2024 |EEE 44th International Conference on Distributed Computing Systems (ICDCS) | 979-8-3503-8605-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/1CDCS60910.2024.00110

2024 1IEEE 44th International Conference on Distributed Computing Systems (ICDCS)

Joint Al Task Allocation and Virtual Object Quality
Manipulation for Improved MAR App Performance

Niloofar Didar
Department of Computer Science
Wayne State University
Detroit (MI), USA
niloofar_didar@wayne.edu

Abstract—The emergence of modern mobile System on Chips
(SoCs), featuring robust neural network accelerators such as
GPUs, DSPs, and NPUs, has made on-device inference a com-
pelling alternative to cloud-assisted inference. Typical mobile
augmented reality (MAR) applications enable users to interact
with virtual objects, leveraging diverse Artificial Intelligence (AI)
capabilities facilitated by a range of deep learning models. Several
studies seek to improve the performance of MAR apps. However,
they often overlook the computational concurrency between the
AR tasks necessary to render virtual objects and the Al tasks,
which can influence virtual object quality and AI inference
response time. In this paper, we present HBO, a framework for
MAR apps that trades off between AR and Al task performance.
HBO leverages Bayesian optimization and heuristic algorithms
to jointly manipulate the virtual objects’ triangle count and AI
task allocation for optimized MAR app performance. We have
implemented HBO on Android and tested it on real smartphones
and with real users. Our results show that HBO helps reduce the
average Al task latency by up to 3.5x and increase the average
virtual object quality by up to 38.7% compared to several state-
of-the-art baselines.

Index Terms—Augmented Reality, Artificial Intelligence,
Bayesian Optimization

I. INTRODUCTION

Modern mobile devices feature AI hardware accelerators
such as GPUs, DSPs, and NPUs/TPUs to accelerate mathemat-
ical computations and facilitate on-device deep learning infer-
ences. As Figure 1 shows, MAR apps often involve a variety
of Al tasks (e.g., object detection, pose estimation) necessary
to scan the real environment using any of the computing units
available on the SoC, alongside AR tasks, which are necessary
to render virtual objects (i.e., meshes of polygons such as
triangles) into the augmented environment using CPU and
GPU. The inevitable task concurrency to access the computing
resources requires designing new strategies that trade off
between the Al task latency and the virtual object quality.

Previous studies have shown that Al task latency is not only
affected by the specific AI model architecture but also by the
allocated Al accelerator [1]-[8]. Hence, assigning Al models
to the appropriate computing resources can improve Al tasks’
performance and mitigate contention with AR tasks, specially
in scenarios with high triangle count from virtual objects. In
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fact, as we show in this paper, manipulating the virtual objects
quality [9]-[11] can further enhance the response time of Al
tasks. To the best of our knowledge, no existing solutions
jointly leverage these two techniques at same time to find the
optimal choice of Al task allocation and virtual object triangle
count that maximizes virtual object quality while minimizing
Al task latency. On the other hand, finding such a solution
presents many challenges, including the difficulty to (i) create
a mathematical model that can help map the manipulated vari-
ables, i.e., allocation choice of each Al task and triangle count
of each virtual object, to the controlled variables, i.e., Al task
latency and virtual object quality, (ii) explore a large search
space, and (iii) adapt to different SoC, Al tasks, and objects.

To overcome all these challenges, we introduce a framework
called HBO, which activates as an event-based system and
leverages Bayesian optimization to find the virtual objects’
triangle count and the Al task allocation that best trade off
between virtual object quality and Al latency. Specifically, this
paper has three main contributions:

« We investigate the challenges and opportunities of jointly
manipulating Al task allocation and virtual objects trian-
gle count to optimize the performance of both Al and AR
tasks in MAR apps.

o We design HBO to trade off between Al and AR task
performance and overcome the above challenges by lever-
aging Bayesian optimization and heuristic algorithms.

« We have developed and evaluated an Android prototype
of HBO on modern smartphones and real users against
state-of-the-art baselines to demonstrate its effectiveness
in enhancing the performance of MAR apps.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III provides background
and design motivations. Section IV describes HBO. Section V
shows the experimental results. Section VI discusses limita-
tions and future work, and Section VII concludes the paper.

II. RELATED WORK
Previous studies have extensively explored methods to im-
prove the response time or quality of experience in mo-
bile apps. Several studies (e.g., [12]-[15]) offload compute-
intensive tasks (e.g., machine learning) to the edge for better
energy consumption, Al model accuracy, and response time.
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Fig. 1: Al and AR tasks on heterogeneous processors.

While offloading represents a valid solution in general, it may
lead to privacy concerns in MAR apps due to the necessity to
offload camera images. In addition, it may not always be useful
due to variable network latency, specially for lighter Al tasks
specifically designed to run efficiently on mobile devices [16].
Hence, in this paper, we assume all operations execute locally
on the mobile devices.

For MAR apps, some studies [9]-[11] trade-off virtual
object quality, energy, and/or performance by manipulating
the virtual objects’ triangle count. Specifically, Narayanan et
al. [9] trade off between virtual objects triangle count and
rendering latency. LPGL [10] focuses on headsets, adjust-
ing object quality based on the user’s focal angle. These
approaches do not consider the actual virtual object quality.
Thus, eAR [11] uses image quality assessment to estimate
virtual object quality based on user-object distance and triangle
count for energy optimization. However, none of them study
the effect of virtual object quality on Al latency.

In order to reduce the on-device Al task latency, some prior
works focus on model compression techniques (e.g., [17])
or on splitting their execution among the available hardware
resources [2]-[8]. For example, BAND [8] coordinates the
allocation of each Al task operation across the heterogeneous
processors through subgraphs scheduling. However, these ap-
proaches assume virtual objects in MAR apps are rendered
with their highest triangle count and do not trade off between
virtual object quality and Al task latency. In addition, most of
them rely on estimations of each operation’s execution time
on each processor, which is not easily predictable when Al
allocation and triangle count are jointly manipulated.

In our work, rather than allocating each AI operation
(fine-grain), we choose a coarser-grained solution to allocate
each Al task either on the CPU or on one of the available
delegates (e.g., GPU, NNAPI') for two reasons. First, sim-
ilar model slicing techniques are already embedded in the
available NNAPI delegate of Android [18]. However, due
to inter-processor communication delays and inefficiencies,
the delegate/CPU allocation choice that maximizes the Al
performance still highly depends on the specific AI model and
SoC (see test results in [1]) as well as Al taskset and triangle
count (see Section III-B). Second, finding the allocation for
each one of the Al tasks’ operations jointly to triangle count
manipulation makes the problem too complex to solve rapidly

'The GPU delegate allocates all operations on GPU while NNAPI splits
them across all the available accelerators.
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and efficiently. Thus, the above studies are orthogonal and
complementary to our solution since new slicing techniques
could be simply added on the list of available allocation
strategies in our solution. To the best of our knowledge, this is
the first work studying how to jointly manipulate triangle count
and Al task allocation for MAR app performance optimization.

III. BACKGROUND AND MOTIVATION
A. Background
Virtual Object Quality in MAR apps. Different from general
performance metrics such as screen resolution or framerate,
virtual object quality is an important metric unique to MAR
apps. Thus, we focus on this metric and leave the inclusion
of the others for future work. Some previous work [11] has
shown the feasibility of using an image quality assessment
method [19] (both tested with real users) to characterize virtual
object quality based on specific object features (e.g., shape),
triangle count, and distance to the user. Specifically, they
model the normalized degradation error Dey.r.or, , Of a specific
virtual object i at time period t as a factor of decimation
ratio Ry ; (i.e., selected triangle count over maximum count)
and user-object distance Dy ;:
ainﬁi + biRt,i + ¢;
D

where a;, b;, ¢;, and d; are parameters trained offline as
detailed in [11]. We borrow this model to estimate in period ¢
the average quality @); across L, virtual objects on screen as:
1 &
Lt 12; (1 - Derrort,i)
Leveraging this model, we capture real users perception of
virtual object quality and show the results with a real user
study in Section V-E. Nevertheless, other models could be
used in its place for enhanced performance.
AI Task Performance. The performance of MAR apps for
Al tasks is mainly dependent on inference accuracy and
response time. Given that Al inference accuracy relies on
model design choices beyond this paper’s scope, we use Ten-
sorFlow Lite [16] pre-trained models optimized for accuracy
and efficient on-device inference. Hence, we focus on Al task
response time and leave as future work the possibility of
trading Al model accuracy for virtual object quality.
B. Motivation Study

Building upon the findings of a previous study [1] regarding
the heterogeneity of an Al model performance across different
delegates and SoCs, we collected Al model response time data
using the two available delegates GPU/NNAPI and the CPU
on a Samsung Galaxy S22 and a Google Pixel 7. Table I
shows the average response times in milliseconds. Note that
some models are not compatible with some delegate (i.e., NA).
For example, on the S22 Deeplabv3 takes 45ms on the GPU,
27ms on NNAPI, and 46ms on the CPU, suggesting it has a
higher affinity with NNAPL. On the other hand, some other
models (e.g., model-metadata and deconv-munet) show better
affinity, i.e., lower response time, with the GPU delegate.
While these static profiles are fairly stable when these tasks
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Fig. 2: Taskset and virtual object triangle count can highly influence the performance of Al task latency for various allocations.

TABLE I: Baseline response time (ms) of TensorFlow-lite [16]
models on Galaxy S22 and Pixel 7 (IS: Image Segmentation,
OD: Object Detection, IC: Image Classification, GD: Gesture
Detection)

AT Model Task Galaxy S22 Google Pixel 7
GPU| NNAPI| CPU] GPU | NNAPI| CPU
deconv-munet | IS | 18 33 58 1179 | NA | 659
deeplabv3 IS | 45 27 46 | 136.6) NA | 110.1
efficientdet-lite | OD | 72 NA 68 | 109.8| NA |973
mobilenetDetvl | OD | 38 13 38 | 565 | 18.1 |48.9
efficient-litev0 | IC | 28 10 29 | 43.37| 183 |415
inception-vl-q | IC | 28 8 36 | 608 | 87 |63.2
mobilenet-v1 IC | 26 9.5 28 | 37.1 | 10.2 |40.5
model-metadata | GD | 12.7 | 18 14 | 24.6 | 40.7 | 255

execute without contention (i.e., no other Al tasks and no
virtual objects), as we will show in the following experiments,
the best delegate choice for each task changes when other
AI/AR tasks execute concurrently.

To prove this point, we create various tasksets and allocation
scenarios using the Galaxy S22 (similar trends on the Pixel 7)
and several instances of image segmentation (deconv and
deeplabv3) and classification (mobilenetvl and inception).
Figure 2 shows the results. For space reason, we explain
Figure 2b in detail but similar behaviors can be observed in
to other two experiments of Figures 2a and 2c. Here we use
up to five instances of deeplabv3 that, according to the static
profiling in Table I, in isolation performs best on the NNAPI
delegate and similarly worse on the CPU and GPU delegate. In
the figures, the dots at the bottom indicate the time of a change
in allocation and the specific allocation choice (C for CPU, G
for GPU, and N for NNAPI). For example, in Figure 2b N1
means that the first instance of deeplabv3, i.e, deeplabv3_1, is
allocated to the NNAPI delegate at the indicated time point.
The first instance of the deeplabv3 task initially runs on the
CPU (i.e.,, C1) but at t = 25s is switched to the NNAPI
delegate (i.e., N1), improving its performance.

From t = 40s to t = 95s, we progressively add Al tasks to
the same NNAPI delegate, which leads to a gradual increase
in the response time for all tasks due to the higher resource
competition. At ¢ = 120s, we relocate the fifth instance of
deeplabv3 to the CPU (results do not change choosing a

different instance since they use the same model). Different
from the response time comparison between C1 and N1, this
relocation C5 now leads to (i) an improvement in the response
time of deeplabv3_5 rather than an increase and (if) unaffected
performance for the other instances. This underscores the
advantage of dynamic Al reallocation, particularly when the
load becomes significant. Next, we move deeplabv3_5 back to
NNAPI (NS5 at time 140s in Figure 2b) and progressively add
some virtual objects in the scene (the red cross signs) around
t = 150s and ¢t = 180s. This change leads to a significant in-
crease in all Al tasks response times despite the usage of both
the available accelerators through the NNAPI delegate, i.e.,
the GPU and the Neural Processing Unit (NPU). At t = 200s
we then reallocate deeplabv3_5 back to the CPU (i.e., C5).
Different from the same action at time 120s, this time we
observe a significant reduction in response time not only for
the reallocated task but also for the others. On the other hand,
moving one more instance on the CPU (deeplabv3_4 at C4)
leads to a further improvement in performance for the tasks
remaining on the NNAPI but much worse performance for
those on the CPU. Similar unpredictable behaviors can be
observed in the other two figures where we experiment with
deconv on CPU/GPU (Figure 2a) and a mix of Al tasks on
GPU/NNAPI (Figure 2c).

These experiments allow us to point out that while jointly
manipulating the total triangle count and the Al task allocation
can lead to substantial performance gains, it is challenging to
profile the expected Al task performance in MAR apps because
it highly depends on the specific taskset used and on the total
triangle count from the virtual objects.

IV. HBO DESIGN

A. Overview

In order to overcome the challenges depicted in previous
section, here we describe the design of our proposed solu-
tion HBO. Figure 3 shows its high-level architecture, which
consists of four main component types: dynamic optimiza-
tion, control, object quality, and evaluation. The dynamic
optimization (displayed in gray) is event driven and peri-
odically monitors the system performance to detect when
it is worthwhile to execute a Bayesian Optimization (BO)
algorithm. When triggered, BO operates over several iterations
to find the best performance trade off using both the total
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Fig. 3: HBO Architecture.

triangle count ratio, i.e., selected total triangles over the
maximum triangle count across objects, and the proportion of
Al tasks to allocate to each available resource. Leveraging a
Bayesian approach allows us to optimize system performance
efficiently and without need of profiling the expected system
performance ahead of time. The chosen configuration in the
current BO iteration is sent to the control components that help
enforce it. Specifically, HBO decides how to divide the total
triangle count from BO across all virtual objects (i.e., object
decimation) for maximized average quality. Each decimated
version can either be found in the local cache or downloaded
from a server executing a virtual object decimation algorithm
and virtual object parameter training [11] (see Equation 1).
In addition, HBO examines the proportion of Al tasks that
must be allocated to each resource from the chosen BO con-
figuration and decides the specific task allocation. Then, HBO
starts measuring the resulting performance in terms of average
Al latency e and average virtual object quality (). These
measurements are forwarded to the evaluation components to
recalculate the value of the cost function used for the Bayesian
optimization. The calculated cost is used by BO to decide the
next configuration to explore for convergence to a solution
over a limited number of iterations.

New 0BJ Training Calculator Distributer

B. HBO Problem Statement

Consider an MAR app scenario with L virtual objects
on screen accounting for 7" total triangle count, M Al
tasks executing in background, and N allocatable resources.
The HBO problem is to find the best triangle count for each
object and allocation for each Al task that maximize the
average virtual object quality while minimizing the Al task
latency. This problem is challenging to solve due to the large
search space, i.e., N M pmaz and the consequent difficulty
to create an offline system model, which would require to
profile ahead of time the performance resulting from each
possible solution in many different scenarios. To overcome this
challenge, our approach divides this complex problem into two
steps. The first step uses BO to find the best performance trade
off using high-level optimization variables, which are then
translated into actual task allocations and per-object triangle
count in the second step.

In the rest of this section we will describe the first step
optimization problem through BO, then the heuristics used
for the second step, and finally the HBO activation policy.
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C. HBO Optimization

Problem Formulation. When triggered (see Section IV-E),
HBO runs an algorithm that maximizes at time period ¢ the
function B;, which is calculated as the difference between
the average quality of virtual objects @); and the average
normalized Al task execution latency ¢;:

Bt(ct’wt) :Qt — W - €, VtGT (3)

The weight w controls the importance of Al task performance
in comparison to the average quality of virtual objects. The
average quality is estimated using Equation 2 while the
average latency €; is measured at runtime as:

M e

a
Tmit ~ Tm

“

€t = M

m=1

where 77, is the latency of Al task m measured at time ¢
while 77, is the expected latency of Al task m measured on
the most suitable resource, i.e., the resource where task m
shows the lowest latency when running in isolation (no other
Al tasks running and no virtual objects on screen), which can
be determined offline directly on the user device for each Al
task and allocatable resource. This offline profiling is a one-
time operation, thus incurring little inconvenience to the user.
The optimization variables are considered to be continuous.
x; represents the total triangle count ratio, e.g., if z; = 0.3
only 30% of the total triangles is used across objects. ¢; =
[¢t,1, ... e, N ], Where each ¢, ; is the proportion of Al tasks
allocated to the i*" resource out of the N resources (e.g., CPU,
GPU delegate, NNAPI delegate). For example, ¢; o = 0.2
denotes that 20% of the Al tasks should be allocated to the 27¢
resource in period ¢. Compared to using directly the per-task
allocation, this variables choice allows to create a meaningful
relationship between the effect of varying c; by a certain
amount on the function to optimize. For example, it is easier
to learn that allocating more tasks to the GPU leads to an
improvement/deterioration of B;. To obtain the actual per-task
allocations (and per-object triangle count), we then leverage a
heuristic described in Section IV-D. Thus, HBO learns the
factors influencing B; based on the defined heuristic and
efficiently finds a near-optimal solution over a few iterations.
Formulation Challenges. There are two major challenges
with Equation 3. First, as mentioned in previous sections,
it is difficult to find a mathematical model that can relate
the performance (); and ¢; to the optimization variables,
which makes the function to maximize unknown. Second, the
function value can only be obtained after testing a candidate
solution (¢, z;) for a whole time period ¢. To find a solution to
this bandit continuous variable optimization problem we em-
ploy Bayesian Optimization (BO). In general, BO is a sample-
efficient method to find an input point that minimizes an
expensive black-box function f:Z C R? — R, specifically
to find z* = argminf(z),z € Z through a limited number of
evaluations z1, ..., zp of function f guided by an acquisition
function. Each input value z; is represented as a vector of
dimension d, and 1" denotes the number of evaluations. In our
tests we have found that Expected Improvement (EI) [20] is a

€
T’N 1
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well-suited acquisition function for our problem compared to
other commonly-used acquisition functions such as probability
of improvement, which is too conservative during exploration,
and lower confidence bound, which requires tuning a dedicated
exploration/exploitation parameter.

Bayesian Formulation of HBO. The BO’s cost function
value depends on the two optimization variables z; and c;.
Equation 3 can be reformulated as a cost function, denoted as
w(ct, ) := —By(ct, o) and aimed at finding the minimum
cost ¢ over t € T iterations:

minge, . ype(ce,x¢) V€T 5)
Given the continuous joint variables (¢, z;) defined as z;, BO
seeks to minimize the black-box ¢(z;) with z; := [¢/), 2] ]T

by sequentially acquiring function observations using a Gaus-
sian process GP surrogate model [21]. For an unknown cost
function ¢, a GP defines the probability distribution of the
possible values ¢(z) for each point z. These probability
distributions conform to a Gaussian distribution and are thus
defined by a mean function p and a standard deviation o. On
the other hand, i and o may vary after testing a specific input
z. Therefore, BO establishes a probability distribution over the
function ¢ as follows:

p(e(20)|Dy) = N(pa(21), 07 (21)) (6)

where D; := {(z,,¢,)}._; is the dataset BO creates and
updates based on the evaluated solutions 21, ..., 2;, and their
corresponding observation of objective function ¢(z,) with
values ¢(z1), ..., p(z¢), respectively. Each BO iteration con-
sists of (a) obtaining the posterior probability density func-
tion p(p(z;)|D;) based on the chosen surrogate model and
dataset D,, and (b) selecting 2;41 to evaluate at the beginning
of slot ¢ + 1, whose cost is evaluated at the end of slot
t + 1. pe(2:) and o?(z;) are the posterior function’s mean
and variance calculated based on a kernel function. In this
paper, we use Matérn [22], which is a class of flexible and
commonly used kernels in BO [23]-[25]. It uses a parameter
v that controls the smoothness of the learning function. The
smaller v is, the less smooth the sought function is assumed to
be. Based on extensive testing we use v = 5/2. The resulting
kernel function is thus calculated as:

2
k(z,2') = o'i <1 + @ + E;;) exp (_\/5)7“) @)

where 7 = \/(2; — /)T (2¢ — /) is the Euclidean distance
between z; and configuration z’ in the current dataset D, and
[ is the length scale parameter that controls the width of the
kernel (we set to 1 in our experiments).

Constraints. Our system imposes three known constraints on
the selection of ¢; and x;:

0<c¢:<1 Vie[l,N),teT ®)
N
ai=1 VteT 9)
=1
R™M <z, <1 VteT (10)

Algorithm 1 Heuristic Bayesian Optimization (HBO)

Input: M: number of Al tasks; N: number of resources avail-
able; P: PriorityQueue of latencies for every Al task on
each resource; L: number of virtual objects, D: Bayesian
optimization database; w: latency/quality weight.
¢,z < BO(D)
C«1
for i < 1 to N do
re M-l ¢
if » > 0 then
Sort resource usage c¢ in non-increasing order. Let
Ca(1)s Ca(2)s -+ Ca(N) be the order.
for i < 1 to N do
: Ca(i) — Ca(i) +1
10: r—r—1
11: if » < 0 then
12: break
13: k<0
14: while k& # M do
15: (i*,7*) « P.poll()
16: if Cj« # 0 then

AN A

o

17: Allocate Al task ¢* on resource j*

18: Cj* — C]‘* -1

19: k+—k+1

20: Remove N entries with same index of ¢* from P
21: else

22: Remove M entries with same index of j* from P

23: Execute TD(z, L) and redraw decimated virtual objects

24: €, () < Measure average latency (Equation 4) and estimate
the average quality (Equation 2) over the control period.

25: p +— —(Q — w.e)

26 D« DU{(c,z,9)}

Constraint 8 restricts the resource usage to a value between 0
and 1, Constraint 9 ensures that the sum of resource usages
is exactly 1 for consistency, while Constraint 10 maintains
the triangle count ratio between a minimum R™" and the
maximum 1 (i.e., render objects at highest quality).

D. HBO Control

Here, we describe the HBO algorithm, which leverages the
above Bayesian optimization formulation guided by heuristics
to find a solution to the HBO problem in polynomial time.
HBO Algorithm Design. The HBO algorithm is triggered
by the event-based activation policy (see Section IV-E) and
executes for a limited number of iterations to determine the
best configuration to use in the current scenario to improve
overall performance. In each iteration, the pseudo-code shown
in Algorithm 1 is executed. It takes as inputs the number of Al
tasks M and the number of available resources /N. In addition,
it takes the priority queue P of latencies for every Al task on
each resource (profiled one time in isolation with no virtual
objects or other Al tasks running) sorted in non-decreasing
order. Let (i*, j*) be the head element of the queue referring
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to Al task ¢* (e.g., task 1, 2, 3,...) on resource j* (e.g., 1
for CPU, 2 for GPU, 3 for NNAPI, ...). Finally, it takes the
number of virtual objects L, and the database of previous BO
iterations D. The main idea is to first obtain a high-level
solution guided by BO about the proportion of Al tasks on
each resource and total triangle count ratio (Line 1), and then
translate them into actual allocation for each task (Lines 2-22)
and triangle count for each virtual object (Line 23). Using
the new configuration, HBO then measures the obtained
performance to calculate the corresponding cost value
(Lines 24-25), which is used to update the BO database D
for the next iteration (Line 26). After the last iteration, the
configuration that obtained the lowest cost value is selected to
be used until the next activation. We describe the details of the
algorithm and its complexity analysis in the rest of this section.
Bayesian Optimization (Line 1). In each iteration, the al-
gorithm first executes the BO with cost function expressed
by Equation 5, the EI acquisition function, a GP surrogate
model, Constraints 8-10, and the performance database D of
exploration/exploitation in previous iterations of the current
activation. At every execution it returns the Al resource usage ¢
and triangle count ratio x to test in the current period.
Heuristic AI Allocation (Lines 2-22). Given that BO provides
fractional values of resource usages, the algorithm then needs
to translate how many of the M tasks to allocate on each
resource according to c. For instance, omitting the time index
t for simplicity, ¢; = 0.4, co = 0.1, and ¢3 = 0.5 mean that
40%, 10%, and 50% of the M tasks should be allocated on
the resources 1, 2, and 3, respectively. Thus, the algorithm in
Lines 2-12 maps each fractional value to an integer portion of
the M tasks to allocate on each resource. This information is
stored in the array C. Specifically, Lines 3-4 round down the
resource usage values into integer numbers while Line 5 de-
termines the remaining tasks r that must be added to vector C
(due to rounding). In Lines 6-12, if r > 0, it then determines
on which resource to add the remaining r tasks, giving priority
to the resource that has the highest usage. This is because
a higher resource usage choice from BO may indicate the
need to explore/exploit how the taskset behaves when more
tasks are allocated to certain resources. Thus, in Line 7 the
algorithm sorts vector ¢ and determines the indexes «(%) in
non-increasing capacity order. The algorithm then iterates in
Lines 8-12 to add one task to each resource following the
sorted order until all remaining tasks are allocated (Line 12).
For example, if ¢ = [0.4,0.1,0.5] with three Al tasks, then
Lines 2-12 would populate vector C' as [1,0, 2], i.e., one task
to resource one, and two tasks on resource three.

The algorithm then starts a while loop to allocate each of
the M tasks on one of the available resources (Lines 14-22).
In each iteration, to greedily achieve low latency, HBO starts
the resource assignment from the highest-priority task, which
corresponds to the task with the lowest profiled latency. To do
this, HBO retrieves the head element of the priority queue P
and stores its task/resource indexes in (i*, j*). Then, it checks
the array C' to determine whether the required resource j*
for this task is available (Line 16). If there is enough space,
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it finalizes the task ¢* allocation to resource j*, updates the
availability of C)«, and increments the count of assigned
tasks k (Lines 17-19). Additionally, in Line 20, the algorithm
removes all the N instances of the same task ID ¢* from the
priority queue P (since this task has already been allocated).
However, if the high-priority resource j* is not available, the
algorithm narrows down the search space by removing all
tasks requiring the same Al allocation j* from P in Line 22.
It then proceeds to the next task in P to find another available
resource for the remaining high-priority tasks.
Triangle Distribution (Line 23). In Line 23, the TD function
is invoked to distribute the chosen total triangle count -7,
among the virtual objects in the augmented environment. To
do so, we utilize the degradation model in Equation 1 and
distribute the triangles leveraging as weight the sensitivity of
virtual objects’ degradation to triangle variations, which is
evaluated, for each object, based on the difference between its
degradation at a reference decimation ratio (same for all virtual
objects) and the current object degradation. This choice, allows
to enhance the overall average quality by giving more triangles
to the most sensitive objects, e.g., the ones closer to the user or
with particular shapes. The new decimated versions are then
redrawn on screen.
Bayesian Database Update (Lines 24-26). After applying
the configuration decision of the Bayesian optimization to
test in the current iteration, the algorithm starts collecting
performance data in terms of average latency and quality for
the remaining time of the period ¢ (Line 24). At the end, it
then calculates the cost function ¢; = —B; obtained (see
Equation 3) and, in Line 26, it updates the dataset D with
the configuration (cy, x;) and their corresponding cost value
. Finally, the algorithm waits for the next iteration to start.
HBO Complexity. The complexity of the proposed algo-
rithm is influenced by several factors. The first factor is
the complexity of BO (Bayesian optimization with known
constraints), which at each iteration is dominated by O(K 3),
where K represents the number of evaluations of candidate
solutions [23]. The second factor is the complexity of Lines 3-
12, which is bounded by the sort function in Line 7 that runs
no more than M times, requiring O(M N log(NN)). The third
factor is the AI resource distribution in Lines 14-22, which
includes priority queue P operations and while loop iterations.
The priority queue P implemented by a binary heap requires
O(log(M N)) time for each removal operation. Every iteration
of the while loop removes N or M elements from the priority
queue P. Thus, in the worst case, the while loop complexity
is bounded by O(M N log(M N)). The complexity of triangle
count distribution in Line 23 is O(Llog(L)), where L is the
number of virtual objects, due to sorting objects based on
their sensitivity order. As a result, the total complexity of the
proposed algotrithm is O(K3 + M N log(M N) + Llog(L)).
E. HBO Activation

Rather than activating the optimization periodically, to
limit the system overhead and impact of exploration during
iterations we design an event-based activation policy for the
Bayesian optimization. In particular, we found that two main
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TABLE II: Example scenarios used in our experiments.

Virtual Objects (SC1) | Count Triangles
apricot 1 86,016
bike 1 178,552
plane 4 146,803
splane 1 146,803
Cocacola 2 94,080
Virtual Objects (SC2) | Count Triangles
cabin 1 2,324
andy 2 2,304
ATV 2 4,907
hammer 2 6,250
Al Models (CF1) Count Task
mnist 1 Digit Classifier
mobilenetDetv1 1 Object detection
model-metadata 2 Gesture Detection
mobilenetvl 1 Image Classification
efficientclass-liteQ 1 Image Classification
Al Models (CF2) Count Task
mnist 1 Digit Classifier
mobilenetDetv1 1 Object detection
efficientclass-liteQ 1 Image Classification

factors that can affect performance of AR or Al tasks are
change in the number of object count and user-object distance.
The former impacts the load of rendering virtual objects on the
processing units (i.e., CPU, GPU), thus impacting the average
Al latency. The latter, can change the average Al task latency
due to the backface culling of the OpenGL library [26]. Our
event-based activation policy initially runs HBO after the first
object placement. This is to record a reference for reward
value B; (Equation 3). Then, it monitors B; periodically for
any changes due to variations in distance or total triangle
count. When the current reward value changes by a minimum
tunable fraction from the reference, Algorithm 1 is executed
over a fixed number of iterations to find a new configuration
that can improve system performance. The new obtained
reward is then used as new reference for future activations.
We evaluate the benefits of this policy in Section V-D while in
Section VI we discuss on the real-life scenarios where our ap-
proach is most suitable and those that require further research.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

We implemented the proposed framework and tested it
on Android 13 and 14 (source code will be available after
publication). We leveraged the skopt package of the scikit-
optimize library to implement the Bayesian optimization in
Line 1 of Algorithm 1 and tested it on several devices,
including Google Pixel 7 and Samsung Galaxy S22. Due to
space limitation and similarity, in this section we show the
results with the Pixel 7 (Google Tensor G2 SoC, Octa-core
CPU, 128 GB Storage, 8 GB RAM, Mali G710 GPU, and
Tensor Processing Unit). Due to the lack of open-source MAR
apps with a large virtual objects dataset and the unavailability
of source codes from previous potential baselines (e.g., [7],
[27]), we created an example MAR app as well as some
scenarios of Al tasksets and virtual objects (see Table II) to
test our solution against the following baselines:

Static Match Quality (SMQ) uses the same triangle count
distribution as HBO to obtain similar average quality but uses
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a static task allocation policy that assigns each Al task on the
resource that has shown the lowest latency when profiled in
isolation (see examples in Table I). This baseline helps us
quantify the impact of the dynamic resource allocation on the
task latency driven by our Bayesian formulation and heuristics.

Static Match Latency (SML) uses the same static Al
allocation strategy as SMQ but the total triangle count of
virtual objects is gradually reduced until the average latency
is similar to that of HBO. This baseline helps us quantify the
impact of the jointly manipulating triangle count and resource
allocation focusing on the virtual object quality metric.

Bayesian No Triangle (BNT) is similar to HBO in that it
employs the same heuristic for Al task relocation, but it does
not regulate the triangle ratio. Its BO’s cost function solely
incorporates the average latency. This baseline helps us show
that modifying Al task allocation alone, without regulating the
quality of objects, cannot lead to similar Al performance.

All NNAPI (AlIN) leverages the state-of-the-art NN-API
of Android [18] available on all Android devices running
Android 8.1 or later. We tested AlIN on Android 13 (API
28). Similar to prior studies [2], [8], NNAPI distributes each
operation of deep learning workloads across CPU, GPU, and
NPU to reduce inference latency and leaves virtual objects
at the highest quality level. Thus, it does not optimize the
load due to AR tasks and can incur latency overhead when an
operation becomes too slow on the GPU due to heavy virtual
object rendering.

In the next sections, we first present an analysis of HBO’s
behavior across four distinct scenarios. Then, in Section V-C
we compare its performance with the above baselines. In Sec-
tion V-D we provide an in-depth analysis of HBO’s properties
and in Section V-E we report the results of our user study.
B. HBO Behavior Across Scenarios

We evaluate HBO’s performance using as example weight
w = 2.5 in Equation 3. Here, we present results of HBO in
four different experiments that encompass various Al tasks and
virtual object combinations (see Table II). The goal is to prove
its ability to adapt its choices on the specific combination
of virtual object and Al tasksets. The first set of virtual
objects (SC1) includes objects with high triangle count while
the second one (SC2) features virtual objects with low triangle
count. Similarly, the first taskset (CF1) includes six Al tasks.
Based on our offline profiling in isolation, three of these tasks
are optimized for better performance on the GPU delegate,
while the remaining exhibit a lower latency when using the
NNAPI delegate. On the other hand, the second taskset (CF2)
includes three Al tasks, with one favoring GPU and the other
two favoring NNAPI. All the models are pre-trained and
available in the TensorFlow Lite repository [16].

In our experiments, in each activation we initialize data-
set D through 5 random configurations of allocation propor-
tions and triangle ratio, and then execute HBO for 15 iterations
to ensure convergence to a solution. The results we present
here are based on HBO’s activation after all objects have been
added in the augmented environment, with all Al tasks concur-
rently performing inferences. We show the results over mul-
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TABLE III: AI allocation and triangle ratio in four scenarios.

AI Model/Scenario SC1-CF1 | SC2-CF1 | SCI1-CF2 | SC2-CF2

mobilenetDetv1 NNAPI NNAPI NNAPI NNAPI

efficientclass-liteQ NNAPI NNAPI NNAPI NNAPI
mobilenetv1 NNAPI NNAPI - -

mnist CPU GPU CPU NNAPI
model-metadata_1 CPU NNAPI - -
model-metadata_2 CPU CPU - -

Triangle Count Ratio 0.72 1 0.85 0.94

tiple activations in Section V-D. Next, we explore how HBO
converges to a lower-cost solution across four distinct combi-
nations of the virtual objects and Al tasks shown in Table II.
AI Allocation Analysis. Figures 4a and 4b show HBO’s
solution in terms of Al task allocation and triangle count ratios,
respectively, across the four experiments. For space reasons,
here we analyze the configurations chosen by HBO in various
scenarios and leave for the next section the comparison with
the baselines in terms of the obtained performance. Table III
shows the detailed breakdown of each experiment’s individual
task assignments and triangle ratio choices. We can observe
in Figure 4a that for the first and third experiments (SC1-
CF1 and SC1-CF2), HBO relocates all the tasks with high
GPU-delegate affinity to the CPU. This migration is primarily
a response to avoid losing too much object quality in these
two particular scenarios and reach slightly better latency.
Indeed, these two SC1 scenarios with higher number of virtual
objects reduce the triangle count by ratio 0.72 and 0.85,
respectively, to further enhance Al latency. On the other hand,
the second and fourth experiments (SC2-CF1 and SC2-CF2),
feature lighter-weight objects, which reduce the demand for
the GPU and enable more Al tasks to operate either through
the GPU delegate or through the NNAPI delegate?. This is
why HBO can keep tasks of SC2-CF2, with lower number
of Al tasks, on their preferred allocation, NNAPI. Similarly,
SC2-CF1 retains the task mnist, which has the lowest latency
overall, on the GPU, maintains the NNAPI-preferred tasks on
the same resource, and allocates the other two GPU-preferred
Al tasks one to the CPU and the other to the NNAPI delegate
for optimized resource utilization.

Cross-Scenario Convergence Study. Figure 4c shows the best
cost value obtained while HBO runs iterations to progressively
explore the search space for lower-cost, ultimately improving
performance for the various Al allocation and triangle count
ratio configurations explored. When comparing the best cost
across the four experiments, the last scenario (SC2-CF2)
exhibits the lowest value. This can be mainly attributed to
minimal competition between Al inference and AR tasks for
computational resources. Hence, it leads to a more favorable
cost and improved system performance in comparison to the
other scenarios. Notably, HBO shows its ability to converge to
a lower-cost solution in the best-case after just 7 iterations and
on average 13 (including the 5 initial explorations to populate
the BO database). We will study the convergence properties
more in detail in Section V-D.

2For tasks running on NNAPI, certain operators not supported on NPU or
TPU may run on GPU, further increasing GPU’s demand
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TABLE IV: Al allocation and triangle ratio comparison.

AI Model/Experiment HBO SMQ, SML BNT AlIN
mobilenetDetv1 NNAPI NNAPI NNAPI | NNAPI
efficientclass-liteQ NNAPI NNAPI CPU NNAPI
mobilenetv1 NNAPI NNAPI NNAPI | NNAPI
mnist CPU GPU CPU NNAPI
model-metadata_1 CPU GPU CPU NNAPI
model-metadata_2 CPU GPU CPU NNAPI

Triangle Count Ratio 0.72 0.72, 0.5 1 1

These results show that HBO can automatically adapt to
different scenarios of virtual objects and tasksets with little
information prior execution.

C. HBO Performance Comparison

Performance Comparison. We evaluate the performance
of HBO in comparison to SMQ, SML, BNT, and AlIN under
various scenarios of virtual object and Al task configuration.
In this discussion, we present one of our results, specifically
for the SC1-CF1 scenario, which is more challenging in
terms of the number of virtual objects and Al tasks (see
Table II for more details). Figures 5a to 5¢c compare the Al
task allocation, triangle count selection, average quality of
virtual objects, and latency ratio of baselines and HBO. As
we discussed in Section V-B, HBO makes the decision to
relocate three GPU-preferred tasks to CPU and reduces the
total triangle count ratio to 72% of maximum triangle count. In
the following, we will explore how this decision can enhance
system performance compared to the defined baselines.

In Figure 5a, we observe that SMQ and SML both rely on
selecting specific delegates based on static data analysis, as
shown in Table IV, without considering the impact of each
task assignment or triangle count ratio on overall system per-
formance. Specifically, we use the same triangle ratio for SMQ
to achieve a similar average quality as HBO but this comes
at the cost of 1.5x higher average latency compared to our
solution (see Figure 5c). On the other hand, we could manage
to approach HBQO’s average latency using static task allocation
through simply reducing total triangle count of virtual objects
as SML does. However, we cannot guarantee the same high
average quality of virtual object as achieved by HBO. Indeed,
HBO achieves 14.5% better average quality than SML under
comparable average latency. These results demonstrate HBO’s
better performance over the static baselines due to jointly
reallocating Al tasks other than reducing virtual object quality.

In contrast to the static allocation baselines, BNT and
AlIN do not reduce objects quality but perform dynamic
allocation to optimize system performance. As we can see
from the results, BNT, which uses a simplified version of
our Bayesian formulation, chooses to completely relocate
some Al tasks to the CPU at run-time, thus enhancing the
performance of Al inference tasks compared to AlIN. This
helps reducing the competition among tasks using NNAPI
and generally alleviates high communication overhead. In fact,
AlIN automatically splits inference execution across CPU and
Al accelerators, including NPU and GPU, to reduce latency.
The high triangle count of virtual objects in these two baselines
leads to a substantial GPU load. This can potentially extend
either the queuing time of Al tasks’ operators relying on
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the GPU for inference or the concurrency of the tasks on
the NPU, leading to performance degradation. Including the
total triangle count manipulation into the decision variables
of the Bayesian optimization, as HBO does, can help further
improve the overall performance. We can observe that HBO
results in 2.2x and 3.5x better latency on average compared
to BNT and AlIN, while reducing the virtual object quality
of only 13% (i.e., 1.15x). These results show that operator-
level solutions such as NNAPI may not necessarily enhance
Al latency in MAR apps. Our approach to Al allocation,
combining various coarse-grain allocation methods (e.g., CPU
inference, GPU delegate, or per-operator NNAPI delegate)
and triangle count manipulation, proves more effective in
improving system performance.

D. In Dept Analysis of HBO Convergence and Activation
Here, we analyze in detail how HBO executes, its in-depth
convergence properties, and activation policy performance.
Figure 6 provides in-detail analysis of HBO execution for
SC1-CF1. In Figure 6a we calculate the Euclidean distance
between consecutive configurations selected by the Bayesian

optimization of HBO, which consists of three resource usage
values and one triangle count ratio over multiple iterations.
This distance shows HBO’s acquisition function exploration
(large distances) and exploitation (small distances) as it con-
verges to a low-cost solution. In fact, as Figure 6b shows, HBO
converges to the minimum cost after 7 iterations and remains
robust to various explorations thereafter. Increasing the maxi-
mum iteration count could yield a more cost-effective solution
at the expense of increased exploration time, which may not
align with user expectations and satisfaction. Figure 6¢ shows
the average quality of virtual objects and Al latency, the two
metrics used to calculate the BO’s cost, over the iterations.
The selected point with the lowest cost across 20 iterations is
the 7" point, marked by a red cross signs in the figure. In
this iteration, the average quality is 0.87, and the normalized
average latency is 0.69, reflecting a better configuration for
system performance trade off. Specifically, using the best
configuration found, Figure 6d shows a comparison of each Al
task latency in milliseconds between HBO and SMQ, which
has shown best results across the other baselines (Figures 5b
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and 5c). Under the same total triangle count ratio (i.e., same
AR task performance), HBO’s decision to move the first three
tasks (mnist and two mmdata) from their static-preferred GPU
to the CPU not only improves the performance of these tasks
but also alleviates the burden on the resources used by the
other three Al tasks running on NNAPI, thus decreasing their
latency. In the best case HBO can improve their latency
by 103% (MobileNet classification, mobnetC1) and, in the
worst case, by 23.8% (MobileNet detection, mobnetD1), both
running on the NNAPI delegate.

HBO Convergence Robustness Study. To study HBO’s
convergence, we monitor the best cost for two scenarios,
i.e., SC1-CF2 and SC2-CF2, across six runs as shown in
Figures 7a-7b. The 6" run of each figure corresponds to the
same experimental run in Figure 4c. Through each run we
observe the same scenario could lead to a slightly different best
solution in terms of the Al allocation and/or the total triangle
count ratio. This variability arises from the initialization phase
upon an activation, where a few random configurations (5 in
our setting) are explored before the algorithm starts the explor-
ing/exploiting phase according to the chosen EI acquisition
function. However, it is noteworthy that, despite the Bayesian
decision process, all runs converge to a similar-cost solution at
the end of each run, indicating a certain robustness to the initial
datapoints collected in the BO database. For example, the first
and sixth run of Figure 7a result in a triangle ratio of 0.85 and
an Al allocation proportion vector equal to [0.03, 0.24, 0.72]
and [0.29, 0.23, 0.46], respectively, both indicating a higher
preference to keep more tasks on the NNAPI (third entry
in vector). The only difference is that the 6" run allocates
the mnist inference on the CPU. However, this model has
similar latencies across all resources, thus leading to similar
performance between the two runs.

HBO Activation Study. Here, we conduct a comparative
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analysis of HBO activation strategies outlined in Section IV-E
and a periodic activation approach. Figure 8a shows the
results. The set boundaries for reward increase and decrease
in HBO activation are empirically determined at 5% and 10%,
respectively, which allow to balance the obtained performance
and the activation overhead. The experiment involves the
automated addition of 10 virtual objects to the augmented
environment (depicted as O signs) from the sampling time
t 0tot 255 and the user distance change around
t = 320. We monitor the reward value B; for any changes at
2-second intervals. Figure 8a shows HBO activation triggers
with the first activation occurring after the placement of the
first object. Subsequent activations correspond to the addition
of the 9th and 10th objects and a change in user-object
distance. The boxes in figures highlight the reward values
during Bayesian iterations while the blue points show the
reward value during normal app usage. This underscores that
not all object additions significantly impact Al task perfor-
mance, warranting necessity to a selective HBO activation.
Indeed, the design of HBO aims to enhance performance
while minimizing activation frequency to reduce computa-
tion costs. However, there might be instances such as the
placement of a heavy virtual object (e.g., the 10th object
with 150k triangle count) that prompt HBO activation to
address increased average Al response times. To evaluate HBO
activation concerning changes in distance, we move farther
away from virtual objects around ¢ = 320 where we observe
HBO activation due to an improvement in average quality of
virtual objects. In Figure 8b, we show the effect of a periodic
HBO activation, which takes place seven times, potentially
imposing unnecessary burdens on the system. This periodic
approach may not effectively discern the system’s actual need
for performance improvement, risking a higher computational
cost and a lower overall user experience due to frequent
explorations.

E. HBO Performance in User Study

We conduct a small-scale user study to evaluate the per-
formance of HBO in comparison to the SML baseline, which
has similar Al task performance and helps us focus on the
user-perceived quality of virtual objects. We use a scenario
involving a mix of heavy and lightweight objects with six Al
tasks (CF1). The experimental setup involves placing virtual
objects on the screen at their maximum quality as a reference
for the participants. Subsequently, we individually activate
HBO and the SML baseline at both close distances (Figure 9b)
and far distances (Figure 9c). In each instance, seven students
were asked to evaluate the perceived quality of virtual objects
on a scale of 1-5, with 5 indicating a perceived virtual object
quality equivalent to that of the reference (max quality), and
1 indicating much worse quality. Figure 9a shows the average
scores for HBO at close (4.9) and far (5) distances, which
outperform SML at close (3) and far (3.6) distances translating
in up to 38.7% quality improvement. Notably, HBO maintains
a triangle ratio of 0.52, while SML requires a substantial
reduction to 0.2 triangle ratio to achieve a comparable Al task
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latency. These results underscore its ability to optimize per-
formance while preserving virtual object quality as perceived
by real users.

VI. LIMITATIONS AND FUTURE WORK

Dynamic Environment. In our experimental assessments,
we have found that HBO is an effective solution for opti-
mizing MAR performance by jointly manipulating triangle
count of virtual objects and Al task allocation. Given the
high problem complexity, the proposed algorithm leverages
Bayesian Optimization to find a solution in polynomial time
and within a few iterations at each activation. This strategy
is valuable for many AR educational and professional appli-
cations enabled by recent technologies such as Animal Safari
AR [28], JigSpace [29], ARvid [30], and Adobe Aero [31]
that allow to create engaging and interactive experiences for
users. In such scenarios, AR is used to increase the level of
engagement of students in classrooms or during professional
(AR-enabled) presentations where participants tend to focus
on and interact with objects for extended periods with lower
variation in either distance or the number of virtual objects on
the screen. However, we recognize that this solution may not
be suitable in other scenarios where users tend to frequently
move in the augmented environment (e.g., gaming) or in more
fast-paced activities. In such cases, HBO may lead to too many
activations, which could hinder user experience due to frequent
explorations.

More research is necessary to alleviate this problem in fast-
paced scenarios. For example, we could construct a lookup
table that stores environmental conditions, including maximum
triangle count, average distances, and task configurations. This
table could serve as a reference for assessing the similarity
of the current environment to past conditions. Over time,
when the user’s interaction approaches conditions that closely
resemble those stored in the table, the framework could choose
to simply apply the solution from the lookup table instead of
initiating a new and potentially unnecessary HBO activation.
This approach can minimize unnecessary computations and
enhance the system efficiency. We leave as future work devis-
ing new strategies for such cases.

Scalability and Overhead. HBO is designed to be scalable
and to limit the overhead of running Bayesian Optimization
algorithms at each activation. In fact, the optimization vari-
ables are continuous, the triangle count is cumulative thus
eliminating scalability issues for increasing number of virtual
objects, and the number of resources is limited by the actual

computing units available on modern devices, which is usually
no more than two or three delegates. On the other hand, we
recognize that running such optimization may still be heavy
on some devices. In such cases, the Bayesian Optimization
algorithm can be executed on a local edge server to eliminate
its overhead from local computations, e.g., the same running
the object decimation algorithm in Figure 3, by uploading the
obtained performance from the cost calculator to the server
and downloading the next configuration to test through the
Wi-Fi or 5G network interface. The payload for exchanging
such information is in the order of a few Bytes, which
limits the network energy overhead. The execution time of
the remaining HBO components is around 50 milliseconds in
our tests across various devices, thus making HBO’s overhead
relatively small.
VII. CONCLUSION

In this paper, we have shown that the concurrent execution
of augmented reality (AR) rendering tasks and Artificial Intel-
ligence (Al) inferences can significantly affect system perfor-
mance, leading to increased Al task latency and compromise
user experience. Jointly managing virtual object triangle count
and Al task allocation is a necessary, yet complex, strategy
to effectively trade off between virtual object quality and
Al task latency. The proposed HBO framework provides an
efficient solution to this problem. First, it leverages Bayesian
optimization (BO) to identify a solution for the continuous
joint optimization variables related to Al resource usage and
virtual objects triangle count ratio. This optimization process
aims to minimize a black-box cost function for improved
performance within a few exploratory steps. In the second
stage, HBO employs heuristics to incorporate the candidate
solutions into the system for cost evaluation, by adjusting Al
allocation of each task and the triangle count of each virtual
object. We evaluate HBO with real smartphones and users
against four different state-of-the-art baselines that provide
static and dynamic Al allocation methods. Our results have
shown that HBO helps reduce the average Al task latency by
up to 3.5x and increase the average virtual object quality by
up to 38.7% compared to the baselines.
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