protect the syndrome information (a0x, f

0(x) mod a
0
x), where

(a0x, f
0(x) mod a

0
x) is considered as a binary sequence.

Therefore, this section focuses on constructing error-correcting
codes that can protect this information from short duplications
and at most p substitutions. We will also present the rate of
the proposed codes in Section V-B, followed by the proof of
Lemma 18 used in the previous section.

While in the previous section, we used syndrome com-
pression with a labeling function designed to handle indel
errors, in this section, the errors are viewed as substring edits
in irreducible sequences, as described in Theorem 13. An
example for Theorem 13 is given in Appendix E.

A. Code construction

To construct codes correcting at most p L-substring edits in
irreducible sequences, similar to [32], we divide the codewords
into message blocks, separated by markers, while maintaining
irreducibility, such that an L-substring edit only affects a
limited number of message blocks. In the case of p = 1
studied in [32], it was shown that if the markers appear in the
correct positions in the retrieved word, then at most two of the
message blocks are substituted. For p > 1 however, even if all
markers are in the correct positions, it is not guaranteed that
a limited number of message blocks are substituted, making
it challenging to correct more than one error.

We start by recalling an auxiliary construction from [32].

Construction C. [32, Construction 6] Let l,m,NB be

positive integers with m > l � 5 and � 2 Irrq(l). Also,

let Bm
� denote the set of sequences B of length m such that

�B� is irreducible and has exactly two occurrences of �.

Define

C� = {B1�B2� · · ·�BNB : Bi 2 Bm
� }.

The irreducibility of �Bi� ensures that the codewords are
irreducible.

We denote the output of the channel by y. Define a block

in y as a maximal substring that does not overlap with any
�. Furthermore, define an m-block in y as a block of length
m. Note that m-blocks can be either message blocks in x or
new blocks created by substring edits.

Having divided each codeword into NB message blocks and
NB � 1 separators, we study in the next lemma how message
blocks are affected by the errors.

Lemma 28. Let x 2 C� , m > L, and y be generated from

x through at most p L-substring edits. Then there are less
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than (NB + p) m-blocks in y. Furthermore, there are at least

NB � 2p error-free m-blocks in y which appear in x in the

same order. More precisely, there are blocks Bi1 , Bi2 , . . . , Bik

in y, where k � NB � 2p, each Bij is a message block in x,

and any two blocks Bij and Bij0 have the same relative order

of appearance in x and in y.

Proof: First suppose y has � (NB + p) message blocks.
This implies that the length of y is at least (NB+p)m+(NB+
p�1)l, which is larger than the length of x by pm+(p�1)l.
But this is not possible as m > L and the total length of
inserted substrings is at most pL.

Furthermore, if m > L, each L-substring edit alters i) a
message block in x, ii) a message block and a marker �, or
iii) two message blocks and the marker between them. Hence
at least NB � 2p message blocks of x appear in y without
being changed.

If the positions of the error-free m-blocks described in
Lemma 28 in y were known, a Reed-Solomon (RS) code of
length NB and dimension NB � 2p could be used to recover
codewords in C� . This however is not the case since the blocks
can be shifted by substring edits. In order to determine the
positions of the error-free m-blocks, we introduce another
auxiliary construction based on Construction C by combining
message blocks into message groups, where the message
blocks in each group have different “colors”.

Construction D. For an integer T , we partition Bm
� into T

parts Bm
� (j), j 2 [T ]. The elements of Bm

� (j) are said to have

color j. Let NB be a positive integer that is divisible by T .

We define the code

C(�,T ) =
�
B1�B2� · · ·�BNB 2 C� : Bi 2 Bm

� (i mod+ T )
 
,

where C� has parameters m, l with m > L and m > l � 5.

We divide the message blocks B1, . . . , BNB in each x 2
C(�,T ) into N̂ = NB/T message groups, where the k-th

message group is Sk = (B(k�1)T+1, . . . , BkT�1, BkT ). Note

that the message blocks in each message group have colors

1, 2, . . . , T in order.

For example, if NB = 12, T = 3, N̂ = 4, then in a
codeword

x = B1�B2�B3�B4�B5�B6� · · ·�B10�B11�B12,

the first group is (B1, B2, B3) and the second group is
(B4, B5, B6). Furthermore, message blocks in both groups
have colors (1, 2, 3). The colors in the message group will
help us identify the true positions of the message blocks.

Definition 29. For x 2 C(�,T ) and y derived from x
through at most p L-substring edits, let the i-th m-block

in y be denoted by B
0
i. A T -group in y is a substring

B
0
k+1�B

0
k+2 · · ·�B0

k+T such that the m-block B
0
k+j has

color j.

The next lemma characterizes how error-free message
groups (those that do not suffer any substring edits but may
be shifted) appear in y.

Lemma 30. Suppose x 2 C(�,T ) and let y be obtained from

x through at most p L-substring edits. For r 2 [N̂ ], if the

r-th message group in x is not affected by any substring edit

errors, then it will appear as a T -group after b m-blocks in

y, where b 2 [(r � 1)T � 2p, (r � 1)T + p� 1].

Proof: Since m > L, each L-substring edit can affect
at most two message blocks and thus at most two message
groups. Hence, there are at least N̂ � 2p message groups that
do not suffer any substring edits.

Let the r-th message group Sr in x be free of substring
edits. Given that the colors of its message blocks are not
altered, it will appear as a T -group in y. Since each substring
edit alters at most two message blocks, among the (r � 1)T
message blocks appearing before Sr in x, at most 2p do
not appear in y. Furthermore, the substring edits add at
most pL to the length of x. Since m > L, this means
that at most p � 1 new m-blocks are created in y. Hence,
b 2 [(r � 1)T � 2p, (r � 1)T + p� 1].

The previous lemma guarantees the presence of error-free,
but possibly shifted, T -groups, and provides bounds on their
position in y. In the following theorem, we use these facts to
show that these T -groups can be synchronized and the errors
can be localized.

Theorem 31. Let C(�,T ) be a code in Construction D and

suppose T � 3p and N̂ � 4p+1. There is a decoder Dec such

that, for any x 2 C(�,T ) and y derived from x through at most

p L-substring edits, v = Dec(y) suffers at most t substitutions

and e erasures of message groups, where t+ e  2p.

Proof: We start by identifying all T -groups in y. Note
that no two T -groups can overlap. Let v = (S0

1, . . . , S
0
N̂
) be

the decoded vector, where S
0
r is the decoded version of the

message group Sr, determined as follows.
For r = 1, . . . , N̂ :

1) If there exists a T -group T appearing after b message
blocks such that b 2 [(r � 1)T � 2p, (r � 1)T + p � 1],
then let S0

r = T .
2) If such a T -group does not exist, let S0

r = ⇤, denoting
an erasure.

We note that for each r, at most one T -group may satisfy the
condition in 1). If two such T -groups exist appearing after
b and b

0 message blocks, we must have |b � b
0| � T and

b, b
0 2 [(r�1)T �2p, (r�1)T +p�1], implying 3p�1 � T ,

which contradicts the assumption on T .
If a message group Sr is not subject to a substring edit,

then by Lemma 30, we have S
0
r = Sr. Otherwise, we may

have a substitution of that message group, i.e., S0
r 6= Sr, or

an erasure, S0
r = ⇤. Since each substring edit may affect at

most 2 message groups, the total number of substitutions and
erasures is no more than 2p.

We now construct an MDS code that can correct the output
of the decoder of Theorem 31.

Construction E. Let C(�,T ) be the code in Construction D

with parameters l,m, T, N̂ satisfying m > L,m > l � 5, T �
3p, and N̂ � 4p+ 1. Furthermore, assume |Bm

� (j)| � N̂ + 1
for j 2 [T ]. Finally, let � be a positive integer such that

2�  N̂ + 1 and ⇣j : F2� ! Bm
� (j) be an injective mapping
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for j 2 [T ]. We define CE as

CE = {⇣1(c11)� · · ·�⇣j(cj1)� · · ·�⇣T (cT1 )�
⇣1(c

1
2)� · · ·�⇣j(cj2)� · · ·�⇣T (cT2 )� · · ·

⇣1(c
1
N̂
)� · · ·�⇣j(cjN̂ )� · · ·�⇣T (cTN̂ ) :

{cj , j 2 [T ]} ✓ MDS(N̂ , N̂ � 4p, 4p+ 1)},

where MDS(N̂ , N̂ � 4p, 4p + 1) denotes an MDS code over

F2� of length N̂ = 2� � 1, dimension N̂ � 4p, and minimum

Hamming distance dH = 4p+1, and cj = (cj1, c
j
2, . . . , c

j

N̂
) is

a codeword of the MDS code.

For each j, we also define an inverse ⇣
�1
j for ⇣j . For

B 2 Bm
� (j), if � 2 F2� such that ⇣j(�) = B exists, then

let ⇣�1
j (B) = �. Otherwise, let ⇣�1

j (B) = 0.

Theorem 32. The error-correcting codes CE in Construc-

tion E can correct any number of short duplications and at

most p symbol substitutions.

Proof: Given a codeword x 2 CE , let x00 2 Dp(x) and
let y = R(x00). Note that by construction, x is irreducible.
Thus, by Theorem 13, y can be obtained from x through
at most p L-substring edits. As CE ✓ C(�,T ), based on
Theorem 31, v = Dec(y) suffers at most t substitutions and
e erasures of message groups, where t + e  2p. Hence,
for j 2 [T ], the blocks (⇣j(c

j
1), ⇣j(c

j
2), . . . , ⇣j(c

j

N̂
)) suffer

at most 2p erasures or substitutions. Consequently, if we
apply ⇣

�1
j to the corresponding retrieved blocks in v, the

codeword (cj1, c
j
2, . . . , c

j

N̂
) also suffers at most 2p substitutions

or erasures, which can be corrected using the MDS code.

B. Code rate

In this subsection, we present choices for the parameters of
Construction E and discuss the rate of the resulting code.

Among the nE symbols of each codeword in Construc-
tion E, 4pTm+ (N̂T � 1)l symbols belong to MDS parities
or markers. We choose T and l to be their smallest possible
values and set T = 3p and l = 5.

The construction requires that kBm
� (j)k � N̂ + 1 for all j.

Let M (m)
� = kBm

� k. Dividing Bm
� into parts of nearly equal

sizes, we find that each part Bm
� (j) has size at least M (m)

� /T�
1. We then choose N̂+1 as the largest power of two not larger
than M

(m)
� /T�1, ensuring that N̂+1 � M

(m)
� /(2T )�(1/2).

Assume
M

(m)
� � 24p2 + 15p. (12)

Then N̂ + 1 � M
(m)
� /(2T )� (1/2) � 4p+ 2.

Furthermore, note that N̂T (m + 5) � 5 = nE and thus
N̂ = nE+5

(m+5)(3p) . The size of the code then becomes

kCEk = (N̂ + 1)(N̂�4p)(3p)
,

and

log kCEk �
✓

nE

m+ 5
� 12p2

◆
log

 
M

(m)
�

6p
� 1

2

!

�
✓

nE

m+ 5
� 12p2

◆✓
logM (m)

� + log

✓
1

6p
� 1

2M (m)
�

◆◆

�
✓

nE

m+ 5
� 12p2

◆⇣
logM (m)

� � log (6p+ 1)
⌘
,

(13)
where in the last step we have used the fact that
M

(m)
� � 24p2 + 15p.
It was shown in [32] that M (m)

� � (q � 2)m�cq for some
�, where cq is a constant independent of m. In particular,
c3  13, c4  7, c5  6, and cq  5 for q � 6. To satisfy
(12), we need

m � max{logq�2(24p
2 + 15p) + cq,L+ 1}. (14)

From (13), for the rate of CE ,
log kCEk

nE
�
✓
m� cq

m+ 5
� 12p2m

nE

◆
log(q � 2)� log(6p+ 1)

m+ 5

�
✓
1� cq + 5

m+ 5
� 12p2m

nE

◆
log(q � 2)� log(6p+ 1)

m+ 5
,

where m satisfies (14). For log p = o(log nE), letting
m = ⇥(log nE), we find that the rate asymptotically satisfies

log kCEk
nE

� log(q � 2)(1� o(1)),

while the redundancy is at least ⇥(nE/ log nE). We observe
that a low redundancy and an asymptotic rate equal to that
of Irrq(nE) is not guaranteed for CE , unlike CB , proposed in
the previous section. However, CB relies on CE to protect its
syndrome as stated in Lemma 18, whose proof is given in the
next subsection.

C. Proof of Lemma 18

To simplify the proof, instead of directly proving Lemma 18,
we prove the following lemma, which essentially reverses the
sequences in Lemma 18. Since both duplication and dedupli-
cation are symmetric operations, the lemmas are equivalent.

Lemma 33. Let � = 01020. There exists an encoder E1 :
⌃L

2 ! Irrq(L0) such that i) E1(u)� 2 Irrq(⇤) and ii) for any

string x 2 Irrq(⇤) with E1(u)�x 2 Irrq(⇤), we can recover

u from any w 2 R(Dp(E1(u)�x)). Asymptotically, L
0 

L/ log(q � 2)(1 + o(1)).

Proof: Let v = E1(u) and w 2 R(Dp(v�x)). Fur-
thermore, let s be |v| � pL-prefix of w. By Lemma 17, we
have s 2 Dp

2pL(v). So s can be obtained from v through at
most 3p L-substring edits. So if we let E1 be an encoder for
CE designed to correct 3p substitution errors and an infinite
number of duplications, we can recover u from s. The rate of
this encoder is lower bounded by log(q � 2)(1 + o(1)).

D. Time complexity of encoding and decoding

In this subsection, we analyze the time complexities of
both the encoding and decoding algorithms for the error-
correcting code in Construction E. Recall that we choose T
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to be a constant and choose N̂ = ⇥(kBm
� k) thus satisfying

log N̂ = ⇥(m). Also, note that nE = ⇥(N̂). Furthermore,
we choose each part Bm

� (j) in the partition of Bm
� to be a

contiguous block in the lexicographically sorted list of the
elements of Bm

� . So the complexity of computing the mapping
⇣j is polynomial in kBm

� k and thus in N̂ .
We first discuss the complexity of the encoding. The

complexity of producing the MDS codewords used in CE
is polynomial in N̂ . Mapping these to sequences in Bm

� is
also polynomial in N̂ as discussed in the previous paragraph.
Hence, the encoding complexity is polynomial in N̂ as well
as in nE .

Decoding can be performed as described in the proof of
Theorem 32, using the decoder described in Theorem 31 and
its proof. As the steps described in the proofs of these theorems
are polynomial in the length of the received sequence, so is
the time complexity of the decoding.

VI. CONCLUSION

We introduced codes for correcting any number of dupli-
cation and at most p edit errors simultaneously. Recall that
the set of irreducible strings is a code capable of correcting
short duplication errors. To additionally correct edit errors, we
append to each irreducible sequence x of length n a vector
generated through syndrome compression that enables us to
distinguish confusable inputs. Given that edit and duplication
errors manifest as substring edit errors, we designed a buffer
and the auxiliary code in a way to enable us to recover the syn-
drome information from the received string. In each step of the
construction, we carefully ensured that the resulting sequence
is still irreducible. The additional redundancy compared to the
codes correcting duplications only [10] is 8p(logq n)(1+o(1)),
with the number of edits p and the alphabet size q being
constants and q � 4. This additional redundancy is at most
a factor of 2 away from the lowest-redundancy codes for
correcting p edits only [37] and a factor of 4 away from the
GV bound given in Theorem 15. The encoding and decoding
processes have polynomial time complexities. We focused
on q � 4 as it includes the case with the most practical
importance, i.e., q = 4. While not all the results of the paper
are valid for q = 3 (e.g., the bound on L

0 in Lemma 18), we
expect many of the ideas to be applicable to this case.

The codes proposed in this work correct a wide range of
errors. However, the number of edit errors is limited to be
a constant. An important and interesting open problem is
extending the work to correct more edits, e.g., linear in the
code length. Additionally, only duplications bounded in length
by three can be corrected, due to the fact that such duplications
result in a regular language. So a second future direction is
extending the work to correct longer duplications.
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APPENDIX A
PROOF OF LEMMA 9

Lemma 9. Given q � 3, we have

max
t2⌃5

q

kR(D1(t))k  kR(D1(01234))k,

where D1(01234) ✓ ⌃⇤
q+4 (the substituted symbol can be

replaced with another symbol from ⌃q+4).

To prove Lemma 9, we start with the definition of domi-
nance between two sequences from [32].

Definition 34. Let s and s̄ be strings of length n, and let A be

the set of symbols in s and Ā the set of symbols in s̄. We say

that s dominates s̄ if there exists a function ⌘ : A ! Ā such

that s̄ = ⌘(s), where ⌘(s) = ⌘(s1) · · · ⌘(sn). Furthermore, a

set U of strings dominates a set T if there is a single mapping

⌘ such that for each string t 2 T there is a string u 2 U such

that t = ⌘(u).

For example, 0102 dominates 1212 (using the mapping
⌘(0) = 1, ⌘(1) = 2, ⌘(2) = 2) but 0102 does not dominate
0010. The string 012 · · · k dominates any string of length k+1.

We recall an auxiliary lemma showing properties of domi-
nance from [32], along with two other auxiliary lemmas that
are used to simplify the proof of Lemma 9.

Lemma 35. ( [32, Lemma 1]) Assume there are two strings

s, s̄ with s dominating s̄.

1) Suppose we apply the same duplication in both s and s̄
(that is, in the same position and with the same length).

Let the resulting strings be s0 and s̄0, respectively. Then

s0 dominates s̄0.
2) If a deduplication is possible in s, a deduplication in the

same position and with the same length is possible in s̄.

Let the result of applying this deduplication to s and s̄
be denoted by s0 and s̄0, respectively. Then s0 dominates

s̄0.

Lemma 36. Let s̄ be a string over ⌃̄ and s a string over ⌃
such that s dominates s̄. Let the number of distinct symbols

in s̄ and s be denoted q̄s and qs, respectively, and suppose

k⌃k � k⌃̄k+(qs�q̄s). Then Dp(s) ✓ ⌃⇤
dominates Dp(s̄) ✓

⌃̄⇤
. In other words, there is a mapping ⌘ : ⌃ ! ⌃̄ that for

any ȳ 2 Dp(s̄) ✓ ⌃̄⇤
, there exists y 2 Dp(s) ✓ ⌃⇤

such that

ȳ = ⌘(y).

Before proving the lemma, we provide an example with
multiple short duplications and a substitution error, where
the duplicated substrings are marked with underlines and the
substituted symbols are in red.

Let ⌃ = {0, 1, 2, 3, 4} and ⌃̄ = {0, 1, 2, 3}. Suppose s =
012 and s̄ = 010 with qs = 3 and q̄s = 2. The mapping
⌘(0) = 0, ⌘(1) = 1, and ⌘(2) = 0, shows that s dominates s̄,
i.e., s = 012 ! s̄ = 010.

Let ȳ1 = 010010010 2 D(s̄). Then there exists y1 =
012012012 2 D(s) dominating ȳ1, via the same mapping ⌘.

Next, assume ȳ2 = 010012010 is generated from ȳ1 by a
substitution 0 ! 2. Then y2 = 012013012, obtained from y1

after a substitution 2 ! 3 in the same position, dominates ȳ2,
via the mapping ⌘ extended by ⌘(3) = 2.

Proof of Lemma 36: Without loss of generality, assume
that ⌃̄ = {0, 1, . . . , k⌃̄k � 1} and that the symbols appearing
in s̄ are 0, 1, . . . , q̄s � 1, where q̄s  k⌃̄k. Similar statements
hold for ⌃, s, qs. By assumption, there exists some mapping
⌘ : {0, . . . , qs�1} ! {0, . . . , q̄s�1} showing that s dominates
s̄. Since k⌃k� qs � k⌃̄k� q̄s, we may extend ⌘ by mapping
symbols in ⌃ not occurring in s to symbols in ⌃̄ not occurring
in s̄. Specifically, we assign ⌘(i) = i � (qs � q̄s) 2 ⌃̄ for
i 2 {qs, qs + 1, . . . , k⌃k � 1} ✓ ⌃ to construct ⌘ : ⌃ ! ⌃̄ .

Let the sequence of errors transforming s̄ to ȳ be denoted by
T̄j , j = 1, . . . , k and let ȳj = T̄j(ȳj�1) with ȳ0 = s̄ and ȳ =
ȳk. We will find a corresponding sequence (Tj), where each
Tj has the same type of error as T̄j , and define yj = Tj(yj�1).
We prove that for each j, we have ȳj = ⌘(yj). The claim holds
for j = 0 by assumption. Suppose it holds for j�1. We show
that it also holds for j. If T̄j is a duplication, by Lemma 35.1),
then we choose Tj to be a duplication of the same length in
the same position. If T̄j substitutes some symbol in ȳj�1 with
a 2 ⌃̄, then Tj substitutes the symbol in the same position in
yj�1 with a symbol b 2 ⌃ such that ⌘(b) = a. It then follows
that ȳj = ⌘(yj) for each ȳj . Therefore, we have Dp(s) ✓ ⌃⇤

dominates Dp(s̄) ✓ ⌃̄⇤.

Lemma 37. If a set of strings Y dominates a second set Ȳ ,

then ||R(Ȳ )||  ||R(Y )||.

Proof: Suppose Y dominates Ȳ via a mapping ⌘ : ⌃ !
⌃̄. Then, for each ȳ 2 Ȳ , there exists some y 2 Y such that

http://cmrr-star.ucsd.edu/psiegel/book_draft/
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ȳ = ⌘(y). For ȳ 2 Ȳ , define ⌘
�1(ȳ) as the lexicographically-

smallest sequence among {y 2 Y : ⌘(y) = ȳ}. Furthermore,
define Y

0 = {⌘�1(ȳ) : ȳ 2 Ȳ } and note that Y 0 ✓ Y . With
this definition, Y 0 dominates Ȳ and ⌘ is a bijection between
the two sets. We have kȲ k = kY 0k  kY k. Also, as Y

0 ✓ Y ,
we have kR(Y 0)k  kR(Y )k.

To prove the lemma, we show that kR(Ȳ )k  kR(Y 0)k. It
suffices to prove that if ȳ1, ȳ2 2 Ȳ have distinct roots, then
y1,y2 2 Y

0, where y1 = ⌘
�1(ȳ1) and y2 = ⌘

�1(ȳ2), also
have distinct roots.

Suppose, on the contrary, that y1,y2 do not have distinct
roots, i.e., R(y1) = R(y2). Let T1 and T2 represent the
sequences of deduplications on y1 and y2 that produce their
roots, i.e., R(y1) = T1(y1) and R(y2) = T2(y2). Based
on the Lemma 35.2) above, there exist two corresponding
sequences of deduplications T̄1 and T̄2 such that T̄1(ȳ1) =
⌘(R(y1)) and T̄2(ȳ2) = ⌘(R(y2)). If R(y1) = R(y2), then
T̄1(ȳ1) = T̄2(ȳ2). But by the uniqueness of the root, R(ȳ1) =
R(T̄1(ȳ1)) and R(ȳ2) = R(T̄2(ȳ2)). So R(ȳ1) = R(ȳ2). But
this contradicts the assumption. Hence, the roots of y1 and y2

are distinct.
With Lemma 36 and Lemma 37 in hand, we prove Lemma 9

in the following.
Proof of Lemma 9: Let s = 01234. If t is the empty

string, the claim is trivial. So in the rest of the proof, we
assume t is not empty. Based on Definition 34, s dominates
t for any t 2 ⌃5

q \ {⇤}. Let qt denote the number of distinct
symbols in t and note that there are 5 distinct symbols in
s. By Lemma 36, with p = 1, D1(s) ✓ ⌃⇤

q+4 dominates
D1(t) ✓ ⌃⇤

q for any t 2 ⌃5
q since q + 4 � q + (5 � qt) as

qt � 1. Applying Lemma 37 to D1(s) and D1(t) completes
the proof.

APPENDIX B
PROOF OF LEMMA 10

Lemma 10. Let U and V be the sets of labels of all paths

from Start to any state and from any state to S9, respectively,

in the finite automaton of Figure 3. Then kUk = kV k and

kR(U)k = kR(V )k.

Proof: Define h(a) = 4 � a for a 2 ⌃5 and h(u) =
h(un)h(un�1) · · ·h(u1) for u 2 ⌃n

5 . Furthermore, for S ✓
⌃⇤

5, define h(S) = {h(u) : u 2 S}. Note that h is its own
inverse. We claim that h has the following properties, to be
proved later:

a) For s, t 2 ⌃⇤
5, s is a prefix of t if and only if h(s) is a

suffix of h(t).
b) For t 2 ⌃⇤

5, D(h(t)) = h(D(t)).
c) For S ✓ ⌃⇤

5, R(h(S)) = h(R(S)).
By definition, if u 2 U then u is a prefix of some

x 2 D(01234). Then, by Property a), h(u) is a suffix of
h(x). By setting t = 01234, it follows from Property b)
that D(01234) = h(D(01234)), and thus h(x) 2 D(01234).
Hence, h(u) is in V . Similarly, we can show that if v 2 V ,
then h(v) 2 U . As h is its own inverse, we have V = h(U)
and kUk = kV k. Applying Property c) with S = U yields
R(V ) = h(R(U)) and kR(V )k = kR(U)k.

We now prove Properties a)-c). Property a) follows from
the definition of h. Property b) follows from the observation
that if x0 is obtained from x via a duplication, then h(x0) can
be obtained from h(x) via a duplication, i.e., the relationship
represented by h is maintained under duplication. To prove
Property c), it suffices to show that R(h(t)) = h(R(t)) for
t 2 ⌃⇤

5, which holds as h is maintained under deduplication.

APPENDIX C
PROOF OF LEMMA 17

Lemma 17. Let x be an irreducible string of length n and r
any string such that xr is irreducible. Let w 2 R(Dp(xr))
and s be the prefix of w of length n�pL. Then s 2 Dp

2pL(x).

Proof: Based on Theorem 13, w can be considered as
being generated from xr by at most p L-substring edits. Let
j be the last symbol of x not affected by a substring edit (i.e.,
it is not deleted by a substring edit, but it may be shifted).
Suppose t  p substring edits occur before xj and at most
p � t after xj . Then, j 2 [n � (p � t)L, n]. The symbol xj

appears as the ith symbol of w for some i 2 [j � tL, j + tL]
. Then, w[i] 2 R(Dt(x[j])). It follows that v 2 R(Dt(x)) for
v = w[i]x[j+1,n]. As i � j � tL and j � n � (p � t)L, we
have n� pL  i. Hence, s = w[n�pL] is a prefix of w[i] and
thus also a prefix of v. Specifically, s can be obtained from
v by a suffix deletion of length

|v|� (n� pL) = i+ (n� j)� (n� pL)
 n+ tL+ (p� t)L� (n� pL)
= 2pL.

As v 2 Dp(x), we have s 2 Dp
2pL(x).

APPENDIX D
PROOF OF LEMMA 19

Lemma 19. For q � 3 and any irreducible string x over ⌃q ,

there is a string bx of length cq such that xbx� is irreducible.

Furthermore, c3 = 13, c4 = 7, c5 = 6, and cq = 5 for q � 6.

Before proving Lemma 19, we recall from [10] that Irrq(⇤)
is a regular language whose graph Gq = (Vq, ⇠q) is a subgraph
of the De Bruijn graph. The vertex set Vq consists of 5-tuples
a1a2a3a4a5 2 Irrq(5) that do not have any repeats (of length
at most 4). There is an edge from a1a2a3a4a5 ! a2a3a4a5a6

if a1a2a3a4a5a6 belongs to Irrq(6). The label for this edge is
a6. The label for a path is the 5-tuple representing its starting
vertex concatenated with the labels of the subsequent edges.
The proof below is similar to that of [32, Theorem 15] and is
presented here for completeness.

Proof: Given x 2 Irrq(n) and q � 3, x can be
represented by a path over the graph Gq , ending at the vertex
x[n�4:n]. Furthermore, � = 01020 can be considered as a
vertex in Gq since � 2 Irrq(5). Let us assume for the moment
that q � 6. Based on [32, Lemma 14], each vertex has at least
q � 2 outgoing edges. So from each vertex, there is at least
one outgoing edge whose label is equal to either 3, 4, or 5. So,
starting from x[n�4:n], we may arrive at some vertex with label
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bx 2 {3, 4, 5}5 in 5 steps. Furthermore, bx� is irreducible
as both bx and � are irreducible and have no symbols in
common. Hence, there is a path of length 5 from bx to �
in Gq . So there is a path in Gq with label xbx�, implying
that xbx� is irreducible. We further have cq = |bx| = 5. For
q 2 {3, 4, 5}, we have verified computationally that, for any
choice of x[n�4:n], there exists a path from x[n�4:n] to � of
length cq + 5, with the value of cq as given in the lemma.
Denoting the label of this path as bx� gives us the sequence
bx of length cq , with xbx� being irreducible.

APPENDIX E
EXAMPLE FOR THEOREM 13

Theorem 13 (c.f. [32, Theorem 5]). Given strings x 2 ⌃n
q

and v 2 Dp(x), R(v) can be obtained from R(x) by at

most p L-substring edits, where L = 17.

The following example illustrates the theorem.

Example 38. Let the alphabet be ⌃4 = {0, 1, 2, 3} and p = 2.

We take the input x to be irreducible, i.e., R(x) = x. By

passing through the channel, x suffers multiple duplications

and 2 symbol substitutions, resulting in y 2 D2(x). We

show the difference between R(x) and R(y) for two possible

input-output pairs. Below, substrings added via duplication

are marked with underlines, while substituted symbols are red

and bold.

First, we provide an example where R(y) can be obtained

from R(x) via non-overlapping substring edits:

x = 3210313230121321,

y = 321320321031313213232121321321,

R(x) = 321|{z}
↵0

|{z}
�1

031|{z}
↵1

3230121| {z }
�2

321|{z}
↵2

,

R(y) = 321|{z}
↵0

320321| {z }
�0

1

031|{z}
↵1

|{z}
�0

2

321|{z}
↵2

,

where the errors are �1 = ⇤ ! �0
1 and �2 ! �0

2 = ⇤.

In the second case, the two edits overlap, leading to a single

substring substitution:

x = 132031230,

y = 132320321320321230230230,

R(x) = 13203| {z }
↵0

|{z}
�

1230|{z}
↵1

R(y) = 13203| {z }
↵0

2132032| {z }
�0

1230|{z}
↵1

.

APPENDIX F
PROOF OF LEMMA 25

Lemma 25. For x 2 Irrq(n) with q � 3,

kBp,2pL
Irr (x)k  q

4pL(n+ pL)2p.

Proof: The proof is similar to that of Theorem 14, but
also takes into account the effect of the suffix deletions, as
shown in Figure 5. We have

Figure 5: s results from passing x and y through a concate-
nation of p DSD(1) channels and a channel deleting a suffix
of length at most 2pL (c.f. Figure 2).

kBp,2pL
Irr (x)k  (968q(n+ pL) + 1)2p(2pL+ 1)(2pLq2pL + 1)

 (2pL+ 1)2q2pL(968q + 1)2p(n+ pL)2p

 q
4pL(n+ pL)2p.

In the first line, (968q(n + pL) + 1)2p is derived based on
Theorem 14; (2pL + 1) bounds the number of ways s can
be obtained from xp through a suffix deletion of length at
most 2pL; and (2pLq2pL + 1) bounds the number of ways
yp can be obtained from s by appending a sequence of
length at most 2pL. The third line is obtained by noting that
(968q + 1)2p(2pL+ 1)2  q

2pL with L = 17.
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