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ABSTRACT 

Organic semiconductors (OSC) offer tremendous potential across a wide range of (opto)electronic 

applications. OSC development, however, is often limited by trial-and-error design, with computational 

modeling approaches deployed to evaluate and screen candidates through a suite of molecular and 

materials descriptors that generally require hours to days of computational time to accumulate. Such 

bottlenecks slow the pace and limit the exploration of the vast chemical space comprising OSC. When 

considering charge-carrier transport in OSC, a key parameter of interest is the intermolecular electronic 

coupling. Here, we introduce a machine learning (ML) model to predict intermolecular electronic 

couplings in organic crystalline materials from their three-dimensional (3D) molecular geometries. The ML 

predictions take only a few seconds of computing time compared to hours by density functional theory 

(DFT) methods. To demonstrate the utility of the ML predictions, we deploy the ML model in conjunction 

with mathematical formulations to rapidly screen the charge-carrier mobility anisotropy for more than 

60,000 molecular crystal structures and compare the ML predictions to DFT benchmarks. 
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Intermolecular electronic couplings (or transfer integrals) in organic semiconductors (OSC) are critical 

parameters governing charge-carrier transport.1-5 The intermolecular electronic couplings depend both 

on the geometric overlap of neighboring molecules (and, hence, intermolecular vibrational or phonon 

modes) and the molecular orbital (MO) overlap of these adjacent molecules – e.g., between the highest-

occupied molecular orbitals (HOMO) of the two molecules (HOMO-HOMO coupling) for hole transport, or 

the lowest-unoccupied molecular orbitals (LUMO) of the two molecules (LUMO-LUMO coupling) for 

electron transport.3, 6 The phases of the intermolecular electronic couplings are determined by the MO 

overlap symmetries.  

Several approaches have been implemented to determine intermolecular electronic couplings.4, 7-11 In the 

energy-splitting-in dimer method,8, 12 the intermolecular electronic coupling is estimated to be one-half 

the energy difference between the HOMO and HOMO-1 of a (noncovalent) dimer formed by two adjacent 

molecules (see Figure 1 for representation of a molecular dimer geometry). While this method is effective 

for symmetrically arranged molecules, the method fails for systems where molecular asymmetry leads to 

polarization. This shortcoming is overcome in the fragment molecular orbital (FMO) approach, wherein 

an orthonormal basis is used to preserve the local character of the monomer orbitals.10, 13, 14 Via the FMO 

approach, the effective intermolecular electronic coupling (V12) between the adjacent molecules (denoted 

by the numbers 1 and 2) in a molecular dimer is given by  

𝑉𝑉12 =
𝐻𝐻12 − 0.5 × 𝑆𝑆12 × (𝐻𝐻1 + 𝐻𝐻2)

1 −  𝑆𝑆122
  (1) 

where H12 is the interaction energy or electronic coupling matrix, S12 is the overlap integral, and H1 and H2 

are the monomer site energies. While there are extensions of the FMO approach beyond molecular 

dimers to include many-body interactions,15 band dispersion interactions in crystalline organic systems 

are typically weak (0.1-0.5 eV), and restricting evaluations to molecular dimers yields reasonable 
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estimates of the intermolecular electronic couplings.16 Application of the FMO approach typically makes 

use of wavefunction or density functional theory (DFT) calculations, which can afford high accuracy, 

though they can be time-consuming; semi-empirical wavefunction methods do offer faster evaluations, 

often at the cost of accuracy.  

With determinations of the intermolecular electronic couplings in hand, OSC charge-carrier transport 

characteristics can be evaluated by including these descriptors with kinetic Monte Carlo methods,17-19 

molecular dynamics (MD) simulations,20, 21 or transient localization theory.22, 23 However, each of these 

approaches requires that a large number of intermolecular electronic couplings be evaluated with high 

accuracy and, ideally, limited computational cost. Recent efforts have sought to develop fast yet reliable 

machine learning (ML) models to predict intermolecular electronic couplings.24-33 The underlying idea of 

training an ML model is to acquire accurate, near-real-time predictions of desired properties (also called 

fast online performance) while amortizing the cost via an expensive offline dataset creation, curation, and 

model training campaign. For intermolecular electronic couplings, a key step is that molecular dimer 

geometries must be transformed to ML model input. One of the commonly used transformations is the 

coulomb matrix,34 wherein the matrix element between two atoms 𝑖𝑖 and 𝑗𝑗 is defined by 

𝐶𝐶𝑖𝑖𝑖𝑖 = �
0.5 𝑍𝑍𝑖𝑖2.4              ∀ 𝑖𝑖 = 𝑗𝑗
𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗

�𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑗𝑗�
          ∀ 𝑖𝑖 ≠ 𝑗𝑗   (2) 

where 𝑍𝑍𝑖𝑖  and 𝑍𝑍𝑗𝑗  represent the nuclear charges of the atoms, 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑗𝑗 are the atomic Cartesian position 

vectors, and �𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑗𝑗� is the Euclidean distance between atom 𝑖𝑖 and atom 𝑗𝑗. Here, the size of the matrix 

depends on the number of atoms in the molecule. Gagliardi and coworkers used the coulomb matrix 

representation for dimer geometries as input for a kernel ridge regression (KRR)-based ML model28 that 

was trained on a dataset that contained dimer geometries extracted from an MD simulation of a 

pentacene crystal. This work demonstrated that an ML model could be trained to yield intermolecular 
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electronic couplings for a pentacene crystal with low prediction error. Wang et al. adopted a similar 

approach and used 250,000 naphthalene dimers extracted from MD simulations to train a KRR and 

artificial neural network (ANN) model with a coulomb matrix.27 ML models trained by this approach, 

however, are generally not transferable, as coulomb matrix sizes vary for different molecules; hence, one 

needs to generate data and train models for each new system to be investigated.27, 35 The redundancy of 

training one model for every molecule can be reduced by training a single model with a fixed size coulomb 

matrix representation for all data, as demonstrated by Reiser et al.;26 here, the size of the coulomb matrix 

representation for molecular dimers is fixed according to the largest molecule in the dataset, and the 

representation padded with zeros for smaller molecules to maintain the fixed size. Though this 

representation yields a transferable ML model for systems with a similar number of atoms, the large 

variation in atom numbers leads to sparsity in the representation, resulting in limited model 

performance.35  

An alternative to the coulomb representation is the graph representation, where atoms correspond to 

nodes of the graph and bonds are the edges.36 For example, if one considers benzene to be represented 

as a graph, the carbon and hydrogen atoms are represented by nodes, and the bonds between the atoms 

are represented as edges; node features include atom type and hybridization state, while edge features 

include bond type and length. We demonstrated in previous work that the graph representation coupled 

with a message-passing neural network (MPNN) can be used to predict electronic, redox, and optical 

properties of organic π-conjugated molecules with DFT-level accuracy.37 In MPNN, information from 

neighboring nodes is aggregated and processed at each node. This allows the ML model to learn how the 

local environment influences each atom. Unlike the coulomb matrix, the graph representation does not 

depend on the number of atoms in the system; hence, the graph representation offers a more transferable 

approach compared to the coulomb matrix. Notably, graph representations have been previously 

proposed to predict intermolecular electronic couplings.35  
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In this work, we use graph representations to predict intermolecular electronic couplings from molecular 

dimer geometry using SphereNet, a graph-based three-dimensional (3D) MPNN.38 For a 3D MPNN, the 

input representation includes 3D coordinates of each atom written in the graph format described above, 

thereby capturing the molecular spatial arrangements, a crucial feature for predicting properties 

dependent on molecular shape / structure and intermolecular interactions. SphereNet has been used to 

predict molecular properties such as the dipole moment, polarizability, and free energy from a 3D 

molecular geometry.38 The input for training SphereNet used here includes the atomic Cartesian 

coordinates (x, y, z) of molecules in a dimer and corresponding atomic numbers (Z), as shown in Figure 1. 

These coordinates are then transformed into a 3D graph representation using spherical coordinates (d, θ, 

ϕ). A brief discussion on SphereNet is included in the SI; however, for more in-depth information on 

SphereNet, readers are referred to the work by Liu et al.38 We demonstrate that the SphereNet 

architecture, when trained with a diverse dataset of 438,000 DFT-derived intermolecular electronic 

couplings from over 25,000 molecular crystal structures in the OCELOT (Organic Crystals in Electronic and 

Light-Oriented Technologies) database,39 provides a highly transferable ML model. Furthermore, we 

develop and deploy an open-access ML pipeline that uses the predicted intermolecular electronic 

couplings to estimate charge-carrier mobility anisotropies within the semi-classical Marcus theory 

approach proposed by Goddard and coworkers;40 the reorganization energy parameters used to derive 

the Marcus theory hopping are also predicted via a pre-trained ML model.37 Using this ML pipeline, we 

screen over 60,000 molecular organic crystals for their capacity to transport charge carriers.  
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Figure 1. Representative molecular dimer geometry, which consists of two identical molecules at arbitrary 
relative separation and orientation. The atomic number (Z) and the Cartesian coordinates (x,y,z) features 
are labeled for the molecular dimer geometry and serve as input for the ML model. 
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Figure 2. Scatter plot showing the correlation between the DFT estimated and ML predicted 
intermolecular HOMO-HOMO (top) and LUMO-LUMO (bottom) electronic couplings for the holdout test 
set consisting of 87,939 dimer configurations. The ML model was trained with the absolute values of 
intermolecular electronic couplings. 

 

The OCELOT dimer v1 dataset, which contains more than 438,000 dimers extracted from more than 

25,000 (experimental and DFT-minimized) crystal structures in the OCELOT database, was used to train 

the ML model. Compared to a dataset generated through MD simulations, the OCELOT dimer v1 dataset 

R2 = 0.83
MAE = 0.003 eV

R2 = 0.82
MAE = 0.003 eV
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may not capture all thermal molecular displacements. However, we hypothesize that the chemical 

diversity – the smallest molecular dimer in the dataset contains 20 atoms, while the largest has 392 atoms 

(see Figure S2) – represented by the crystal structures makes the ML model trained on the OCELOT dataset 

more generalizable than previous ML models trained on more limited chemical spaces.28, 41 We note that 

while the signs of intermolecular electronic couplings are essential in determining the charge-carrier 

transport characteristics in molecular crystals through the transient localization theory model,22, 42, 43 our 

initial efforts to train an ML model with the signs of the intermolecular electronic couplings yielded poor 

predictions. Hence, the model reported here was trained to predict absolute values of the intermolecular 

electronic couplings, which can be used as input in semi-classical evaluations of the electronic hopping 

rate constant in semi-classical Marcus-Hush theory. We used a 60:20:20 training:validation:test split of 

the dataset. Such a data split ensured that there were 125 unique crystal structures in the test set (see 

Table S1).  

Figure 2 demonstrates that the ML model produces reliable predictions of the intermolecular electronic 

couplings derived from DFT: The intermolecular HOMO-HOMO and LUMO-LUMO electronic couplings 

have mean absolute errors (MAE) of 3 meV and Pearson correlations (R2) of greater than 0.80. We 

implemented the natural logarithm of the absolute intermolecular electronic couplings for training to 

improve model performance, as demonstrated by Riderle et al.;28 this training, however, did not 

significantly improve the performance but did lead to avoided saturation of values close to 0 meV (see 

Figure S4). To gain insights into possible ML prediction errors, we analyzed the average percent error for 

the test dataset. As shown in Figure S5, the average percent error is about 20%, suggesting that the ML 

model predictions are reliable over a large range of intermolecular electronic couplings. We note that, 

from the perspective of DFT evaluations of intermolecular electronic couplings, it is expected that the use 

of different DFT functionals and basis sets will lead to different coupling values;44 hence, the ability to 

reproduce the trends of the intermolecular electronic couplings is more critical than reproducing the 
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absolute values when making comparisons amongst different systems and models. We further 

determined the Spearman’s rank correlation between the DFT-derived and ML-predicted HOMO-HOMO 

intermolecular electronic couplings; the results largely suggest a positive correlation (see Figure S6), 

demonstrating that the ML model can predict well the trends in the DFT-derived intermolecular electronic 

couplings.  

To further validate the observations, we analyzed the performance of the trained ML model to estimate 

the trends in intermolecular electronic couplings for pentacene. For the following discussion, we focus 

only on intermolecular HOMO-HOMO electronic couplings for a set of pentacene dimers with varied 

displacements – the dimer geometries were generated, using a Python code, by varying the interplanar, 

long-axis, and short-axis distances between the face-to-face packing of two molecules. Unlike previous 

ML models trained on over 10,000 molecular dimer geometries from MD snapshots for pentacene,28 our 

dataset contains fewer than 400 pentacene dimer geometries from the 12 polymorphs and their DFT-

relaxed geometries on which the ML model is trained. As shown in Figure 3 and Figures S7 and S8, the ML 

model correctly predicts the trends of DFT-derived intermolecular electronic couplings, especially for 

interplanar separations in the range of 3.5 – 5.0 Å. We highlight, though, the discrepancies for interplanar 

separations less than 3.5 Å and the underestimation of large intermolecular electronic couplings. These 

discrepancies arise from sparse sampling of these regions in the datasets, as evident from Figure S2, which 

is a consequence of the physics of the packing of π-conjugated organic molecules – there are very few 

crystal structures wherein the interplanar distance is less than 3.5 Å under standard experimental 

(temperature and pressure) conditions.  
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Figure 3. Variation of intermolecular HOMO-HOMO electronic coupling as a function of interplanar 
displacement (top) and displacement along the long-axis (bottom) for pentacene dimer. The direction of 
the red arrow between a dimer shows the displacement direction. DFT-derived data are in orange and ML 
predictions are in blue. The interplanar distance is set to 3.3 Å for the long-axis translation (bottom), and 
the long-axis displacement is set to 0 Å for the interplanar translation (top). 

 

Though the ML model does generally underestimate the intermolecular electronic couplings with respect 

to the chosen DFT approach, predicting trends is sufficient for analyzing the relative values and trends 

among dimers in crystalline OSC and, thus, charge-carrier transport. With the ML-derived absolute 
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intermolecular electronic coupling values, we next evaluate the charge-carrier transport anisotropies of 

crystalline OSC via semi-classical Marcus theory through the method proposed by Goddard and 

coworkers, which is insensitive to the sign of intermolecular electronic coupling (see equation 3; 

Computational Methods).40 We stress, of course, that this approach has significant limitations, as OSC 

charge-carrier mobilities can require descriptions from approaches that account for more delocalized 

charge-carrier wave functions, as described by, e.g., transient (de)localization or band transport 

mechanisms,22, 45-47 and non-local electron-phonon couplings. To forge a full ML pipeline to evaluate 

charge-carrier mobilities, the ML intermolecular electronic couplings described here were coupled to ML-

derived estimates of the intramolecular reorganization energies, as previously described.37 The 

performance of the ML pipeline was evaluated with pentacene and rubrene crystals, which show different 

angular anisotropies for charge-carrier transport.48, 49 That the ML predictions tend to underestimate the 

intermolecular electronic couplings when compared to the DFT approach, this feature is propagated to 

estimated charge-carrier mobilities. The ML-evaluated angular dependencies in pentacene and rubrene 

crystals agree reasonably with the experiment, as shown in Figure 4. While the angular dependence is 

accurately modeled for rubrene in Figure 4, there is a discrepancy in the direction of the highest charge-

carrier mobility for pentacene. We note that this discrepancy is inherent in the Marcus theory approach, 

as observed in the original article by Goddard and coworkers, wherein DFT calculations were used to 

evaluate these systems.40  
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Figure 4. (Top) The angular dependence of mobility (in cm2V-1s-1) in the ab plane for pentacene (left) and 
rubrene (right). Experimental estimates are in orange, and ML predictions are in blue. Experimental data 
for pentacene is from Ref.48 with re-evaluations from Ref.40 The experimental data for rubrene is from 
Ref.49 (Bottom) The molecular structure of the top three crystals with high charge-carrier mobility as 
predicted by the ML pipeline. The ID corresponds to the Cambridge Structural Database (CSD) identifer.50 

 

The ML pipeline can estimate the charge-carrier mobility of a single crystal structure in less than one 

minute on a standard desktop (1-core Intel Xenon E3-1241, 4GB RAM). We screened more than 110,000 

crystal structures from the Cambridge Structural Database (2020.0.1 CSD release),50 each of which 

consisted of one or more π-conjugated aromatic rings. We successfully screened approximately 60,000 of 

these structures for their charge-carrier mobilities (see SI for data); those structures that failed resulted 

from errors with parsing the crystal structure, missing hydrogen atoms, and the presence of metal atoms. 

The predictions indicate that highly π-conjugated molecules yield larger mobilities, as shown in Figure 4, 

N
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ID = KEYTIS
µmax = 32 cm2V-1s-1

Javg = 93 meV
Jstd = 20 meV

ID = LINFOG
µmax = 11 cm2V-1s-1

Javg = 15 meV
Jstd = 45 meV
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and only 372 structures presented an estimated maximum mobility (µmax) greater than 1 cm2V-1s-1. Most 

systems show large intermolecular electronic coupling anisotropies, as evident from the average (Javg) and 

standard deviation (Jstd) intermolecular electronic couplings extracted (unique) dimers in the crystal 

structures. To focus on systems with low intermolecular electronic coupling anisotropies, we further 

filtered the down-selected 372 structures by identifying those with a ratio of Javg / Jstd greater than 1. 

Demonstrating the successful proof-of-concept of the ML-based screening approach, the resulting 40 

down-selected structures (see Table S2) contain derivatives of well-known OSC, namely polyacenes. Some 

of these materials have reported charge-carrier mobilities (example: OKANUK; predicted=2.2 cmV-1s-1; 

experimental=1.12 cmV-1s-1), while others (example: ATOWUD, SECPUO, BISYAG, and KAJTEX) remain 

unexplored for charge-carrier transport applications. Of the 40 structures, the crystal structure of AQOSIJ 

is reported to have a phase transition above 125 K and hence would not be suitable for room temperature 

applications. Only six crystal structures (IPODEX, JEBNAG, SECPUO, NEVGUT, EDIHUV, KOYMES, DOGCEI) 

were measured at temperatures of 290 K or greater, while others were obtained in the range of 90K to 

200K. Hence, structural changes due to elevated temperatures should still be evaluated. We note, of 

course, that the charge-carrier transport analyses presented here are solely based on a hopping-based 

transport mechanism, and more thorough computational and experimental investigations are warranted 

to understand charge-carrier transport in these potential materials.  

In summary, we report a ML model to predict intermolecular electronic couplings from 3D geometries of 

crystals comprised of π-conjugated organic molecules and an associated ML pipeline to evaluate charge-

carrier mobility anisotropies in crystalline molecular OSC. Trained on the diverse 438,000 OCELOT dimers 

v1 dataset, we demonstrate that the MPNN–based model is reliable in predicting the trends in 

intermolecular electronic couplings. The ML model is transferable to molecules of different sizes, and we 

anticipate that this strategy can be deployed over a vast chemical space. Adopting the semi-classical 

Marcus theory formulation, an ML-based pipeline was created and deployed to evaluate charge-carrier 
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mobilities in organic crystals. More than 60,000 crystalline molecular materials were screened for their 

charge-carrier transport properties via the ML pipeline, and 40 potential candidates with charge-carrier 

mobilities greater than 1 cm2V-1s-1 and low anisotropies in the intermolecular HOMO-HOMO electronic 

couplings were identified. Importantly, several of the down-selected molecular crystals are well-known 

and experimentally verified systems in terms of their charge-carrier transport properties, demonstrating 

the validity of the proof-of-concept screening approach. With rapid predictions of intermolecular 

electronic couplings and charge-carrier mobilities, these ML models can be used in fast analyses of charge-

carrier transport that are coupled with MD simulation or kinetic Monte Carlo approaches and eventually 

in a complete materials discovery suite that involves searches of molecular space, crystal structure 

prediction, and material property prediction.  

 

COMPUTATIONAL METHODS 

Dataset generation. Molecular (noncovalent) dimers from more than 25,000 crystal structures, both as 

solved via x-ray crystallography and minimized via DFT, were collected from the curated OCELOT 

database.39 The screen_dimers function from the Hop module of the OCELOT API39 was used to extract 

dimer geometries from the crystal structures. The extraction process involved identifying all the unique 

molecules in the unit cell of the crystal structure and searching for neighboring molecules within 5 Å of 

any atom in the unique molecule. The duplicates were removed by analyzing relative interplanar, long-

axis, and short-axis displacements. The approach yielded various dimers for each structure depending on 

the number of molecules in the unit cell. Including DFT relaxed crystal structure for some entries doubles 

the number of dimer geometries. For instance, pentacene crystal (csd_PENCEN) with two unique 

molecules in the cell yielded 12 dimers for X-ray crystal structure and 12 dimers for DFT relaxed crystal 

structure, thus providing 24 dimer geometries for csd_PENCEN. The maximum total dimer geometry for 
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a crystal structure in the dataset is 184. DFT single-point energy calculations were performed on the dimer 

geometries without further geometry optimization in Gaussian 16 A.0351 at the PBE/6-31G(d,p) level of 

theory.52 The intermolecular electronic couplings were evaluated with the fragment molecular orbital 

(FMO) approach implemented in the OCELOT API.10, 13, 14, 39 As noted, the FMO method used here accounts 

for polarization effects that arise from weak van der Waals intermolecular interactions. No additional 

corrections to the DFT functional were made to account for van der Waals interactions. The curated 

dataset contains 438,709 dimer geometries and corresponding intermolecular HOMO-HOMO and LUMO-

LUMO electronic coupling values. This dataset, called OCELOT dimers v1, can be downloaded 

programmatically and from the OCELOT web user interface. Dataset statistics are presented in the 

Supporting Information (SI). 

ML model. The Dive into Graphs implementation of SphereNet was used here.53 Default hyperparameters 

were used, as tuning with Optuna version 2.1054 did not yield better performance. A 60:20:20 training: 

validation: test split of the dataset was used with mean square error (MSE) loss for training the ML model. 

The ML models were trained for 120 epochs, with a batch size of 32, Adam optimizer55 with a learning 

rate of 0.0005, and a decay factor of 0.5 for 15 steps. Two ML models were trained – one for 

intermolecular HOMO-HOMO electronic coupling (for hole transport) and another for intermolecular 

LUMO-LUMO electronic coupling (for electron transport). ML model training was performed in PyTorch 

version 1.10 and used Cuda 11.4 for GPU acceleration on a single NVIDIA Tesla V100 GPU.56, 57 Each training 

epoch took 25 minutes.    

Charge-carrier mobility. We implemented the formalism proposed by Goddard and coworkers to 

estimate charge-carrier mobility anisotropies.40 The hopping rate 𝑊𝑊 is evaluated using the semi-classical 

Marcus-Hush equation58 
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𝑊𝑊 = 𝑉𝑉2

ℏ �
𝜋𝜋

𝜆𝜆𝑘𝑘𝐵𝐵𝑇𝑇
𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜆𝜆

4𝑘𝑘𝐵𝐵𝑇𝑇
�  (3) 

where 𝑉𝑉 is the intermolecular electronic coupling, 𝜆𝜆 is the reorganization energy, 𝑇𝑇 is the temperature 

and 𝑘𝑘𝐵𝐵 is the Boltzmann constant. The total reorganization constitutes the inner-sphere reorganization 

(intramolecular vibrational relaxations) and outer-sphere reorganization (polarization of the surrounding 

medium). Here, we assume the outer sphere reorganization energy contribution is of similar magnitude 

across the systems in the investigation; hence, we only consider changes in the inner-sphere 

reorganization energy when estimating the total reorganization energy. The values of 𝑉𝑉 are obtained from 

the trained SphereNet model, and 𝜆𝜆 is predicted by a previously published ML model.37 The angular 

dependence of mobility is computed using the following equation. 

𝜇𝜇𝜙𝜙 =
𝑒𝑒

2𝑘𝑘𝐵𝐵𝑇𝑇
�𝑊𝑊𝑖𝑖
𝑖𝑖

𝑟𝑟𝑖𝑖2𝑃𝑃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐2𝛾𝛾𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐2(𝜃𝜃𝑖𝑖 − 𝜙𝜙) (4) 

𝑃𝑃𝑖𝑖 =
𝑊𝑊𝑖𝑖
∑ 𝑊𝑊𝑖𝑖𝑖𝑖

(5) 

where i represents a specific hopping path with a hopping distance of  𝑟𝑟𝑖𝑖, hopping rate 𝑊𝑊𝑖𝑖, hopping 

probability 𝑃𝑃𝑖𝑖. (𝜃𝜃𝑖𝑖 − 𝜙𝜙) is the angle between the conducting channel and the hopping path, 𝜙𝜙 is the 

orientation of the conducting channel relative to the reference axis and 𝛾𝛾𝑖𝑖  is the angle between the 

hopping paths and the reference plane. 

ML pipeline. The input to the pipeline is a crystallographic information file (CIF) from which the dimers 

and the largest, contiguous π-conjugated fragment of the molecule are extracted with OCELOT API. The 

reorganization energy is estimated for 2D SMILES representation of the largest, contiguous π-conjugated 

fragment using the fourth-generation pre-trained ML models from Bhat et al.37 The intermolecular 

electronic coupling predictions obtained from the SphereNet model are then used to compute the 

anisotropic charge-carrier mobility along the various crystallographic planes. The temperature is set to 
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298 K. The ML pipeline is open-access and is deployed on the OCELOT ML infrastructure, as shown in 

Figure S9 (see Data Availability section for link). 
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available in the CSV file of SI.  
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