Linial’s Algorithm and Systematic
Deletion-Correcting Codes

Yuting Li* and Farzad Farnoud!
*School of Mathematical Science, Peking University, 190111001 7@pku.edu.cn
TElectrical and Computer Engineering, University of Virginia, farzad@virginia.edu

Abstract—In this paper, we present a universal method to
construct systematic codes correcting a constant number of
errors that are traditionally hard to handle, such as insertions
and deletions. Our method is based on Linial’s distributed
graph coloring algorithm, and the codes have polynomial-
time encoding and decoding complexity, with a redundancy
that is about twice the Gilbert-Varshamov bound. As an ap-
plication, for ¢ = O(poly(n)), where ¢ is the size of the
alphabet and n is the code length, we construct systematic
codes correcting ¢ deletions and s substitutions with redundancy
(4t + 4s)logn + (3t 4+ 6s)logg + O(loglogn) and systematic
codes correcting ¢ deletions or s substitutions with redundancy
4 max{t, s} log n+3 max{t, 2s} log g+O(loglog n). We also show
that the celebrated ‘syndrome compression’ technique, proposed
by Sima et al. (ISIT 2020), can be viewed as an application
of Linial’s algorithm. Thus our method is a generalization of
syndrome compression.

I. INTRODUCTION

Codes correcting a constant number of deletions have been
studied in several recent works. In [1], Brakensiek et al.
constructed a family of ¢-deletion-correcting codes with redun-
dancy O(t?logtlogn) and near-linear decoding complexity,
where ¢ is a constant and n is the length of the code. In [2],
Sima et al. constructed a family of ¢-deletion-correcting codes
with redundancy roughly 8t logn, which are polynomial-time
encodable and decodable. Then in [3], Sima et al. presented a
general technique called syndrome compression, using which
they constructed a family of ¢-deletion-correcting codes with
redundancy roughly 4t¢logn, which are polynomial-time en-
codable and decodable.

Syndrome compression can be briefly described as follows.
For « € ¥} and a positive integer ¢, define

By(x) = {y € X5 : LCS(x, y) = n —t} \ {=},

where LCS(x, y) stands for the length of a longest common
subsequence of z and y. A function f : X3 — [27(™)] is called
a labeling if for any « € X} and y € Bi(x), f(x) # f(y),
and R(n) = o(lognloglogn) [3]. Note that if we have a
labeling f : X% — [2%(")], then it is easy to construct a
t-deletion-correcting codes with redundancy roughly R(n).
Syndrome compression is a technique that can lower the
redundancy of labeling-based codes by “compressing” the

This work was supported in part by NSF grants under grant nos. CCF-
1816409 and CAREER-2144974.

label. Concretely, syndrome compression takes an old labeling
over [20(ogloglogn)] and produces a new labeling

Frew : 25 — [QZIOgIBt(w)HO(logn)].

As |Bi(z)| = O(n*), the resulting ¢-deletion-correcting codes
have redundancy 4t logn + o(log n), which is about twice the
Gilbert-Varshamov bound.

While syndrome compression is an effective technique
for constructing low redundancy codes correcting a constant
number of deletions [3]-[6], it relies on the existence of a
labeling over [20(°g 108108 n)] Finding such a labeling is often
a challenging and complicated task. In this paper, we present
a method for constructing a labeling of small size directly,
resulting in a universal way to construct systematic codes
correcting a constant number of deletions. Our method is based
on Linial’s distributed graph coloring algorithm.

The main idea of our method is as follows. Let G; be
a graph whose vertices are sequences in X%, and (x,y) €
Y5 x X% is an edge in G if x,y are distinct and have
a common subsequence of length n — ¢. From a coloring
h : Gy — [Al,A € N, which is called an A-coloring,
one can construct a t-deletion-correcting code with redun-
dancy roughly log A. The greedy coloring algorithm gives an
O(A(G?4))-coloring, but computing it takes exponential time.
Linial’s algorithm, proposed in [?], provides a (distributed)
way to color a graph with N vertices and maximum degree
A, using O(A?) colors in log" N+O(1) rounds. In this paper,
we use the idea of Linial’s algorithm to compute a coloring
h: Gy — [O(A(Gy)?)] in polynomial time. Thereby, we get a
family of ¢-deletion-correcting codes with redundancy roughly
2log A(G;) and polynomial-time encoding and decoding.
Since A(Gy) = O(n?"), the redundancy is roughly 4tlogn,
which is about twice the Gilbert-Varshamov bound.

Our method has several desirable properties. First, it is
applicable to any class of errors for which the graph has a
bounded maximum degree. Specifically, if we replace the G
in the last paragraph with the G, 4. (defined precisely in
Section II) for an error type ¢, the idea in the last paragraph
still works. Second, codes constructed by our method are
systematic. Third, the codes are simpler than those constructed
by syndrome compression since we do not need a complex
labeling over [20(1°g"1°g log ”)]. Forth, using our method, we
can construct codes for a wider range of parameters than
syndrome compression. In Section V, we demonstrate that

syndrome compression can be viewed as an application of
Linial’s algorithm.

As an application of our method, in Section IV, for al-
phabet size ¢ = O(poly(n)), we construct systematic codes
correcting ¢ deletions and s substitutions with redundancy
(4t +4s)logn+ (3t +6s) log ¢ + O(log log n) and systematic
codes correcting ¢ deletions or s substitutions with redundancy
4max{t,s}logn + 3max{t,2s}logq + O(loglogn). Both
codes are polynomial-time-encodable and decodable. The state
of the art and the results presented in this paper can be
compared using Tables I and II. Note that, for ¢ > logn,
systematic codes correcting ¢ deletions and s substitutions
were not constructed before, and for n < ¢ = O(poly(n)),
the redundancy of our g-ary t-deletion-correcting codes is
substantially less than that of the codes in [5].

II. NOTATIONS AND PRELIMINARIES

Let X, be the alphabet {0,1,...,¢— 1} and 37 denote all
the strings of length n over %,. Strings in X7 are denoted by
bold symbols, like w. wu[; ; denotes the substring of w that
begins at position ¢ and ends at position j. |u| denotes the
length of w. For a set S, |S| denotes the cardinality of S.
For a set family J, |7| denotes the number of sets in J.
Logarithms in the paper are to the base 2. The redundancy of
a code C C ¥ is defined as log(¢") — log |C| bits.

We use ¢ to denote the possible errors that can occur, which
is called an error type in this paper. For u,v € ¥, we write
u 5 v if w may become v through the errors in . For w €
Ej‘l, we define

Iq,n,e('lﬂ) £ {u € E;l fu S 'w}

and define G4, to be the graph whose vertices are 37
and (u,v) is an edge if u,v are distinct elements in some
Iyne(w). We denote A(Gy,,.) (the maximum degree of
Gyon,e) as Ac(g,n), and denote

Lc(g,n) £ max{|Ign.c(w)|:w e ;1.

For a vertex u in a graph, we use N(u) to denote the
neighbors of w. For a graph G with vertex set V' and a set
S, the function h : V' — S is called a coloring if, for each
vertex u, h(u) is distinct from all h(v),v € N(u). The size
of the coloring h is |S|. We say that a coloring h of G can
be computed in time 7 if, for each vertex u of G, h(u) can
be computed in time 7'

We use f(n) = O(g(n))(f(n) = Q(g(n))) to denote that
f(n) <ecg(n)(f(n) > cg(n)), where ¢ is an absolute constant.

III. CONSTRUCTING CODES USING LINIAL’S GRAPH
COLORING ALGORITHM

Linial’s algorithm, proposed in [?], provides a (distributed)
way to color the vertices of a graph G, with N vertices and
maximum degree A, using O(A?) coloring in log" N 4+ O(1)
rounds. We briefly recall Linial’s algorithm below through
Definition 1, Fact 1, Fact 2, and Fact 3, which are known
results. A detailed description of Linial’s algorithm can be
found in [7, Section 3.10].

Linial’s algorithm utilizes r-cover-free set families, which
are defined in Definition 1. For a graph G, Linial’s algorithm
uses a A(G)-cover-free set family J over a ground set M to
construct a new coloring of size |M| from an old coloring of
size |J|. Fact 1 and Fact 2 show an explicit construction of
r-cover-free set families, and Fact 3 is Linial’s algorithm. We
will give the proof of Fact 2 and Fact 3 because they may not
be exactly the same as the textbook Linial algorithm.

Definition 1. A family J of subsets of a “ground” set M is
called r-cover-free over M if for each set F' € J the following
holds: F is not contained in the union of any other r sets in J.

Fact 1 ([8, Example 3.2]). Let QQ be a prime power, b,r be
non-negative integers, and

J = {{(x,g(a:)) cx e Fgl:
g(x) = ap+ a1z + -+ apzb,a; € Fo}. (D

If br < Q, then J is an r-cover-free set family over Fg x Fq.
There are Q*t! sets in the family J, and the size of the ground
set is Q2.

Remark 1. We use the notations in Fact 1 and let F, =
{(z,9(x)) : @ € Fg} for each polynomial g with degree at
most b. To find an element in F, \ \J,_, Fy,, one can search
foran x € Fg such that g;(x)—go(x) # O0foralli =1,--- ,r.
Then (z, go(z)) € Fyo\U;_, Fy,;. For each candidate = € F,,
it takes O(rb) = O(Q) time to compute g;(x) — go(x) for all
i=1,---,7, and there are) candidates. So it takes O(QQ)
time to find such x.

Fact 2 (cf. [7, Section 3.10]). If k is sufficiently large (i.e.,
larger than some absolute constant), then there exists an
explicit r-cover-free family J of size at least k over a ground
set of size at most
1712 log? k

(logr + loglog k)2’
Proof. For positive integers r, k, let

B 2log k

| logr +loglog k

and let) be a prime power in the interval (rb, 2rb]. Construct
the family J based on Fact 1. O

Fact 3 (cf. [?, Theorem 4.1]). Let A = A(G) and suppose
J ={F1,Fs,...,F} is a A-cover-free subset family over a
ground set M. Given an old coloring h : G — [k], we can get
a new coloring hy : G — M. Moreover, if the A-cover-free
subset family is that of Fact 1 and h can be computed in time
T, then hy can be computed in O(|M| + AT) time.

Proof. For a vertex v in G, since J is A-cover-free,
Fh(v) \ U F; # 0.
i€h(N (v))

We define hy(v) to be any element in Fi,(y) \ U;epn(n(w)) Fi-
It is easy to see that h; is a legal coloring of G.

TABLE I

PRIOR WORK
Alphabet size q Error type Redundancy Systematic
[6] q <logn t deletions and s substitutions (4t +4s—1— 23(1—_1) logn + o(logn) yes
[5] | logn<qg<mn t deletions 2t(1 + £)(2logn + log q) + o(logn) no
[5] n<gq t deletions (30t + 1) log g no
TABLE II
THIS WORK
Alphabet size g Error type Redundancy Systematic
g = O(poly(n)) | t deletions and s substitutions (4¢ + 4s) logn + (3t + 6s) log g + O(log logn) yes
g = O(poly(n)) | t deletions or s substitutions | 4 max{t, s}logn + 3 max{t,2s}logq + O(loglogn) yes

To compute hi(v), one has to first compute h(v) and
h(N(v)), which takes O(AT) time. If one uses the A-
cover-free family in Fact 1, then by Remark 1, one can
perform an exhaustive search over Fj,(,) for an element in
Frw) \ Uien(n(w)) Fi» which takes O(|M]) time. Thus, the
total time is O(|M| + AT). O

Now we use Linial’s algorithm to get a coloring of Gy r, c.
For our purpose, we only need the first two rounds of Linial’s
algorithm. We have three steps. First, we apply Fact 3 with re-
spect to the cover-free set families in Fact 2 and get Lemma 1.
Second, we apply Lemma 1 to graphs with 20(Poly(n)logn)
vertices and get Lemma 2, which gives an O(A?)-coloring for
graphs with 20(Poly(n)1ogn) yertices and maximum degree A.
Third, if ¢ = O(poly(n)), then G, ,, - has 20("1°8™) vertices.
So we apply Lemma 2 to Gy, and get Theorem 1, which
is the main theorem of this paper.

Lemma 1. Suppose A(G) = A, and there exists an old
coloring of size k (larger than some absolute constant) that
can be computed in time T. Then we can get a new coloring

of size
log? k
AQ
0 < (log A + loglog k)2)

that can be computed in time

log? k
AT + A? :
O(* (log A + loglog k)z)

Proof. By Fact 2 and Fact 3, the lemma is proved. [

Lemma 2. Suppose p(n) is a polynomial in n, G has
20(p(m)logn) yertices, and A(G) = A = Q(n). Then there
exists a coloring hy of size O(A%(p(n))?) that can be com-
puted in time O(A2p(n)2). In addition, there exists a coloring
ho of size O(AQ) that can be computed in time O(A3p(n)2).

Proof. Let h be the trivial coloring of G which colors all the
vertices with different colors, then % can be computed in O(1)
time. By Lemma 1, one gets a new coloring h; of size

p(n)logn

2 2) ,
O (A <log A +log(p(n)log n))) = O(A p(n))

which can be computed in time 77 = O(A?p(n)?). Now we
apply Lemma 1 again, viewing h; as the old coloring, we can
get a new coloring hy of size

o log(A%(n)?) N
o2 <1ogA+1oglog(A2p(n)2)> =0(&%) @

that can be computed in time O (AT} + A?) = O(A®%p(n)?).
Note that (2) holds because A = Q(n). O

Theorem 1. For an error type e, suppose A.(q,n) =
O(q*n®) and q = O(poly(n)), then there exists a coloring

h:Ggne— [O (q2“n2b)],
which can be computed in O(q3“n3b+2) time.

Proof. Because ¢ = O(poly(n)), Gy has 20("1°e7) ver-
tices. By Lemma 2, there exists a coloring h : Ggpe —
[O(¢q**n?")] that can be computed in O (g**n3**2) time. O

IV. SYSTEMATIC CODES CORRECTING ‘DELETIONS AND
SUBSTITUTIONS’ AND SYSTEMATIC CODES CORRECTING
‘DELETIONS OR SUBSTITUTIONS’

As an application of Theorem 1, we consider deletions
and substitutions and their combinations. In this section, we
assume € can only be ‘¢ deletions and s substitutions” or ‘¢
deletions or s substitutions’. The goal of this section is to
construct systematic e-correcting codes. Lemma 3 provides
codes of short length that correct errors in €. Lemma 4 uses
the short codes in Lemma 3 to produce systematic e-correcting
codes. Note that the notation defined in Section II is used in
this section.

Lemma 3. For an error type ¢ and non-negative integer
constants a,b, c,d, suppose A;(q,n) = O(q“nb) and

r(n) =a+ c+ (dlogn + (b+ 1)loglogn)/logq.

Then there exists a code C C 22(”) of size Q(q¢°n? logl/2 n

that can correct errors in €. Moreover, if ¢ = O(poly(n)), then
C has polynomial time encoding and decoding algorithms.

Proof. Let C be the maximum independent set of Gy ().
Then
(n)

q
= Xarmn 1

=0 <qcnd (105(31;“)

Note that 7(n) < (d 4 1)logn when n is sufficiently large.
So
logn)b+!
Cl=0Q c. d (:Q(cdl 1/2)
cl (q " ((d+1)logn)b greioe o n

If ¢ = O(poly(n)), then the size of Zz(") is a polynomial
in n. So C has polynomial-time encoding and decoding algo-
rithms. O

Lemma 4. For a positive integer N, suppose h : ¥ — [N] is
a coloring of Gg e, and E' : [N] — Zg(") is an encoder that
can correct the errors in €. Then £ : X7 — EZ'H(TL), E(u) £
(u, E'(h(w))) is a systematic encoder that can correct errors
in €, which has redundancy r(n)logq.

Let D', D be the decoders corresponding to E' and E,
respectively. Suppose E' and D' can be computed in time
t" and T', and h can be computed in time t. Then E can
be computed in time t' + t, and D can be computed in
time T' + L.(q,n)t. In particular, if t ,t', T', and L.(q,n)
are polynomials in n, then E and D have polynomial time
complexity.

Proof. We first describe D. For a received sequence ¢/, we

search for the unique v € g, (c’[) such that

Lle'|=r(n)]
h() = D' (€41,) and let D(e) = v.
We prove that D is a decoder of E. Suppose ¢ = F(u)

£
and ¢ — c/, since € is ‘t deletions and s substitutions’ or ‘¢
deletions or s substitutions’, we have

E'(h(w)) = ¢/pi1 e

and
U= €|
Thus,
D' (Cfn+1,|c/|]) = h(u),
and

u€lyn, (Cﬁ,\c’\w(n)]))

Hence, D(¢') = u. So, D is a decoder of E.
It is clear that F is systematic and takes ¢’ + ¢ time. To
compute D(c’), we have to compute D’ (c{nJrl Ic/l]) and the

colors of elements in I ,, . (cf1 le/|—r(n)])+ SO D takes T +
L.(g,n)t time. Thus, if t,¢',7" and L.(q,n) are polynomials
in n, then E' and D has polynomial time complexity. O

Putting Theorem 1, Lemma 3, and Lemma 4 together, one
can construct systematic e-correcting codes.

Theorem 2. For an error type £ and non-negative integer
constants a,b, suppose Ac(q,n) = O(q“nb) and q =
O(poly(n)). Then there exists a systematic encoder E : ¥ —

n+r(n . .
Eq+) correcting errors in €, where

r(n) = 3a+ (2blogn + (b+ 1)loglogn)/logq.

Hence, the redundancy is 2blogn + 3alogq + O(loglogn).
Moreover, E and its decoder have polynomial time complexity.

Proof. By Theorem 1, there exists a coloring h : Ggpne —
[N], where N = O(q**n?"). By letting ¢ = 2a,d = 2b in
Lemma 3, there exists an encoder E' : [N] — 5™ that
corrects the errors in €. By Lemma 4, E : E;‘ — E;H_T("),
E(u) 2 (u, E'(h(u))) is a systematic encoder that can correct
the errors in €. Note that £/, D’ (decoder for E’), and h can be
computed in polynomial time. Since L.(gq,n) is a polynomial
in n, by Lemma 4, E and its decoder can also be computed
in polynomial time. O

Corollary 1. If ¢ = O(poly(n)), then there exists a systematic
code C C Xy correcting t deletions and s substitutions with
redundancy

(4t + 4s)logn + (3t + 6s) log ¢ + O(loglog n).

Moreover, C has polynomial-time encoding and decoding
algorithms.

Proof. If € is ‘t deletions and s substitutions’, then
AE (q’ ’/L) — O(qt+25n2t+25))
By Theorem 2, the corollary is proved. O

Corollary 2. If ¢ = O(poly(n)), then there exists a systematic
code C C X correcting t deletions or s substitutions with
redundancy

4max{t, s} logn + 3max{t, 2s} log ¢ + O(loglogn).

Moreover, C has polynomial-time encoding and decoding
algorithms.

Proof. If € is ‘t deletions or s substitutions’, then
AE (q’ Tl) =0 <qmax{t,23}n2 max{t,s})]
By Theorem 2, the corollary is proved. O

Remark 2. In [6] a precoding technique is introduced to
reduce redundancy. Precoding is compatible with Linial’s
algorithm. For example, if one uses single deletion-correcting
codes in [9] to precode, then the coefficient of logn in
Corollary 1 can be reduced to 4t + 4s — 1.

V. RELATIONSHIP BETWEEN LINIAL’S ALGORITHM AND
SYNDROME COMPRESSION

We now show that syndrome compression can be viewed
as an application of Linial’s algorithm, where an existing
coloring of size k = 20(egnloglogn) is ysed to obtain a new
coloring of size O(A22"(log ”)). In contrast to the typical use
of polynomials to construct cover-free set families for Linial’s
graph coloring, syndrome compression uses an upper bound
on the number of divisors, as described next.

Fact 4 ([3, Lemma 3], cf. [10]). For a positive integer N > 3,
the number of divisors of N is upper bounded by

log N
21'6 log(logo%\]/ loge) |
Construction 1. Let k and r be positive integers and
log k
A — 7‘21'610g(10gi/10g e) + 1.

Define
F; ={(a,imod a) : a € [A]},i € [K].
. Fr}

Lemma 5. The family J created in Construction 1 is an r-
cover-free set family over [A] x [A]. The size of J is k, and
the size of the ground set is

log k
O (7"223.2 log(log k/ log e)) 3

Proof. For each F;, F; (i # j), |F; N Fj| is the number of
divisors of |i — j|, which is at most

Construct J = {Fy, ..

1.6%
2 Tog(log k/ log e) ,

by Fact 4. So, r|F; N Fj| < A for i # j. Hence,
F \|JF;, #0
j=1
if i & {i1, ..

., 4. }. Therefore, J is an r-cover-free set family.
O

Theorem 3 is a restatement of syndrome compression ob-
tained by applying Linial’s algorithm (Fact 3) with respect to
the cover-free set families given in Construction 1.

Theorem 3. Let A = A(G) and suppose there exists an
old coloring of size 20008 ™108108M) Then one can get a new

coloring of size O<A22O(log n))'

Proof. By assumption, G has an old coloring of size k, where
k= 2wmlogn and 1 < w(n) = o(loglogn). By Construction
1, there exists a A-cover-free set family of size k over a ground
set of size

w(n)logn

10) (A223.2m> -0 (A220(10g n)) .

By Fact 3, we can get a new coloring of size O(A?200ce™)),
O

The main difference between our method and syndrome
compression is the construction of r-cover-free set families.

Note that to get an r-cover-free set family of size k, Con-
struction 1 requires a larger ground set compared to Fact 2. In
other words, for a specific ground set, Construction 1 allows
a smaller r-cover-free set family than Fact 2. Therefore, if
one wants to apply Construction 1 and Fact 3 to get a new
coloring, one needs an old coloring of a small size in advance,
given by the labeling. This restriction may complicate code
construction. By contrast, in our method, we do not need a
labeling of size 2°(°gn1oglogn) "and so the code construction
is simpler.

REFERENCES

[1] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” IEEE Transactions on Informa-
tion Theory, vol. 64, no. 5, pp. 3403-3410, 2017.

[2] J. Sima and J. Bruck, “On optimal k-deletion correcting codes,” IEEE
Transactions on Information Theory, vol. 67, no. 6, pp. 3360-3375,
2020.

[3] J. Sima, R. Gabrys, and J. Bruck, “Syndrome compression for optimal
redundancy codes,” in 2020 IEEE International Symposium on Informa-
tion Theory (ISIT). 1EEE, 2020, pp. 751-756.

[4] , “Optimal systematic t-deletion correcting codes,” in 2020 IEEE

International Symposium on Information Theory (ISIT). 1EEE, 2020,
pp. 769-774.

[S] ——, “Optimal codes for the g-ary deletion channel,” in 2020 IEEE
International Symposium on Information Theory (ISIT). 1EEE, 2020,
pp. 740-745.

[6] W. Song, N. Polyanskii, K. Cai, and X. He, “Systematic codes correcting
multiple-deletion and multiple-substitution errors,” IEEE Transactions
on Information Theory, vol. 68, no. 10, pp. 6402-6416, 2022.

[7]1 L. Barenboim and M. Elkin, “Distributed graph coloring: Fundamentals
and recent developments,” Synthesis Lectures on Distributed Computing
Theory, vol. 4, 07 2013.

[8] P. Erdos, P. Frankl, and Z. Fiiredi, “Families of finite sets in which no
set is covered by the union ofr others,” Israel Journal of Mathematics,
vol. 51, pp. 79-89, 1985.

[9] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion
(corresp.),” IEEE Transactions on Information Theory, vol. 30, no. 5,
pp. 766-769, 1984.

[10] J.-L. Nicolas, “On highly composite numbers,” in Ramanujan revisited
(Urbana-Champaign, Ill., 1987). Academic Press, Boston, MA, 1988,
pp. 215-244.

