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ABSTRACT: Reaction of Fe(acac); with 3 equiv of Li(N=C(R)Ph) (R = Ph, ‘Bu) results in formation of the [Fe,]*" complexes,
[Fea(u-N=C(R)Ph),(N=C(R)Ph)s] (R = Ph, 1; ‘Bu, 2), in low to moderate yields. Reaction of FeCl, with 6 equiv of Li(N=C,3Hsg)
(HN=C,3Hg = 9-fluorenone imine) results in formation of [Li(THF),]o[Fe(N=C,3Hs)4] (3), in good yield. Subsequent oxidation of 3
with ca. 0.8 equiv of I, generates the [Fe;]®" complex, [Fea(u-N=C13Hs)(N=C3Hs)4] (4), along with free fluorenyl ketazine. Com-
plexes 1, 2, and 4 were characterized by 'H NMR spectroscopy, X-ray crystallography, ’Fe Mossbauer spectroscopy, and SQUID
magnetometry. The Fe-Fe distances in 1, 2, and 4 range from 2.803(7) to 2.925(1) A, indicating that no direct FeFe interaction is
present in these complexes. The *’Fe Mdssbauer spectra for complexes 1, 2, and 4 are all consistent with the presence of symmetry-
equivalent, high-spin Fe** centers. Finally, all three complexes exhibit a similar degree of antiferromagnetic coupling between the
metal centers (J = -23 to -29 cm™), as ascertained by SQUID magnetometry.

Introduction

Metal-metal communication can play a key role in the emergence
of single-molecule magnetism, which has potential applications in
data storage and quantum computing."® For example, Long and
co-workers isolated a series of phosphinimide-bridged [M4]** clus-
ters, [Ma(NP'Bus)4]* (M = Ni, Co) that feature high spin ground
states and slow magnetic relaxation. The latter observation was
attributed to direct exchange interactions,'®'? which were thought
to be a consequence of the relatively short M—M bonds imposed by
the bridging phosphinimide ligand. The pyridin-2-yl-amide class of
ligands can also promote strong metal-metal interactions, specifi-
cally in extended metal atom chains (EMACs)."32° For example,
[Crs(tdpa)sX2] (X = CI, SCN-; Haotdpa = N2,N°-di(pyridine-2-
yl)pyridine-2,6-diamine) exhibits strong antiferromagnetic cou-
pling between metal centers, as well as single-molecule magnet be-
havior at low temperatures.?! Metal-metal communication can also
influence spin crossover (SCO) behavior in multi-metallic com-
plexes,?*2° which have potential applications in molecular elec-
tronics and sensors.?’3%3!  For example, the pyrazolate-bridged
[Fe2]**-containing polymer, [ {Fe2(NCS)2(u-bpypz)2} (u-4,4"-bipy)]
(Hbpypz = 3,5-bis(2-pyridyl)-pyrazole) exhibits a sharp SCO tran-
sition, due, in part, to the minimal magnetic exchange coupling be-
tween Fe centers.’? Importantly, each of these examples relies on
the ability of ligands to control the magnetic interactions between
metal ions.

The ketimide anion, [N=CR2]", is another ligand class that is adept
at promoting metal-metal interactions,’3-3> as shown by the multi-
metallic complexes, [Li(12-crown-4)2][Ma(p-
N=C'Bu2);(N=CBw2)2] (M = Mn, Fe, Co), [Fex(p-
N=C'Bu2)2(N=C'Buz)3], [Fes(u-N=CPhz)s], and [Fes(p-Br)(p-
N=C'Bu2)4].3% In the case of [Fes(u-N=CPhz)s] and [Feas(p-
Br)2(p-N=C'Buz)4], metal-metal communication occurs via direct
exchange, which leads to ferromagnetic coupling between metal
centers.’”3® In contrast, for [Fe2(u-N=C'Bu2)2(N=C'Buz)3], metal—
metal communication likely occurs via superexchange, which leads
to anti-ferromagnetic coupling.>® While the ability of the ketimide
ligand to mediate metal-metal communication is reasonably well

established,*>3637 the role that the ketimide substituents play in me-
diating these interactions is not well understood. In fact, the diver-
sity of known ketimide substituents is relatively low and the most
common substituents, by a substantial margin, are Ph and Bu.3%-
In this regard, we recently reported the syntheses of two “tied-
back” ketimides, 2-adamantyl ketimide and 9-fluorenyl ketimide,
in an effort to increase this substituent diversity.>* The latter ex-
ample, with its conjugated n-system, could be especially good at
promoting metal-metal communication. Herein, we evaluate the
magnetic properties of a series of [Fe2]®" dimers with varying
ketimide substituents, including the fluorenyl substituent, in an ef-
fort to tune the magnetic interactions between iron centers.

Results and Discussion

Synthesis. The reaction of Fe(acac)s with 3 equiv of Li(N=CPh) in
tetrahydrofuran (THF) at room temperature for 20 h resulted in the
formation of [Fe2(u-N=CPh2)2(N=CPh2)4] (1), which was isolated
as black needles in 40% yield after work-up (Scheme 1). Similarly,
reaction of Fe(acac); with 3 equiv of Li(N=C(‘Bu)Ph) in diethyl
ether (Et20) at room temperature for 18 h resulted in the formation
of [Fe2(u-N=C(‘Bu)Ph)2(N=C(‘Bu)Ph)a] (2), which was isolated as
a black crystalline material in 35% yield after work-up. Complex 1
is soluble in THF, and somewhat soluble in toluene, benzene, and
Et20, whereas complex 2 is soluble in THF, EtO, benzene, and
hexanes. As solids, both 1 and 2 are stable under inert atmosphere
at -25 °C for several months; however, they decompose rapidly
upon exposure to air in both the solid and solution states.

Scheme 1. Synthesis of Complexes 1 and 2
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The 'H NMR spectrum of 1 (Figure S5) in CsDs is consistent with
the idealized D2n symmetry observed in the solid state (see below).
The spectrum exhibits two resonances at 19.52 and 13.49 ppm as-
signable to the m-Ar protons of the terminal and bridging ketimide
ligands, respectively, and two resonances at -0.37 and -4.26 ppm
assignable to the p-Ar protons of the bridging and terminal
ketimide ligands. The o-Ar proton resonances were not observed,
likely due to paramagnetic broadening. The '"H NMR spectrum of
2 in C¢Ds features seven broad and paramagnetically shifted reso-
nances (Figure S6). There are two resonances in an approximately
18:36 ratio at 19.27 and 16.40 ppm, assignable to the bridging and
terminal ‘Bu resonances, respectively. An additional three reso-
nances at 18.17, 12.79, and 1.36 ppm, in an approximately 8:8:4
ratio, are assignable to the three expected terminal ketimide aryl
resonances, and two resonances at 2.49 and 10.79 ppm are assign-
able to the p-Ar and either the m- or o-Ar protons of the bridging
ketimide ligands. One resonance is not observed, presumably be-
cause it is too broad. These assignments are consistent with the ide-
alized Con symmetry expected for the complex.

In contrast to relatively straight-forward syntheses of 1 and 2 from
Fe(acac)s, the reaction of 3 equiv of Li(N=C3Hs) (HN=Ci3Hs = 9-
fluorenone imine) with Fe(acac)s results in formation of a complex
reaction mixture, according to "H NMR spectroscopy. However, a
two-step synthetic approach involving salt metathesis with Fe?*,
followed by oxidation to [Fe2]®, proved to be successful. In par-
ticular, reaction of FeClz with 6 equiv of Li(N=Ci3Hs) resulted in
formation of [Li(THF)2]2[Fe(N=Ci3Hs)4] (3), which was isolated as
dark green blocks in 70% yield after work-up (Scheme 2). Com-
plex 3 is soluble in THF and somewhat soluble in Et2O, but insol-
uble in hexanes, pentane, and benzene. It is stable under an inert
atmosphere at -25 °C for several months. Unfortunately, due to
their similar solubilities, we could not completely separate complex
3 from the LiCl by-product. In addition, the highest yields of 3
were achieved when an excess of Li(N=C13Hs) was used. If lower
amounts of Li(N=Ci3Hs) are employed, then the yields of 3 were
reduced and '"H NMR spectra showed the presence of several uni-
dentified Fe-containing products.

The 'H NMR spectrum of 3 in THF-ds exhibits four resonances at
31.45, 18.82, 14.27, and 12.52 ppm, in an approximately 1:1:1:1
ratio (Figure S8). The observation of four resonances are consistent
with the single ligand environment expected for this complex,
while the large chemical shifts are consistent with the anticipated
open shell ground state.® The Li NMR spectrum of 3 exhibits a
highly-downfield resonance at 211 ppm, also consistent with a par-
amagnetic ground state (Figure S9). Additionally, its formulation
was confirmed by X-ray crystallography (Figure S3). To our
knowledge, 3 is the first fluorenyl ketimide complex to be prepared
by salt metathesis. Previously reported fluorenyl ketimide com-
plexes we prepared by disproportionation of 9-diazofluorene or by
activation of the N-H bond of 9-fluorenone imine.3¢->

Given the likely (and potentially variable) presence of LiCl
in isolated samples of complex 3, we performed the oxidation
by titration with I, in THF, and monitored the conversion to the

product by '"H NMR spectroscopy. Formally, this transfor-
mation requires two oxidizing equivalents: one to form Fe3" and
one to convert the redox-active ketimide ligand to ketazine.> ¢!
Typically, the highest yields of 4 were achieved upon addition
of ca. 0.8 equiv of I, to the reaction mixture (Scheme 2). Con-
sistent with the reaction scheme, 'H NMR spectra of the crude
reaction mixtures do contain resonances assignable to free flu-
orenyl ketazine (Figure S10).%-¢!

Work-up the resulting reaction mixture, followed by storage at -25
°C for 24 h, resulted in the deposition of [Fex(u-
N=C13Hs)2(N=C13Hs)4] (4), as a black crystalline solid in good
yields. Separation of any remaining ketazine by-product was
achieved by quickly rinsing the isolated material with a small por-
tion of THF. Complex 4 is somewhat soluble in THF, but insoluble
in EtO, hexanes, pentane, and benzene. Its 'H NMR spectrum in
THF-ds exhibits four resonances at 15.19, 11.93, 0.15, and -0.39
ppm, which are assignable to the four expected CH environments
of the bridging ketimide ligand (Figure S11). Additionally, we ob-
serve three resonances at 23.55, 16.04, and -3.67 ppm, which are
assignable to three of the terminal ketimide CH resonances. One
terminal ketimide CH environment was not observed. Importantly,
this spectral signature is consistent with the expected idealized Dan
symmetry, and suggests that the bimetallic structure of 4 is main-
tained in donor solvents. The UV-vis spectrum of 4 is also qualita-
tively similar to that observed for 1 (Figures S16 and S18), suggest-
ing similar structures in solution. For comparison, oxidation of
[Li(THF)]2[Fe(N=C'Bu2)4] with 1 equiv of I» results in formation
of the stable Fe(IV) complex, [Fe(N=C'Buz)4],%° demonstrating the
greater redox stability of bis(tert-butyl)ketimide vs. fluorenyl
ketimide.

Scheme 2. Synthesis of complexes 3 and 4
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X-ray crystallography. Complexes 1, 2, and 4 all crystallize
in the triclinic space group P-1 (Figures 1, S1, S2, and S4).
Complex 1 crystallizes as a toluene solvate, 1-C;Hg with two



independent molecules in the asymmetric unit, whereas 4 crys-
tallizes as a THF solvate, 4-2THF. All three complexes feature
two pseudotetrahedral iron centers bound by two bridging and
four terminal ketimide ligands. The Fe—Fe distances are
2.8639(12) and 2.8278(12), 2.9245(13), and 2.803(7) A for 1,
2, and 4, respectively (Table 1). These values correspond to
formal shortness ratios of 1.23 and 1.21, 1.26, and 1.20, respec-
tively,%>% and suggest the absence of a direct M—-M bonding
interaction.** For comparison, the imido-bridged [Fe»]*" com-
plex reported by Holland and co-workers, [LEFe(u-NPh),FeLE']
(L® = {(2,6-Et;CsH3;)NC(Me)},CH), features a significantly
shorter Fe—Fe bond length of 2.5648(4) A.® The Fe-Fe dis-
tances in 1, 2, and 4 are also much longer than those of the
[Fea]*  ketimide complex, [Li(12-crown-4),][Fex(u-
N=C'Bu,);(N=C'Buz)] (2.443(1) A), and the [Fe,]** ketimide
complex, [Fe(u-N=C'Bu,);(N=C'Buy),] (2.5468(14) A).3* The
Fe—Fe distances in 1 are also slightly longer than that of its
isostructural  [Fex]*"  congener, [K(18-crown-6)],[Fex(u-
N=CPh,),(N=CPh,)4] (2.7936(9) A).®® As expected, the Fe—
Nierminat distances are shorter than the Fe—Nurigging distances. Fi-
nally, the Fe—N—C angles of the terminally-bound ketimide lig-
ands are generally linear, suggesting the presence of m-donation
from ketimide to metal (Table 1).

Figure 1. Solid-state molecular structure of 1-C7Hg shown with
50% probability ellipsoids. Hydrogens atoms, second independent
molecule, and the toluene solvate have been excluded for clarity.

Table 1. Selected Bond Lengths (A) and Angles (°) for Complexes
1, 2, 4, and [K(18-crown-6)]z2[Fez(pi-N=CPh2)2(N=CPhz)4].

[K(18-crown-
4.2TH 6)]2
Parameter | 1-C7Hs 2 F [Fe2(N=CPhy)
6]66
Fe_Fe ?.8639(12 g-)9245(1 %803( 2.7936(9)

2.8278(12
)
Formal
shortness 1.23,1.21 | 1.26 1.20 1.20
ratio®?
2.011(3), 2.008(
2.037(4) 2.070(3) 8) 2.045(3)
Fe—Nbridging
2.001(3), 2.021(
2.026(3) 2.085(3) 9) 2.000(3)
1.842(4), 1.850(
1.857(4) 1.901(3) 9) 1.941(3)
Fe—Nierminal
1.848(4), 1.851(
1.869(3) 1.927(3) 9) 1.864(3)
163.6(3), 156.1(
163.9(3) 162.4(3) 9) 171.7(3)
Fe-N—
Cterminal ( ) ( ( )
171.8(3), 169.2 144.3(3
144.6(3) 167.7G3) 9)

Mossbauer Spectroscopy and Magnetism. In an effort to con-
firm their oxidation states, zero-field ’Fe Mossbauer spectros-
copy was performed on complexes 1, 2, and 4 (Figure 2, Tables
2 and S2). The Maossbauer spectra of all three complexes are
very similar. For example, the Mdssbauer spectrum of 1 taken
at 7=90 K exhibits a sharp asymmetric doublet, with an isomer
shift of 6= 0.23 mm/s and quadrupole splitting of |AEq| = 0.71
mm/s. The Mossbauer spectrum of 2 features an isomer shift of
6= 0.26 mm/s and quadrupole splitting of |AEq| = 0.86 mm/s.
Finally, the Mdssbauer spectrum of 4 exhibits a sharp asymmet-
ric doublet with an isomer shift of 6= 0.22 mm/s and quadru-
pole splitting of |AEq| = 0.72 mm/s. The presence of a single
quadrupole doublet in all three spectra confirm that each com-
plex contains symmetry-related iron environments, consistent
with the NMR spectral and X-ray crystallographic data. More-
over, the observed isomer shifts are in line with those expected
for high-spin Fe*".%>6772 A comparison with the reported *’Fe
Mossbauer parameters for other ketimide-supported clusters
and complexes is also informative (Table 2). Generally speak-
ing, there is a good correlation between oxidation state and iso-
mer shift, with one exception. The Fe/Fe! mixed-valent clus-
ter, [Fes(u-N=CPh;)s], exhibits an anomalously low isomer
shift.*” We do not have a good explanation for this discrepancy
at the moment. Also of note, the monometallic Fe*" ketimide,
[Li(12-crown-4),][Fe™(N=C'Bu,)4], features a much larger
quadrupole splitting (JAEq| = 3.56 mm/s) than those observed
for complexes 1, 2, or 4.7 The large discrepancy is likely a re-
sult of the former complex’s S = 3/2 spin state, which contrasts
to the S = 5/2 spin states of 1, 2, and 4 (see below).”* 7’
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Figure 2. Zero-field *’Fe Mossbauer spectra of 1 (top), 2 (middle),
and 4 (bottom) collected at 7= 90 K. The teal traces correspond to
the overall fit.

Temperature-dependent dc magnetization data were also col-
lected for crystalline samples of 1, 2, and 4 at H = 1,000 Oe
(Figure 3). Complex 1 exhibits a magnetic moment of ymT =
3.36 emuK mol™! at T = 300 K (perr = 5.18 up), which drops
precipitously to yu7 = 0.003 emuK mol! at 7=2 K (uer=0.17
ue). Likewise, complex 2 exhibits a room-temperature moment
of yuT = 3.24 emuK mol"! (uesr = 5.09 pp), which drops to ymT
= 0.023 emuK mol" at 7= 2 K (uerr = 0.43 up). Complex 4
features a higher room-temperature moment of ym7 = 4.13
emuK mol™! (uesr = 5.75 pp) that similarly drops to yu7 = 0.101
emuK mol ™! at 7=2 K (perr = 0.90 pg). To fit the magnetic data,
the exchange Hamiltonian H = —2JS, - S, was employed.
During the fitting process, J and % paramagnetic impurity (S =
5/2) were allowed to refine freely for all three complexes, while
the Weiss constant (®) was allowed to refine for 4. The g values
were kept constant at g, = g, =2.00 for 1 and 2, and g1 = g =
2.10 for 4, following past precedent.”®*®! D and yrp were not
included in the fits. Reasonable fits were obtained by assuming
Si1 =8, = 5/2 (Table 3, Figure 3), although the fit for 4 shows
small deviations at low and high temperatures (Figure 3 inset).
The fits gave magnetic coupling constants of J = -29.0, -29.6,
and -25.7 cm™! for complexes 1, 2, and 4, respectively, confirm-
ing the strong antiferromagnetic coupling between the Fe** cen-
ters in all three dimers. The magnetic communication in 1, 2,
and 4 is likely facilitated through superexchange; however,
based on the similar J coupling values uncovered for all three
complexes, it is clear that the ketimide substituents have a min-
imal effect on the magnetic communication between metal cen-
ters.

Table 3. Hamiltonian parameters from fits to magnetic susceptibil-
ity data.

. Complex 1 2 4
Table 2. ’Fe Mossbauer parameters for complexes 1,2, and 4 along
with other selected ketimide-supported complexes. O.S. = formal
oxidation state. J(cm™) -29.0 -29.6 -25.7
Complex 0 |AEq| 0O.S. | Ref
(mm/s) | (mm/s) g1, g2 2.00? 2.00? 2.107
1 0.23 0.71 3 This P i T
k aramagnetic lm-
wor purity® (%) 2.1 1.2 2.4
2 0.26 0.86 3 This
work 0 (K) - -- -6.9
4 0.22 0.72 3 This
work Fixed
[Fea(u-N=CPha)s] 0.34 0.79 15 |7 S =5/
For comparison, the magnetic coupling constants in 1, 2, and
- - 38
I[\lf:g;;l?r)h](u 0.45 0.62 1.5 4 are much smaller than those measured for other ketimide-
B bridged dimers, such as [Fe;(1-N=C'Bu,)o(N=C'Buy)s] (J = -235
-1 (ot —(t - _ 1
Li(THF)L[Fe(N=CB | 044 | 085 |2 |7 cm’), [Mna(i-N=C'Bu)s(N=CBua)| (J = -78 cm'), and
1[12)5] )] [ ( [L1][Crz(p-N=C10H14)3(N=C10H14)4] (J = -200 cm‘l).33'3° In the
case of the [Fe,]*" complex, [Fea(u-N=C'Buy)2(N=C'Bus)s], the
[Li(12-crown- 0.19 356 3 73 shorter Fe-Fe distance (2.547(1) A) likely contributes to the
4),][Fe(N=C'Bu2)4] larger coupling.®*®  Similarly, the [Fe;]*" complex,
[(PhCN)2(Mes),Fex(u-N=C(Mes)(Ph)),],%* also features larger
Fe(N=C'Buz)4 -0.15 1.62 4 73 antiferromagnetic coupling (J = -63.7 cm™) than 1, 2, and 4,
likely for the same reason. Several chalcogenide-bridged [Fe,]**

complexes have also been characterized by magnetometry 8%

These exhibit antiferromagnetic coupling constants ranging



from J = -75 cm’ (for [{Fe(salen)},S]) to -105 cm™ (for
[{Fe(bipy):}20]*).35% The p-imido complex, [LEFe(u-
NPh),FeLF], also features a large antiferromagnetic coupling
constant (J = -123 cm™).® In these cases, the superexchange is
facilitated by the dianionic bridging ligands, which results in
stronger magnetic coupling presumably due to the shorter Fe—
Ebrideine bond lengths. In contrast, [Fe,]*" complexes bridged by
monoanionic ligands tend to feature weaker antiferromagnetic
couplings,® ranging from J = -2.2 cm for [Fex(bbpnol)]
(Hsbbpnol = N,N’-bis(2-hydroxybenzyl)-2-ol-1,3-propanedia-
mine) to J = -28.6 cm’! for [Fex(chp)s(OMe),(dmbipy).] (chp =
6-chloro-2-pyridone; dmbipy = 4,4’-dimethyl-2,2’-bipyri-
dine).¥°° 1In this regard, the antiferromagnetic coupling con-
stants measured for 1, 2, and 4 are on the upper end of these
values, demonstrating that, for monoanionic bridging ligands,
ketimides can mediate amongst the strongest metal-metal com-
munication.

XT / emu K/mol

1 1 1
0 100 200 300
T/K

Figure 3. Solid-state magnetic susceptibility data (ymT vs. T) for 1
(orange circles), 2 (purple diamonds), and 4 (green triangles) col-
lected under an applied magnetic field of H =1 kOe from 7'= 2 to
T=300 K. The solid lines represent fits to the data, as described in
the main text. Inset: Expansion of ymT vs. T, showing the low tem-
perature data only.

Conclusions

We have synthesized three ketimide-bridged [Fe2]°" complexes
with varying substituents on the ketimide ligands. The Fe—Fe bond
lengths are similar across the three complexes and do not indicate
the presence of direct Fe—Fe interactions. Nonetheless, all three
complexes exhibit robust antiferromagnetic communication be-
tween Fe centers, likely via superexchange. Surprisingly, however,
there is minimal correlation between the substituent identity and
the antiferromagnetic exchange coupling constant, even in the case
of the fully-conjugated fluorenyl substituent. Despite the lack of
any apparent correlation, this work nicely demonstrates the ability
of'ketimide ligands to generate multi-metallic metal complexes and
to facilitate communication between metal centers.
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A series of ketimide-bridged [Fe>]®" complexes exhibit strong metal-metal communication, likely via superexchange.
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