
Constrained Code for Data Storage in DNA
via Nanopore Sequencing
Kallie Whritenour⇤, Mete Civelek† and Farzad Farnoud⇤

⇤ Computer Science, University of Virginia, U.S.A., {kw5km,farzad}@virginia.edu
† Biomedical Engineering, University of Virginia, U.S.A., {mete}@virginia.edu

Abstract—DNA has been proposed as an alternative to mag-

netic and solid-state devices for storing digital data. In DNA

data storage, writing data is performed by DNA synthesis and

reading is done via sequencing. Nanopore devices for sequencing

DNA, e.g., those produced by Oxford Nanopore Technologies

(ONT), allow long reads and real-time sequencing but with lower

accuracy compared to other third-generation sequencers (e.g.

Illumina). To improve the reliability of data storage in DNA,

we aim to combat the high error rate of nanopore sequencing

using constrained coding. Certain aspects of the physical process

underlying nanopore sequencing mean that some sequences are

more prone to sequencing errors than others. We leverage this

observation to design constrained codes using constrained de

Bruijn graphs, along with a state-splitting encoder and a Viterbi-

based decoder. We find that the overall performance of our novel

coding system substantially improves upon the state-of-the-art

DNN-based method.

I. INTRODUCTION

Recently, DNA synthesis and sequencing have become
increasingly more reliable and affordable. Given these new
advances, DNA is emerging as a feasible avenue for future data
storage needs. Offering high data density [1], easy methods of
replication [2], and a long storage life [3], [4], DNA shows
compelling advantages over current data storage solutions
[5]. Research in DNA data storage aims to leverage these
characteristics to develop a robust and reliable storage system,
including in the DNA of living cells. Despite these advantages
over traditional storage media, both synthesis and sequencing
of DNA molecules can be prohibitively expensive [1], [6].
This work focuses on improving the accuracy of nanopore
sequencing, a technology that is both portable and compara-
tively inexpensive but suffers from a higher sequencing error
rate [7].

Many recent works in the field of DNA data storage explore
applications of error correction techniques [2]. One such
example is the application of Reed-Solomon codes [8] and
Fountain Codes [9] for erasure errors. Constrained codes have
also been investigated for correction of tandem duplications
[9] and avoiding sequences more likely to produce basecalling
errors [10], [11].

Methods applying the Oxford Nanopore MinIon suffer from
additional sources of error in their sequencing channels. In
order to apply this inexpensive technology to the problem of
DNA data storage, these sources of error must be considered
when attempting error correction. In [12], convolutional codes
are used to create a constrained set of codewords that are then
weighted by the ONT RNN basecaller output. [13] utilized the

Scrappie simulator in order to reject short DNA tags that do
not meet certain current distance requirements, allowing clas-
sification for decoding. This approach is not feasible for DNA
data storage encoding as there is no computationally-feasible
encoding or decoding algorithm. [10] addresses Nanopore’s
inability to accurately handle repeated bases by introducing a
run-length-limited (RLL) code.

y
t

y
t+1

y
t+2

y
t+3

y
t+4

y
t+5

y
t−2

y
t−1

y
t−3

y
t+6

y
t+7

y
t+8

Fig. 1: A DNA
molecule passing
through a
nanopore.The
arrow indicates
the direction of
movement of the
DNA molecule.

We can view the DNA data storage
system studied in this paper as follows.
A data sequence x 2 {0, 1}n is encoded
as a sequence y 2 {A,C,G, T}m, which
is then synthesized as a DNA molecule,
storing the data. To read the data, the
DNA molecule passes through a nanopore
sequencer, as shown in Figure 1. Specif-
ically, the nanopore sequencer works
by wrenching a single strand of DNA
through a pore via motor proteins. At
each point in time, a substring of k bases,
called a k-mer, is inside this pore (in this
work, we set k = 6, in line with the
r9.4.1 nanopore). Then, the molecule is
moved by one base, resulting in the next
(overlapping) k-mer being placed inside
the pore. Nanopore produces an electrical
current signal whose value depends on
the identity of the k-mer in the pore, but
possibly also other bases surrounding the
nanopore. The signal is also affected by a random dwell time,
i.e., how long the k-mer stays in the nanopore before the
DNA molecule is moved ahead by one base. The current
signal is sampled to produce a signal z 2 RM . An example
of a (sampled) current signal is given in Figure 2 (Top),
where vertical dashed lines indicate the instances that the
DNA molecule moves in the pore. The current signal is then
decoded into a sequence of bases ŷ, in a process referred to
as basecalling, which is then decoded to a binary message x̂.

One way to decode the current signal is to segment it
into intervals, each of which corresponding to a k-mer. How-
ever, if two adjacent (overlapping) k-mers, e.g., y0, . . . , y5
and y1, . . . , y6 produce similar current values, segmentation
becomes challenging. Examples can be seen in Figure 2 (Top),
highlighted using vertical rectangles (recall that the vertical
lines are the true segmentation). Errors in segmentation may
then lead to errors in the decoded signal. In this paper, we

Fig. 2: k-mer event segmentation for currents (scaled to median
68pA) simulated by DeepSimulator from sequences corresponding to
random walks on constrained de Bruijn graph described in III-A for
constraint values � = 0, 10 pA. Events with difficult-to-distinguish
boundaries are labeled with red boxes for � = 0 graph.

propose constraining the DNA base sequence with the aim of
ensuring that there is a gap between the current values of each
pair of adjacent k-mers. We hypothesize that doing so may
improve the performance of suitably designed segmentation-
based decoders. It may also reduce errors in other decoders,
e.g., DNN-based decoders. We thus propose constrained codes,
represented by a de Bruijn graph, where transitions are al-
lowed only between k-mers whose expected currents differ by
more than a given threshold �. An example of the current
signal for such a sequence is given in Figure 2 (Bottom),
where it can be observed that transitions between k-mers
with similar currents are almost entirely eliminated. For the
proposed codes, we construct a state-splitting encoder and a
Viterbi decoder. We show using a state-of-the-art nanopore
simulator that this approach reduces the error as measured
by edit distance by almost a factor of 2. Furthermore, for
moderate threshold values, the performance of the state-of-
the-art DNN-based decoder Guppy also improves compared to
unconstrained sequences. Finally, we analyze how each error
type, namely insertions, deletions, and substitutions, changes
as the threshold varies. As may be expected, deletion errors
are decreased to a larger extent compared to insertions and
substitutions when the performance of our proposed method
is compared to Guppy.

The rest of this paper is organized as follows. In the next
section, we study the nanopore sequencing channel in further
detail. Codes, along with encoders, are discussed in Section III,
while Section IV presents the decoding algorithms. Simulation
results are presented in Section V. We conclude the paper in
Section VI.

II. THE NANOPORE CHANNEL

An overview of the nanopore channel was presented in
the previous section and a diagram is shown in Figure 1.

In this section, we will provide further detail about nanopore
sequencing, discuss simulators for the channel and their use
in designing and evaluating the proposed codes, and provide a
memoryless model used in decoding along with a linear model
of current values providing further intuition.

As stated, the DNA molecule passes through the pore such
that at each point in time, there are k bases in the pore,
where we set k = 6. The movement is step-wise, where
in each step, the molecule moves by one base. The time
period that a given k-mer spends in the pore is called its
dwell time, which is a random quantity. Nanopore’s speed is
around 450 bases per second [14], [15], and so, on average
each k-mer spends around 2.22 ms in the pore. The current
signal is sampled at 4,000 Hz. Hence, on average, for each
k-mer, we obtain around 8.89 current values. Of course, due
to the randomness of the dwell times, current values are not
deterministically associated with specific k-mers. Additionally,
the current values for a given k-mer are also noisy. For
each of the 46 = 4, 096 possible 6-mers, Oxford Nanopore
Technologies (ONT) provides the mean and the variance of the
current values [14], [16]. The current values, however, depend
on the surrounding bases in a complicated manner [14].

A. Simulation of channel
Encoding and decoding methods that we develop should

ideally be evaluated through an experiment using nanopore
sequencers. However, in DNA data storage, these tasks rely
on synthesizing and sequencing a large number of DNA
molecules, which is infeasible due to the high cost. As a
surrogate for real-world experiments, faithful simulators of the
channel can be used. Given the fact that the output signal
depends not only on the bases inside the pore but also on
other bases, providing only the mean of the signal and the
noise variance for each k-mer is not sufficient.

Oxford Nanopore Technologies provides an RNN-based
simulator for the nanopore channel, called Scrappie (available
through a developer license). DeepSimulator [14] is another
deep learning-based nanopore current simulator. We use the
Scrappie simulator to investigate the current mean for each
k-mer and the DeepSimulator’s context-dependent tool to
simulate the nanopore channel as its noise levels have been
shown to be closer to true nanopore current variation and is
most up to date with emerging nanopore technologies [14].

Given a DNA sequence, DeepSimulator first produces a
single value for each k-mer using a Bi-LSTM. Then each
value is repeated according to a certain distribution to simulate
the random dwell times. The resulting signal is then passed
through a low-pass filter with a cut-off of 950 Hz to eliminate
the high frequencies present in square waves. Finally, indepen-
dent Gaussian noise (default � = 1) is added to each signal
value.

B. Linear and memoryless models
In this subsection, we present a linear model describing

the signal values based on the bases in a k-mer, as well as
a Markov model of the current signal. The linear model is

Fig. 3: Heat map of estimated coefficient values for 9 bases, including
three positions in front of the 6 bases in the pore. Position 0 on the
horizontal access in this figure corresponds to yt in Figure 1, 1 to
yt+1, �1 to yt�1 and so on.

presented to provide intuition for the effects that sequence
structure has on the output signal, while the memoryless model
is later used in our Viterbi decoder.

Linear model for k-mer current values: To better under-
stand the effect of each base at each position on the value of
the current signal, we construct a linear model with coefficients
ciN corresponding to the contribution of base N in position
i of the pore. Given that this model is only used to provide
a better understanding of the channel, further details of the
model and training appear in the Appendix. The heat map of
these coefficients is given in Figure 3. We observe that the
bases at positions 2 and 3 in the pore have the greatest effect
on the value of the signal. Furthermore, considering only the
bases in the pore for the purpose of code construction appears
to be sufficient.

Memoryless channel model: We now present a Markov
channel model, based on which we will construct our Viterbi
decoder in Section IV. The model is shown in Figure 4. It
is assumed that k = 6 and the current k-mer is represented
by y50 = y0y1 · · · y5, shown by a corresponding node of
the same label in Figure 4. In the next time step, the DNA
molecule may move one base through the pore, leading to a
node y1y2 · · · y5N , where N 2 {A,C,G, T}, or remain at
the current position, as represented by the self-loop. So in this
model, the dwell time is geometric. We assume the probability
of the self-loop is 1 � 1/8 and transitions to the other four
nodes have equal probability. The outgoing edges from nodes
y1y2 · · · y5N are not shown. In each time step, the current
signal value zi is given by a normally distributed emission
N (zi;µyj

i
,�yj

i
), where µyj

i
,�yj

i
are the ONT reported means

and standard deviations for the 6-mer yji . We note that the
dependence of the current values on only the current k-
mer and geometric dwell times are not necessarily accurate
but they will simplify the design of the decoder. Also, note
that our evaluation relies on the neural networks capable of
representing complex dependencies between the signal and the
sequence.

III. CODE CONSTRUCTION AND ENCODING

A. Constrained codes for accurate segmentation
A main challenge for the segmentation of the current signal

into intervals representing distinct k-mers is that two k-mers

... y50

N (z0;µy50
, �y50

)

y51C

N (z1;µy51C
, �y51C

)

y51A

N (z1;µy51A
, �y51A

)

y51G

N (z1;µy51G
, �y51G

)
y51T

N (z1;µy51T
, �y51T

)

Fig. 4: Diagram of hidden Markov representation of a single transition
between adjacent k-mers in the channel. Circle nodes denote the k-
mer in the pore and rectangles denote the emitted signal values.

may have very similar current values. This would create
difficulties in differentiating the transitions between these k-
mers, which can result in inaccurate basecalling. To avoid
such cases, we propose a constrained code that guarantees
the difference between current values for two adjacent k-mers
is larger than a given value �. To achieve this, we use de
Bruijn graphs to represent allowable sequences, which have
been used previously to model constrained codes for different
applications [17], [18].

Specifically, the vertices of our de Bruijn graph are strings
of length k, i.e., k-mers. There is an edge between two k-
mers y1 · · · yk and y2 · · · yk+1. A path in the de Bruijn graph
represents a sequence. We label each edge by the difference
between the approximate currents of the corresponding k-
mers, i.e., by |µ(y1 · · · yk) � µ(y2 · · · yk+1)|, where µ is the
mean current, in pA, for the given k-mer obtained from the
official statistics of 6-mer means released by ONT [16]. Edges
are pruned if the edge label is below a threshold �. Then, we
are ensured that any path in our de Bruijn graph represents a
sequence such that the estimated difference between current
values of adjacent k-mers will meet our threshold. This will
allow us to make more accurate segmentations of the noisy
k-mer events when basecalling.

Here, � is treated as a tuneable parameter that controls
the trade-off between rate and performance. As � increases,
more edges are pruned but transitions between k-mers become
easier to identify. In other words, as � increases, the code rate
decreases but segmentation becomes easier. The code rate as
a function of � is given in Figure 6. This figure also shows
the actual code rate achieved by the state-splitting encoder
discussed next.

While we will later present a Viterbi decoder that simulta-
neously segments the signal and identifies the bases in each k-
mer, to investigate the ability of the proposed code to increase

Fig. 5: ROC curves for segmentation of current signals based on
analyzing 1000 sequences of length 200 produced with default Deep
Simulator parameters.

segmentation performance, we construct a simple method to
segment the signal. Given the current signal z, to determine
whether there is a transition between zt and zt+1, define
z01 =

Pt
i=t�w+1 zi

w , z02 =
Pt+w

i=t+1 zi
w to be the average of signal

values in a window of length w. We choose w = 3 as the dwell
time is rarely less than 3. For a threshold �, if |z01� z02| > �,
we declare a transition between adjacent k-mers. By varying
�, one can control the trade-off between the false positive
and false negative rates and obtain the Receiver Operating
Characteristic (ROC) curves. These curves, along with the
associated Area Under the Curve (AUC) values, are given in
Figure 5 for � = 0, 5, 7, 9. The figure shows that increasing �
also increases the performance of segmentation.

B. State-Splitting Algorithm for Encoding

Encoding on the constrained code was implemented using
the state-splitting algorithm. The state-splitting algorithm can
construct finite-state encoders given a graph representation
of a constrained system S, characterized by graph G [19]
by successively splitting states, or vertices, of a power of
the de Bruijn graph, until a minimum out-degree is reached.
The resulting encoder structure can be changed through the
algorithm’s input parameters, p, q, where p

q  cap(S), 2p is
the desired minimum out-degree, and the splitting is performed
on Gq . We choose p, q as close to the capacity of the input
graph for each constraint separately, favoring small numbers
to reduce the complexity of the state-splitting algorithm, with
q  6. For nodes with > 2p outgoing edges, extraneous
edges were pruned in order of lowest edge weights. En-
coding can then be done by assigning each edge a value
from {0, 1}p. For each � = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, the
p
q inputs to the state-splitting algorithm were as follows:
{ 10

6 , 10
6 , 10

6 , 10
6 , 10

6 , 8
6 ,

8
6 ,

8
6 ,

8
6 ,

6
6}.The rates of the codes pro-

duced by the algorithm are given in Figure 6, along with the
capacities of the constrained graph for different values of �.

Fig. 6: Code rates achieved for the de Bruijn graph constrained at
different values of � for both the original de Bruijn and state-split
graphs.

Fig. 7: ISI is caused in nanopore signals due to the fact that the signal
is band limited. This is represented in Deep Simulator by applying
a low-pass filter to a square-wave signal before noise is added. The
graph shows both the unfiltered signal and the filtered signal with
a cutoff of 950 Hz. When the unfiltered signal changes rapidly, the
values of the filtered signal also change rapidly but are inaccurate.
The points indicated by ? are removed from the filtered signal by a
preprocessing step to reduce ISI.

IV. DECODING OF CONSTRAINED CODES

In this section, we will present the decoding algorithm for
the proposed constrained codes. To do so, we utilize a Viterbi
decoder based on the hidden Markov model in Figure 4 that
also takes into account the constraints on transitions between
the k-mers represented by the de Bruijn graph. Before doing
so, however, we aim to reduce Intersymbol Interference (ISI)
in the signal.

A. Reducing Intersymbol Interference

There are two main sources of ISI. First, even though the
k-mer inside the pore has the largest effect on the nanopore
signal, the signal appears to depend in complex ways on
other bases in the sequence. This source of ISI is difficult
to characterize. The second, more manageable source results
from the fact that the signal is naturally band-limited [14],
which Deep Simulator models via a low-pass filter. The
dominant part of the effect of filtration can be seen in Figure 7,
where sharp rises at the boundary between two k-mers are
made smoother, leading to data points around the transition
affected by the current values for both k-mers, possibly leading
to decoding errors, including insertions, if these data points are
interpreted as signal levels corresponding to a k-mer with a
short dwell time, and substitutions if these affect decoding
k-mers around the transition.

To address ISI resulting from filtration, we can expand the
Markov model for the channel (Figure 4) to include states for
transitions between two k-mers. But doing so would substan-
tially add to the complexity of the Viterbi decoder. Instead,
we opt for a simpler approach, namely, removing the points
that may have been made inaccurate by filtration from the
signal. Specifically, if the distance between two consecutive
points in the (filtered) signal is larger than 2b�µc, where �µ is
the average standard deviation of 6-mers reported by ONT,
they are both removed from the signal in a preprocessing
step. In this way, if the gap between two consecutive points
is larger than what is expected based on noise for current
values for a single k-mer, they are viewed as points around a
transition between k-mers. This approach can also be viewed
as first performing segmentation on the signal as described in
Section III-A but with w = 1 and then removing the first and
last points in each segment, which are most affected by ISI.
The Viterbi algorithm described next performs segmentation
independently (and simultaneously with k-mer identification).
So any errors in the preprocessing step do not necessarily
translate into errors in decoding.

B. Viterbi Algorithm for Basecalling

Viewing the channel model in Figure 4 as a hidden Markov
model, we can construct a Viterbi decoder. The model must be
updated based on the constrained de Bruijn graph to eliminate
edges between k-mers whose change in current values falls
below the threshold �. This change requires us to also update
the transition probabilities since some outgoing edges are
eliminated. Transition probabilities were chosen to be uniform
for all non-self transitions,

P (vi ! vj) =
1
dP4k

j0=0 Aij0
(1)

P (vi ! vi) = 1� 1

d
(2)

where vi, vj are the k-mers indexed by i, j, A is the 4k ⇥ 4k

matrix defining allowable edges, and d is the expected dwell
time. With the hidden Markov model in hand, we imple-

Fig. 8: Basecalling performance on random (� = 0) and constrained
sequences produced by the state-split algorithm on de Bruijn graph
(� > 0), with 10000 sequences of length 200. Measured in aver-
age Levenshtein distance over all sequences for Viterbi Basecaller
proposed by this work and the ONT Guppy Basecaller. Error bars
indicate 80th percentile.

ment the Viterbi decoder for segmentation and basecalling
of the output current of the nanopore device. The results in
Figures 9, 8 for Viterbi basecalling had parameter settings
k = 6, d = 8, resulting in an average dwell time close to
that of nanopore (note that the dwell time may be reduced
slightly due to the preprocessing step discussed above).

V. RESULTS

The metric for measuring basecalling (decoding) perfor-
mance was Levenshtein distance, i.e. the number of ed-
its (insertions, deletions, substitutions) required to trans-
form the basecalled sequence to the true sequence. The
performance was measured on random sequences (uncon-
strained, with � = 0) and constrained sequences produced
by the state-splitting encoder using random data with � =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} pico-Amps. For each �, the Viterbi
basecaller and the Guppy basecallerwere evaluated, in terms
of both the total edit distance and individual error types.
The Guppy basecaller is the state-of-the-art DNN-based model
[15], [20]. The results are presented in Figures 9, 8.

Most importantly, in Figure 8, we observe that the Viterbi
decoder applied to preprocessed sequences is able to outper-
form the existing decoder applied to unconstrained sequences
for � as small as 1, with � � 4 showing minimal overlap
of the decoders’ 80th percentiles of scores. This indicates
that our method can improve upon state-of-the-art accuracy.
For example, for � = 9 pA, the edit distance for the Viterbi
decoder is around 50% lower than the existing methods on
unconstrained sequences (obtained at the cost of approxi-
mately 0.7 bits/base in rate). Furthermore, we observe that
the constrained sequences lead to decreased average error for
all values of � for Guppy, though for � > 6, we observe
the average error begins to rise. This behavior shows that our

(a) (b) (c)

Fig. 9: Basecalling performance on random (� = 0) and constrained sequences produced by the state-splitting algorithm on de Bruijn graph
(� > 0), with 10000 sequences of length 200. Average number of (a) insertions (b) deletions, and (c) substitutions per each constraint for
Viterbi Basecaller proposed by this work and the ONT Guppy Basecaller.

constrained encoding can offer performance improvements for
off-the-shelf basecallers, even though their decoding mecha-
nism is not aware of the constraints. But when � is too large,
the performance of the Guppy decoder degrades. We suspect
that the reason is the increased probability of tandem repeats,
or a k-mer being repeated in small windows. Seemingly, the
errors resulting from such repeats cannot be compensated by
the more clear transitions between k-mers if the decoders do
not take advantage of the constraints.

The proposed method also outperforms the use of state-of-
the-art error-correcting codes to eliminate errors. The best-
known codes for correcting edit errors are those given in [21]
whose redundancy is at least 2t(2 log2 n + log2 q) bits for
correcting t edit errors in a q-ary sequence of length n. For
n = 200 and q = 4, correcting each error would cost 17.3
symbols in redundancy. So correcting 12 edit errors would
lead to redundancy as large as the sequence length, making
the rate 0. The method proposed here, however, can prevent
that many errors with � = 7 at a rate of at least 1.3 bits/symbol.
Similar statements can be made for other values of �.

In Figure 9, the edit errors are broken down into insertions,
deletions, and substitutions. We observe that while all error
types decrease for Viterbi as � increases, insertion errors de-
crease by the largest margin among error types for the Viterbi
decoder. This may be expected as enhancing the transitions
between k-mers leads to fewer instances of false positive
transitions as a transition must result in a current change of at
least �. Substitution errors decrease inversely with � as well.
This is likely because with the Viterbi basecaller, bases are not
decoded individually and when a deletion or insertion occurs,
the identity of the surrounding bases is decoded incorrectly to
arrive at similar current values, so minimizing other errors
will result in fewer substitutions. Finally, we find that our
proposed method offers a substantial reduction in deletions
when compared to the Guppy basecaller. This can also be
attributed to fewer missed k-mer events during decoding due
to enhanced transition distance between k-mer events.

VI. FUTURE WORK

This work can be extended in several directions. The most
natural of these is the inclusion of error-correcting codes as an
outer code for further correction of the remaining sequencing
errors, i.e., insertions, deletions, and substitutions. While there
is a substantial amount of work on these errors in the literature,
integrating different encoding and decoding strategies may
pose challenges. Another direction is addressing other sources
of errors, for example, those that arise during synthesis. Note
that these errors may affect the validity of the constraints in
the synthesized DNA and thus segmentation performance. The
encoding system may also be extended to address errors that
occur in these sources by limiting homopolymer repeats or
enforcing GC-content via allowable edges. Additionally, we
observe that the DNN-based decoder, the Guppy basecaller,
also performs better for certain values of �, even though it
is not aware of the constraints. Incorporating the constraints
in this type of decoder could outperform the Viterbi decoder
as they are able to take channel memory into account. Fur-
thermore, in this work, we aimed to reduce errors in a single
read. More practically, one would aim to reduce the number of
reads required to achieve reliable sequencing. Our method is
compatible with using multiple reads and can be studied in that
context. Finally, as our evaluation in this work has relied on a
simulated channel, we plan to evaluate the proposed methods
via real-world experiments. This extension is two-fold: in
vitro evaluation and in vivo evaluation [11]. For in vitro, it
is necessary only to measure the error rates of synthesized
DNA molecules encoded using our constrained code. In vivo
experiments will measure the constrained sequences’ ability
to be stored in a bacterial cell and retrieved; a task that has
been shown to be largely dependent on the base content of the
DNA sequence [11], e.g., GC-content, which may be affected
by the constrained codes.

REFERENCES

[1] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, vol. 494,
no. 74357435, p. 77–80, Feb 2013.

[2] L. Ceze, J. Nivala, and K. Strauss, “Molecular digital data storage using
DNA,” Nature Reviews Genetics, vol. 20, no. 88, p. 456–466, Aug 2019.

[3] J. P. L. Cox, “Long-term data storage in DNA,” Trends in Biotechnology,
vol. 19, no. 7, p. 247–250, 2001.

[4] V. Zhirnov, R. M. Zadegan, G. S. Sandhu, G. M. Church, and W. L.
Hughes, “Nucleic acid memory,” Nature Materials, vol. 15, no. 44, p.
366–370, Apr 2016.

[5] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital
information storage in DNA,” Science, vol. 337, no. 6102, pp.
1628–1628, 2012. [Online]. Available: https://www.science.org/doi/abs/
10.1126/science.1226355

[6] C. W. Fuller, L. R. Middendorf, S. A. Benner, G. M. Church, T. Harris,
X. Huang, S. B. Jovanovich, J. R. Nelson, J. A. Schloss, D. C. Schwartz,
and D. V. Vezenov, “The challenges of sequencing by synthesis,” Nature
Biotechnology, vol. 27, no. 1111, p. 1013–1023, Nov 2009.

[7] T. Laver, J. Harrison, P. A. O’Neill, K. Moore, A. Farbos,
K. Paszkiewicz, and D. J. Studholme, “Assessing the performance of
the Oxford Nanopore Technologies MinION,” Biomolecular Detection
and Quantification, vol. 3, p. 1–8, Mar 2015.

[8] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angewandte Chemie International Edition, vol. 54,
no. 8, p. 2552–2555, 2015.

[9] Y. Erlich and D. Zielinski, “DNA fountain enables a robust and
efficient storage architecture,” Science, vol. 355, no. 6328, pp.
950–954, 2017. [Online]. Available: https://www.science.org/doi/abs/
10.1126/science.aaj2038

[10] S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-
free DNA-based data storage,” Scientific Reports, vol. 7, no. 1, p. 5011,
Jul 2017.

[11] S. L. Shipman, J. Nivala, J. D. Macklis, and G. M. Church,
“CRISPR–Cas encoding of a digital movie into the genomes of a
population of living bacteria,” Nature, vol. 547, no. 7663, pp. 345–
349, Jul. 2017. [Online]. Available: http://www.nature.com/articles/
nature23017

[12] S. Chandak, J. Neu, K. Tatwawadi, and ..., “Overcoming high nanopore
basecaller error rates for DNA storage via basecaller-decoder integration
and convolutional codes,” ICASSP 2020-2020, 2020. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9053441/

[13] K. Doroschak, K. Zhang, M. Queen, A. Mandyam, K. Strauss, L. Ceze,
and J. Nivala, “Rapid and robust assembly and decoding of molecular
tags with DNA-based nanopore signatures,” Nature Communications,
vol. 11, no. 1, p. 5454, Dec 2020.

[14] Y. Li, S. Wang, C. Bi, Z. Qiu, M. Li, and X. Gao, “DeepSimulator 1.5: a
more powerful, quicker and lighter simulator for nanopore sequencing,”
Bioinformatics, vol. 36, no. 8, pp. 2578–2580, 2020.

[15] F. J. Rang, W. P. Kloosterman, and J. de Ridder, “From squiggle to
basepair: computational approaches for improving nanopore sequencing
read accuracy,” Genome Biology, vol. 19, no. 1, p. 90, Jul 2018.

[16] O. N. T. Ltd., “k-mer models,” 2016. [Online]. Available: https:
//github.com/nanoporetech/kmer models

[17] O. Elishco, R. Gabrys, E. Yaakobi, and M. Médard, “Repeat-free codes,”
IEEE Transactions on Information Theory, vol. 67, no. 9, p. 5749–5764,
Sep 2021.

[18] Y. M. Chee, T. Etzion, H. M. Kiah, V. Khu Vu, and E. Yaakobi,
“Constrained de Bruijn codes and their applications,” in 2019 IEEE
International Symposium on Information Theory (ISIT), 2019, pp. 2369–
2373.

[19] R. Adler, D. Coppersmith, and M. Hassner, “Algorithms for sliding block
codes - an application of symbolic dynamics to information theory,”
IEEE Transactions on Information Theory, vol. 29, no. 1, pp. 5–22,
1983.

[20] R. R. Wick, L. M. Judd, and K. E. Holt, “Performance of neural network
basecalling tools for Oxford Nanopore sequencing,” Genome Biology,
vol. 20, no. 1, p. 129, Dec 2019.

[21] J. Sima, R. Gabrys, and J. Bruck, “Optimal codes for the q-ary deletion
channel,” in 2020 IEEE International Symposium on Information Theory
(ISIT), Jun 2020, p. 740–745.

APPENDIX

Linear model for k-mer current values
We provide further detail for the discussion presented in

Section II. Consider a linear function µ̂ : {A,C,G, T}⇤ ! R
that approximates the mean of the current value for a k-mer
and surrounding bases b,

µ̂(b) =
k+p2X

i=�p1+1

X

N2{A,C,G,T}

ciNI(bi = N)

=
k+p2X

i=�p1+1

hc̃i, b̃ii,

where p1, p2 are the number of bases surrounding the pore
that we want to consider in addition to the k bases in the pore,
ciN are real coefficients corresponding to base N in position
i, I(·) is equal to 1 if the enclosed condition is satisfied and
is 0 otherwise, c̃i = (ciA, ciC , ciG, ciT), and b̃i is a binary
vector with a single 1 representing the identity of the base
bi, e.g., b̃i = (1, 0, 0, 0) for bi = A. The coefficients ciN are
found by casting the problem as linear regression. Training
included 1000 randomly produced DNA sequences of length
1000 as the input, and their Scrappie simulated currents as
the ground truth resulting in 1 million data points for training.
Predicted dwell time and Laplace noise for each timestep of
these signals was ignored and only estimated mean was used
as input. Lasso Regression was performed for p1 + p2 + k =
3+0+6 = 9 bases at each current timestep with regularization
parameter ↵ = 0.001, with R2 = .915. The results from this
model fitting, shown in Figure 3, demonstrate that the bases
at position 2 and 3 in the pore have the greatest effect on
determining the value of the signal, showing that the current
value at a certain timestep for a k-mer is most weighted by
the internal bases of that k-mer and not the surrounding bases.
Similar behavior was observed for different values of p1, p2.
This informs the values of k that best describe the current
at each time step; with k too small current prediction will
be inaccurate and k to large increases possible k-mer states
without increasing accuracy of current prediction. We see that
k = 6, the size of the pore in this case, includes the most
heavily weighted positions and therefore is a good estimator
for the current in our code construction.

https://www.science.org/doi/abs/10.1126/science.1226355
https://www.science.org/doi/abs/10.1126/science.1226355
https://www.science.org/doi/abs/10.1126/science.aaj2038
https://www.science.org/doi/abs/10.1126/science.aaj2038
http://www.nature.com/articles/nature23017
http://www.nature.com/articles/nature23017
https://ieeexplore.ieee.org/abstract/document/9053441/
https://github.com/nanoporetech/kmer_models
https://github.com/nanoporetech/kmer_models

	Introduction
	The nanopore channel
	Simulation of channel
	Linear and memoryless models

	Code construction and encoding
	Constrained codes for accurate segmentation
	State-Splitting Algorithm for Encoding

	Decoding of Constrained Codes
	Reducing Intersymbol Interference
	Viterbi Algorithm for Basecalling

	Results
	Future Work
	References
	Appendix

