
Linial’s Algorithm and Systematic
Deletion-Correcting Codes

Yuting Li⇤ and Farzad Farnoud†
⇤School of Mathematical Science, Peking University, 1901110017@pku.edu.cn

†Electrical and Computer Engineering, University of Virginia, farzad@virginia.edu

Abstract—In this paper, we present a universal method to

construct systematic codes correcting a constant number of

errors that are traditionally hard to handle, such as insertions

and deletions. Our method is based on Linial’s distributed

graph coloring algorithm, and the codes have polynomial-

time encoding and decoding complexity, with a redundancy

that is about twice the Gilbert-Varshamov bound. As an ap-

plication, for q = O(poly(n)), where q is the size of the

alphabet and n is the code length, we construct systematic

codes correcting t deletions and s substitutions with redundancy

(4t + 4s) log n + (3t + 6s) log q + O(log log n) and systematic

codes correcting t deletions or s substitutions with redundancy

4max{t, s} log n+3max{t, 2s} log q+O(log log n). We also show

that the celebrated ‘syndrome compression’ technique, proposed

by Sima et al. (ISIT 2020), can be viewed as an application

of Linial’s algorithm. Thus our method is a generalization of

syndrome compression.

I. INTRODUCTION

Codes correcting a constant number of deletions have been
studied in several recent works. In [1], Brakensiek et al.
constructed a family of t-deletion-correcting codes with redun-
dancy O(t2 log t log n) and near-linear decoding complexity,
where t is a constant and n is the length of the code. In [2],
Sima et al. constructed a family of t-deletion-correcting codes
with redundancy roughly 8t log n, which are polynomial-time
encodable and decodable. Then in [3], Sima et al. presented a
general technique called syndrome compression, using which
they constructed a family of t-deletion-correcting codes with
redundancy roughly 4t log n, which are polynomial-time en-
codable and decodable.

Syndrome compression can be briefly described as follows.
For x 2 ⌃n

2 and a positive integer t, define

Bt(x) , {y 2 ⌃n

2 : LCS(x,y) � n� t} \ {x},

where LCS(x,y) stands for the length of a longest common
subsequence of x and y. A function f : ⌃n

2 ! [2R(n)] is called
a labeling if for any x 2 ⌃n

2 and y 2 Bt(x), f(x) 6= f(y),
and R(n) = o(log n log log n) [3]. Note that if we have a
labeling f : ⌃n

2 ! [2R(n)], then it is easy to construct a
t-deletion-correcting codes with redundancy roughly R(n).
Syndrome compression is a technique that can lower the
redundancy of labeling-based codes by “compressing” the

This work was supported in part by NSF grants under grant nos. CCF-
1816409 and CAREER-2144974.

label. Concretely, syndrome compression takes an old labeling
over [2o(logn log logn)] and produces a new labeling

fnew : ⌃n

2 ! [22 log |Bt(x)|+o(logn)].

As |Bt(x)| = O(n2t), the resulting t-deletion-correcting codes
have redundancy 4t log n+ o(log n), which is about twice the
Gilbert-Varshamov bound.

While syndrome compression is an effective technique
for constructing low redundancy codes correcting a constant
number of deletions [3]–[6], it relies on the existence of a
labeling over [2o(logn log logn)]. Finding such a labeling is often
a challenging and complicated task. In this paper, we present
a method for constructing a labeling of small size directly,
resulting in a universal way to construct systematic codes
correcting a constant number of deletions. Our method is based
on Linial’s distributed graph coloring algorithm.

The main idea of our method is as follows. Let Gt be
a graph whose vertices are sequences in ⌃n

2 , and (x,y) 2
⌃n

2 ⇥ ⌃n
2 is an edge in Gt if x,y are distinct and have

a common subsequence of length n � t. From a coloring
h : Gt ! [A], A 2 N, which is called an A-coloring,
one can construct a t-deletion-correcting code with redun-
dancy roughly logA. The greedy coloring algorithm gives an
O(�(Gt))-coloring, but computing it takes exponential time.
Linial’s algorithm, proposed in [?], provides a (distributed)
way to color a graph with N vertices and maximum degree
�, using O

�
�2
�

colors in log⇤ N+O(1) rounds. In this paper,
we use the idea of Linial’s algorithm to compute a coloring
h : Gt ! [O

�
�(Gt)2

�
] in polynomial time. Thereby, we get a

family of t-deletion-correcting codes with redundancy roughly
2 log�(Gt) and polynomial-time encoding and decoding.
Since �(Gt) = O(n2t), the redundancy is roughly 4t log n,
which is about twice the Gilbert-Varshamov bound.

Our method has several desirable properties. First, it is
applicable to any class of errors for which the graph has a
bounded maximum degree. Specifically, if we replace the Gt

in the last paragraph with the Gn,q," (defined precisely in
Section II) for an error type ", the idea in the last paragraph
still works. Second, codes constructed by our method are
systematic. Third, the codes are simpler than those constructed
by syndrome compression since we do not need a complex
labeling over [2o(logn log logn)]. Forth, using our method, we
can construct codes for a wider range of parameters than
syndrome compression. In Section V, we demonstrate that

syndrome compression can be viewed as an application of
Linial’s algorithm.

As an application of our method, in Section IV, for al-
phabet size q = O(poly(n)), we construct systematic codes
correcting t deletions and s substitutions with redundancy
(4t+4s) log n+(3t+6s) log q+O(log log n) and systematic
codes correcting t deletions or s substitutions with redundancy
4max{t, s} log n + 3max{t, 2s} log q + O(log log n). Both
codes are polynomial-time-encodable and decodable. The state
of the art and the results presented in this paper can be
compared using Tables I and II. Note that, for q > log n,
systematic codes correcting t deletions and s substitutions
were not constructed before, and for n < q = O(poly(n)),
the redundancy of our q-ary t-deletion-correcting codes is
substantially less than that of the codes in [5].

II. NOTATIONS AND PRELIMINARIES

Let ⌃q be the alphabet {0, 1, . . . , q� 1} and ⌃n
q

denote all
the strings of length n over ⌃q . Strings in ⌃n

q
are denoted by

bold symbols, like u. u[i,j] denotes the substring of u that
begins at position i and ends at position j. |u| denotes the
length of u. For a set S, |S| denotes the cardinality of S.
For a set family J , |J | denotes the number of sets in J .
Logarithms in the paper are to the base 2. The redundancy of
a code C ⇢ ⌃n

q
is defined as log(qn)� log |C| bits.

We use " to denote the possible errors that can occur, which
is called an error type in this paper. For u,v 2 ⌃⇤

q
, we write

u
"�! v if u may become v through the errors in ". For w 2

⌃⇤
q
, we define

Iq,n,"(w) ,
n
u 2 ⌃n

q
: u

"�! w
o

and define Gq,n," to be the graph whose vertices are ⌃n
q

and (u,v) is an edge if u,v are distinct elements in some
Iq,n,"(w). We denote �(Gq,n,") (the maximum degree of
Gq,n,") as �"(q, n), and denote

L"(q, n) , max
�
|Iq,n,"(w)| : w 2 ⌃⇤

q

.

For a vertex u in a graph, we use N(u) to denote the
neighbors of u. For a graph G with vertex set V and a set
S, the function h : V ! S is called a coloring if, for each
vertex u, h(u) is distinct from all h(v), v 2 N(u). The size

of the coloring h is |S|. We say that a coloring h of G can
be computed in time T if, for each vertex u of G, h(u) can
be computed in time T .

We use f(n) = O(g(n))(f(n) = ⌦(g(n))) to denote that
f(n)  cg(n)(f(n) � cg(n)), where c is an absolute constant.

III. CONSTRUCTING CODES USING LINIAL’S GRAPH
COLORING ALGORITHM

Linial’s algorithm, proposed in [?], provides a (distributed)
way to color the vertices of a graph G, with N vertices and
maximum degree �, using O

�
�2
�

coloring in log⇤ N +O(1)
rounds. We briefly recall Linial’s algorithm below through
Definition 1, Fact 1, Fact 2, and Fact 3, which are known
results. A detailed description of Linial’s algorithm can be
found in [7, Section 3.10].

Linial’s algorithm utilizes r-cover-free set families, which
are defined in Definition 1. For a graph G, Linial’s algorithm
uses a �(G)-cover-free set family J over a ground set M to
construct a new coloring of size |M | from an old coloring of
size |J |. Fact 1 and Fact 2 show an explicit construction of
r-cover-free set families, and Fact 3 is Linial’s algorithm. We
will give the proof of Fact 2 and Fact 3 because they may not
be exactly the same as the textbook Linial algorithm.

Definition 1. A family J of subsets of a “ground” set M is

called r-cover-free over M if for each set F 2 J the following

holds: F is not contained in the union of any other r sets in J .

Fact 1 ([8, Example 3.2]). Let Q be a prime power, b, r be

non-negative integers, and

J =
�
{(x, g(x)) : x 2 FQ} :

g(x) = a0 + a1x+ · · ·+ abx
b
, ai 2 FQ

. (1)

If br < Q, then J is an r-cover-free set family over FQ⇥FQ.

There are Q
b+1

sets in the family J , and the size of the ground

set is Q
2
.

Remark 1. We use the notations in Fact 1 and let Fg ,
{(x, g(x)) : x 2 FQ} for each polynomial g with degree at

most b. To find an element in Fg0 \
S

r

i=1 Fgi , one can search

for an x 2 FQ such that gi(x)�g0(x) 6= 0 for all i = 1, · · · , r.

Then (x, g0(x)) 2 Fg0 \
S

r

i=1 Fgi . For each candidate x 2 FQ,

it takes O(rb) = O(Q) time to compute gi(x)� g0(x) for all

i = 1, · · · , r, and there are Q candidates. So it takes O
�
Q

2
�

time to find such x.

Fact 2 (cf. [7, Section 3.10]). If k is sufficiently large (i.e.,

larger than some absolute constant), then there exists an

explicit r-cover-free family J of size at least k over a ground

set of size at most

17r2 log2 k

(log r + log log k)2
.

Proof. For positive integers r, k, let

b =

⇠
2 log k

log r + log log k

⇡

and let Q be a prime power in the interval (rb, 2rb]. Construct
the family J based on Fact 1.

Fact 3 (cf. [?, Theorem 4.1]). Let � = �(G) and suppose

J = {F1, F2, . . . , Fk} is a �-cover-free subset family over a

ground set M . Given an old coloring h : G ! [k], we can get

a new coloring h1 : G ! M . Moreover, if the �-cover-free

subset family is that of Fact 1 and h can be computed in time

T , then h1 can be computed in O(|M |+�T) time.

Proof. For a vertex v in G, since J is �-cover-free,

Fh(v) \
[

i2h(N(v))

Fi 6= ;.

We define h1(v) to be any element in Fh(v) \
S

i2h(N(v)) Fi.
It is easy to see that h1 is a legal coloring of G.

TABLE I
PRIOR WORK

Alphabet size q Error type Redundancy Systematic
[6] q  logn t deletions and s substitutions

⇣
4t+ 4s� 1�

j
2s�1

q

k⌘
logn+ o(logn) yes

[5] logn < q  n t deletions 2t(1 + ")(2 logn+ log q) + o(logn) no
[5] n < q t deletions (30t+ 1) log q no

TABLE II
THIS WORK

Alphabet size q Error type Redundancy Systematic
q = O(poly(n)) t deletions and s substitutions (4t+ 4s) logn+ (3t+ 6s) log q +O(log logn) yes
q = O(poly(n)) t deletions or s substitutions 4max{t, s} logn+ 3max{t, 2s} log q +O(log logn) yes

To compute h1(v), one has to first compute h(v) and
h(N(v)), which takes O(�T) time. If one uses the �-
cover-free family in Fact 1, then by Remark 1, one can
perform an exhaustive search over Fh(v) for an element in
Fh(v) \

S
i2h(N(v)) Fi, which takes O(|M |) time. Thus, the

total time is O(|M |+�T).

Now we use Linial’s algorithm to get a coloring of Gq,n,".
For our purpose, we only need the first two rounds of Linial’s
algorithm. We have three steps. First, we apply Fact 3 with re-
spect to the cover-free set families in Fact 2 and get Lemma 1.
Second, we apply Lemma 1 to graphs with 2O(poly(n) logn)

vertices and get Lemma 2, which gives an O(�2)-coloring for
graphs with 2O(poly(n) logn) vertices and maximum degree �.
Third, if q = O(poly(n)), then Gq,n," has 2O(n logn) vertices.
So we apply Lemma 2 to Gq,n," and get Theorem 1, which
is the main theorem of this paper.

Lemma 1. Suppose �(G) = �, and there exists an old

coloring of size k (larger than some absolute constant) that

can be computed in time T . Then we can get a new coloring

of size

O

✓
�2 log2 k

(log�+ log log k)2

◆

that can be computed in time

O

✓
�T +�2 log2 k

(log�+ log log k)2

◆
.

Proof. By Fact 2 and Fact 3, the lemma is proved.

Lemma 2. Suppose p(n) is a polynomial in n, G has

2O(p(n) logn)
vertices, and �(G) = � = ⌦(n). Then there

exists a coloring h1 of size O
�
�2(p(n))2

�
that can be com-

puted in time O
�
�2

p(n)2
�
. In addition, there exists a coloring

h2 of size O
�
�2
�

that can be computed in time O
�
�3

p(n)2
�
.

Proof. Let h be the trivial coloring of G which colors all the
vertices with different colors, then h can be computed in O(1)
time. By Lemma 1, one gets a new coloring h1 of size

O

�2

✓
p(n) log n

log�+ log(p(n) log n)

◆2
!

= O
�
�2

p(n)2
�

which can be computed in time T1 = O
�
�2

p(n)2
�
. Now we

apply Lemma 1 again, viewing h1 as the old coloring, we can
get a new coloring h2 of size

O

0

@�2

log
�
�2

p(n)2
�

log�+ log log(�2p(n)2)

!2
1

A = O
�
�2
�

(2)

that can be computed in time O
�
�T1 +�2

�
= O

�
�3

p(n)2
�
.

Note that (2) holds because � = ⌦(n).

Theorem 1. For an error type ", suppose �"(q, n) =
O
�
q
a
n
b
�

and q = O(poly(n)), then there exists a coloring

h : Gq,n," !
⇥
O
�
q
2a
n
2b
�⇤
,

which can be computed in O
�
q
3a
n
3b+2

�
time.

Proof. Because q = O(poly(n)), Gq,n," has 2O(n logn) ver-
tices. By Lemma 2, there exists a coloring h : Gq,n," !⇥
O
�
q
2a
n
2b
�⇤

that can be computed in O
�
q
3a
n
3b+2

�
time.

IV. SYSTEMATIC CODES CORRECTING ‘DELETIONS AND
SUBSTITUTIONS’ AND SYSTEMATIC CODES CORRECTING

‘DELETIONS OR SUBSTITUTIONS’

As an application of Theorem 1, we consider deletions
and substitutions and their combinations. In this section, we
assume " can only be ‘t deletions and s substitutions’ or ‘t
deletions or s substitutions’. The goal of this section is to
construct systematic "-correcting codes. Lemma 3 provides
codes of short length that correct errors in ". Lemma 4 uses
the short codes in Lemma 3 to produce systematic "-correcting
codes. Note that the notation defined in Section II is used in
this section.

Lemma 3. For an error type " and non-negative integer

constants a, b, c, d, suppose �"(q, n) = O
�
q
a
n
b
�

and

r(n) = a+ c+ (d log n+ (b+ 1) log log n)/ log q.

Then there exists a code C ⇢ ⌃r(n)
q of size ⌦

⇣
q
c
n
d log1/2 n

⌘

that can correct errors in ". Moreover, if q = O(poly(n)), then

C has polynomial time encoding and decoding algorithms.

Proof. Let C be the maximum independent set of Gq,r(n),".
Then

|C| � q
r(n)

�"(q, r(n)) + 1

= ⌦

✓
q
r(n)

qar(n)b

◆

= ⌦

✓
q
c
n
d
(log n)b+1

r(n)b

◆
.

Note that r(n)  (d + 1) log n when n is sufficiently large.
So

|C| = ⌦

✓
q
c
n
d

(log n)b+1

((d+ 1) log n)b

◆
= ⌦

⇣
q
c
n
d log1/2 n

⌘
.

If q = O(poly(n)), then the size of ⌃r(n)
q is a polynomial

in n. So C has polynomial-time encoding and decoding algo-
rithms.

Lemma 4. For a positive integer N , suppose h : ⌃n
q
! [N] is

a coloring of Gq,n,", and E
0 : [N] ! ⌃r(n)

q is an encoder that

can correct the errors in ". Then E : ⌃n
q
! ⌃n+r(n)

q , E(u) ,
(u, E0(h(u))) is a systematic encoder that can correct errors

in ", which has redundancy r(n) log q.

Let D
0
, D be the decoders corresponding to E

0
and E,

respectively. Suppose E
0

and D
0

can be computed in time

t
0

and T
0
, and h can be computed in time t. Then E can

be computed in time t
0 + t, and D can be computed in

time T
0 + L"(q, n)t. In particular, if t ,t

0
, T

0
, and L"(q, n)

are polynomials in n, then E and D have polynomial time

complexity.

Proof. We first describe D. For a received sequence c0, we
search for the unique v 2 Iq,n,"

⇣
c0[1,|c0|�r(n)]

⌘
such that

h(v) = D
0
⇣
c0[n+1,|c0|]

⌘
and let D(c0) = v.

We prove that D is a decoder of E. Suppose c = E(u)
and c

"�! c0, since " is ‘t deletions and s substitutions’ or ‘t
deletions or s substitutions’, we have

E
0(h(u))

"�! c0[n+1,|c0|]

and
u

"�! c0[1,|c0|�r(n)].

Thus,
D

0
⇣
c0[n+1,|c0|]

⌘
= h(u),

and
u 2 Iq,n,"

⇣
c0[1,|c0|�r(n)]

⌘
.

Hence, D(c0) = u. So, D is a decoder of E.
It is clear that E is systematic and takes t

0 + t time. To
compute D(c0), we have to compute D

0
⇣
c0[n+1,|c0|]

⌘
and the

colors of elements in Iq,n,"

⇣
c0[1,|c0|�r(n)]

⌘
, so D takes T

0 +

L"(q, n)t time. Thus, if t, t0, T 0 and L"(q, n) are polynomials
in n, then E and D has polynomial time complexity.

Putting Theorem 1, Lemma 3, and Lemma 4 together, one
can construct systematic "-correcting codes.

Theorem 2. For an error type " and non-negative integer

constants a, b, suppose �"(q, n) = O
�
q
a
n
b
�

and q =
O(poly(n)). Then there exists a systematic encoder E : ⌃n

q
!

⌃n+r(n)
q correcting errors in ", where

r(n) = 3a+ (2b log n+ (b+ 1) log log n)/ log q.

Hence, the redundancy is 2b log n + 3a log q + O(log log n).
Moreover, E and its decoder have polynomial time complexity.

Proof. By Theorem 1, there exists a coloring h : Gq,n," !
[N], where N = O

�
q
2a
n
2b
�
. By letting c = 2a, d = 2b in

Lemma 3, there exists an encoder E
0 : [N] ! ⌃r(n)

q that
corrects the errors in ". By Lemma 4, E : ⌃n

q
! ⌃n+r(n)

q ,
E(u) , (u, E0(h(u))) is a systematic encoder that can correct
the errors in ". Note that E0, D0 (decoder for E0), and h can be
computed in polynomial time. Since L"(q, n) is a polynomial
in n, by Lemma 4, E and its decoder can also be computed
in polynomial time.

Corollary 1. If q = O(poly(n)), then there exists a systematic

code C ⇢ ⌃n
q

correcting t deletions and s substitutions with

redundancy

(4t+ 4s) log n+ (3t+ 6s) log q +O(log log n).

Moreover, C has polynomial-time encoding and decoding

algorithms.

Proof. If " is ‘t deletions and s substitutions’, then

�"(q, n) = O
�
q
t+2s

n
2t+2s

�
.

By Theorem 2, the corollary is proved.

Corollary 2. If q = O(poly(n)), then there exists a systematic

code C ⇢ ⌃n
q

correcting t deletions or s substitutions with

redundancy

4max{t, s} log n+ 3max{t, 2s} log q +O(log log n).

Moreover, C has polynomial-time encoding and decoding

algorithms.

Proof. If " is ‘t deletions or s substitutions’, then

�"(q, n) = O

⇣
q
max{t,2s}

n
2max{t,s}

⌘
.

By Theorem 2, the corollary is proved.

Remark 2. In [6] a precoding technique is introduced to

reduce redundancy. Precoding is compatible with Linial’s

algorithm. For example, if one uses single deletion-correcting

codes in [9] to precode, then the coefficient of log n in

Corollary 1 can be reduced to 4t+ 4s� 1.

V. RELATIONSHIP BETWEEN LINIAL’S ALGORITHM AND
SYNDROME COMPRESSION

We now show that syndrome compression can be viewed
as an application of Linial’s algorithm, where an existing
coloring of size k = 2o(logn log logn) is used to obtain a new
coloring of size O

�
�22o(logn)

�
. In contrast to the typical use

of polynomials to construct cover-free set families for Linial’s
graph coloring, syndrome compression uses an upper bound
on the number of divisors, as described next.

Fact 4 ([3, Lemma 3], cf. [10]). For a positive integer N � 3,

the number of divisors of N is upper bounded by

21.6
log N

log(log N/ log e) .

Construction 1. Let k and r be positive integers and

A = r21.6
log k

log(log k/ log e) + 1.

Define

Fi = {(a, i mod a) : a 2 [A]}, i 2 [k].

Construct J = {F1, . . . , Fk}.

Lemma 5. The family J created in Construction 1 is an r-

cover-free set family over [A] ⇥ [A]. The size of J is k, and

the size of the ground set is

O

⇣
r
223.2

log k
log(log k/ log e)

⌘
.

Proof. For each Fi, Fj (i 6= j), |Fi \ Fj | is the number of
divisors of |i� j|, which is at most

21.6
log k

log(log k/ log e) ,

by Fact 4. So, r|Fi \ Fj | < A for i 6= j. Hence,

Fi0 \
r[

j=1

Fij 6= ;

if i0 62 {i1, . . . , ir}. Therefore, J is an r-cover-free set family.

Theorem 3 is a restatement of syndrome compression ob-
tained by applying Linial’s algorithm (Fact 3) with respect to
the cover-free set families given in Construction 1.

Theorem 3. Let � = �(G) and suppose there exists an

old coloring of size 2o(logn log logn)
. Then one can get a new

coloring of size O
�
�22o(logn)

�
.

Proof. By assumption, G has an old coloring of size k, where
k = 2w(n) logn and 1 < w(n) = o(log log n). By Construction
1, there exists a �-cover-free set family of size k over a ground
set of size

O

⇣
�223.2

w(n) log n
log(w(n) log n/ log e)

⌘
= O

⇣
�22o(logn)

⌘
.

By Fact 3, we can get a new coloring of size O
�
�22o(logn)

�
.

The main difference between our method and syndrome
compression is the construction of r-cover-free set families.

Note that to get an r-cover-free set family of size k, Con-
struction 1 requires a larger ground set compared to Fact 2. In
other words, for a specific ground set, Construction 1 allows
a smaller r-cover-free set family than Fact 2. Therefore, if
one wants to apply Construction 1 and Fact 3 to get a new
coloring, one needs an old coloring of a small size in advance,
given by the labeling. This restriction may complicate code
construction. By contrast, in our method, we do not need a
labeling of size 2o(logn log logn), and so the code construction
is simpler.

REFERENCES

[1] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” IEEE Transactions on Informa-

tion Theory, vol. 64, no. 5, pp. 3403–3410, 2017.
[2] J. Sima and J. Bruck, “On optimal k-deletion correcting codes,” IEEE

Transactions on Information Theory, vol. 67, no. 6, pp. 3360–3375,
2020.

[3] J. Sima, R. Gabrys, and J. Bruck, “Syndrome compression for optimal
redundancy codes,” in 2020 IEEE International Symposium on Informa-

tion Theory (ISIT). IEEE, 2020, pp. 751–756.
[4] ——, “Optimal systematic t-deletion correcting codes,” in 2020 IEEE

International Symposium on Information Theory (ISIT). IEEE, 2020,
pp. 769–774.

[5] ——, “Optimal codes for the q-ary deletion channel,” in 2020 IEEE

International Symposium on Information Theory (ISIT). IEEE, 2020,
pp. 740–745.

[6] W. Song, N. Polyanskii, K. Cai, and X. He, “Systematic codes correcting
multiple-deletion and multiple-substitution errors,” IEEE Transactions

on Information Theory, vol. 68, no. 10, pp. 6402–6416, 2022.
[7] L. Barenboim and M. Elkin, “Distributed graph coloring: Fundamentals

and recent developments,” Synthesis Lectures on Distributed Computing

Theory, vol. 4, 07 2013.
[8] P. Erdös, P. Frankl, and Z. Füredi, “Families of finite sets in which no

set is covered by the union ofr others,” Israel Journal of Mathematics,
vol. 51, pp. 79–89, 1985.

[9] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion
(corresp.),” IEEE Transactions on Information Theory, vol. 30, no. 5,
pp. 766–769, 1984.

[10] J.-L. Nicolas, “On highly composite numbers,” in Ramanujan revisited

(Urbana-Champaign, Ill., 1987). Academic Press, Boston, MA, 1988,
pp. 215–244.

