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ABSTRACT

Identifying disturbances in network-coupled dynamical systems without knowledge of the disturbances or underlying dynamics is a problem
with a wide range of applications. For example, one might want to know which nodes in the network are being disturbed and identify the type
of disturbance. Here, we present a model-free method based on machine learning to identify such unknown disturbances based only on prior
observations of the system when forced by a known training function. We find that this method is able to identify the locations and properties
of many different types of unknown disturbances using a variety of known forcing functions. We illustrate our results with both linear and
nonlinear disturbances using food web and neuronal activity models. Finally, we discuss how to scale our method to large networks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0169237

Despite a wide range of potential applications, identifying distur-
bances made to network-coupled dynamical systems is a difficult
problem due to the complex nature of interactions between differ-
ent units. Even a disturbance made to a single node can be chal-
lenging to localize due to the propagation of behavior through the
network. Here, we present a model-free method using machine
learning techniques, specifically reservoir computing, to iden-
tify disturbances to network-coupled dynamical systems. This
method assumes no knowledge of the underlying dynamics or
the disturbance itself. All that is needed is sufficient observations
of the system under the influence of a known forcing function.
We show using examples from ecology and neuroscience that the
method robustly identifies the disturbances made to the system
for a relatively simple set of forcing functions used for training.
Moreover, we show that the method is scalable to large networks
using a pseudo-parallelization architecture.

I. INTRODUCTION

Machine learning techniques have proven to be extremely use-
ful for data-driven modeling and prediction of complex systems.1–4

In many of these applications, a machine learning system is trained
to learn and replicate the dynamics of a nonlinear system from

noisy or partially observed data, and then the machine learning
system is used, for example, to forecast the dynamics,5–8 to esti-
mate Lyapunov exponents9 or unstable periodic orbits,10 to infer
network coupling,11 or to predict extreme events12 and crises in
non-stationary dynamical systems.13,14

Machine learning techniques can also be used without the
need to replicate the intrinsic dynamics of the system. For example,
Ref. 15 uses reservoir computers, a particular class of machine learn-
ing systems suited to modeling time-dependent systems, to learn
the response of dynamical systems to stimuli and then design data-
driven control algorithms. Reservoir computing has also been used
in other engineering tasks,39 such as recovering signals in noisy
communications,16 detecting wind and rain events,17 and identify-
ing physiological properties of biosynthetic materials.18 In Ref. 19,
we recently proposed a similar scheme to identify and suppress
unknown disturbances to dynamical systems. Detecting distur-
bances to nonlinear dynamical systems is a crucial problem with
a wide range of applications, e.g., in engineering, and, in particu-
lar, in power grid networks,20–26 ecology,27,28 fluid dynamics,29,30 and
climate change.31 In this paper, we extend our results to the iden-
tification of disturbances in network-coupled dynamical systems.
Network-coupled systems present a particular challenge in identi-
fying disturbances, as the ripple of an external force complicates the
inference of both the location and nature of the disturbance.25,32,33
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By extending the method presented in Ref. 19 to network-coupled
dynamical systems, we are able to robustly identify which nodes are
disturbed and the time course of the disturbances. We illustrate our
approach with two examples: a food web and a system of excitatory
and inhibitory neuron populations. The dynamics in these exam-
ples include both stationary and oscillatory dynamics and linear and
nonlinear disturbances. We also address the issue of the scalability of
our approach to large networks. We believe our approach could be
useful in applications where identifying the location of disturbances
in networked dynamical systems is important, such as, for example,
power grid systems.

The remainder of this paper is organized as follows. In Sec. II,
we present the problem statement and describe the setup of the
reservoir computer. In Sec. III, we present our first example: linear
disturbances to a food web. In Sec. IV, we present our second exam-
ple: nonlinear disturbances to a network of excitatory and inhibitory
neuron populations. In Sec. V, we explore the scalability of our
approach to larger networks using an ensemble of node-specific
reservoirs. In Sec. VI, we conclude with a discussion of our results.

II. PROBLEM STATEMENT AND SETUP OF THE

RESERVOIR COMPUTER

We consider here systems of N network-coupled dynamical
systems whose states xi(t) ∈ R

D for i = 1, . . . , N are governed by a
system of differential equations of the form

ẋi = Fi(xi, X, gi(t)), (1)

where X(t) = [x1(t)
T, . . . , xN(t)T]

T
∈ R

ND is the collection of all
state vectors xi(t) organized in a single vector, gi(t) ∈ R

D is the dis-
turbance to the state at node i, and the vector field Fi : R

D × R
ND

× R
D → R

D incorporates the local intrinsic dynamics of state i, the
effect of interactions with other states via X and some underlying
network structure, and the local disturbance gi. In particular, we
write the vector field Fi such that Fi(xi, X, 0) = Fi,intrinsic(xi, X) gives
the intrinsic, i.e., undisturbed, system dynamics. In general, the dis-
turbances gi(t) may be linear, in which case the dynamics may be
written as Fi(xi, X, gi(t)) = Fi,intrinsic(xi, X) + gi(t), or nonlinear, in
which case no such notational simplification can be made. Our goal
is to develop a method by which the disturbances can be accurately
identified in such a way that we can infer (i) precisely which ele-
ment(s) of the system are disturbed and (ii) what the disturbance
functions are. We assume that the system can be forced with a set of
known training forcing functions hi(t) ∈ R

D for i = 1, . . . , N, as

˙̂xi = Fi(x̂i, X̂, hi(t)), (2)

and each x̂i(t) can be observed for a sufficiently long time. (From
now on, a hat will indicate quantities during the training phase).
Then, a machine learning system is trained to approximate each hi(t)
given all x̂i(t). The trained machine learning system is then used to
infer gi(t) from observations of xi(t) obtained from Eq. (1). Note that
no knowledge of the intrinsic dynamics Fi,intrinsic or the disturbance
functions gi is required.

As our machine-learning system implementation, we will use
reservoir computers, a class of machine learning systems partic-
ularly well-suited for time-dependent problems.4 We assume that

the training system given in Eq. (2) [i.e., with known forcing func-

tions hi(t)] is first run on a training interval [−T̂, 0], and a time

series of the observed state vector {X̂(−T̂), X̂(−T̂ + 1t), . . . , X̂(0)}
is collected. At each time step, these variables are fed into the reser-
voir, a high-dimensional dynamical system with internal variables
r ∈ R

M, where M is the size of the reservoir. Here, we implement the
reservoir as

r(t + 1t) = tanh[Ar(t) + WinX̂(t) + 1], (3)

where the M × M matrix A is a sparse matrix representing the
internal structure of the reservoir and the M × ND matrix Win is
a fixed input matrix. At each time, the reservoir output u is con-
structed from the internal states as U = Woutr, where U(−n1t)

= [u1(t)
T, . . . , uN(t)T]

T
∈ R

ND organizes the vectors ui(t) into a sin-
gle vector and the ND × M output matrix Wout is chosen so that
the reservoir outputs ui(t) are a good approximation to each known
training forcing function hi(t). Thus, the output matrix Wout is the
only component of the reservoir that needs to be trained, and this
can be done by minimizing the cost function

T̂/1t
∑

n=0

‖H(−n1t) − U(−n1t)‖2 + λTr
(

WoutW
T
out

)

, (4)

via a ridge regression procedure, where a small constant λ ≥ 0 is

used to prevent over-fitting and H(t) = [h1(t)
T, . . . , hN(t)T]

T
∈ R

ND

organizes the vectors hi(t) into a single vector. This procedure trains
the reservoir to identify the forcing functions hi(t) given the obser-
vations of x̂i(t), and subsequently, the reservoir can be presented
with a time series of the observed variables xi(t) from Eq. (1) in an
interval [0, T] and evolved as

r(t + 1t) = tanh[Ar(t) + WinX(t) + 1]. (5)

If the method works as intended, the reservoir output U(t) = Woutr
on the interval [0, T] will be a good approximation to the unknown
disturbance, ui ≈ gi, where gi(t) = 0 for nodes i that are not directly

disturbed. We define the vector G(t) = [g1(t)
T, . . . , gN(t)T]

T
∈ R

ND

to organize the disturbance vectors gi(t) into a single large vector.
Reference 19 illustrates how the method performs when the intrinsic
dynamics consists of a single Lorenz chaotic system.

In Fig. 1, we illustrate the setup of our reservoir computer. First,

during the training phase, i.e., in the interval [−T̂, 0], the known
forcing functions hi(t) [organized in H(t)] are fed into the reser-
voir (top left), while the observed system states x̂i(t) [organized in

X̂(t)] force the reservoir dynamics (center), and the output matrix
Wout is trained to recover U(t) ≈ H(t) (top right). When training
is complete, the unknown disturbances gi(t) [organized in G(t)] are
fed into the reservoir (bottom left), while the new observed system
states xi(t) force the reservoir dynamics (center), and U(t) ≈ G(t) is
recovered (bottom right).

Throughout this paper, unless otherwise specified, the reser-
voir matrix A is a random matrix of size M = 1000 with entries
Aij uniformly distributed in [−0.5, 0.5] with probability 6/M and
otherwise, Aij = 0, and then rescaled to set its spectral radius µ to
1.2. (We note that while this choice of µ does not guarantee the
echo state property, we find favorable results that are comparable
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FIG. 1. Reservoir computer architecture. An illustration of the setup of our
reservoir computer. During the training phase, the known forcing functions hi(t)
[organized in H(t)] force the dynamics (top left), which produces the states x̂i(t)

[organized in X̂(t)] and subsequently feed the reservoir (center), whose variables
r(t) are used to train the output matrix Wout to recover U(t) ≈ H(t) (top right).
Next, the system is disturbed with the unknown functions gi(t) [organized inG(t)]
(bottom left), which produces X(t), then feeds the reservoir (center), at which
point the new variables r(t) are used to recover U(t) ≈ G(t) (bottom right).

across a range of µ values both less than and greater than one;
see Fig. 10.) The input matrix Win is a random matrix where each
entry is uniformly distributed in [−0.01, 0.01]. The ridge regres-

sion regularization constant is λ = 10−6. Training times T̂ and time
steps 1t vary depending on the chosen dynamics and will be given
below with each example. Moreover, in the majority of examples
considered here, we will consider either periodic or quasiperiodic
disturbances to a system that, in isolation, settles to a fixed point
or a periodic system that is driven by a constant or slowly varying
disturbance that does not break the periodicity of the dynamics. In
both cases, largest Lyapunov exponents are zero. In one example (see
Fig. 7), the forced dynamics fall to a fixed point, yielding a negative
largest Lyapunov exponent.

III. EXAMPLE WITH LINEAR FORCING: DISTURBANCES

TO A FOOD WEB

As a first example, we consider the generalized Lotka–Volterra
model, composed of N interacting species whose populations (which
we will also refer to as biomasses) are denoted as xi(t) ≥ 0.40 Note
that the state of each species is a scalar; therefore, each xi(t), hi(t),
and gi(t) is of dimension D = 1. Each biomass evolves according to

ẋi = xi



ei −
xi

Ki

+

N
∑

j=1

Pijxj



 + gi(t), (6)

where ei represents the linear growth rate of species i, eiKi is the
carrying capacity of species i, and gi(t) is the disturbance made to
species i. Note that in this example, disturbances are linear; i.e.,
each vector field Fi may be written as Fi(xi, X, gi(t)) = Fi,intrinsic(xi, X)

+ gi(t). The N × N matrix P encodes the interactions between
species such that Pij > 0 indicates that the presence of species j is
favorable for species i, Pij < 0 indicates that the presence of species j

FIG. 2. Lotka–Volterra model. An illustration of theN = 8 species Lotka–Volterra
model used here with the system given in Eq. (6). All parameters (linear growth
rates ri , carrying capacities Ki , and interaction strengths Aij ) are given. Species
are hierarchically organized with predators and prey at the top and bottom,
respectively.

is unfavorable for species i, and Pij = 0 if no direct interaction exists.
Here, we consider an N = 8 species example whose interactions are
those of predator–prey dynamics; i.e., for every interacting pair (i, j),
Pij and Pji are of opposite signs. In Fig. 2, we illustrate this net-
work, indicating all parameters and organizing species hierarchically
with predators at the top and prey at the bottom. The dynamics of
the undisturbed system, i.e., with gi(t) = 0 for all i = 1, . . . , N, are
plotted in Fig. 3(a) as the biomasses come to a stable fixed point
representing coexistence. For this system, we use a time step of
1t = 0.005, updating the dynamics using Heun’s method starting
from a randomly chosen initial condition.

We now consider identifying and recovering unknown dis-
turbances to this system using the reservoir computer architecture
described above. For the training phase, we first consider a train-

ing interval of length T̂ = 100 using forcing functions hi(t) com-
posed of sinusoids with randomly chosen frequencies, specifically
hi(t) = 0.8 sin(ωit), where each ωi is randomly distributed in the
interval [1, 9]. We then consider disturbances made only to species
i = 3 and 5 of the form g3(t) = 0.3 sin(2t) + 0.3 sin(π t) and g5(t)
= sin(2π sin(t/2)), and all other gi(t) = 0. Results are plotted in
Fig. 3 with the biomasses xi(t) under the known forcing and the
unknown disturbance plotted in panels (b) and (c), respectively, and
the forcing functions and disturbance functions plotted in panels (d)
and (e), respectively. The actual training and disturbance functions
hi(t) and gi(t) are plotted in solid blue, while the recovered func-
tions are plotted in dashed red. As we can see in Fig. 3(e), despite the
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FIG. 3. Lotka–Volterra dynamics and disturbance recovery. (a) Intrinsic dynamics of the undisturbed Lotka–Volterra system. (b) and (c) Biomasses xi(t) of the Lotka–Volterra
system under sinusoidal forcing [hi(t) = 0.8 sin(ωi t)] and pseudo-sinusoidal disturbance [g3(t) = 0.3 sin(2t) + 0.3 sin(π t) and g5(t) = sin(2π sin(t/2))], respectively.
(d) and (e) Forcing and disturbance functions hi(t) and gi(t), respectively, with the actual and recovered functions plotted in solid blue and dashed red, respectively.

reservoir computer not knowing either the intrinsic system dynam-
ics or the disturbances gi(t), the locations and nature of the distur-
bances are accurately recovered.

Before proceeding to a different example, a few remarks regard-
ing the training forcing are in order. First, we used here a combi-
nation of sinusoids with mismatched (random) frequencies. This
mismatch in frequencies allows (assuming a long enough train-

ing length T̂) the forcing functions hi(t) to robustly explore all
directions of forcing, which is necessary for accurately recovering
disturbances.15,19 As we will see next, the form of the forcing given as
sinusoids here can be generalized as long as a robust range of forc-
ing is considered. Second, we also make note that in principle, some
non-zero forcing should be used at each node in general. If a specific
node is unforced during training, i.e., hi(t) = 0, then the method
cannot recover any non-zero disturbance at that node.

In a second scenario, we consider a training interval of length

T̂ = 200 using forcing functions hi(t) composed of random step
functions. Each hi(t) is partitioned into 20 intervals (each inter-
val lasts 10 time units) with values chosen uniformly at random
in [−0.01, 0.19]. Disturbances are then made again only to species
i = 3 and 5 in the form of Heaviside functions that transition from 0
to −0.1 and 0.15, respectively, at t = 6.667. Results are plotted in
Fig. 4 with the biomasses xi(t) under the known forcing and the
unknown disturbance plotted in panels (a) and (b), respectively, and
the forcing functions and the disturbance functions plotted in panels
(c) and (d), respectively. Again, the actual training and disturbances
functions hi(t) and gi(t) are plotted in solid blue, while the recovered
functions are plotted in dashed red, showing a robust identification
of the disturbances.

IV. EXAMPLE WITH NONLINEAR FORCING:

WILSON–COWAN NEURONS

We now turn to a second example and consider a network
of interacting Wilson–Cowan neuron populations.41 At its most
minimal, the Wilson–Cowan model consists of one population of
excitatory neurons and another population of inhibitory neurons
whose aggregate activities are nonlinearly coupled; i.e., D = 2. Here,
we consider a network consisting of N = 4 pairs of populations (i.e.,
yielding a system of total size ND = 8) where each pair consists of
one excitatory population and one inhibitory population. The aggre-
gate activity of each excitatory and inhibitory population is given by
Ei and Ii with i = 1, . . . , N that evolve according to

τ Ėi = −Ei + S



wEEEi − wEIIi + Pi − wnet

N
∑

j=1

BijIj + gi(t)



 , (7)

τ İi = −Ii + S (wIEEi − wIIIi) , (8)

where

S(x) =
Kx2

σ 2 + x2
(9)

is a sigmoidal response function. Note that each population has a
linear response component in addition to the nonlinear response.
Within the response function, both the excitatory and inhibitory
populations play their namesake roles (coupling parameters wEE,
wEI, wIE, and wII are all positive), while the excitatory populations are
fed a baseline stimulus Pi. Moreover, each pair is coupled through
the adjacency matrix B and network coupling parameter wnet in
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FIG. 4. Lotka–Volterra disturbance recovery: a second example. (a) and (b)
Biomasses xi(t) of the Lotka–Volterra system under random step forcing and
Heaviside disturbance, respectively. (c) and (d) Forcing and disturbance functions
hi(t) and gi(t), respectively, with the actual and recovered functions are plotted in
solid blue and dashed red, respectively.

such a way that inhibitory populations affect not only their local
excitatory counterpart, but also other excitatory populations accord-
ing to the adjacency matrix. Finally, note that the disturbances in
this system are nonlinear; i.e., functions gi(t) appear within the sig-
moidal response functions, leading to nonlinear disturbances. Our
system of N = 4 pairs of populations is illustrated in Fig. 5. Parame-
ters are given by τ = 10, wEE = 6.4, wEI = 6.0, wIE = 4.8, wII = 1.2,
wnet = 0.5, K = 1, and σ = 1, as well as two sets of baseline stimuli
Pi to give rise to two different dynamical regimes. Specifically, we
consider a larger set of stimuli, P = [3.22, 3.02, 3.18, 3.33]T, and a
set of smaller stimuli, P = [1.52, 1.61, 1.57, 1.64]T, which give rise to
stationary dynamics and oscillatory dynamics, respectively, as illus-
trated in Figs. 6(a) and 6(b). Here, we use a time step of 1t = 0.2.
We also consider disturbances made only to the excitatory nodes,
which can be interpreted as modifications of the external stimuli Pi.
Thus, in the notation adopted in the problem description, each state
vector is given by xi(t) = [Ei(t), Ii(t)]

T, and we consider forcing and

disturbances of the form hi(t) = [hi(t), 0]T and gi(t) = [gi(t), 0]T.
Beginning with the dynamics in the stationary regime (i.e.,

we use P = [3.22, 3.02, 3.18, 3.33]T), we consider a training interval

of length T̂ = 4000 and, drawing from the previous example, use
forcing functions hi(t) composed of random steps. Each hi(t) is par-
titioned into 12 intervals with values chosen uniformly at random in
[−0.4, 0.6]. Disturbances are then made again only to populations
i = 1 and 3 in the form of Heaviside functions that transition from 0
to 0.4 and −0.3, respectively, at t = 150 and are back to zero at time
t = 400. Results are plotted in Fig. 7 with the population activity
Ei(t) (solid blue) and Ii(t) (dashed red) under the known forcing and

FIG. 5. Wilson–Cowan model. Illustration of the n = 4 (N = 8) population Wil-
son–Cowan model used here with the system given in Eqs. (9) and (10). Inhibitory
and excitatory populations are organized on the inside and outside, respectively.

the unknown disturbance plotted in panels (a) and (b), respectively,
and the forcing functions and the disturbance functions plotted in
panels (c) and (d), respectively. Again, the actual training and dis-
turbance functions hi(t) and gi(t) are plotted in solid blue, while
the recovered functions are plotted in dashed red, showing a robust
identification of the disturbances.

Moving onto the oscillatory regime (i.e., using P = [1.52, 1.61,
1.57, 1.64]T), we find more nuanced results. Maintaining the
same training setup as above, we now consider disturbing a sin-
gle excitatory population with a composed sigmoidal function,
g1(t) = − 1

2
1

1+exp(−(t−150)/30)
+ 1

1+exp(−(t−300)/30)
, which effectively first

decreases and then increases the baseline stimulus. Our ini-
tial attempt at recovering this disturbance is convoluted by the
oscillatory dynamics, as can be seen in the results plotted in

FIG. 6. Wilson–Cowan model: undisturbed dynamics. Population activities Ei(t)
and Ii(t) of the undisturbed Wilson–Cowan system in the (a) stationary and
(b) oscillatory regimes.
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FIG. 7. Wilson–Cowan disturbance recovery: stationary regime. (a) and (b) Pop-
ulation activities Ei(t) and Ii(t) of the Wilson–Cowan system under random step
forcing and Heaviside disturbance, respectively. (c) and (d) Forcing and dis-
turbance functions hi(t) and gi(t), respectively, with the actual and recovered
functions are plotted in solid blue and dashed red, respectively.

Figs. 8(a) and 8(d), where we plot the known forcing and the
unknown disturbance, respectively, again with solid blue and dashed
red denoting the actual and recovered signals. Note that the reservoir
has trouble recovering the training functions hi(t), specifically aver-
aging out the system’s oscillations, which propagates into the recov-
ery of the disturbances gi(t). Overall, the reservoir computer is able
to produce a signal whose whole temporally localized mean is accu-
rate, but losing precision due to strong oscillations. To address this
issue, we adjust the reservoir dynamics to include a leak parameter
aleak ∈ [0, 1]; specifically, we consider dynamics of the form

r(t + 1t) = aleakr(t)

+ (1 − aleak) tanh[Ar(t) + Winx̂(t) + 1], (10)

where aleak = 0 recovers the reservoir dynamics used previously
[i.e., Eq. (3)] and with larger values essentially slowing down the
dynamics. Using this adjustment of the reservoir dynamics, first
plotting the forcing and disturbance results in Figs. 8(b) and 8(e) for
aleak = 0.65, then in Figs. 8(c) and 8(f) for aleak = 0.95, quenches the
oscillations recovered in both the training and disturbance phases,
improving results. This improvement, however, comes at the cost of
slowing down the reservoir dynamics and choosing aleak too large
can eventually degrade results, depending on the dynamics and
forcing/disturbance.

V. SCALABILITY TO LARGE NETWORKS AND ERROR

ANALYSIS

Before closing, we investigate further the scaling and error of
the method presented in this paper. We begin by considering the

case of larger networks than those presented above, and how this
framework can be scaled to obtain accurate results, even for net-
works with many more units. For this purpose, we return to the
Lotka–Volterra model used in Sec. III, which describes biomasses
xi(t) for i = 1, . . . , N via Eq. (6). To generate such systems for arbi-
trary size N, we consider networks where each species has on average
four interactions, a minimum of two interactions, and each non-zero
interaction strength Pij has an absolute value randomly and uni-
formly drawn from the interval [2/N, 4/N] with all upper-triangular
entries (j > i) being positive and lower-triangular entries (j < i)
positive (negative) with probability 1/2 (1/2). Note that this sug-
gests that roughly half of all interactions represent a predator–prey
interaction, while the other half are mutualistic. In addition, each
growth rate ei is drawn randomly and uniformly from the inter-
val [2, 4], and each Ki is drawn randomly and uniformly from the
interval [1, 2]. We also ensure that a strictly positive equilibrium of
coexistence exists, with all species reaching equilibria at a value as
large or larger than one; i.e., all fixed point values x∗

i satisfy x∗
i ≥ 1.

Designing a reservoir computer that performs accurately as sys-
tem size increases, however, is nontrivial. The predictive ability of
traditional reservoir computer implementations quickly degrades
as the network size grows6 even as the size of the reservoir scales
with the size of the system. While several methods have been
recently explored and shown to improve the performance of reser-
voir computers,34–38 here, we follow the architecture presented in
Ref. 6. Specifically, we consider an alternative pseudo-parallel archi-
tecture constructed as follows. For a system that is comprised of N
coupled dynamical units, we construct N individual reservoirs that
each corresponds to one of the dynamical units in the system. Each
of these individual reservoirs, indexed i = 1, . . . , N, acts as described
in Sec. II but (i) takes as an input the dynamics of node i via xi(t)
along with the dynamics of all the network neighbors of i via those
xj(t) for which j is connected to i and (ii) aims to recover only the dis-
turbance gi(t) [and in training the forcing hi(t)]. In short, reservoir
i is itself driven by the dynamics of i and its network neighbors and
is trained to recover the disturbance made to node i. Note that the
influence of network neighbors makes this architecture not strictly
parallelizable; therefore, we refer to it as the pseudo-parallel scheme.
To ensure that computations involving each reservoir remain fea-
sible, we choose each individual reservoir to be of a fixed size M
(with an M × M adjacency matrix governing the internal dynamics
of the reservoir), resulting in a total of N reservoirs of size N, i.e., NM
dynamical reservoir units. For comparison, we also consider stan-
dard single reservoir architectures of size NM, i.e., the same number
of dynamical reservoir units, in order to evaluate the performance of
the pseudo-parallel scheme.

We now compare the results obtained using the standard
and pseudo-parallelized architectures for Lotka–Volterra systems
described above over a range of system sizes N with reservoir
size parameter M = 100. For each case, we use a training inter-

val of length T̂ = 100 with training functions hi(t) = 0.8 sin(ωit),
where each frequency ωi is randomly and uniformly drawn from
the interval [1, 9]. We then consider disturbances to 20% of nodes
(the remaining 80% are undisturbed) with either the function gi(t)
= u1 sin(u2t) + u1 sin(u3t) or u1 sin[u4 sin(u2t)] (chosen with prob-
abilities 1/2 and 1/2) where, for each node, u1, u2, u3, and
u4 are randomly and uniformly drawn from the intervals
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FIG. 8. Wilson–Cowan disturbance recovery: oscillatory regime. Using leak parameters aleak = 0, 0.65, and 0.95 the actual and recovered (solid blue and dashed red,
respectively) forcing functions hi(t) plot in panels (a)–(c), along with corresponding actual and recovered disturbance functions gi(t) plotted in panels (d)–(f).

[0.2, 0.4], [1, 2], [π/2, π], and [π , 2π], respectively. We consider 20
realization of each system size N, plotting in Fig. 9 the mean squared
error aggregated over all realizations for the standard and pseudo-
parallel schemes in blue circles and red triangles, respectively.
Results plotted in panels (a) and (b) represent errors taken from dis-
turbed and undisturbed nodes, respectively. As system sizes increase
from N = 5 to 120, we see that while the error in results obtained
by using the standard reservoir scheme increases steadily when the
pseudo-parallelized scheme is used, the error remains roughly con-
stant. Thus, by implementing the pseudo-parallelized scheme, the
overall framework for identifying disturbances in network-coupled
dynamical systems scales and remains robust even as larger net-
works are considered, maintaining accurate results while providing
significant computational savings for large N. Thus, the pseudo-
parallel scheme is able to maintain an acceptable level of error since
each single reservoir is tasked with recovering a single disturbance,
contrasting with the standard scheme in which a single (albeit large)
reservoir begins to fail as it is asked to recover more and more
disturbances.

Next, we return to the smaller Lotka–Volterra model illustrated
in Fig. 2 in an error analysis where the method presented here may
be compared to some useful base cases. We start by varying the spec-
tral radius µ of the adjacency matrix A inside the reservoir. Note
that in the limit µ → 0+, the matrix A vanishes, leading to reser-
voir dynamics that are solely driven by the input X(t). Increasing
µ then increases the overall influence of the internal dynamics of
the reservoir relative to the input from X(t). In Fig. 10, we plot the
results obtained from varying µ between 0 and 2, plotting the mean
squared error between the true and recovered disturbance. Each

FIG. 9. Standard vs pseudo-parallel schemes: Error comparison. As a function of
system size N, a comparison of the mean squared error for the standard (blue cir-
cles) and pseudo-parallel (red triangles) schemes that use, respectively, one large
reservoir of size NM and N smaller reservoirs or size M, with M = 100. Results
in panels (a) and (b) represent errors calculated from disturbed and undisturbed
nodes, respectively.
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FIG. 10. Effect of a spectral radius: Error analysis. As a function of the spec-
tral radius µ of the adjacency matrix A in the reservoir dynamics, the mean
squared error between true and recovered disturbances for disturbed (blue cir-
cles) and undisturbed nodes (red triangles). Underlying dynamics are given by the
Lotka–Volterra model illustrated in Fig. 2 with disturbances made to nodes 3 and
5 using g3(t) = u1 sin(u2t) + u1 sin(u3t) and g5(t) = u1 sin[u4 sin(u2t)] with u1,
u2, u3, and u4 drawn randomly and uniformly from [0.2, 0.4], [1, 2], [π/2,π ], and
[π , 2π ], respectively.

data point represents the average over 50 realizations, where at each
realization, nodes 3 and 5 were disturbed with the functions g3(t)
= u1 sin(u2t) + u1 sin(u3t) and g5(t) = u1 sin[u4 sin(u2t)], where, as
above, u1, u2, u3, and u4 were randomly and uniformly drawn from
the intervals [0.2, 0.4], [1, 2], [π/2, π], and [π , 2π]. The error cal-
culated for the disturbed and undisturbed nodes is plotted in blue
circles and red triangles, respectively. Note that the overall error
remains small for a reasonably wide range between roughly µ = 0.2
and 1.8, but increases as µ approaches 0 and 2, indicating that the
reservoir begins to fail as the internal dynamics either lose their
influence within the reservoir or become too strong.

Last, we examine the case where the reservoir itself is elimi-
nated and disturbances are predicted directly from the state of the
system. In this framework, we use a new output matrix Wout that
is ND × ND and trained to minimize the error between U = WoutX
and H using the same ridge regression procedure as in Eq. (4). Note
that this method bypasses the reservoir dynamics and attempts to
detect the disturbance solely based on the instantaneous state of
the system, forgoing the memory inherent in the reservoir. Using
once again the Lotka–Volterra model illustrated in Fig. 2, we con-
sider 200 trials each of disturbance detection with the reservoir
approach (reverting to a spectral radius of µ = 1.2) and the bypass
approach, i.e., where the reservoir has been eliminated. Similar
to the realizations above, at each realization, nodes 3 and 5 were
disturbed with the functions g3(t) = u1 sin(u2t) + u1 sin(u3t) and
g5(t) = u1 sin[u4 sin(u2t)], where u1, u2, u3, and u4 were randomly
and uniformly drawn from the intervals [0.2, 0.4], [1, 2], [π/2, π],
and [π , 2π]. In Fig. 11(a), we plot the densities of the base-10 log-
arithm of the mean squared error for the reservoir method and the
bypass method, plotted in blue circles and red triangles, respectively,
with unfilled and filled markers corresponding to errors computed
for the disturbed and undisturbed nodes, respectively. We find that,
whether comparing the error at disturbed or undisturbed nodes,
the typical error in the bypass method is roughly 100 times larger
than in the reservoir method. In Figs. 11(b) and 11(c), we plot an

FIG. 11. Reservoir vs bypass: Error analysis. (a) Observed densities of the
base-10 logarithm of the mean squared error between true and recovered dis-
turbances for the reservoir (blue circles) and bypass (red triangles) methods,
each calculated from 200 realizations. Unfilled and filled markers represent errors
for disturbed and undisturbed nodes. Underlying dynamics are given by the
Lotka–Volterra model illustrated in Fig. 2 with disturbances made to nodes 3 and
5 using g3(t) = u1 sin(u2t) + u1 sin(u3t) and g5(t) = u1 sin[u4 sin(u2t)] with u1,
u2, u3, and u4 drawn randomly and uniformly from [0.2, 0.4], [1, 2], [π/2,π ],
and [π , 2π ], respectively. (b) and (c) Example of the true (solid blue) and recov-
ered (dashed red) disturbances taken from randomly chosen realizations of the
reservoir and bypass methods, respectively.

example of the true (solid blue) and recovered (dashed red) distur-
bances taken from randomly chosen realizations of the reservoir and
bypass methods, respectively.

VI. DISCUSSION

In this work, we have presented a model-free method for iden-
tifying disturbances in networks of coupled dynamical systems. This
method is based on the machine learning framework of reservoir
computing. No knowledge of either the underlying dynamics or the
nature of the disturbance itself is assumed. In fact, all that is required
is the observed behavior of the system under a known training
forcing function.
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Using food web and neuronal population models as examples,
we demonstrated that this method robustly identifies disturbances
to network-coupled dynamical systems using a range of relatively
simple forcing functions for training. For certain cases where the
dynamics are periodic, we have shown that including a leak in the
reservoir dynamics can improve results. Moreover, by implement-
ing a pseudo-parallel reservoir architecture, we illustrated that this
method robustly scales with the system size. This parallelization
maintains accurate results while providing efficient computation for
large networks.

As machine learning techniques become more and more inte-
grated into dynamical systems theory, we emphasize that the tech-
nique presented here differs from applications of reservoir com-
puting to nonlinear dynamics in that aim to learn the intrinsic
dynamics of a system, and rather align with previous work that aims
to infer some extrinsic information, here an external disturbance.
We believe that similar techniques may be useful for a wider variety
of tasks that go beyond forecasting system behaviors, for exam-
ple, inferring model parameters, network structures, or the other
properties of interactions, e.g., coupling functions.
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