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Abstract

Despite a growing sample of precisely measured stellar rotation periods and ages, the strength of magnetic braking
and the degree of departure from standard (Skumanich-like) spin-down have remained persistent questions,
particularly for stars more evolved than the Sun. Rotation periods can be measured for stars older than the Sun by
leveraging asteroseismology, enabling models to be tested against a larger sample of old field stars. Because
asteroseismic measurements of rotation do not depend on starspot modulation, they avoid potential biases
introduced by the need for a stellar dynamo to drive starspot production. Using a neural network trained on a grid
of stellar evolution models and a hierarchical model-fitting approach, we constrain the onset of weakened magnetic
braking (WMB). We find that a sample of stars with asteroseismically measured rotation periods and ages is
consistent with models that depart from standard spin-down prior to reaching the evolutionary stage of the Sun. We
test our approach using neural networks trained on model grids produced by separate stellar evolution codes with
differing physical assumptions and find that the choices of grid physics can influence the inferred properties of the
braking law. We identify the normalized critical Rossby number Ro;/Ros = 0.91 4= 0.03 as the threshold for the
departure from standard rotational evolution. This suggests that WMB poses challenges to gyrochronology for
roughly half of the main-sequence lifetime of Sun-like stars.

Unified Astronomy Thesaurus concepts: Stellar evolution (1599); Stellar rotation (1629); Stellar magnetic fields
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(1610); Asteroseismology (73); Stellar properties (1624); Stellar ages (1581); Solar analogs (1941)

1. Introduction

Over their main-sequence lifetimes, low-mass stars gradually
lose angular momentum and slow their rotation due to
magnetic braking (Weber & Davis 1967; Skumanich 1972).
This angular momentum loss results from the interaction
between a star’s dynamo-generated field and stellar winds
(Parker 1958; Kawaler 1988; Barnes 2007). The method of
leveraging stellar rotation periods to estimate age, called
gyrochronology (Barnes 2010; Epstein & Pinsonneault 2013),
can provide constraints on age with ~10% precision for Sun-
like stars in some age ranges (Meibom et al. 2015). Numerous
studies have provided prescriptions for angular momentum loss
(Kawaler 1988; Krishnamurthi et al. 1997; Sills et al. 2000;
Barnes 2010; Denissenkov et al. 2010; Reiners &
Mohanty 2012; Epstein & Pinsonneault 2013; Gallet &
Bouvier 2013, 2015; Matt et al. 2015; van Saders et al.
2016), which can be empirically calibrated to observations. The
relationship between rotation period and age has been well
characterized for young and intermediate-age clusters
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(Barnes 2007; Mamajek & Hillenbrand 2008; Barnes 2010;
Meibom et al. 2011; Gallet & Bouvier 2015; Meibom et al.
2015; Angus et al. 2019; Dungee et al. 2022), where both
properties can be constrained with adequate precision.

In essentially all of these calibrators, rotation rates are
measured by observing spot modulation due to dark starspots
rotating in and out of view. The high photometric precision of
the Kepler Space Telescope (Borucki et al. 2010), and the
subsequent K2 mission (Howell et al. 2014), enabled
predictions for magnetic braking to be tested on a wealth of
open clusters and associations (see Cody et al. 2018) as well as
a population of older field stars (McQuillan et al. 2014; Santos
et al. 2021).

In addition to starspot modulation used to detect rotation,
brightness modulations due to stellar oscillations are measur-
able in the high-precision, long-baseline Kepler time-series
photometry (Huber et al. 2011). Asteroseismology—the study
of these oscillations—provides valuable information about the
internal structure and evolution of stars. Specifically, stellar
rotation rates can be measured from the mode frequencies
(Davies et al. 2015; Nielsen et al. 2015; Hall et al. 2021) and
ages can be inferred by comparisons with stellar models
(Metcalfe et al. 2014; Silva Aguirre et al. 2015; Metcalfe et al.
2016; Creevey et al. 2017).

When the ages of older, Sun-like field stars were
asteroseismically measured with Kepler data, they were found
to maintain surprisingly rapid rotation late into their main-
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sequence lifetimes (Angus et al. 2015). To explain this
sustained rapid rotation, it was proposed that stars diverge
from the “standard spin-down” model and enter a phase of
“weakened magnetic braking” (WMB; van Saders et al.
2016, 2019). When stellar rotation was measured using
asteroseismology rather than spot modulation, the observed
rotation periods were consistently faster than predicted by the
standard spin-down model and evidence for WMB strength-
ened (Hall et al. 2021). Asteroseismology measures internal
rotation rates in the stellar envelope, making it insensitive to
surface differential rotation (Nielsen et al. 2015) and stellar
inclination (Davies et al. 2015); additionally, asteroseismology
can measure rotation rates for stars with weak surface magnetic
activity and therefore undetectable spot modulation signals
(Chaplin et al. 2011). These features allow asteroseismic
rotation periods to avoid potential biases present in measure-
ments from spot detection.

Careful analysis of pileups in the temperature—period
distribution of Sun-like stars also supported the WMB model.
Studies of rotation rates in the Kepler field identified an upper
envelope in stellar mass versus rotation period that matched a
gyrochrone at ~4 Gyr (Matt et al. 2015). An upper edge to the
distribution could be caused by either a magnetic transition or
detection bias in spot modulation (van Saders et al. 2019).
Forward modeling of the Kepler field predicted a pileup of
rotation periods in the weakened braking scenario that was not
seen in the data, but van Saders et al. (2019) argued that errors
in the measured effective temperatures were obscuring the
feature. With refined measurements of stellar effective temp-
erature, the predicted pileup in the temperature—period
distribution was identified (David et al. 2022).

A study of Sun-like stars with projected rotation periods
measured from spectroscopic line broadening found them to be
inconsistent with the Skumanich relation beyond ~2 Gyr (dos
Santos et al. 2016), supporting a departure from standard spin-
down. This sample was later revisited (Lorenzo-Oliveira et al.
2019), and the analysis suggested that the smooth rotational
evolution scenario was favored, and if weakened braking takes
place, it occurs at later times (=5.3 Gyr). However, these
measurements faced biases introduced by an uncertain
distribution of inclinations, which can inflate rotation periods
measured spectroscopically.

The physical mechanism that would lead to WMB remains
uncertain, though some have proposed that a transition in the
complexity of the magnetic field could reduce magnetic
braking efficiency (Réville et al. 2015; Garraffo et al. 2016;
Metcalfe et al. 2016; van Saders et al. 2016; Metcalfe et al.
2019). Because the transition may be rooted in the strength and
morphology of the magnetic field, it is challenging to test with
surface rotation rates measured through spot modulation, which
require active stellar dynamos to drive starspot production
(Matt et al. 2015; Reinhold et al. 2020).

To effectively use gyrochronology to estimate stellar ages, it
is essential to understand when the transition to weakened
braking occurs. Previous studies have provided estimates for
the onset of WMB (van Saders et al. 2016, 2019; David et al.
2022), but fully hierarchical modeling for the braking law has
not been previously performed. As the departure from standard
spin-down depends on the dimensionless Rossby number and
is predicted to be shared between all stars (van Saders et al.
2016), the problem is inherently hierarchical. Here, we provide
new constraints on the evolutionary phase at which stars

Saunders et al.

undergo weakened braking. We build on previous efforts (e.g.,
Hall et al. 2021) by modeling the rotational evolution of each
star individually.

We apply a hierarchical Bayesian model (HBM) to constrain
the population-level parameters for a WMB model. The use of
an HBM has been shown to increase the precision of inferred
stellar properties for high-dimensional models (Lyttle et al.
2021). Here, we model the weakened braking parameters as
global properties shared by all stars, while simultaneously
fitting individual stellar properties. We test the results of our fit
using multiple model grids, and compare the performance of a
WMB model to standard spin-down. By comparing results
between multiple model grids, we provide the first constraints
on biases introduced by the choices of grid physics when
modeling stellar rotational evolution. We find that weakened
braking likely occurs before stars reach the evolutionary phase
of the Sun.

2. Data

We fit our rotational model to open clusters, the Sun, and
Kepler field stars with asteroseismic measurements to ensure
that we capture the early rotational evolution prior to the onset
of weakened braking in addition to the behavior on the latter
half of the main sequence. The seismic sample that best probes
braking generally lies within 0.2 M, of the Sun and covers a
wide range of ages. Stars hotter than 6250 K (~1.2 M) lack
deep convective envelopes on the main sequence, and do not
undergo significant magnetic braking, and the seismic signals
of stars cooler than 5000 K (~0.8 M) have low pulsation
amplitudes and are challenging to measure. We describe our
calibrator sources in the following section.

2.1. Open Clusters

We included stars from the following open clusters: 23 stars
in Praesepe (0.67 £0.134 Gyr; [Fe/H] = 0.15+£0.1 dex;
Rebull et al. 2017), 45 stars in NGC 6811 (1.0 + 0.2 Gyr; [Fe/
H] = 0.0 £ 0.04 dex; Meibom et al. 2011; Curtis et al. 2019),
and 17 stars in NGC 6819 (2.5+0.5 Gyr; [Fe/H]
= 0.10 £ 0.03 dex; Meibom et al. 2015). We select stars
within the T.¢ range of our asteroseismic sample (5200 K <
Terr < 6200 K), using values for T reported in Curtis et al.
(2020). Ages and metallicities were taken from the corresp-
onding cluster reference, and were used to define priors in our
fitting. The Hertzsprung—Russell diagram positions of the open
cluster members can be seen in panel (a) of Figure 1.

2.2. Asteroseismic Sample

We also included a sample of Kepler field stars with
asteroseismically measured rotation rates and ages from Hall
et al. (2021, hereafter Hall21). Rotation rates for main-
sequence stars can be challenging to measure with starspot
modulation, particularly for older and less active stars, due to
long rotation periods and diminished stellar activity. However,
the rotational splitting of asteroseismic oscillation frequencies
can be observed for stars in the end stages of the main
sequence, and provides invaluable benchmarks for WMB.

Hall21 used asteroseismic mode splitting to measure rotation
periods for 91 Kepler dwarfs. We augmented the Hall21
sample with two additional stars with asteroseismic rotation
measurements in the wide binary system HD 176465 (KIC
10124866; White et al. 2017). The A and B components of this
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Figure 1. (a) Hertzsprung—Russell diagram showing our sample of calibrators in open clusters. Model tracks generated by our emulator are shown as gray lines. (b)
Hertzsprung—Russell diagram of our asteroseismic sample from Hall21. We derived the stellar properties shown here with asteroseismic modeling. (c) Observed
rotation period plotted as a function of stellar age. We color points by their effective temperature. Asteroseismic stars are shown as circles and open cluster members

are marked by triangles.

system are sometimes referred to by their nicknames, Luke and
Leia, respectively. The rotation periods reported in White et al.
(2017) were derived by fitting asteroseismic mode splitting,
following the same approach as Hall21.

We performed asteroseismic modeling for Luke and Leia and
47 stars from the Hall21 sample that fall within our desired mass
range using version 2.0 of the Asteroseismic Modeling Portal
(AMP; Metcalfe et al. 2009; Woitaszek et al. 2009; Metcalfe et al.
2024).'° This optimization method couples a parallel genetic
algorithm (Metcalfe & Charbonneau 2003) with Modules for
Experiments in Stellar Astrophysics (MESA) stellar evolution
models (Paxton et al. 2019) and the GYRE pulsation code
(Townsend & Teitler 2013) to determine the stellar properties
that most closely reproduce the observed oscillation frequen-
cies and spectroscopic constraints for each star. The choices of
input physics are nearly all the default choices in MESA release
12778, and the models include gravitational settling of helium
and heavy elements (Thoul et al. 1994) as well as the two-term
correction for surface effects proposed by Ball & Gizon (2014).
The resulting asteroseismic sample is shown in panel (b) of
Figure 1, while the stellar properties and rotation periods can be
found in Table 1, which includes maximum-likelihood
estimates of the age, mass, composition, and mixing length
from our AMP modeling.

With masses derived from asteroseismic modeling, we made
mass cuts (0.8 M, < M < 1.2M) to ensure our sample
would fall within the bounds of our model grids. Previous
studies have indicated that rotation periods in field stars
<7 days are likely due to noneclipsing short-period binaries
(Simonian et al. 2019, 2020), and we therefore remove three
stars (KIC 6603624, KIC 8760414, and KIC 8938364) from
the sample that showed rotation <7 days at ages >8 Gyr that
we suspect are inconsistent with single star evolution. Panel (c)
of Figure 1 shows the rotation periods and ages for our full
sample of open clusters and asteroseismic field stars.

3. Methods

We produced model grids for rotational evolution using two
stellar evolution codes, MESA (Paxton et al. 2010, 2013, 2015,
2018, 2019) and Yale Rotating Stellar Evolution Code (YREC;

10 github.com/travismetcalfe /amp2

Pinsonneault et al. 1989; Demarque et al. 2008). The ranges of
stellar properties covered by our grid are detailed in Table 2, and
we describe the model physics used to generate each grid in the
following sections.

3.1. MESA Model Grid

We construct our MESA grid with identical input physics to
the models used for asteroseismic inference (described in
Section 2.2) in order to avoid biases introduced by the
modeling (see Tayar et al. 2022). Our models used initial
elemental abundances from Grevesse & Sauval (1998) and an
atmospheric temperature structure following an Eddington 7(7)
relation with fixed opacity. We smoothly ramp diffusion from
fully modeled at M < 1.1 M, to no diffusion at M > 1.2 M.
We do not include core or envelope overshoot. We varied the
mass M, metallicity [Fe/H], initial helium abundance Y,;, and
mixing length parameter app -

We calculated rotational evolution histories (as described in
Section 3.3) for each combination of stellar properties and
appended them to our grid. By default, MESA models do not
output the necessary stellar parameters to perform rotational
evolution, and it was necessary to adapt the outputs included in
the grid. The additional parameters we include for each star
were the total moment of inertia I, the moment of inertia of
the convective envelope I.,,, the photospheric pressure Pppor,
and the convective overturn timescale 7.,. We define 7., as

Hp
b
Veonv

Tez =

where Hp is the pressure scale height at the convective zone
boundary and v.,,, is the convective velocity one pressure
scale height above the base of the convective zone.

Stellar interiors in MESA models are divided into shells and
the parameters are evaluated at a finite number of points. We
identified the precise location of the base of the convective
zone as a function of the star’s mass fraction using the
Schwarzschild criterion, and then interpolated between the
values calculated at each shell boundary to more precisely
identify the values of our desired parameters at each time step.
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Table 1
The Sample of 49 Asteroseismic Kepler Field Stars Used in Our Fit
KIC Age Prot M Tetr [Fe/H] Yinit amLT
(Gyr) (days) M) X) (dex)

10644253 1.16 + 0.38 38.01 £ 20.11 1.11 £ 0.05 6045 + 77 0.06 £+ 0.10 0.29 £+ 0.03 1.66 £+ 0.10
8379927 1.71 £0.25 9.20+0.24 1.114+0.04 6067£120 —0.10+0.15 0.26 £0.02 1.84 £0.15
3735871 1.79 £ 0.42 15.81 £2.14 1.17 £ 0.04 6107 £ 77 —0.04 £0.10 0.23 +£0.02 1.74 £ 0.09
9139151 2.03 £0.34 11.61 £0.94 1.14 £0.02 6302 + 77 0.10 £0.10 0.26 £ 0.02 1.70 £ 0.09
3427720 2.31+£0.31 31.59 £ 11.03 1.11 £ 0.04 6045 + 77 —0.06 +0.10 0.27 £ 0.02 1.72 £ 0.08
10079226 2.70 £ 0.65 16.79 £ 2.62 1.20 £ 0.04 5949 + 77 0.11 £0.10 0.23 £0.02 1.72 £0.11
10124866B 2.94 +£0.29 17.95 £+ 2.00 0.97 £+ 0.03 5745 + 94 —0.30 &+ 0.06 0.24 £ 0.01 1.84 £ 0.13
10124866A 3.02+£0.20 19.90 £ 2.00 0.95 +0.02 5831 +93 —0.30 &+ 0.06 0.25 4+ 0.01 1.62 4+ 0.10
4141376 3.31+0.70 13.39 +£3.24 1.04 £+ 0.04 6134 £91 —0.24 +£0.10 0.25 £ 0.02 1.82+0.12
8394589 3.63 + 0.46 10.86 + 0.58 1.08 £+ 0.02 6143 +77 —0.29 £ 0.10 0.26 £ 0.01 1.78 £0.10
9025370 3.65+0.34 2471 £4.17 1.03 £+ 0.03 5270 + 180 —0.12+0.18 0.25 £ 0.01 2.58 +£0.18
10730618 3.68 +£0.29 16.09 £ 10.58 1.19 £+ 0.03 6150 + 180 —0.11 £0.18 0.27 £0.01 1.76 £0.15
10963065 4.48 +0.39 11.51 £ 1.14 1.12 £ 0.03 6140 + 77 —0.19+£0.10 0.24 +£0.02 1.74 £ 0.08
8228742 4.65 £0.29 11.00 £ 1.64 1.15 £ 0.06 6122 +77 —0.08 £ 0.10 0.25 £0.01 1.40 £+ 0.10
6106415 4.76 £ 0.37 1595 £0.74 1.14 £0.02 6037 £ 77 —0.04 £0.10 0.23 £0.01 1.72 £ 0.06
8694723 5.18 £ 0.31 7.17+£0.72 1.17 £0.03 6246 + 77 —0.42 £0.10 0.22 £0.01 1.76 £0.12
8006161 5.19 £ 0.46 20.60 £ 2.04 1.04 £ 0.02 5488 + 77 0.34 £ 0.10 0.25 £ 0.01 1.98 £+ 0.09
5094751 5.23 +£0.66 22.86 £ 17.53 1.10 £+ 0.03 5952+ 75 —0.08 +0.10 0.28 4+ 0.02 1.66 £0.11
11133306 536 £0.82 24.63 £12.17 1.16 £0.04 5982 £+ 82 —0.02 £ 0.10 0.23 £0.02 1.80 £0.12
12258514 538 £0.29 16.75 £ 6.83 1.17 £0.02 5964 + 77 0.00 £ 0.10 0.23 +0.01 1.44 £ 0.06
4914423 5.50 £+ 0.65 23.07 £ 10.69 1.14 £ 0.03 5845 + 88 0.07 £0.11 0.27 £ 0.02 1.68 £ 0.16
6116048 5.65 £+ 0.40 17.90 £+ 1.02 1.08 £+ 0.02 6033 + 77 —0.23 +£0.10 0.25 +0.01 1.76 £+ 0.07
9410862 5.89 £0.67 20.58 £ 8.99 1.00 £0.03 6047 £ 77 —0.31 £0.10 0.26 £+ 0.02 1.80 £ 0.12
7106245 6.07 £ 0.64 21.41 £18.50 1.02 £0.02 6068 + 102 —0.99 +£0.19 0.22 £0.02 1.76 £0.13
4914923 6.40 £ 0.51 21.39 +4.47 1.15 £ 0.03 5805 + 77 0.08 £ 0.10 0.24 £ 0.02 1.68 £+ 0.08
6933899 6.42 + 0.68 28.91 £4.27 1.13 +£0.03 5832+ 77 —0.01 £0.10 0.27 £0.02 1.68 £0.11
6521045 6.50 £ 0.56 2478 £1.94 1.13 £0.02 5824 £+ 103 0.02 £0.10 0.26 £0.02 1.68 £ 0.09
3544595 6.55 +0.70 26.06 £+ 4.29 0.94 £+ 0.03 5669 + 75 —0.18 £ 0.10 0.25 £0.02 1.88 £0.11
10516096 6.57 £0.48 22.62 £2.52 1.14 £0.02 5964 £ 77 —0.11 £0.10 0.24 £ 0.01 1.72 £ 0.07
11401755 6.60 £+ 0.59 18.48 +£4.52 1.16 £ 0.02 5911 + 66 —0.20 &+ 0.06 0.22 +£0.02 1.72 £ 0.13
12069449 6.89 £ 0.35 21.18 £ 1.64 1.04 £0.01 5750 £+ 50 0.05 £0.02 0.26 £ 0.01 1.84 £0.05
7296438 6.92 +0.51 45.59 +26.21 1.18 +0.03 5775 £ 77 0.19 £ 0.10 0.24 £+ 0.01 1.74 £ 0.06
11295426 6.96 + 0.43 42.61 £+ 13.02 1.14 £0.02 5793 £ 74 0.12 £0.07 0.22 £0.01 1.76 £+ 0.05
12069424 7.07 £ 0.44 20.52 £+ 1.54 1.09 £+ 0.02 5825 + 50 0.10 £+ 0.03 0.25 +0.01 1.76 £+ 0.05
9955598 7.07 £0.62 3141 £7.72 0.94 £0.03 5457 £ 77 0.05 £0.10 0.25 £0.02 1.92 £0.12
7680114 7.25 +£0.54 27.34 £ 16.52 1.15 +£0.02 5811 +£77 0.05 £+ 0.10 0.24 £+ 0.02 1.74 £ 0.07
10586004 7.39£0.73 19.60 £ 8.81 1.17 £0.04 5770 £+ 83 0.29 £0.10 0.28 £0.02 2.16 £0.20
10514430 7.39 £ 0.62 53.56 £ 25.42 1.07 £+ 0.05 5784 + 98 —0.11+0.11 0.27 £ 0.03 1.78 £ 0.09
9098294 7.68 £0.55 27.21 £6.37 1.03 £0.02 5852 +£ 77 —0.18 £ 0.10 0.25 +0.01 1.86 £+ 0.08
7871531 8.49 +£0.74 33.09 £4.10 0.86 &+ 0.02 5501 £ 77 —0.26 £ 0.10 0.28 +0.01 1.94 +0.11
3656476 8.56 + 0.56 48.04 £+ 10.40 1.12 £0.02 5668 £+ 77 0.25 £0.10 0.26 £ 0.01 1.80 £ 0.04
5950854 8.92 £+ 0.68 2291 £ 26.94 1.07 £ 0.04 5853 +77 —0.23 £0.10 0.22 +£0.01 1.92 +£0.12
8424992 9.48 £0.70 42.30 £+ 18.51 0.99 £ 0.03 5719 £ 77 —0.12 £ 0.10 0.23 £0.02 1.90 £+ 0.09
11772920 9.66 £ 0.81 35.11 £4.99 0.93 £+ 0.05 5180 + 180 —0.09 £ 0.18 0.23 £ 0.01 2.16 +£0.28
7970740 9.84 £ 0.61 39.17 £7.85 0.81 £0.02 5309 + 77 —0.54 £0.10 0.27 £0.02 2.14 £0.11
11904151 9.85 £ 0.67 40.94 & 14.66 0.96 £+ 0.02 5647 + 44 —0.15+0.10 0.25 +0.02 1.84 £+ 0.07
8349582 10.15 £ 1.08 41.68 + 17.26 1.17 £0.05 5639 + 77 0.30 £0.10 0.23 £0.03 1.86 £0.11
6278762 11.02 £+ 0.85 3297 £13.53 0.83 +£0.02 5046 + 74 —0.37 £ 0.09 0.22 +£0.02 242 40.19
4143755 11.67 £ 0.77 48.10 & 30.07 0.97 £+ 0.04 5622 + 106 —0.40 £ 0.11 0.23 £0.02 1.78 £0.13

Notes. The rotation periods for 10124866A and B are from White et al. (2017), all other rotation periods are taken from Hall21. T, and [Fe/H] are adopted from the
LEGACY (Silva Aguirre et al. 2015; Lund et al. 2017) and KAGES (Aguirre et al. 2015; Davies et al. 2016) catalogs (see Hall21). Other stellar properties were

derived for this work using asteroseismic mode fitting.

3.2. YREC Model Grid

We construct our YREC grid following the settings laid out in
van Saders & Pinsonneault (2013) and Metcalfe et al. (2020). We
use the mixing length theory of convection (Vitense 1953; Cox &
Giuli 1968) with the 2006 OPAL equation of state (Rogers et al.
1996; Rogers & Nayfonov 2002). Abundances were taken from
Grevesse & Sauval (1998) and opacities from the Opacity Project
(Mendoza et al. 2007). We define atmosphere and boundary

conditions from Kurucz (1997). Nuclear reaction rates were drawn
from Adelberger et al. (2011). Y,y was fixed to a linear helium-
enrichment law anchored to the Sun with a slope of

(d—Y) = 1.296 (see Section 5.4). We varied the same parameters

as we did for the MESA grid, with the exception of Y.
As with the MESA grid, we trace additional parameters to
evaluate the angular momentum loss law. For each model at



THE ASTROPHYSICAL JOURNAL, 962:138 (15pp), 2024 February 20

Table 2
Parameter Boundaries of the MESA and YREC Grids
Parameter MESA Bounds  YREC Bounds
Mass M (M.,) [0.8, 1.2] [0.8, 1.2]
Mixing length parameter QMLT [1.4,2.0] [1.4,2.0]
Metallicity [Fe/ [—0.3, 0.3] [—0.3, 0.3]
H] (dex)
Initial helium abundance Yinit [0.22, 0.28] Not varied
Braking-law strength fx [4.0, 11.0] [4.0, 11.0]
Critical Rossby number Rogi [1.0, 4.5] [1.0, 4.5]

each time step, we calculate the moment of inertia of both the
star and its convective envelope, the photospheric pressure, and
the convective overturn timescale.

3.3. Magnetic Braking Model

Prescriptions for magnetic braking often incorporate the
dimensionless Rossby number (Ro), defined as the ratio
between the rotation period, P, and convective overturn
timescale within the stellar envelope, 7.,, as a means to
estimate magnetism across stars of different masses. We use the
Rossby number in our rotation model due to its utility as a
tracer for both the mass and composition dependence of spin-
down and magnetic field strength. We invoke a Rossby
threshold, Ro.;, beyond which point stars depart from a simple
power-law spin-down and conserve angular momentum (van
Saders et al. 2016). We adopt the Matt et al. (2012)
modification to the Kawaler (1988) braking law. We assume,
as in van Saders & Pinsonneault (2013), that the magnetic field

strength B scales as B P}l}{(iRo“, where Pppoe is the

photospheric pressure, and that mass loss M scales as
M o< Lx < Ly Ro~2, where Ly is the X-ray luminosity and
Ly is the bolometric luminosity.

Our full model for rotational evolution is described by

2
Wsa Tez
f[( Kyw =), Weat < W , Ro < Rogi
we Tez,®
i 5
a | f Kyw| =22 " Ro < Rogi’
f[( MW , Wsat > W » RO & ROgrit
WeTez,® Tez,®
0, Ro > Rogi

where Ro is defined as

and fx is the scaling factor for the strength of angular
momentum loss during classical spin-down, wg, is the
threshold at which angular momentum loss saturates for young
stars, and with

Ky _C(w) R 3.1 M —-0.22 L 0.56 Pyhot 0.44
Ku.o o R; M, Lg Bohot © ’

The term c(w) is the centrifugal correction from Matt et al.
(2012), and we assume c(w)=1, which is appropriate for
slowly rotating stars.

To calculate the rotation histories for our grid, we take the
outputs of nonrotating MESA and YREC models, and compute
rotation periods with the rotevol code (van Saders & Pinson-
neault 2013; Somers et al. 2017). We focus only on fx and Ro;, as
they will be the most dominant parameters of a WMB law for the
stars in our sample, which are old enough to have converged onto
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tight rotation sequences (Epstein & Pinsonneault 2013; Gallet &
Bouvier 2015). Pre-main-sequence stars display a range of rotation
periods, and early rotational evolution is influenced by interactions
between a stellar magnetic field and protostellar disk (Shu et al.
1994). The choices for early rotational evolution will have
negligible impact on the resulting rotation periods by the time
models reach the ages of stars in our sample because these
interactions are relatively short lived, and magnetic braking will
dominate the rotational evolution history by the time stars reach the
main sequence (Gallet & Bouvier 2015). To set the initial rotation
rates of our models, we assume a disk-locking period of 8.13 days
and disk lifetime of 0.28 Myr, which are values fit to a sample of
young clusters and the Sun to reproduce the observed rotation
behavior at early times (van Saders & Pinsonneault 2013; van
Saders et al. 2016). We fix wyy, to 3.863x107> rads~'. Each of
these parameters will be important at early (<100 Myr) times, but
will have negligible effects by the time stars reach the ages in our
sample. We assume solid body rotation in our models, since the
epoch of radial differential rotation in this mass range is again
limited to young stars (Denissenkov et al. 2010; Gallet &
Bouvier 2015; Spada & Lanzafame 2020).

3.4. Model Grid Emulator

With rotationally evolved model grids, we construct an
emulator for rapid stellar evolution modeling. The general
approach to this type of optimization problem is simple
interpolation between tracks in a high-dimensional model grid
(e.g., Berger et al. 2020). However, due to the size of the grid,
number of parameters (4-5 per star and cluster, with two
additional global braking-law parameters), and large sample of
potential targets, this approach becomes computationally
expensive, particularly in the application of Bayesian inference
through sampling the model. We therefore opt to train an
artificial neural network (ANN) to map the stellar parameters of
the grid to observable parameters of stars in our sample.

We define our MESA ANN with seven input parameters and
four output parameters. Our inputs represent fundamental
stellar properties: age, mass, metallicity, initial helium
abundance, mixing length parameter, braking-law strength,
and critical Rossby number. The ANN outputs are observable
quantities: effective temperature, radius, surface metallicity,
and rotation period. The YREC ANN has the above input
parameters with Y;,; excluded, and identical output parameters.
The remainder of this section describes the training and
characterization of the MESA ANN. The process for training
the YREC ANN is identical, and we compare the results when
using different grids in Section 5.4.

Our model structure results in a neural network that acts as a
stellar evolution emulator. Given some set of input stellar
properties, the model will output the corresponding observable
quantities. Because the emulation is rapid, the model can also
be used to calculate likelihoods to infer input parameters—
given some set of observed properties, we can sample prior
distributions for the underlying stellar properties and retrieve
posterior distributions, providing estimates for these values
with uncertainties.

We construct an ANN with six hidden layers comprised of 128
neurons each (following the tuning process of Lyttle et al. 2021).
Each hidden layer used an exponential linear unit activation
function. Using TensorFlow (Abadi et al. 2016), we trained the
model on an Nvidia Tesla V100 GPU for 10,000 epochs using an
Adam optimizer (Kingma & Ba 2017) with a learning rate of 10>,
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Figure 2. Uncertainty introduced by the MESA ANN emulator. The histograms for P, R, and T, show the (predicted-truth)/truth value for our training set, and the
bottom-right panel shows predicted—-truth for the surface metallicity to account for points where [Fe/Hlsurtace trurn &~ 0. The median y and standard deviation o of these
distributions are shown in the top-right corner for each parameter, and p is marked by the solid vertical line. The error incurred by the ANN is negligible compared to

the uncertainty on the observed values.

We trained the ANN in ~8000 batches of ~16,000 points. The
full model architecture is detailed in Appendix A.

Prior to training the ANN, we remove the pre-main sequence
from the tracks in our grid, defined as the threshold at which
the luminosity from nuclear burning exceeds 99% of the total
stellar luminosity. We allow the tracks to begin evolving across
the subgiant branch, as our sample includes stars at or
approaching this evolutionary stage, but remove tracks that
exceed a rotation period of 150 days.

In order to ensure that the mapping performed by the neural
network does not introduce significant uncertainty to the
inferred parameters, we divide the grid data into a training set
and a validation set. Testing the ANN on a validation set
additionally provides an opportunity to assess any systematic
offsets or biases introduced by the model. The training set is
composed of 80% of the models in the grid, drawn at random,
and is used to generate the connections between the input
model parameters and observed stellar properties. The remain-
ing 20% of the grid is then used as a validation set to predict
the observed parameters based on the provided input
parameters, allowing us to characterize the neural network’s
ability to successfully predict well-understood values. When
compared to the measurement uncertainties associated with
these parameters, the error introduced by the ANN is
negligible, with typical fractional uncertainties of ~107 in
the recovery of our validation set (see Figure 2). We also find

negligible systematic offset for parameters in our validation set,
indicating that the ANN is not introducing significant bias.

3.5. Statistical Modeling

In order to efficiently optimize the braking-law model
parameters, we construct a HBM. The application of a similar
HBM for constraining the distribution of Yj,;; and ayyr has
been demonstrated by Lyttle et al. (2021). We begin the
construction of our model with Bayes’ theorem—the posterior
probability of our model parameters 6; given some set of
observed data d; is

p(0ild;) o p(6)p(d,|6)),

where p(0,) is the prior on the model parameter 6; (for i
parameters) and p(d;|0;) is the likelihood of the data given the
model. We use our trained ANN to sample each parameter and
evaluate an instance of the model ;= Ai(6;), where X\;
represents the ANN model. From this, we can represent the
likelihood of each observation d; with uncertainty o; given the
model evaluation u,; as the normal distribution,

N 2

1 (dni = )
@6y = [1] —exp| —— — |,
P | n=1 On,i 2m P l 202 l

given N observed variables.

n,i
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The hierarchical structure of our model allows us to
prescribe various levels of pooling to different parameters.
The WMB model parameters fx and Ro., for example, are
assumed to be the same for all stars in our sample. For the
ANNSs trained on both the the MESA and YREC grids, we
define the prior for Ro.y, as

Rogit ~ U(1.0, 4.5),
and the prior for fx as
Jx ~ U“4.0, 11.0),

where 0 ~ X represents a parameter 6 being randomly drawn
from a distribution X, and U(a, b) is a uniform distribution
bounded between a and b. The values of Ro.; and fx drawn
from these uniform distributions are used to calculate the full
set of model evaluations p,; for that step. The bounds for Ro.,;
and fx were centered near the solar Rossby number derived for
our grids (for MESA, Ro, ~2.05, fx.»~5.89; for YREC,
Rog ~2.33, fx.o = 7.52).

Other parameters are assumed to be unique to each star. For
the YREC ANN, we constrain the mass, metallicity, mixing
length parameter, and age. We constrain the same parameters
for the MESA ANN with the addition of the initial helium
abundance. The prior distributions for these parameters are
defined as truncated normal distributions, given by

P(0) ~ Ny (1, 0),

where A is the normal distribution, a and b are the lower and
upper bounds, respectively, p is the median, and o is the
standard deviation. Here, p and o are taken from the
observational constraints on the parameters and their uncer-
tainties. For stars in clusters, we define a prior centered on the
value reported in the corresponding reference (see Section 2.1)
with a width set to the measurement uncertainty for age,
metallicity, mixing length parameter, and rotation period (with
the inclusion of Y, for the MESA grid). For the masses of
cluster stars, we use a homology scaling relationship with T
and set a broad prior (o3, = 0.25 M,,)), and for the mixing length
parameter and initial helium abundance we use uniform priors.
For asteroseismic stars in our sample, all of the above
properties are constrained by the asteroseismic fitting, and we
use this asteroseismic value and its uncertainty as the center
and width of the prior distributions, respectively. To ensure that
using the posterior from AMP as the prior in our model was not
double counting our likelihood, we perform the fitting routine
using uniform prior distributions on stellar mass, metallicity,
initial helium abundance, and mixing length parameter. The
asteroseismic inference of these stellar properties utilizes
observational constraints on T, [Fe/H], and radius in the
likelihood, and the relationship between mass and T.g in
particular raises potential concerns. We retain informative
priors on stellar age, as the isochrone fitting provides only a
weak age constraint compared to the asteroseismic constraint,
which leverages the small frequency separation to probe the
stellar interior structure and is thus not captured in the
isochrones. We find that the use of uniform distributions does
not meaningfully change the inferred value of the braking-law
parameters Ro.;; and fk, with a deviation of <1lo compared to
the construction using seismic measurements to define priors.
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The change to the uncertainty on braking-law parameters is
also minor when using uniform priors, with oRe,, /Ro,
increasing from 0.03 to 0.04 and oy, increasing from 0.51 to
0.66 when compared to the results using truncated normal
priors. However, the use of uniform prior distributions resulted
in a higher rate of step divergences during the sampling
process, indicating that the use of uninformative priors on these
inferred parameters makes it more challenging to converge on a
best-fit model. We therefore adopt truncated normal distribu-
tions defined by the observational constraints. Our truncated
distributions for all stars are bounded by the grid limits
described in Table 2.

Finally, we include a third class of prior distributions in our
model which are shared by some stars but not all. Each star
within the same cluster is assumed to have the same age,
metallicity, and initial helium abundance, while these para-
meters should be fully independent for each target in the
asteroseismic sample and for the Sun. These prior distributions
share the same truncated normal form as the independent
parameters, but can be selectively applied to specific subsets of
the data.

With our priors and likelihoods defined, we sampled the
model parameters. The ANN is compatible with automatic
differentiation, allowing us to utilize No-U-Turn Sampling
(NUTS; Hoffman & Gelman 2014). NUTS is a modified form
of the Hamiltonian Monte Carlo algorithm, which reduces the
number of required steps by leveraging information about the
model gradients. At each step of the NUTS algorithm, samples
are drawn from the posterior distribution, and the subsequent
step is determined from a combination of the likelihood of that
model realization and the prior, which inform the step’s
direction and momentum. We constructed a probabilistic model
with PyMC3 (Salvatier et al. 2016), then calculated the
maximum a posteriori estimate as our starting point and
sampled four chains for 5000 draws with 1000 tuning steps.
We sampled chains long enough to ensure that the Gelman—
Rubin R statistic (Gelman & Rubin 1992) was lower than 1.01
for all parameters indicating model convergence. The residuals
from our fit, as well as an example of our model fit to the Sun,
are shown in Appendix B.

4. Results

We optimize the parameters of our model under two different
assumptions: standard spin-down and WMB. In the standard spin-
down framework, we assume stars follow a Skumanich-like
angular momentum loss law, where J o w? at late times. Under
the WMB assumption, stars lose angular momentum to
magnetized stellar winds with the same relation as the standard
spin-down law until they reach a critical Rossby number Ro.;, at
which point angular momentum is conserved. We use the MESA
ANN as our primary emulator as its grid physics match the models
used in the asteroseismic parameter estimates. In the standard spin-
down case, we only optimize for fk, and retrieve a constraint
of fx =6.11 £0.73. For the WMB model, we report fx=5.46 +
0.51 and Rog;/Ros, = 0.91 £0.03.

Figure 3 shows the distribution of rotation periods predicted
by our WMB model. We have divided the sample into equal-
size bins in T.¢ because temperature captures the effects of
both a star’s mass and metallicity on its rotational evolution.
The red shaded regions show the density of stars drawn from a
simulated population of 1,000,000 stars under the best-fit
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Figure 3. Stellar rotation period vs. age, shown in three bins each spanning 300 K in T.s. Asteroseismic measurements and cluster stars are shown by points; black
points represent rotation periods with fractional uncertainties op/P < 25% and gray points show op/P > 25%. The Sun is marked by the ® symbol. Red contours
represent the distribution of rotation periods within a given T bin predicted by our MESA emulator model, produced from a sample of one million emulated stars
with stellar properties randomly drawn from uniform distributions bounded by our sample, and fx and Ro.; fixed to the median values of the posterior distributions.
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Figure 4. Same as Figure 3, with the additional comparison to the standard spin-down model. The contours represent the distribution of predicted rotation periods
within a given T bin, with red showing our WMB model and blue showing a standard Skumanich-like spin-down model, both generated with our MESA emulator.
The value of fx for the standard spin-down model is the median value from the posterior of a fit to our full sample with no Ro,,; constraint.

WMB assumptions, generated with stellar properties drawn
from uniform distributions for each parameter bounded by the
edges of our sample using our MESA emulator. The width of
the distribution is caused by the range of masses, metallicities,
helium abundances, and mixing length parameters within each
T bin. Stars in clusters can be seen as groups with discrete,
well-constrained ages below 2.5 Gyr, and are valuable
calibrators for the early angular momentum loss J. In our
model, this early J is captured by the braking-law strength
parameter, fg. Stars in our asteroseismic sample span a wide
range of ages, particularly on the second half of the main
sequence, and provide the constraint on Rog,.

In Figure 4, we show a comparison between the rotation
periods predicted by both the standard spin-down and WMB

models (in blue and red, respectively). Each shaded region
represents the density of points in a population of 100,000
simulated stars from our MESA emulator. The standard spin-
down model was fit to the full sample, without altering angular
momentum loss beyond a Rossby threshold. The models
produce similar constraints on fx, as the early rate of J is well
constrained by the clusters in both models. At older ages, the
standard spin-down model significantly overpredicts the
rotation periods of stars in our asteroseismic sample.

The WMB model results in a smaller average deviation from
the observed rotation periods. Figure 5 shows the difference
between predicted and observed rotation periods for our
sample. The colored points show the uncertainty-weighted
median within a 0.2 ¢/fy;s bin. On average, the standard spin-



THE ASTROPHYSICAL JOURNAL, 962:138 (15pp), 2024 February 20

20 1 Standard Spindown
15 1
1 o0
10 A © 4
o o
o
- 57 o o=
& [} o © e}
c (e~ Yoo | ©
S o SR/ I
2 & .
oo o
& °
< _5 - ®
710 -
715 -
—20 A ©
209 =—— wMB
15 1
10 4
=
3
Ay
w
o
720 -
0.0 0.2 0.4 0.6 0.8 1.0 1.2

t/tns

Figure 5. Difference between predicted and observed rotation periods for all
stars in our sample (shown as gray points) as a function of fraction of main-
sequence lifetime 7/fys. The blue and red points represent the uncertainty-
weighted median of 6P within a 0.2 #/fys bin for the standard and WMB
models, respectively. Main-sequence lifetime was estimated by identifying the
age of core-H exhaustion in MESA models generated for each star. Roughly
halfway through the main-sequence lifetime, the standard spin-down model
begins significantly overpredicting rotation periods. The WMB model is
consistent with the observed distribution until near the end of the main
sequence, at which point it underestimates rotation periods.

down model overpredicts rotation periods by 0.72 days for the
full sample and 6.00 days for stars beyond the first half of the
main sequence (¢/fys > 0.5). Conversely, WMB underpredicts
rotation periods by 0.31 days for the full sample and 3.18 days
for stars past 0.5¢/#ys. Isolating only the asteroseismic sample
(at all ages), standard spin-down overpredicts P, by 4.66 days
on average, and WMB underpredicts by 2.02 days. The
corresponding fractional deviations for the asteroseismic
sample are +17.73% for standard spin-down and —9.09% for
WMB. We perform a reduced chi-squared test to determine the
goodness-of-fit for our models, and we find X?/,WMB = 1.07 and

2 — 2 2
Xz/,s[andard = 14.02. Because XV,WMB < Xu,standard’ we conclude

that the WMB model provides a better fit to the data.

Figure 5 shows the difference between predicted and
observed rotation periods as a function of fraction of main-
sequence lifetime. For the first half of the main sequence, the
standard spin-down and WMB models both describe the
observed rotation periods well. However, at roughly halfway
through the main sequence (0.5¢/fys), the standard spin-down
model deviates from the observed distribution and begins

Saunders et al.

overpredicting rotation periods. Both models are consistent
with the cluster data, which follow a tight spin-down sequence
that is nearly identical for the two models (see Figure 4).

5. Discussion

We have provided refined probabilistic estimates for the
onset of WMB, described by the parameter Ro.;. Our model
indicates that stars enter a phase of weakened braking before
reaching the Rossby number of the Sun (Ro.; =0.91+
0.03 Ro,). This result supports constraints by David et al.
(2022), which found a subsolar Ro.; when examining the
pileup in the temperature—period distribution of Kepler stars.
van Saders et al. (2016, 2019) found that a critical Rossby
number of Ro.; =~ Rog, provided the best fit to the observed
rotation periods, which agrees with our results within 20.

The new constraints on weakened braking parameters
provided here can be used as guidelines for where gyrochro-
nology is likely to be accurate. Beyond Ro,., rotation evolves
only slowly with the changing moment of inertia, and stars can
be observed with the same rotation period for billion-year
timescales, challenging any gyrochronological estimate. We
show that gyrochonological ages should be precise until ~Ro,
corresponding to an age of ~4 Gyr for Sun-like stars. After the
onset of WMB, age estimates should have significantly larger
uncertainties due to the slowly evolving rotation on the second
half of the main sequence.

5.1. WMB Model Performance

Toward the end of the main sequence, our model for
weakened braking begins to underestimate rotation periods.
This likely reflects our overly simple implementation of the
transition from standard to weakened braking. The immediate
shutdown of angular momentum loss beyond Ro.;, is the
simplest model which introduces the fewest new parameters.
Given the limited sample of reliable calibrators spanning a
wide range of T.g near the onset of WMB, any parameteriza-
tion of a possible gradual transition, or a transition that does not
completely shut down magnetic braking, is likely not well
constrained by currently available data. As more seismic
constraints are placed on the ages and rotation periods near
Rog, additional parameters that lead to a gradual transition, or
J=0 beyond the transition, can be tested.

The deviation between the WMB model and observed
rotation periods could additionally be partially explained by
small deviations in inferred model ages. At the end of a star’s
main-sequence lifetime, even in the WMB framework when
angular momentum is conserved, the rotation period increases
steeply due to the changing stellar moment of inertia as the
star’s radius expands. Models for rotation increase on short
time spans in parallel vertical tracks in rotation—age space as
stars traverse the subgiant branch, with small separations
between stars of different T, Age estimate inaccuracies are
less likely to explain the deviation seen in the standard spin-
down fit, as the required shifts are larger than the uncertainties
on the age estimates (van Saders et al. 2016). Improved
asteroseismic modeling, or a larger sample of stars with
asteroseismic parameter constraints, could better distinguish
between these effects at the end of the main sequence.
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Figure 6. Comparison between posterior distributions for Ro.,;, from models fit
to different subsets of the data. When fit to only clusters and the Sun (shown in
red), Rogi is unconstrained beyond the solar Rossby number. With the
inclusion of the asteroseismic sample (shown in blue), Ro.y is tightly
constrained just below the solar Rossby number. The y-axis has been arbitrarily
scaled for clarity.

5.2. Assessing the Asteroseismic Constraint

To illustrate the impact of the asteroseismic sample on our
ability to constrain Ro;;, we fit our model to two subsets of the
data: one comprised of only clusters and the Sun, capturing the
early rotational evolution, and one that adds the asteroseismic
stars. Figure 6 shows a kernel density estimate of the sampled
marginal posterior distributions for Ro.;, when fit to each of
these samples. When fit to only clusters and the Sun, Ro.,;; has
little to no probability mass below the solar value, and is
unconstrained beyond the solar value. This aligns with our
expectations, as the young cluster sample has repeatedly been
shown to follow standard braking (Barnes 2007; Mamajek &
Hillenbrand 2008; Barnes 2010; Meibom et al. 2011; Gallet &
Bouvier 2015; Meibom et al. 2015). When the asteroseismic
sample is included, the posterior becomes tightly constrained
near the solar value. This exercise clearly demonstrates why the
effects of WMB were not identified until a large enough sample
of stars with precise rotation periods and ages spanning the
main sequence was available.

5.3. Consistency with Solar Twins

A recent study by Lorenzo-Oliveira et al. (2019) proposed
tension between the WMB model and an observed population
of “solar twins.” The stars in this sample have typical masses
within £0.05 M., of solar and metallicities with £0.04 dex of
solar. Rotation periods were not directly measured for the
majority of stars in this sample, instead the projected rotational
velocity vsini of each star was estimated from spectral line
broadening. This was converted to a projected rotation period,
Pot/sini, using stellar properties derived from from Gaia Data
Release 2 (Gaia Collaboration et al. 2018) and ground-based
spectroscopic data.

If a system is observed directly edge-on (i=90°), the
projected rotation period will match that measured from
photometric spot modulation or asteroseismic mode splitting.
The primary effect of rotation axis inclination away from 90° is

10

Saunders et al.

to shift the projected rotation period to a higher value (shown in
panel (a) of Figure 7). Lorenzo-Oliveira et al. (2019) undergo a
selection process of simulating projected rotation periods given
some random orientation between 0° and 90°, comparing their
measured population against these simulations, and reducing
their sample to stars they found most likely to be seen edge-on
based on the agreement (see Section 2 of Lorenzo-Oliveira
et al. 2019 for a full description of their approach). As only a
fraction of the observed sample is likely to be observed directly
edge-on, the fastest rotation periods in the solar twins sample
represent a lower envelope to the true distribution of rotation
periods of the sample.

We test the standard spin-down and WMB models against
the solar twins sample, seen in panels (b) and (c) of Figure 7.
We calculate B /sini for our MESA emulator model tracks,
drawing inclinations randomly from a uniform distribution
between 0 and 1 in cosi. The stellar properties of our model
grid were drawn from uniform distributions bounded by the
parameter cuts described in Lorenzo-Oliveira et al. (2019)—
mass and metallicity were bounded by 0.8 M., <M <1.2 M
and —0.04 < [Fe/H] <+ 0.04, and unconstrained parameters
were given broad uniform priors (0.22 <Y, <0.28,
1.4 < ampr <2.0). We note that fixing Y, and appr to
solar-calibrated values has negligible impact on the model fit.
We find that the standard spin-down model overpredicts
projected rotation periods beyond the age of the Sun. The
WMB model predicts the observed population with minor
deviations from entirely edge-on inclinations. We find that the
WMB model reasonably reproduces the behavior observed in
the solar twins, and does so better than the standard spin-down
model.

To test the WMB and standard spin-down models against the
solar twins sample, we fit each model under the assumption that
the sample is observed entirely edge-on. This assumption provides
a test of the most conservative case, as including a range of stellar
inclinations would allow the WMB model to encompass a broader
range of projected rotation periods, particularly longer periods
(see panel (a) of Figure 7). We then compute the reduced chi-
squared value Xi for each model, and find Xf,WMB = 2.87 and

2 — 2 2
X, standard = 3-98- Becaus.e Xywmp < Xy.sandarg> WE conclude
that the WMB model provides a better fit to the data even under

the assumption of an entirely edge-on sample.

5.4. Accounting for Grid Bias

We test our model fit using neural networks trained on grids
of models generated by two stellar evolution codes, MESA and
YREC. This provides an opportunity to independently validate
our results as well as test for any bias introduced by the choice
of grid. To date, most investigations of WMB have used ages
and rotational evolution that were inferred using reasonable,
but different, underlying stellar evolution models. Our MESA
grid was constructed with input physics matching the
asteroseismic modeling, avoiding the cross-grid bias when
fitting the MESA-trained neural network to the asteroseismic
observations. While we have matched the physics in the
seismic and rotational models, we have not performed the fits
simultaneously, which we reserve for future work.

The primary difference between the construction of the grids
was to vary Y, as an additional dimension of the MESA grid,
while calculating it with a fixed He-enrichment law in the
YREC grid. We used a relation to compute the value of Y, for
a model in the YREC grid given its metallicity [Fe/H], given
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Figure 7. (a) Projected rotation period, P /sini, of the solar twins sample vs. age. The colored lines show tracks from our MESA emulator for a solar-calibrated
model with a range of stellar inclinations, evolved under WMB assumptions. Models that are not observed edge-on have their projected periods shifted to higher
values. (b) The solar twins sample compared to a standard spin-down model with a range of stellar inclinations. We generated a population of 1,000,000 stars with
parameters drawn from uniform distributions within +0.05 M, of solar for M, £0.04 dex of solar for [Fe/H], and inclinations i drawn from a uniform distribution in
co0si. Yinie and apr were drawn from uniform distributions covering our model grid. (c) Same as panel (b), but with the WMB model. fx and Ro.,; were fixed to
values fit to our full sample. The standard model overpredicts rotation periods of the solar twins sample beyond the age of the Sun, while they are consistent with

WMB when accounting for inclinations.
by
dy
(1 -1 (F).

@), GLw et

Yoo = Yp +

o)
©

where Yp is the primordial helium abundance, the slope of the

helium-enrichment law that matches the solar value is (%) =
®

1.296, and the solar metal fraction is (%)@ = 0.02289 (Grevesse

& Sauval 1998).

The ANN for the YREC grid was trained identically to the
process for the MESA grid described in Section 3.4, and we
constructed the probabilistic model following the process
described in Section 3.5. For the YREC ANN, the value of Yy
fit by our asteroseismic modeling with MESA was not used as
a constraint on the model likelihood, while it was for the
MESA ANN. The choice to include Y;,; as a free parameter, as
well as the differences between how different stellar evolution
codes calculate quantities used in our modeling, have the
potential to introduce systematic biases in the resulting model
fits. Here, we compare between the results inferred by
emulators trained on different model grids.

Most braking laws include a strong Ro dependence, and thus
a dependence on the convective overturn timescale 7.,, and
there is no single agreed upon means of calculating this value
(see Kim & Demarque 1996). Furthermore, changes in grid
physics can result in different values of 7.,, even in solar-
calibrated models. To account for this, we normalize Ro,; by a
grid-dependent solar Rossby number, Ro.. To calculate Rog,
for each grid, we produced solar-calibrated stellar evolution
tracks and compute the Rossby number at the age of the Sun.
For each model grid, we also compute the value of fx that
reproduced solar rotation at solar age under the standard spin-
down assumption, and apply this as a normalization factor
when comparing the inferred values of fx in our WMB models.
We notate this solar-normalized braking-law strength as f .
These normalization factors allow us to compare directly
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between the braking-law parameters inferred from the ANN
trained on each model grid.

The left panel of Figure 8 shows the marginal and joint
posterior distributions for the braking-law parameters when fit
with the MESA and YREC ANNs. The black dashed line
shows the solar Rossby number, Ro.,. Both MESA and YREC
return values of Ro.; below Ro, indicating that the onset of
WMB occurs before the age of the Sun for a solar analog. The
inferred braking-law parameters have slight offsets, but agree
within 1o. To assess the impact of leaving the Y;,;, parameter
free, we also performed probabilistic modeling with the MESA
ANN with Y;,; set to the He-enrichment law described above.
We show the updated posterior distributions for this fit
compared to the YREC ANN in the right panel of Figure 8.

Using the YREC emulator model, we retrieve constraints on the
braking-law parameters of fl’( = 0.86 + 0.07 and Ro;/Ro., =
0.94 £0.04. When Y, is left as a free parameter, the MESA
emulator model returns f,'( = 0.77 £ 0.07 and Ro.;/Ro. =
0.91 £0.03. When we fix the helium-enrichment law to that used
in the YREC grid, the MESA emulator model reports
fx' = 0.80 £ 0.07 and Ro.;/Ro,, = 0.94 +0.03. We note that
all models consistently return a value of Ro.; below the solar
Rossby number.

When holding Y;,;, fixed to the YREC He-enrichment law,
we find closer agreement between the braking-law parameters
inferred by our model fitting, with Ro.; in near-perfect
agreement. This implies that Y, provides additional con-
straints on the braking-law parameters, and its inclusion as a
grid dimension can influence the result. Y;,;, is a challenging
property to measure for Sun-like stars, and yet affects our
inferred value of Rog; at the ~1o-level. We conclude that
uncertainty in the helium-enrichment law should be treated as a
systematic uncertainty in the inference of Ro.

5.5. Future Applications

In this study, we focus only on fx and Ro.; due to the age
distribution of our sample. In the future, the same approach
described here could be applied to a sample of targets which span
earlier phases of evolution (i.e., young open clusters), at which
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Figure 8. (a) Corner plot showing the marginal and joint posterior distributions for the global parameters of our WMB model. Blue shows the samples from the fit
using a neural net trained on a grid of MESA models, and red shows the samples from a fit using the YREC-trained neural net. The solar Rossby number Ro, is
shown as a dashed black line. The median values of each distribution are shown as dashed lines in their respective colors in the top and right panels. (b) The same
posterior distributions, now with the He-enrichment law in the MESA probabilistic model fixed to the relation used when generating the YREC grid. The primary
difference between the grids used to train the emulator models is the varied helium abundance Yi,; in the MESA grid. When fixed to the YREC enrichment law, the

constraints on WMB global parameters are in closer agreement.

time braking-law assumptions, such as the disk-locking timescale,
disk lifetime, wy,, and internal angular momentum transport must
be treated more carefully.

We limited the range of our input model grid to cover the
parameters of our sample in order to reduce the computational
time required for model generation and neural network training.
The framework for the ANN emulator could easily be applied
to a grid spanning a wider range of stellar properties, and would
provide a useful tool for quickly evaluating stellar evolution
tracks or simulating stellar populations. To reduce training
time, the grid resolution could be selectively increased to reach
a precision threshold. Scutt et al. (2023) suggested that
parameter spacing can be modified in different regions of the
grid to improve ANN precision.

Asteroseismic pulsation frequencies are often generated
alongside stellar models using tools such as GYRE (Townsend
& Teitler 2013). These pulsation frequencies, particularly the
large frequency spacing (Av), can be included in the grid
dimensions (e.g., Lyttle et al. 2021) and applied as further
likelihood constraints for models. Ideally, some combination of
the above additions could be implemented to produce a broadly
applicable stellar evolution emulator that does not require
generating or interpolating large model grids.

6. Conclusions
In summary, our primary conclusions are as follows:

1. We present evidence for WMB in old stars. Using a neural
network as a stellar evolution emulator, we perform
probabilistic modeling to produce posterior distributions for
the parameters of the weakened braking model. We find that
the weakened braking model provides the best fit to the
observed distribution of rotation periods.
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2. We show that the most likely weakened braking scenario
diverges from standard spin-down at a slightly earlier
evolutionary phase than the Sun (Rog;/Ros = 0.91 +
0.03). We caution that our WMB model is a simplified
case in which angular momentum loss is fully switched
off at a critical Rossby number, and likely does not fully
capture the time evolution of the stellar dynamo. The
relatively sparse calibrator sample near Ro.; means that
it remains challenging to infer the precise onset of WMB
relative to the Sun’s evolution.

3. Our method for emulating stellar evolution with a neural
network enables rapid evaluation of stellar models,
making it possible to fit braking-law parameters while
properly accounting for the uncertainties in the stellar
parameters of our calibrator sample. By modifying the
braking law used to generate our training set, we could
test other effects at early times, such as the impact of
internal angular momentum transport or disk locking.

4. We report mild disagreement between the constraints on
WMB parameters when using different underlying model
grids. This indicates that the choice of grid physics and
which parameters are varied in the model can impact the
inferred model parameters. For our choices, the impact is
at the 1o level.

5. The WMB model appears compatible with the solar twins
sample. The standard spin-down model predicts faster
rotation than observed in the solar twins stars during the
second half of the main sequence, while their rotation
periods can be described by the WMB model with
modest deviations from a fully edge-on population.

6. Our constraint on the Ro.; at which stars enter a phase of
weakened braking suggests that gyrochronology faces
challenges when estimating stellar ages for much of the
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main-sequence lifetime. For solar-mass stars, gyrochronolo-
gical age estimates are likely unreliable beyond an age of
~4 Gyr. For more massive stars (1.1 M), gyrochronology
relations appear to break down even earlier, at an age of
~2.5 Gyr, while for lower-mass stars (0.7M, <M, <
0.9 M.) the standard gyrochronology relationships likely
hold out to ~6 Gyr. Even after a star has entered the
weakened braking phase, a reasonable range for its age can
be estimated from its rotation period, and our constraint on
Ro;; enables gyrochronological modeling that will provide
a realistic uncertainty on the stellar age.

The growing population of stars with precisely measured
ages and rotation periods from asteroseismology is shedding
essential light on the evolution of stellar rotation. Improved
direct observations of magnetic field strength can add
additional constraints on the braking-law parameters. As more
stars are added to this sample, the transition to WMB can be
constrained to higher precision.
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Appendix A
Neural Network Structure

As described in Section 3.4, our ANN was generated with
six hidden layers of 128 neurons. A model summary can be
found in Table 3.

Table 3
Model Summary for Our ANN

Layer (type) Output Shape Nparams
normalization (Normalization) (None, 7) 15
dense (Dense) (None, 128) 1024
dense_1 (Dense) (None, 128) 16512
dense_2 (Dense) (None, 128) 16512
dense_3 (Dense) (None, 128) 16512
dense_4 (Dense) (None, 128) 16512
dense_5 (Dense) (None, 128) 16512
dense_6 (Dense) (None, 4) 516
rescaling (Rescaling) (None, 4) 0

Total params: 84,115
Trainable params: 84,100
Nontrainable params: 15
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Appendix B
Model Validation

To validate the performance of our model, we calculated the
difference between the observed value and the median of the
posterior sampled distribution for each parameter in our grid.
Figure 9 shows this value, where 60X = X rcdicted — Xobserved fOr
a parameter X. We find good overall agreement between
predicted and observed values, with no significant systematic
offsets.
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Figure 9. Difference between observed values of stellar properties and
predictions from our probabilistic model (predicted — observed), plotted
against stellar age. The red line shows the median of the difference, with the
standard deviation shown by the shaded region.
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Figure 10. Corner plot showing marginal and joint posterior distributions for the Sun from our sampled probabilistic model.

For each star in our sample we retrieve full posterior
distributions for each parameter. In Figure 10, we show the
sampled marginal and joint posterior distributions for the Sun.
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