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ABSTRACT

Organic semiconductors (OSC) offer tremendous potential across a wide range of (opto)electronic
applications. OSC development, however, is often limited by trial-and-error design, with computational
modeling approaches deployed to evaluate and screen candidates through a suite of molecular and
materials descriptors that generally require hours to days of computational time to accumulate. Such
bottlenecks slow the pace and limit the exploration of the vast chemical space comprising OSC. When
considering charge-carrier transport in OSC, a key parameter of interest is the intermolecular electronic
coupling. Here, we introduce a machine learning (ML) model to predict intermolecular electronic
couplings in organic crystalline materials from their three-dimensional (3D) molecular geometries. The ML
predictions take only a few seconds of computing time compared to hours by density functional theory
(DFT) methods. To demonstrate the utility of the ML predictions, we deploy the ML model in conjunction
with mathematical formulations to rapidly screen the charge-carrier mobility anisotropy for more than

60,000 molecular crystal structures and compare the ML predictions to DFT benchmarks.
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Intermolecular electronic couplings (or transfer integrals) in organic semiconductors (OSC) are critical
parameters governing charge-carrier transport.1> The intermolecular electronic couplings depend both
on the geometric overlap of neighboring molecules (and, hence, intermolecular vibrational or phonon
modes) and the molecular orbital (MO) overlap of these adjacent molecules — e.g., between the highest-
occupied molecular orbitals (HOMO) of the two molecules (HOMO-HOMO coupling) for hole transport, or
the lowest-unoccupied molecular orbitals (LUMO) of the two molecules (LUMO-LUMO coupling) for
electron transport.® ® The phases of the intermolecular electronic couplings are determined by the MO

overlap symmetries.

Several approaches have been implemented to determine intermolecular electronic couplings.* 7! In the
energy-splitting-in dimer method,® '? the intermolecular electronic coupling is estimated to be one-half
the energy difference between the HOMO and HOMO-1 of a (noncovalent) dimer formed by two adjacent
molecules (see Figure 1 for representation of a molecular dimer geometry). While this method is effective
for symmetrically arranged molecules, the method fails for systems where molecular asymmetry leads to
polarization. This shortcoming is overcome in the fragment molecular orbital (FMO) approach, wherein
an orthonormal basis is used to preserve the local character of the monomer orbitals.?* > Via the FMO
approach, the effective intermolecular electronic coupling (V12) between the adjacent molecules (denoted
by the numbers 1 and 2) in a molecular dimer is given by

le - 0.5 X 512 X (Hl + HZ)
1— S;,°
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where Hi; is the interaction energy or electronic coupling matrix, Si; is the overlap integral, and H; and H;
are the monomer site energies. While there are extensions of the FMO approach beyond molecular
dimers to include many-body interactions,’> band dispersion interactions in crystalline organic systems

are typically weak (0.1-0.5 eV), and restricting evaluations to molecular dimers yields reasonable



estimates of the intermolecular electronic couplings.'® Application of the FMO approach typically makes
use of wavefunction or density functional theory (DFT) calculations, which can afford high accuracy,
though they can be time-consuming; semi-empirical wavefunction methods do offer faster evaluations,

often at the cost of accuracy.

With determinations of the intermolecular electronic couplings in hand, OSC charge-carrier transport
characteristics can be evaluated by including these descriptors with kinetic Monte Carlo methods,*”°
molecular dynamics (MD) simulations,?* 2! or transient localization theory.?* 2 However, each of these
approaches requires that a large number of intermolecular electronic couplings be evaluated with high
accuracy and, ideally, limited computational cost. Recent efforts have sought to develop fast yet reliable
machine learning (ML) models to predict intermolecular electronic couplings.?*3 The underlying idea of
training an ML model is to acquire accurate, near-real-time predictions of desired properties (also called
fast online performance) while amortizing the cost via an expensive offline dataset creation, curation, and
model training campaign. For intermolecular electronic couplings, a key step is that molecular dimer

geometries must be transformed to ML model input. One of the commonly used transformations is the

coulomb matrix,** wherein the matrix element between two atoms i and j is defined by

0.5 Z7* Vi=j
R — Rl

where Z; and Z; represent the nuclear charges of the atoms, R; and R; are the atomic Cartesian position
vectors, and ||RL- - Rj|| is the Euclidean distance between atom i and atom j. Here, the size of the matrix
depends on the number of atoms in the molecule. Gagliardi and coworkers used the coulomb matrix
representation for dimer geometries as input for a kernel ridge regression (KRR)-based ML model? that
was trained on a dataset that contained dimer geometries extracted from an MD simulation of a

pentacene crystal. This work demonstrated that an ML model could be trained to yield intermolecular



electronic couplings for a pentacene crystal with low prediction error. Wang et al. adopted a similar
approach and used 250,000 naphthalene dimers extracted from MD simulations to train a KRR and
artificial neural network (ANN) model with a coulomb matrix.2’” ML models trained by this approach,
however, are generally not transferable, as coulomb matrix sizes vary for different molecules; hence, one
needs to generate data and train models for each new system to be investigated.?” ** The redundancy of
training one model for every molecule can be reduced by training a single model with a fixed size coulomb
matrix representation for all data, as demonstrated by Reiser et al.;?® here, the size of the coulomb matrix
representation for molecular dimers is fixed according to the largest molecule in the dataset, and the
representation padded with zeros for smaller molecules to maintain the fixed size. Though this
representation yields a transferable ML model for systems with a similar number of atoms, the large
variation in atom numbers leads to sparsity in the representation, resulting in limited model

performance.®

An alternative to the coulomb representation is the graph representation, where atoms correspond to
nodes of the graph and bonds are the edges.?® For example, if one considers benzene to be represented
as a graph, the carbon and hydrogen atoms are represented by nodes, and the bonds between the atoms
are represented as edges; node features include atom type and hybridization state, while edge features
include bond type and length. We demonstrated in previous work that the graph representation coupled
with a message-passing neural network (MPNN) can be used to predict electronic, redox, and optical
properties of organic m-conjugated molecules with DFT-level accuracy.?’” In MPNN, information from
neighboring nodes is aggregated and processed at each node. This allows the ML model to learn how the
local environment influences each atom. Unlike the coulomb matrix, the graph representation does not
depend on the number of atoms in the system; hence, the graph representation offers a more transferable
approach compared to the coulomb matrix. Notably, graph representations have been previously

proposed to predict intermolecular electronic couplings.®



In this work, we use graph representations to predict intermolecular electronic couplings from molecular
dimer geometry using SphereNet, a graph-based three-dimensional (3D) MPNN.?® For a 3D MPNN, the
input representation includes 3D coordinates of each atom written in the graph format described above,
thereby capturing the molecular spatial arrangements, a crucial feature for predicting properties
dependent on molecular shape / structure and intermolecular interactions. SphereNet has been used to
predict molecular properties such as the dipole moment, polarizability, and free energy from a 3D
molecular geometry.3® The input for training SphereNet used here includes the atomic Cartesian
coordinates (x, y, z) of molecules in a dimer and corresponding atomic numbers (Z), as shown in Figure 1.
These coordinates are then transformed into a 3D graph representation using spherical coordinates (d, 6,
®). A brief discussion on SphereNet is included in the SI; however, for more in-depth information on
SphereNet, readers are referred to the work by Liu et al.®® We demonstrate that the SphereNet
architecture, when trained with a diverse dataset of 438,000 DFT-derived intermolecular electronic
couplings from over 25,000 molecular crystal structures in the OCELOT (Organic Crystals in Electronic and
Light-Oriented Technologies) database,* provides a highly transferable ML model. Furthermore, we
develop and deploy an open-access ML pipeline that uses the predicted intermolecular electronic
couplings to estimate charge-carrier mobility anisotropies within the semi-classical Marcus theory
approach proposed by Goddard and coworkers;*° the reorganization energy parameters used to derive
the Marcus theory hopping are also predicted via a pre-trained ML model.?” Using this ML pipeline, we

screen over 60,000 molecular organic crystals for their capacity to transport charge carriers.
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Figure 1. Representative molecular dimer geometry, which consists of two identical molecules at arbitrary
relative separation and orientation. The atomic number (Z) and the Cartesian coordinates (x,y,z) features
are labeled for the molecular dimer geometry and serve as input for the ML model.
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Figure 2. Scatter plot showing the correlation between the DFT estimated and ML predicted
intermolecular HOMO-HOMO (top) and LUMO-LUMO (bottom) electronic couplings for the holdout test
set consisting of 87,939 dimer configurations. The ML model was trained with the absolute values of
intermolecular electronic couplings.

The OCELOT dimer v1 dataset, which contains more than 438,000 dimers extracted from more than

25,000 (experimental and DFT-minimized) crystal structures in the OCELOT database, was used to train

the ML model. Compared to a dataset generated through MD simulations, the OCELOT dimer v1 dataset



may not capture all thermal molecular displacements. However, we hypothesize that the chemical
diversity —the smallest molecular dimer in the dataset contains 20 atoms, while the largest has 392 atoms
(see Figure S2) —represented by the crystal structures makes the ML model trained on the OCELOT dataset
more generalizable than previous ML models trained on more limited chemical spaces.?® *! We note that
while the signs of intermolecular electronic couplings are essential in determining the charge-carrier
transport characteristics in molecular crystals through the transient localization theory model,?* %% our
initial efforts to train an ML model with the signs of the intermolecular electronic couplings yielded poor
predictions. Hence, the model reported here was trained to predict absolute values of the intermolecular
electronic couplings, which can be used as input in semi-classical evaluations of the electronic hopping
rate constant in semi-classical Marcus-Hush theory. We used a 60:20:20 training:validation:test split of
the dataset. Such a data split ensured that there were 125 unique crystal structures in the test set (see

Table S1).

Figure 2 demonstrates that the ML model produces reliable predictions of the intermolecular electronic
couplings derived from DFT: The intermolecular HOMO-HOMO and LUMO-LUMO electronic couplings
have mean absolute errors (MAE) of 3 meV and Pearson correlations (R?) of greater than 0.80. We
implemented the natural logarithm of the absolute intermolecular electronic couplings for training to
improve model performance, as demonstrated by Riderle et al.;?® this training, however, did not
significantly improve the performance but did lead to avoided saturation of values close to 0 meV (see
Figure S4). To gain insights into possible ML prediction errors, we analyzed the average percent error for
the test dataset. As shown in Figure S5, the average percent error is about 20%, suggesting that the ML
model predictions are reliable over a large range of intermolecular electronic couplings. We note that,
from the perspective of DFT evaluations of intermolecular electronic couplings, it is expected that the use
of different DFT functionals and basis sets will lead to different coupling values;* hence, the ability to

reproduce the trends of the intermolecular electronic couplings is more critical than reproducing the



absolute values when making comparisons amongst different systems and models. We further
determined the Spearman’s rank correlation between the DFT-derived and ML-predicted HOMO-HOMO
intermolecular electronic couplings; the results largely suggest a positive correlation (see Figure S6),
demonstrating that the ML model can predict well the trends in the DFT-derived intermolecular electronic

couplings.

To further validate the observations, we analyzed the performance of the trained ML model to estimate
the trends in intermolecular electronic couplings for pentacene. For the following discussion, we focus
only on intermolecular HOMO-HOMO electronic couplings for a set of pentacene dimers with varied
displacements — the dimer geometries were generated, using a Python code, by varying the interplanar,
long-axis, and short-axis distances between the face-to-face packing of two molecules. Unlike previous
ML models trained on over 10,000 molecular dimer geometries from MD snapshots for pentacene,? our
dataset contains fewer than 400 pentacene dimer geometries from the 12 polymorphs and their DFT-
relaxed geometries on which the ML model is trained. As shown in Figure 3 and Figures S7 and S8, the ML
model correctly predicts the trends of DFT-derived intermolecular electronic couplings, especially for
interplanar separations in the range of 3.5 — 5.0 A. We highlight, though, the discrepancies for interplanar
separations less than 3.5 A and the underestimation of large intermolecular electronic couplings. These
discrepancies arise from sparse sampling of these regions in the datasets, as evident from Figure S2, which
is a consequence of the physics of the packing of m-conjugated organic molecules — there are very few
crystal structures wherein the interplanar distance is less than 3.5 A under standard experimental

(temperature and pressure) conditions.
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Figure 3. Variation of intermolecular HOMO-HOMO electronic coupling as a function of interplanar
displacement (top) and displacement along the long-axis (bottom) for pentacene dimer. The direction of
the red arrow between a dimer shows the displacement direction. DFT-derived data are in orange and ML
predictions are in blue. The interplanar distance is set to 3.3 A for the long-axis translation (bottom), and
the long-axis displacement is set to 0 A for the interplanar translation (top).

Though the ML model does generally underestimate the intermolecular electronic couplings with respect

to the chosen DFT approach, predicting trends is sufficient for analyzing the relative values and trends

among dimers in crystalline OSC and, thus, charge-carrier transport. With the ML-derived absolute



intermolecular electronic coupling values, we next evaluate the charge-carrier transport anisotropies of
crystalline OSC via semi-classical Marcus theory through the method proposed by Goddard and
coworkers, which is insensitive to the sign of intermolecular electronic coupling (see equation 3;
Computational Methods).*® We stress, of course, that this approach has significant limitations, as OSC
charge-carrier mobilities can require descriptions from approaches that account for more delocalized
charge-carrier wave functions, as described by, e.g., transient (de)localization or band transport
mechanisms,?> %7 and non-local electron-phonon couplings. To forge a full ML pipeline to evaluate
charge-carrier mobilities, the ML intermolecular electronic couplings described here were coupled to ML-
derived estimates of the intramolecular reorganization energies, as previously described.?” The
performance of the ML pipeline was evaluated with pentacene and rubrene crystals, which show different
angular anisotropies for charge-carrier transport.*® %° That the ML predictions tend to underestimate the
intermolecular electronic couplings when compared to the DFT approach, this feature is propagated to
estimated charge-carrier mobilities. The ML-evaluated angular dependencies in pentacene and rubrene
crystals agree reasonably with the experiment, as shown in Figure 4. While the angular dependence is
accurately modeled for rubrene in Figure 4, there is a discrepancy in the direction of the highest charge-
carrier mobility for pentacene. We note that this discrepancy is inherent in the Marcus theory approach,
as observed in the original article by Goddard and coworkers, wherein DFT calculations were used to

evaluate these systems.*
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Figure 4. (Top) The angular dependence of mobility (in cm?V's?) in the ab plane for pentacene (left) and
rubrene (right). Experimental estimates are in orange, and ML predictions are in blue. Experimental data
for pentacene is from Ref.”® with re-evaluations from Ref.*° The experimental data for rubrene is from
Ref.* (Bottom) The molecular structure of the top three crystals with high charge-carrier mobility as
predicted by the ML pipeline. The ID corresponds to the Cambridge Structural Database (CSD) identifer.>®

The ML pipeline can estimate the charge-carrier mobility of a single crystal structure in less than one
minute on a standard desktop (1-core Intel Xenon E3-1241, 4GB RAM). We screened more than 110,000

50 each of which

crystal structures from the Cambridge Structural Database (2020.0.1 CSD release),
consisted of one or more m-conjugated aromatic rings. We successfully screened approximately 60,000 of
these structures for their charge-carrier mobilities (see Sl for data); those structures that failed resulted

from errors with parsing the crystal structure, missing hydrogen atoms, and the presence of metal atoms.

The predictions indicate that highly n-conjugated molecules yield larger mobilities, as shown in Figure 4,
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and only 372 structures presented an estimated maximum mobility (max) greater than 1 cm?V7's™. Most
systems show large intermolecular electronic coupling anisotropies, as evident from the average (Javg) and
standard deviation (J&d) intermolecular electronic couplings extracted (unique) dimers in the crystal
structures. To focus on systems with low intermolecular electronic coupling anisotropies, we further
filtered the down-selected 372 structures by identifying those with a ratio of Jag / Jsta greater than 1.
Demonstrating the successful proof-of-concept of the ML-based screening approach, the resulting 40
down-selected structures (see Table S2) contain derivatives of well-known OSC, namely polyacenes. Some
of these materials have reported charge-carrier mobilities (example: OKANUK; predicted=2.2 cmV-s?;
experimental=1.12 cmVs?), while others (example: ATOWUD, SECPUO, BISYAG, and KAJTEX) remain
unexplored for charge-carrier transport applications. Of the 40 structures, the crystal structure of AQOSIJ
is reported to have a phase transition above 125 K and hence would not be suitable for room temperature
applications. Only six crystal structures (IPODEX, JEBNAG, SECPUO, NEVGUT, EDIHUV, KOYMES, DOGCEI)
were measured at temperatures of 290 K or greater, while others were obtained in the range of 90K to
200K. Hence, structural changes due to elevated temperatures should still be evaluated. We note, of
course, that the charge-carrier transport analyses presented here are solely based on a hopping-based
transport mechanism, and more thorough computational and experimental investigations are warranted

to understand charge-carrier transport in these potential materials.

In summary, we report a ML model to predict intermolecular electronic couplings from 3D geometries of
crystals comprised of nm-conjugated organic molecules and an associated ML pipeline to evaluate charge-
carrier mobility anisotropies in crystalline molecular OSC. Trained on the diverse 438,000 OCELOT dimers
vl dataset, we demonstrate that the MPNN-based model is reliable in predicting the trends in
intermolecular electronic couplings. The ML model is transferable to molecules of different sizes, and we
anticipate that this strategy can be deployed over a vast chemical space. Adopting the semi-classical

Marcus theory formulation, an ML-based pipeline was created and deployed to evaluate charge-carrier
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mobilities in organic crystals. More than 60,000 crystalline molecular materials were screened for their
charge-carrier transport properties via the ML pipeline, and 40 potential candidates with charge-carrier
mobilities greater than 1 cm?V-s! and low anisotropies in the intermolecular HOMO-HOMO electronic
couplings were identified. Importantly, several of the down-selected molecular crystals are well-known
and experimentally verified systems in terms of their charge-carrier transport properties, demonstrating
the validity of the proof-of-concept screening approach. With rapid predictions of intermolecular
electronic couplings and charge-carrier mobilities, these ML models can be used in fast analyses of charge-
carrier transport that are coupled with MD simulation or kinetic Monte Carlo approaches and eventually
in a complete materials discovery suite that involves searches of molecular space, crystal structure

prediction, and material property prediction.

COMPUTATIONAL METHODS

Dataset generation. Molecular (noncovalent) dimers from more than 25,000 crystal structures, both as
solved via x-ray crystallography and minimized via DFT, were collected from the curated OCELOT
database.®® The screen_dimers function from the Hop module of the OCELOT API*® was used to extract
dimer geometries from the crystal structures. The extraction process involved identifying all the unique
molecules in the unit cell of the crystal structure and searching for neighboring molecules within 5 A of
any atom in the unique molecule. The duplicates were removed by analyzing relative interplanar, long-
axis, and short-axis displacements. The approach yielded various dimers for each structure depending on
the number of molecules in the unit cell. Including DFT relaxed crystal structure for some entries doubles
the number of dimer geometries. For instance, pentacene crystal (csd_PENCEN) with two unique
molecules in the cell yielded 12 dimers for X-ray crystal structure and 12 dimers for DFT relaxed crystal

structure, thus providing 24 dimer geometries for csd_PENCEN. The maximum total dimer geometry for
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a crystal structure in the dataset is 184. DFT single-point energy calculations were performed on the dimer
geometries without further geometry optimization in Gaussian 16 A.03°! at the PBE/6-31G(d,p) level of
theory.>? The intermolecular electronic couplings were evaluated with the fragment molecular orbital
(FMO) approach implemented in the OCELOT AP1.1% 131439 A5 noted, the FMO method used here accounts
for polarization effects that arise from weak van der Waals intermolecular interactions. No additional
corrections to the DFT functional were made to account for van der Waals interactions. The curated
dataset contains 438,709 dimer geometries and corresponding intermolecular HOMO-HOMO and LUMO-
LUMO electronic coupling values. This dataset, called OCELOT dimers v1, can be downloaded
programmatically and from the OCELOT web user interface. Dataset statistics are presented in the

Supporting Information (SI).

ML model. The Dive into Graphs implementation of SphereNet was used here.>® Default hyperparameters
were used, as tuning with Optuna version 2.10°* did not yield better performance. A 60:20:20 training:
validation: test split of the dataset was used with mean square error (MSE) loss for training the ML model.
The ML models were trained for 120 epochs, with a batch size of 32, Adam optimizer®> with a learning
rate of 0.0005, and a decay factor of 0.5 for 15 steps. Two ML models were trained — one for
intermolecular HOMO-HOMO electronic coupling (for hole transport) and another for intermolecular
LUMO-LUMO electronic coupling (for electron transport). ML model training was performed in PyTorch
version 1.10 and used Cuda 11.4 for GPU acceleration on a single NVIDIA Tesla V100 GPU.>® >’ Each training

epoch took 25 minutes.

Charge-carrier mobility. We implemented the formalism proposed by Goddard and coworkers to
estimate charge-carrier mobility anisotropies.*® The hopping rate W is evaluated using the semi-classical

Marcus-Hush equation®®
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where V is the intermolecular electronic coupling, A is the reorganization energy, T is the temperature
and kg is the Boltzmann constant. The total reorganization constitutes the inner-sphere reorganization
(intramolecular vibrational relaxations) and outer-sphere reorganization (polarization of the surrounding
medium). Here, we assume the outer sphere reorganization energy contribution is of similar magnitude
across the systems in the investigation; hence, we only consider changes in the inner-sphere
reorganization energy when estimating the total reorganization energy. The values of VV are obtained from
the trained SphereNet model, and A is predicted by a previously published ML model.3” The angular

dependence of mobility is computed using the following equation.

e
Ko = g7 D, WiriPicostyicos™ (8, ~ 9) @)
l
p, = 5
A Zi VVL ( )

where i represents a specific hopping path with a hopping distance of 7;, hopping rate W;, hopping
probability P;. (8; — ¢) is the angle between the conducting channel and the hopping path, ¢ is the
orientation of the conducting channel relative to the reference axis and y; is the angle between the

hopping paths and the reference plane.

ML pipeline. The input to the pipeline is a crystallographic information file (CIF) from which the dimers
and the largest, contiguous m-conjugated fragment of the molecule are extracted with OCELOT API. The
reorganization energy is estimated for 2D SMILES representation of the largest, contiguous n-conjugated
fragment using the fourth-generation pre-trained ML models from Bhat et al.?” The intermolecular
electronic coupling predictions obtained from the SphereNet model are then used to compute the

anisotropic charge-carrier mobility along the various crystallographic planes. The temperature is set to
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298 K. The ML pipeline is open-access and is deployed on the OCELOT ML infrastructure, as shown in

Figure S9 (see Data Availability section for link).

ASSOCIATED CONTENT

Supporting Information

e Supplementary figures and table with 40 potential candidates (PDF)

e Mobility data on 60k structures (CSV)

Data availability

The code used for training and testing is available on GitHub at

https://github.com/caer200/ocelotm| coupling. The OCELOT dimers vl dataset is available on the

OCELOT website at https://oscar.as.uky.edu/datasets. The ML pipeline can be accessed on the OCELOT

ML infrastructure at https://oscar.as.uky.edu/ocelotml coupling. The mobility data on 60k structures is

available in the CSV file of SI.
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