Photolytic C-Diazenium diolate Disassembly in the β -Diketiminate Complexes [MeLM(O₂N₂CPh₃)] (M = Fe, Co, Cu)

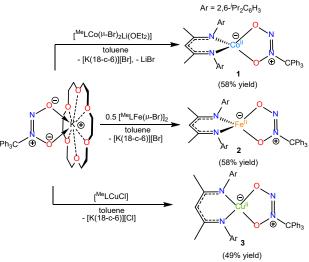
Miguel Á. Baeza Cinco, Guang Wu, Trevor W. Hayton*

Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106 (USA). Supporting Information Placeholder

ABSTRACT: Reaction of [K(18-crown-6)][O₂N₂CPh₃] with [^{Me}LCo(μ-Br)₂Li(OEt₂)] (^{Me}L = {(2,6-Pr₂C₆H₃)NC(Me)}₂CH) generates the trityl diazeniumdiolate complex, [^{Me}LCo(O₂N₂CPh₃)] (1), in moderate yield. Similar metathesis reactions result in formation of the Fe and Cu analogues, [^{Me}LM(O₂N₂CPh₃)] (Fe, 2; Cu, 3), which can also be isolated in moderate yields. Complexes 1–3 were characterized by UV-vis spectroscopy and their solid-state structures were determined by X-ray crystallography. These complexes were further characterized via ¹H NMR spectroscopy (in the case of 1 and 2) or EPR spectroscopy (in the case of 3). Irradiation of complexes 1 and 2 with 371 nm light generates the known dinitrosyl complexes, [^{Me}LM(NO)₂] (M = Co, 4; Fe, 5), along with Ph₃CH and 9-phenylfluorene. We propose that 4 and 5 are formed via the putative hyponitrite intermediates, [^{Me}LM(κ²-O,O-ONNO)], which are formed by photo-induced homolysis of the C–N bond of the [O₂N₂CPh₃] ligand. In contrast, irradiation of complex 3 with 371 nm light, in the presence of 1 equiv of PPh₃, led to the formation of the Cu(I) complexes, [^{Me}LCu(PPh₃)], [(ArNC^{Me}C(NO)C^{Me}NAr)Cu(PPh₃)] (6), and [(ArNC^{Me}C(NO)C^{Me}NAr)Cu]₂ (7), of which the latter two are products of γ-nitrosation of the β-diketiminiate ligand. Also formed in this transformation are Ph₃CN(H)OCPh₃, Ph₃PO, and N₂O, along with trace amounts of NO.

INTRODUCTION

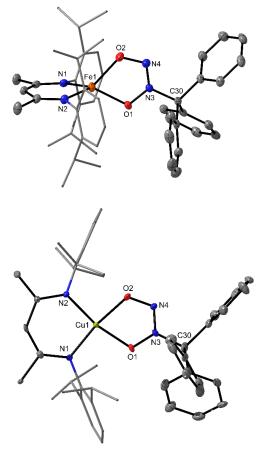
Diazenium diolates (DAZDs) have received significant interest for their ability to release nitric oxide (NO) in a controlled fashion. 1-4 Of the two classes of DAZDs, N-diazenium diolates have been investigated to the greatest extent;⁵⁻⁸ C-diazeniumdiolates are comparatively understudied, presumably because early studies indicated their preference for N₂O release instead of NO release. 9,10 Several other products have also been observed upon C-DAZD disassembly, further complicating their use as NO delivery agents. For example, photolysis or thermolysis of [NH₄][O₂N₂Ph] results in formation of azoxybenzene in addition to the desired product, NO,11 whereas oxidation of [NH₄][O₂N₂Ph] results in formation of NO and nitrosobenzene. 12,13 Similarly, hydrolysis of N-(4-methoxybenzyl)guanidinium diazeniumdiolate at pH 3.1 releases NO, but also N₂O, N-(4-methoxybenzyl)urea, N'-(4-methoxybenzyl)-N-hydroxyguanidine, N-(4-methoxybenzyl)aminocyanamide, and N'-(4methoxybenzyl)-N-nitrosoimine. 14,15 Lastly, the diazeniumdiolate-containing siderophore gramibactin generates both NO and the corresponding oxime when photolyzed. 16 The wide range of disassembly pathways and associated reaction products not only renders these reactions inefficient with respect to NO release, but the unknown reaction stoichiometries could make these complexes difficult to advance to the clinic. 5,17-19 Nonetheless, it is clear that NO release from C-diazenium diolates is possible, 20-23 although the yields of NO release are often low. 14,24


We recently reported the synthesis of a series of triphenylmethyl (trityl) diazeniumdiolate metal complexes, namely, [K(18-

crown-6)[M(O₂N₂CPh₃)₃] (M = Fe, Co, Zn).^{23,25} As was observed in other C-diazenium diolate systems, photolysis of these complexes led to formation of several reaction products, including NO, N₂O, Ph₃CN(H)OCPh₃, Ph₃CH, and 9-phenylfluorene. Importantly, the observation of N₂O and Ph₃CN(H)OCPh₃ pointed to incomplete diazenium diolate fragmentation, which necessarily limits the yield of NO. Additionally, the fate of the metal ion in these transformations could not be determined. It is also notable that NO release in this system was only observed upon photolysis; thermolysis or oxidation did not result in any detectable NO formation. To remedy the abovementioned drawbacks, we surmised that introduction of a co-ligand could disfavor unwanted reaction pathways and improve the yield of NO. To test this hypothesis, we examined if the well-known βligand,26 $^{\text{Me}}$ L diketiminate ⁱPr₂C₆H₃)NC(Me)}₂CH), could help confer control over the photolytic chemistry and simplify the product distribution. Herein we report the synthesis, characterization, and photochemistry of a series of β-diketiminate-supported C-diazeniumdiolate complexes, namely, $[^{Me}LM(O_2N_2CPh_3)]$ (M = Fe, Co, Cu).

RESULTS AND DISCUSSION

Synthesis of [MeLM(O₂N₂CPh₃)] (M = Fe, Co, Cu). Addition of a colorless slurry of [K(18-crown-6)][O₂N₂CPh₃]²⁵ to a dark brown solution of [MeLCo(μ -Br)₂Li(OEt₂)] in toluene resulted in formation of a red-orange mixture, from which [MeLCo(O₂N₂CPh₃)] (1) was isolated in 58% yield (Scheme 1). The Fe and Cu analogues, [MeLFe(O₂N₂CPh₃)] (2) and [MeLCu(O₂N₂CPh₃)] (3), were prepared using similar metathetical protocols (Scheme 1) and were isolated in 58% and 49%


yields, respectively. Complexes 1-3 are insoluble in aliphatic solvents but are soluble in Et₂O, benzene, toluene, THF, and CH₂Cl₂. All complexes are stable as solids for multiple weeks when stored at -24 °C under an inert gas atmosphere.

Scheme 1. Synthesis of diazenium diolate complexes 1–3.

The ¹H NMR spectrum of complex 1 in C₆D₆ features resonances at -33.15 and -42.78 ppm, which are assignable to the γ -CH environment of the β-diketiminate ligand and the p-CH environment of the trityl group, respectively. For complex 2, the γ-CH and trityl p-CH resonances are located at -4.79 and 10.40 ppm, respectively, in its ¹H NMR spectrum. Both complexes 1 and 2 only feature two Pr methyl environments in their H NMR spectra, suggestive of C_{2v} symmetry, and indicating that their trityl diazeniumdiolate ligands are fluxional in solution. The X-band solution-phase EPR spectrum of 3 in toluene, recorded at room temperature, shows a multiplet with $g_{iso} = 2.0981$, indicative of both ^{63/65}Cu and ¹⁴N hyperfine coupling (Figure S27). Similar spectra have been previously reported for other square planar, β-diketiminate-supported Cu(II) complexes.^{27,28} The UV-vis spectra of complexes 1-3 in C₇H₈ all displayed strong absorptions in the 310-370 nm region, consistent with LMCT excitations (Figures S29-S31), as well as weaker absorption bands in the 400-600 nm region that are assignable to *d-d* transitions.

Complexes 1 and 2 both crystallized in the triclinic space group P-1 as the Et₂O solvates, $1 \cdot \text{Et}_2\text{O}$ and $2 \cdot \text{Et}_2\text{O}$, whereas complex 3 crystallized in the orthorhombic space group Pca2₁ with two independent molecules in the asymmetric unit. The metrical parameters of the two independent molecules are very similar and only those of one will be discussed in detail. Complexes 1-Et₂O and 2·Et₂O are isomorphous, and their solid-state structures show the trityl diazeniumdiolate ligand is bound in a $O_1O_1\kappa^2$ fashion, generating distorted tetrahedral geometries (1: τ_4 = 0.81; 2: $\tau_4 = 0.79$)²⁹ around each metal center (Figures 1 and S18). In contrast, the solid-state structure of 3 reveals a distorted square planar geometry about the Cu center ($\tau_4 = 0.20$), ²⁹ consistent with its d^9 electronic configuration. It also displays a $O,O-\kappa^2$ coordination of the diazenium diolate ligand, similar to other four-coordinate Cu diazeniumdiolates.^{27,28,30} Complex 1 has Co-O1 and Co-O2 bond distances of 1.960(2) and 1.968(1) Å, respectively (Table 1), which are understandably shorter than those found in the octahedral Co diazeniumdiolate [K(18crown-6)][Co(O₂N₂CPh₃)₃],²³ owing to the lower coordination number of 1. Similarly, the Fe-O1 and Fe-O2 bond distances in complex **2** are shorter than those found in [K(18-crown-6)][Fe(O₂N₂CPh₃)₃].²³ Complex **3** features Cu–O1 and Cu–O2 bond distances of 1.972(9) and 1.94(1) Å, respectively. These distances compare relatively well with those found in the closely related square planar Cu diazeniumdiolates, [Me*LCu(O₂N₂Ar)], (Me*L = {(2,6-Me₂C₆H₃)NC(Me)}₂CH; Ar = 3,5-Me₂C₆H₃),²⁷ and [CF3*LCu(O₂N₂Ph)] (CF3*L = {(2,6-Me₂C₆H₃)NC(CF₃)}₂CH).²⁸ Finally, the metrical parameters of the diazeniumdiolate fragments within the three complexes are essentially identical (Table 1).

Figure 2. Solid-state structures of $2 \cdot \text{Et}_2\text{O}$ (top) and 3 (bottom). Thermal ellipsoids drawn at 50% probability. Solvate molecules and hydrogen atoms omitted for clarity. Wireframe used for 2,6- $^{\text{i}}\text{Pr}_2\text{C}_6\text{H}_3$ substituents.

Table 3. Selected bond metrics and τ_4 values for $1 \cdot \text{Et}_2\text{O}$, $2 \cdot \text{Et}_2\text{O}$, and 3.

Bond/angle	1∙Et ₂ O	2 ⋅Et ₂ O	3
M-O1 (Å)	1.960(2)	1.988(2)	1.972(9)
M-O2 (Å)	1.968(1)	2.006(2)	1.94(1)
M–N1 (Å)	1.945(2)	1.982(2)	1.93(1)
M-N2 (Å)	1.939(2)	1.974(2)	1.95(2)
N3–O1 (Å)	1.326(2)	1.322(3)	1.34(1)
N4-O2 (Å)	1.311(3)	1.310(3)	1.28(2)
N3-N4 (Å)	1.280(2)	1.286(2)	1.27(2)
N3-C30 (Å)	1.502(3)	1.504(4)	1.50(2)
N1-M-N2 (°)	97.56(6)	94.88(8)	96.3(5)
O1-M-O2 (°)	79.93(5)	77.20(7)	78.3(4)

Photochemistry of [$^{Me}LM(O_2N_2CPh_3)$] (M = Fe, Co, Cu). Irradiation of an orange C_6D_6 solution of 1 for 116 h with λ_{irr} = 371 nm (LED lightstrip) resulted in formation of a dark brown solution. This wavelength was chosen to facilitate comparison with our earlier results. A ¹H NMR spectrum of the final reaction mixture revealed the full consumption of 1, concomitant with the clean formation of Ph₃CH, 9-phenylfluorene, and the known diamagnetic di(nitrosyl) complex, [MeLCo(NO)2] (4) (Scheme 2). Ph₃CH and 9-phenylfluorene were formed in 50% and 43% yields (calculated on the basis of trityl equivalents; Table 2), respectively, while 4 was formed in 91% yield (calculated on the basis of MeL equivalents), according to integration against an internal standard (C₆Me₆). Unlike the photolyses of [K(18-crown-6)][M(O₂N₂CPh₃)₃],^{23,25} no other trityl-containing products were observed in the reaction mixture. Additionally, no other β-diketiminate-containing products were present in the reaction mixture. The presence of these three products was confirmed by comparison to their reported ¹H NMR spectra. ^{25,31,32} The presence of 4 was further confirmed by the observation of diagnostic v_{NO} bands at 1801 and 1703 cm⁻¹ in the solutionphase IR spectrum of a photolyzed sample of 1 (Figure S24). These values are identical to those previously reported for this complex.31

To explain the observed product distribution, we hypothesize that photolysis of 1 results in an initial C-N bond homolysis to generate the Co(III) $O,O-\kappa^2$ hyponitrite complex, [MeLCo(ONNO)], and ·CPh₃ (Scheme 2). The hyponitrite intermediate subsequently rearranges to form 4 via N=N bond cleavage, while ·CPh3 undergoes disproportionation to form Ph3CH and 9-phenylfluorene, a transformation that is known to occur upon irradiation with visible light.³³ Significantly, the near quantitative formation of Ph₃CH, 9-phenylfluorene, and 4 demonstrates the first example of complete C-diazenium diolate disassembly. In addition, this reaction confirms that the presence of a co-ligand can indeed simplify C-diazeniumdiolate fragmentation, as initially surmised. That said, NO release from 1 is obviously compromised as the Co center sequesters any NO generated to form 4.

Irradiation of an amber C_6D_6 solution of 2 for 9 h with $\lambda_{irr} = 371$ nm (LED lightstrip) resulted in formation of a dark brown solution. Analysis of the final mixture by ¹H NMR spectroscopy revealed formation of Ph₃CH and 9-phenylfluorene as the major trityl-containing products. These two species were present in 34%, and 29% yields (calculated on the basis of trityl equivalents; Table 2), respectively, according to integration against an internal standard (O(SiMe₃)₂). Also present in the reaction mixture, in much smaller amounts, were Gomberg's dimer, Ph₃CN(H)OCPh₃, MeLH, and the diimine tautomer of MeLH.³⁴ The presence of these products in the reaction mixture was confirmed by comparison to their reported ¹H and ¹³C NMR spectra (Figure S6 and S7). 25,34-36 Intriguingly, an IR spectrum of the photolyzed reaction mixture revealed the presence of two intense v_{NO} bands at 1761 and 1709 cm⁻¹, which are assignable to the known β-diketiminate-supported DNIC, [MeLFe(NO)₂] (5),³⁷ To corroborate DNIC formation, the solution-phase Xband EPR spectrum of a photolyzed sample of 2 in toluene was recorded at room temperature, which exhibited an intense isotropic signal at g = 2.0315. This compares well with the reported

g-value for **5**, recorded in 2-methyltetrahydrofuran at room temperature ($g_{\rm iso} = 2.06$), as well as the g-values for other DNICs. ^{38–42} Importantly, the observed product distribution, and thus reaction mechanism, is analogous to that seen in the photolysis of **1**. Although, the presence of small amounts of Gomberg's dimer, Ph₃CN(H)OCPh₃, and ^{Me}LH demonstrates that the transformation is not quite as clean as the Co example.

Scheme 2. Photolysis of complexes 1 and 2.

Table 2. Observed product yields formed upon photolysis of 1 and 2.

Com- plex	[MeLM(NO)2] (%)	Ph ₃ C H (%)	_	Ph ₃ CN (H)OC Ph ₃ (%)	Gomberg's dimer
1 (Co)	91ª	50 ^b	43 ^b	0 _p	0ь
2 (Fe)	n.d.	34	29	12	7

- a. calculated on the basis of MeL equivalents
- b. calculated on the basis of trityl equivalents

The reactions reported in Scheme 2 represent extremely rare examples of formal hyponitrite cleavage to nitric oxide, and the first example at a single metal site. In fact, the only other example of this reaction, to our knowledge, is the formation of [(OEP)FeNO] from the bimetallic *trans*-hyponitrite complex [(OEP)Fe]₂(µ-O₂N₂) (OEP =octaethylporphyrin), which occurs upon heating. ⁴³ This reaction represents the microscopic reverse of hyponitrite formation in Nitric Oxide Reductase, a key denitrifying step in the global nitrogen cycle. ⁴⁴⁻⁴⁷ In contrast, the vast majority of transition metal hyponitrite complexes decompose via nitrous oxide release and "M=O" formation. ⁴⁸⁻⁵²

We next monitored the photolysis of complex $\bf 3$, under the premise that NO release into the reaction medium upon diazeniumdiolate disassembly was more probable, given that Cu is much less likely to yield a stable nitrosyl complex. ^{53–57} To simplify the product distribution, PPh₃ was included in the reaction mixture to trap the [MeLCu^I] fragment that would be formed upon diazeniumdiolate disassembly. Thus, irradiation of a red-brown C_6D_6 solution of $\bf 3$, in the presence of 1 equiv of

PPh₃, for 17 h with $\lambda_{irr} = 371$ nm (LED lightstrip) resulted in formation of a brown solution. Analysis of the reaction mixture by ¹H and ¹³C{¹H} NMR spectroscopy revealed the presence of the previously reported Cu(I) complex, [MeLCu(PPh3)],58 as evidenced by its diagnostic γ-CH resonances at 5.13 and 95.20 ppm in the ¹H and ¹³C{¹H} NMR spectra, respectively (Scheme 3). This product was formed in 33% yield (calculated on the basis of MeL equivalents), as determined by integration against an internal standard (O(SiMe₃)₂). Also present in the ¹H NMR spectrum of the final mixture are resonances assignable to the Cu(I) phosphine complex, [(ArNC^{Me}C(NO)C^{Me}NAr)Cu(PPh₃)] (6). This species is formed in 35% yield (calculated on the basis of MeL equivalents), as judged by the ¹H NMR spectrum, and it features ¹H resonances consistent with a C_S-symmetric ^{Me}L ligand with no γ-H resonance. This spectral signature is indicative of β-diketiminate nitrosation. An additional β-diketiminatecontaining species is also present in the reaction mixture. This species is formed in 24% yield (calculated on the basis of MeL equivalents), and it also features a C_S-symmetric MeL ligand with no γ -H resonance consistent with γ -nitrosation. We have tentatively assigned these resonances to a bimetallic Cu(I) product, $[(ArNC^{Me}C(NO)C^{Me}NAr)Cu]_2$ (7). In contrast to the photolysis of 1 and 2, the major trityl-containing species in the Cu reaction is Ph₃CN(H)OCPh₃, formed in 53% yield, while Ph₃CH and 9-phenylfluorene are present in only 4% yields each (yields calculated on the basis of trityl equivalents). The ³¹P NMR spectrum of the mixture (Figure S10) shows resonances assignable to [MeLCu(PPh₃)], 6, and Ph₃PO. The latter species is formed in 15% yield (calculated on the basis of PPh3 equivalents). Additionally, N2O is generated during the photolysis, as ascertained via solution-phase IR spectroscopy ($v_{NN} = 2222 \text{ cm}^{-1}$ 1).52 Finally, analysis of the reaction headspace using a NO analyzer revealed formation of NO, but in only 0.2% yield (Figure S32).

Scheme 3. Photolysis of complex 3.

To explain the observed product distribution, we propose that photolysis of **3** results in an initial C–N bond cleavage, forming ·CPh₃ and the putative hyponitrite complex, [MeLCu(ONNO)]. The latter species is reduced by PPh₃ to form [MeLCu], Ph₃PO, and N₂O, whereas the former species reacts with intact **3** to generate Ph₃CN(·)OCPh₃ as well as NO and [MeLCu]. [MeLCu] is then captured by PPh₃ to generate known [MeLCu(PPh₃)]. Finally, addition of NO across the γ -C and Cu atoms of [MeLCu(PPh₃)] or [MeLCu] results in formation of a tripodal κ^3 -O,N,N Cu(I) intermediate, from which an H atom is scavenged by Ph₃CN(·)OCPh₃ to yield Ph₃CN(H)OCPh₃ and complexes **6** or **7**. In support of the proposed mechanism, we note that similar tripodal κ^3 -O,N,N intermediates have been documented in the

reactions of β-diketiminates with a variety of unsaturated substrates.^{59–65} Moreover, Grützmacher and co-workers have recently shown that a transiently-formed rhodium(III) hyponitrite complex reacts with H₂ to form H₂O and N₂O, ⁶⁶ suggesting that [MeLCu(ONNO)] could be capable of O-atom transfer to PPh₃. Finally, the mechanism is consistent with the trace amounts of NO formed during the reaction, as all NO equivalents should be consumed by N₂O formation or ligand nitrosation. In an effort to confirm the formulations of 6 and 7, we recorded an ESImass spectrum, recorded in CH₃CN in positive ion mode, of the photolyzed reaction mixture (Figures S33-S38). The spectrum features a prominent peak at 769.60 m/z, which is assignable to $[6-2H]^+$ (calcd 769.32 m/z). Also observed in the spectrum is a species that can be formulated [(ArNCMeC(NO)CMeNAr)Cu2(PPh3)2]+, as evidenced by the peak at $1096.72 \, m/z$ (calcd $1096.36 \, m/z$). We suggest this species is formed upon fragmentation and dimerization of 6. We also recorded an ESI-mass spectrum of the photolyzed reaction mixture in negative ion mode (Figures S39 and S40). This spectrum features a peak at 544.26 m/z, which is assignable to $[6-PPh_3+C1]^-$ (calcd 544.22 m/z), and further supports our formulation of complex 6. Unfortunately, in neither spectrum do we observe a peak that could be assigned to complex 7 (calcd $1020.39 \ m/z$).

Attempts to isolate 6 or 7 directly from the reaction mixture were unsuccessful; however, photolysis of 3 in the presence of 2 equiv of PPh3 resulted in formation of a pink solution from which $\lceil (ArNC^{Me}C(NO)C^{Me}NAr)Cu(PPh_3)_2 \rceil$ (8) was isolated as bright pink crystals. The solid-state structure of complex 8 confirms that the γ-C position of the MeL ligand has been nitrosated and that the new nitroso group is coordinated to the Cu center (Figure S19). A similar binding mode is observed in $[Me^*LCu(ArNC^{Me}C(NO)C^{Me}NAr)]$ (Ar = 2,6-Me₂C₆H₃).⁶⁷ Importantly, its characterization demonstrates that the MeL ligand can act as a NO sink, as outlined in Scheme 3. Furthermore, it adds to previous reports of reactivity between \u03b3-diketiminate ligands and NO. 59,67 Finally, its structural characterization supports our formulation of 6 and implies that complex 8 should, in principle, be formed by reaction of 6 with another equiv of PPh₃. Gratifyingly, addition of a second equivalent of PPh₃ to a photolyzed mixture of complex 3 and 1 equiv of PPh₃ led to consumption of 6 and formation of 8, according to ¹H NMR spectroscopy (Figure S13). Complex 7 does not react with PPh₃ under these conditions. Lastly, we note that complex 7 is also formed when 3 is photolyzed in the absence of PPh3 (Figure S17), demonstrating that it does not contain PPh₃. Additionally, complex 7 is the only y-nitrosated product formed in this reaction, according to the ¹H NMR spectrum of the reaction mixture. Yet, despite all attempts, complex 7 could still not be isolated. While its exact formulation remains unclear, we prefer a bimetallic formulation containing a bridging nitrosated MeL ligand, which is inert to phosphine coordination, most likely because all the coordination sites are occupied by the multidentate nitrosated diketiminate ligand.

CONCLUSIONS

We have synthesized and characterized a series of β -diketiminate-supported C-diazeniumdiolate complexes [MeLM(O₂N₂CPh₃)] (M = Fe, Co, Cu). When the Fe and Co analogues are photolyzed, the corresponding dinitrosyl complexes [MeLM(NO)₂] are formed in good yields, via a putative

O,O-κ² hyponitrite [MeLM(ONNO)] intermediate. These reactions are remarkable examples of hyponitrite cleavage to nitric oxide, which is the microscopic reverse of hyponitrite formation in Nitric Oxide Reductase. In contrast, when the Cu analogue is photolyzed, no metal nitrosyl complexes were obtained and only minute quantities of NO were detected. Instead, $[MeLCu(PPh_3)],$ Cu(I) complexes, [(ArNCMeC(NO)CMeNAr)Cu(PPh₃)], [(ArNC^{Me}C(NO)C^{Me}NAr)Cu]₂ were formed, in addition to N₂O, Ph₃PO, and Ph₃CN(H)OCPh₃. Overall, this work demonstrates that the use of a co-ligand can significantly alter the disassembly pathways of C-diazenium diolates, as initially surmised. In addition, the change in product distribution demonstrates that C-diazenium diolate disassembly is highly metal-dependent. While NO release in each case is thwarted by either metal or ligand nitrosylation, these results suggest that through judicious selection of the metal and/or co-ligand, efficient NO release from the C-diazenium diolate fragment could be possible.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental procedures, crystallographic data, and spectral data for complexes 1–8 (CIF, PDF)

Accession Codes

CCDC 2260891–2260894 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Trevor W. Hayton – Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States; orcid.org/0000-0003-4370-1424; Email: hayton@chem.ucsb.edu

Authors

Miguel Á. Baeza Cinco – Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States; orcid.org/0000-0003-2517-4077

Guang Wu – Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States

ACKNOWLEDGMENT

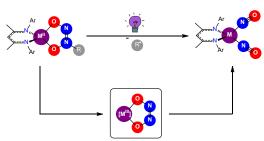
This work was supported by the National Science Foundation (Grant CHE 2055063). NMR spectra were collected on instruments supported by an NIH Shared Instrumentation grant (Grant 1S10OD012077-01A1). We thank Prof. Peter Ford and Camilo F. Guzman for assistance with the nitric oxide analysis.

REFERENCES

 Hrabie, J. A.; Keefer, L. K. Chemistry of the Nitric Oxide-Releasing Diazeniumdiolate ("Nitrosohydroxylamine") Functional Group and Its Oxygen-Substituted Derivatives Chem. Rev 2002, 102, 1135– 1154.

- (2) Paul, S.; Pan, S.; Mukherjee, A.; De, P. Nitric Oxide Releasing Delivery Platforms: Design, DetectionBiomedical Applications, and Future Possibilities Mol. Pharm 2021, 18, 3181–3205.
- (3) Miller, M. R.; Megson, I. L. Recent Developments in Nitric Oxide Donor Drugs Br. J. Pharmaco 2007, 151, 305-321.
- (4) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Weh; Cai, T.; Janczuk, A. J. Nitric Oxide Donors: Chemical Activities and Biological Applications. *Chem. Rev* 2002, 102, 1091-1134.
- (5) Shami, P. J.; Saavedra, J. E.; Wang, L. Y.; Bonifant, C. L.; Diwan, B. A.; Singh, S. V.; Gu, Y.; Fox, S. D.; Buzard, Sc. Citro, M. L.; Waterhouse, D. J.; Davies, K. M.; Ji, X.; Keefer, L. K. K. Sa Glutathione/Glutathione Stransferase Activated Nitric Oxide Donor of the Diazeniumdiolate Class with Potent Antineoplastic Activity Mol. Cancer Ther 2003 2, 409-417.
- (6) Saavedra, J. E.; Booth, M. N.; Hrabie, J. A.; Davies, K. M.; Keefer, L. K. Piperazine as a Linker for Incorporating the Nitric OxidReleasing Diazeniumdiolate Group into Other Biomedically Relevant Functional Molecules. J. Org. Chem 1999, 64, 5124-5131.
- (7) Pavlos, C. M.; Cohen, A. D.; D'Sa, R. A.; Sunoj, R. B.; Wasylenko, W. A.; Kapur, P.; Relyea, H. A.; Kumar, N. A.; Hadad, C. M.; Toscano, J. P. Photochemistry of 4(N,N-Diethylamino)Diazerfl-lum-1,2-Diolate: An Experimental and Computational Investiga J. Am. Chem. So2003 125 14934-14940.
- Weinstain, R.; Slanina, T.; Kand, D.; Klán, P. Visible-NIR-Light Activated Release: From Small Molecules to Nanomaterial Amer. Rev. 2020, 120, 13135-13272.
- (9) IshwaraBhat, J.; Clegg, W.; Maskill, H.; Elsegood, M. R.; DMenneer, I.; CMiatt, P. N-Nitroso N, O-Dialkylhydroxylamines: Preparation, Structure, and Mechanism of the Hydronium Ion Catalysed Solvolytic Nitrous Oxide Extrusion Reaction. Chem. Soc. Perkin Trans. 22000, No. 7, 14351446.
- (10) S. Evans, A.; P. Toscano, J. The Chemistry of NO- and HNO-Producing Diazenium diolates. IRATAI'S Chemistry of Functional Groups John Wiley & Sons, Ltd, 2010.
- (11) Hwu, J. R.; Yau, C. S.; Tsay, SC.; Ho, T.-I. Thermal and Phote Induced Transformations of Naryl-N-Nitrosohydroxylamine Ammonium Salts to Azoxy Compounds. *Tetrahedron Lett.* 1997, 38, 9001–9004.
- (12) Lawless, J. G.; Hawley, M. Dale. Electrochemical Oxidadof Cupferron. Anal. Chem 1968 40, 948-951.
- (13) McGill, A. D.; Zhang, W.; Wittbrodt, J.; Wang, J.; Schlegel, H. B.; Wang, P. G. Paraubstituted Whitroso Woxybenzenamine Ammonium Salts: A New Class of Red Pensitive Nitric Oxide Releasing Compounds. Bioorg. Med. Cher 2000, 8, 405-412.
- (14) Southan, G. J.; Srinivasan, A. Nitrogen Oxides and Hydroxyguanidines: Formation of Donors of Nitric and Nitrous Oxides and Possible Relevance to Nitrous Oxide Formation by Nitric Oxide Synth Mese. tric Oxide 1998, 2, 270-286.
- (15) Southan, G. J.; Srinivasan, A.; Keefer, L. K.; George, C.; Fales, H. M. N -Nitrosated N-Hydroxyguanidines Are Nitric OxidReleasing Diazeniumdiolates Chem. Commun 1998, No. 11, 11941192.
- (16) Makris, C.; Carmichael, J. R.; Zhou,; Butler, A. GDiazeniumdiolate Graminine in the Siderophore Gramibactin Is Photoreactive and Originates from Arginine ACS Chem. Bio 2022 17, 3140-3147.
- (17) Knox, C. D.; de Kam, P.; Azer, K.; Wong, P.; Ederveen, A. G.; Shevell, D.; Morabito, C.; Meelan, A. G.; Liu, W.; Reynders, T.; Denef, J. F.; Mitselos, A.; Jonathan, D.; Gutstein, D. E.; Mitra, K.; Sun, S. Y.; Lo, M. M.; Cully, D.; Ali, A. Discovery and Clinical Evaluation of MK-8150, A Novel Nitric Oxide Donor With a Unique Mechanism of Nitric Oxide Release. J. Am. Heart Assoc 2016, 5, e003493.
- (18) Zhong, Y.-L.; Weisel, M.; Humphrey, G. R.; Muzzio, D. J.; Zhang, L.; Huffman, M. A.; Zhong, W.; Maloney, K. M.; Campos, K. R. Scalable Synthesis of Diazeniumdiolates: Application to the Preparation of MK-8150. *Org. Lett.***2019** *21*, 4210–4214.
- (19) Kumar, V.; Hong, S. Y.; Maciag, A. E.; Saavedra, J. E.; Adamson, D. H.; Prud'homme, R. K.; Keefer, L. K.; Chakrapani, H. Stabilization of the Nitric Oxide (NO) Prodrugs and Anticancer Leads, PABA/NO and Double JS-K, through Incorporation into PEG-Protected Nanoparticles. *Mol. Pharm***2010** *7*, 291–298.
- (20) Arnold, E. V.; Citro, M. L.; Saavedra, E. A.; Davies, K. M.; Keefer, L. K.; Hrabie, J. A. Mechanistic Insight into Exclusive Nitric Oxide Recovery from a Carbon-Bound Diazeniumdiolate. *Nitric Oxide* 2002 7, 103–108.

- (21) Arnold, E. V.; Citro, M. L.; Keefer, L. K.; Hrabie, J. A. A Nitric Oxide-Releasing Polydiazeniumdiolate Derived from Acetonit@eg. Lett. 2002, 4, 1323-1325.
- (22) Hrabie, J. A.; Citro, M. L; Chmurny, G. N.; Keefer, L. K. Carbon Bound Diazeniumdiolates from the Reaction of Nitric Oxide with Amidines. J. Org. Chen 2005, 70, 7647–7653.
- (23) Baeza Cinco, M. Á.; Chakraborty, A.; Guzman, C. F.; Kräh, S.; Wu, G.; Hayton, T. W. NO and₂ Release 6m the Trityl Diazenium diolate Complexes [M(♠1₂CPh₂)₃]⁻(M = Fe, Co). Inorg. Chem 2023 62, 4847–4852.
- (24) Hrabie, J. A.; Arnold, E. V.; Citro, M. L.; George, C.; Keefer, L. K. Reaction of Nitric Oxide at the β-Carbon of Enamines. A New Method of Preparing Compounds Containing the Diazeniumdiolate Functional Group. J. Org. Chen 2000, 65, 5745–5751.
- (25) Baeza Cinco, M. Á.; Kräh, S.; Guzman, C. F.; Wu, G.; Hayton, T. W. Photolytic or Oxidative Fragmentation of Trityl Diazeniumdiolate (O₂N₂CPh₃⁻): Evidence for Both C–N and N–N Bond Cleavage. *Inorg. Chem***2022** *61*, 14924–14928.
- (26) Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. The Chemistry of β-Diketiminatometal Complexes. *Chem. Rev*2002, 102, 3031–3066.
- (27) Wiese, S.; Kapoor, P.; Williams, K. D.; Warren, T. H. Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) C-Organonitroso Adducts. J. Am. Chem. So2009, 131, 18105–18111.
- (28) Williams, K. D.; Cardenas, A. J. P.; Oliva, J. D.; Warren, T. H. Copper C-Nitroso Compounds: Activation of Hydroxylamines and NO Reactivity. *Eur. J. Inorg. Chen*2013 2013 3812–3816.
- (29) Yang, L.; Powell, D. R.; Houser, R. P. Structural Variation in Copper(I) Complexes with Pyridylmethylamide Ligands: Structural Analysis with a New Four-Coordinate Geometry Index, T4. *Dalton Trans.* 2007, No. 9, 955–964.
- (30) Klebe, G.; Hadicke, E.; Boehn, K. H.; Reuther, W.; Hickmann, E. Die Molekül- Und Kristallstruktur Der Kupfer-, Aluminium-Und Kaliumkomplexe Des Cyclohexyl-Hydroxy-Diazeniumoxids1. Z. Für Krist. - Cryst. Mater.1996, 211, 798–803.
- (31) Tonzetich, Z. J.; Héroguel, F.; Do, L. H.; Lippard, S. J. Chemistry of Nitrosyliron Complexes Supported by a β-Diketiminate Ligand. *In*org. Chem2011, 50, 1570–1579.
- (32) Xie, L.-H.; Hou, X.-Y.; Hua, Y.-R.; Tang, C.; Liu, F.; Fan, Q.-L.; Huang, W. Facile Synthesis of Complicated 9,9-Diarylfluorenes Based on BF₃·Et₂O-Mediated Friedel-Crafts Reaction. *Org. Lett.* 2006 & 3701–3704.
- (33) Letsinger, R. L.; Collat, R.; Magnusson, M. The Formation of 9-Phenylfluorene and Triphenylmethane by Disproportionation of Triphenylmethyl. J. Am. Chem. Sot954 76 4185–4186.
- (34) Hayton, T. W.; Wu, G. Synthesis, Characterization, and Reactivity of a Uranyl β-Diketiminate Complex. J. Am. Chem. Soc2008, 13Q, 2005–2014.
- (35) Touchton, A. J.; Wu, G.; Hayton, T. W. Generation of a Ni₃ Phosphinidene Cluster from the Ni(0) Synthon, Ni(η³-CPh₃)₂. Organometallics 2020 39, 1360–1365.
- (36) Stender, M.; Wright, R. J.; Eichler, B. E.; Prust, J.; Olmstead, M. M.; Roesky, H. W.; Power, P. P. The Synthesis and Structure of Lithium Derivatives of the Sterically Encumbered β-Diketiminate Ligand [{(2,6-Pr²₂H₃C₆)N(CH₃)C}₂CH]⁻, and a Modified Synthesis of the Aminoimine Precursor. J. Chem. Soc. Dalton Trans2001, 3465– 3469.
- (37) Tonzetich, Z. J.; Do, L. H.; Lippard, S. J. Dinitrosyl Iron Complexes Relevant to Rieske Cluster Nitrosylation. J. Am. Chem. Soc2009, 131, 7964–7965.
- (38) Butler, A. R.; Megson, I. L. Non-Heme Iron Nitrosyls in Biology. Chem. Rev 2002, 102, 1155–1166.
- (39) Vanin, A. F.; Serezhenkov, V. A.; Mikoyan, V. D.; Genkin, M. V. The 2.03 Signal as an Indicator of Dinitrosyl–Iron Complexes with Thiol-Containing Ligands. *Nitric Oxide* 1998 2, 224–234.
- (40) Tsou, C.-C.; Lu, T.-T.; Liaw, W.-F. EPR, UV-Vis, IR, and X-Ray Demonstration of the Anionic Dimeric Dinitrosyl Iron Complex [(NO)₂Fe(μ-S'Bu)₂Fe(NO)₂]: Relevance to the Products of Nitrosylation of Cytosolic and Mitochondrial Aconitases, and High-Potential Iron Proteins. *J. Am. Chem. Sc***2007**, *129*, 12626–12627.
- (41) Chiang, C.-Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. Bismercaptoethanediazacyclooctane as a N₂S₂ Chelating Agent and Cys-X-Cys Mimic for Fe(NO) and Fe(NO)₂. J. Am. Chem. Soc. 2004, 126, 10867–10874.
- (42) Borodulin, R. R.; Kubrina, L. N.; Shvydkiy, V. O.; Lakomkin, V. L.; Vanin, A. F. A Simple Protocol for the Synthesis of Dinitrosyl Iron


- Complexes with Glutathione: EPR, Optical, Chromatographic and Biological Characterization of Reaction Products. *Nitric Oxide***2013** *35* 110–115.
- (43) Berto, T. C.; Xu, N.; Lee, S. R.; McNeil, A. J.; Alp, E. E.; Zhao, J.; Richter-Addo, G. B.; Lehnert, N. Characterization of the Bridged Hyponitrite Complex {[Fe(OEP)]₂(μ-N₂O₂)}: Reactivity of Hyponitrite Complexes and Biological Relevance. *Inorg. Chem***2014**, *53*, 6398– 6414.
- (44) Wright, A. M.; Hayton, T. W. Understanding the Role of Hyponitrite in Nitric Oxide Reduction. *Inorg. Chem***2015** *54*, 9330–9341.
- (45) Wu, W.-Y.; Liaw, W.-F. Nitric Oxide Reduction Forming Hyponitrite Triggered by Metal-Containing Complexes. J. Chin. Chem. Soc. 2020 67, 206–212.
- (46) Kumita, H.; Matsuura, K.; Hino, T.; Takahashi, S.; Hori, H.; Fukumori, Y.; Morishima, I.; Shiro, Y. NO Reduction by Nitric-Oxide Reductase from Denitrifying Bacterium Pseudomonas Aeruginosa: CHARACTERIZATION OF REACTION INTERMEDIATES THAT APPEAR IN THE SINGLE TURNOVER CYCLE*. J. Biol. Chem 2004, 279 55247–55254.
- (47) Khatua, S.; Majumdar, A. Flavodiiron Nitric Oxide Reductases: Recent Developments in the Mechanistic Study and Model Chemistry for the Catalytic Reduction of NO. *J. Inorg. Biochem.***2015** *142* 145–153.
- (48) Ghosh, P.; Stauffer, M.; Hosseininasab, V.; Kundu, S.; Bertke, J. A.; Cundari, T. R.; Warren, T. H. NO Coupling at Copper to Cis-Hyponitrite: N₂O Formation via Protonation and H-Atom Transfer. *J. Am. Chem. So***2022** *144* 15093–15099.
- (49) Wu, W.-Y.; Hsu, C.-N.; Hsieh, C.-H.; Chiou, T.-W.; Tsai, M.-L.; Chiang, M.-H.; Liaw, W.-F. NO-to-[N₂O₂]²-to-N₂O Conversion Triggered by {Fe(NO)₂}¹⁰-{Fe(NO)₂}⁹ Dinuclear Dinitrosyl Iron Complex. *Inorg. Chem***2019** *58* 9586–9591.
- (50) Kundu, S.; Phu, P. N.; Ghosh, P.; Kozimor, S. A.; Bertke, J. A.; Stieber, S. C. E.; Warren, T. H. Nitrosyl Linkage Isomers: NO Coupling to N₂O at a Mononuclear Site. *J. Am. Chem. So***2019** *141*, 1415–1419.
- (51) Lionetti, D.; de Ruiter, G.; Agapie, T. A Trans-Hyponitrite Intermediate in the Reductive Coupling and Deoxygenation of Nitric Oxide by a Tricopper–Lewis Acid Complex. J. Am. Chem. So2016, 138, 5008–5011.
- (52) Wright, A. M.; Wu, G.; Hayton, T. W. Formation of N₂O from a Nickel Nitrosyl: Isolation of the Cis-[N₂O₂]²⁻ Intermediate. *J. Am. Chem. So***2012** *134*, 9930–9933.
- (53) Wright, A. M.; Hayton, T. W. Recent Developments in Late Metal Nitrosyl Chemistry. *Comments Inorg. Che***2012**, *33*, 207–248.
- (54) Wright, A. M.; Wu, G.; Hayton, T. W. Structural Characterization of a Copper Nitrosyl Complex with a {CuNO}¹⁰ Configuration. *J. Am. Chem. So***2010** *132* 14336–14337.
- (55) Tao, W.; Bower, J. K.; Moore, C. E.; Zhang, S. Dicopper μ-Oxo, μ-Nitrosyl Complex from the Activation of NO or Nitrite at a Dicopper Center. J. Am. Chem. Sc2019 141, 10159–10164.
- (56) Tocheva, E. I.; Rosell, F. I.; Mauk, A. G.; Murphy, M. E. P. Stable Copper–Nitrosyl Formation by Nitrite Reductase in Either Oxidation State. *Biochemistr***2007**, *46*, 12366–12374.
- (57) Chandra Maji, R.; Mishra, S.; Bhandari, A.; Singh, R.; Olmstead, M. M.; Patra, A. K. A Copper(II) Nitrite That Exhibits Change of Nitrite Binding Mode and Formation of Copper(II) Nitrosyl Prior to Nitric Oxide Evolution. *Inorg. Chem***2018** *57*, 1550–1561.
- (58) Reynolds, A. M.; Lewis, E. A.; Aboelella, N. W.; Tolman, W. B. Reactivity of a 1:1 Copper–Oxygen Complex: Isolation of a Cu(II)-o-Iminosemiquinonato Species. *Chem. Commut* 805 No. 15, 2014–2016.
- (59) Kalita, A.; Kumar, V.; Mondal, B. C-Nitrosation of a β-Diketiminate Ligand in Copper(II) Complex. RSC Adv2014, 5, 643–649.
- (60) Ren, W.; Zhang, S.; Xu, Z.; Ma, X. Reactivity of a β-Diketiminate-Supported Magnesium Alkyl Complex toward Small Molecules. *Dal*ton Trans2019 48, 3109–3115.
- (61) Holze, P.; Corona, T.; Frank, N.; Braun-Cula, B.; Herwig, C.; Company, A.; Limberg, C. Activation of Dioxygen at a Lewis Acidic Nickel(II) Complex: Characterization of a Metastable Organoperoxide Complex. *Angew. Chem. Int. E*2017, *56*, 2307–2311.
- (62) Camp, C.; Arnold, J. On the Non-Innocence of "Nacnacs": Ligand-Based Reactivity in β-Diketiminate Supported Coordination Compounds. *Dalton Trans***2016** *45* 14462–14498.
- (63) Scheuermann, M. L.; Fekl, U.; Kaminsky, W.; Goldberg, K. I. Metal-Ligand Cooperativity in O₂ Activation: Observation of a

- "Pt-O-O-C" Peroxo Intermediat*@rganometallic***2010** *29*,4749-4751.
- (64) Yokota, S.; Tachi, Y.; Itoh, S. Oxidative Degradation **动**像etiminate Ligand in Copper(II) and Zinc(II) Complexes. *Inorg. Chem.* **2002** *41*, 1342–1344.
- (65) Bleeke, J. R.; Xie, Y. F.; Bass, L.; Chiang, M. Y. Metallacyclohexadiene and Metallabenzene Chemistry. 5. Chemical Reactivity of Metallabenzene. J. Am. Chem. Sot991, 113, 4703–4704.
- (66) Jurt, P.; Abels, A. S.; Gamboa-Carballo, J. J.; Fernández, I.; Le Corre, G.; Aebli, M.; Baker, M. G.; Eiler, F.; Müller, F.; Wörle, M.; Verel,
- R.; Gauthier, S.; Trincado, M.; Gianetti, T. L.; Grützmacher, H. Reduction of Nitrogen Oxides by Hydrogen with Rhodium(I)–Platinum(II) Olefin Complexes as Catalysts. *Angew. Chem. Int. E2021*, 60, 25372–25380.
- (67) Melzer, M. M.; Mossin, S.; Cardenas, A. J. P.; Williams, K. D.; Zhang, S.; Meyer, K.; Warren, T. H. A Copper(II) Thiolate from Reductive Cleavage of an S-Nitrosothiol. *Inorg. Chem***2012** *51*, 8658–8660

For Table of Contents:

Photolysis of the *C*-diazeniumdiolate complexes, [$^{Me}LM(O_2N_2CPh_3)$] ($^{Me}L = \{(2,6-^iPr_2C_6H_3)NC(Me)\}_2CH$; M = Fe, Co), results in complete disassembly of their *C*-diazeniumdiolate ligands to yield [$^{Me}LM(NO)_2$], via a proposed hyponitrite intermediate

C-Diazeniumdiolate Disassembly

