
SIAM J. SCI. COMPUT. © 2024 Society for Industrial and Applied Mathematics
Vol. 46, No. 4, pp. A2528–A2556

ENERGETIC VARIATIONAL NEURAL NETWORK
DISCRETIZATIONS OF GRADIENT FLOWS⇤

ZIQING HU†, CHUN LIU‡, YIWEI WANG§, AND ZHILIANG XU†

Abstract. We present a structure-preserving Eulerian algorithm for solving L2-gradient flows
and a structure-preserving Lagrangian algorithm for solving generalized di↵usions. Both algorithms
employ neural networks as tools for spatial discretization. Unlike most existing methods that con-
struct numerical discretizations based on the strong or weak form of the underlying PDE, the pro-
posed schemes are constructed based on the energy-dissipation law directly. This guarantees the
monotonic decay of the system’s free energy, which avoids unphysical states of solutions and is crucial
for the long-term stability of numerical computations. To address challenges arising from nonlinear
neural network discretization, we perform temporal discretizations on these variational systems be-
fore spatial discretizations. This approach is computationally memory-e�cient when implementing
neural network-based algorithms. The proposed neural network-based schemes are mesh-free, allow-
ing us to solve gradient flows in high dimensions. Various numerical experiments are presented to
demonstrate the accuracy and energy stability of the proposed numerical schemes.

Key words. structure-preserving, gradient flows, neural networks, energy stability, Lagrangian
schemes

MSC codes. 35K35, 35K55, 49J40, 65M06, 65M12

DOI. 10.1137/22M1529427

1. Introduction. Evolution equations with variational structures, often termed
as gradient flows, have a wide range of applications in physics, material science, biol-
ogy, and machine learning [14, 60, 78]. These systems not only possess but also are
determined by an energy-dissipation law, which consists of an energy of state variables
that describes the energetic coupling and competition, and a dissipative mechanism
that drives the system to an equilibrium.

More precisely, beginning with a prescribed energy-dissipation law

d

dt
Etotal =�4 0,(1.1)

where Etotal is the sum of the Helmholtz free energy F and the kinetic energy K, and
4 is the rate of energy dissipation, one could derive the dynamics, the corresponding
partial di↵erential equation (PDE), of the system by combining the Least Action
Principle (LAP) and the Maximum Dissipation Principle (MDP). The LAP states
that the equation of motion of a Hamiltonian system can be derived from the variation
of the action functional A=

R T
0 (K�F)dt with respect to state variable x. This gives

⇤Submitted to the journal’s Numerical Algorithms for Scientific Computing section October 18,
2022; accepted for publication (in revised form) April 12, 2024; published electronically August 5,
2024.

https://doi.org/10.1137/22M1529427
Funding: The work of the second and third authors was partially supported by the National

Science Foundation grants DMS-1950868 and DMS-2153029. The work of the fourth author was
partially supported by the National Science Foundation grant CDS&E-MSS 1854779.

†Department of Applied and Computational Mathematics and Statistics, University of Notre
Dame, Notre Dame, IN 46556, USA (zhu4@nd.edu, zxu2@nd.edu).

‡Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA
(cliu124@iit.edu).

§Corresponding author. Department of Mathematics, University of California, Riverside,
Riverside, CA 92521, USA (yiweiw@ucr.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2528

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/22M1529427
mailto:zhu4@nd.edu
mailto:zxu2@nd.edu
mailto:cliu124@iit.edu
mailto:yiweiw@ucr.edu

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2529

rise to a unique procedure to derive the “conservative force” in the system. The
MDP, on the other hand, derives the “dissipative force” by taking the variation of
the dissipation potential D, which equals 1

24 in the linear response regime (near
equilibrium), with respect to xt. In turn, the force balance condition leads to the
PDE of the system

�D
�xt

=
�A
�x

.(1.2)

This procedure is known as the energetic variational approach (EnVarA) [24, 48, 74],
developed based on the celebrated work of Onsager [57, 58] and Rayleigh [63] in
nonequilibrium thermodynamics. During the past decades, the framework of EnVarA
has shown to be a powerful tool for developing thermodynamically consistent models
for various complex fluid systems, including two-phase flows [80, 81, 83], liquid crystals
[48], ionic solutions [22], and reactive fluids [75, 76]. In a certain sense, the energy-
dissipation law (1.1), which comes from the first and second law of thermodynamics
[23], provides a more intrinsic description of the underlying physics than the derived
PDE (1.2), in particular for systems that possess multiple structures and involve
multiscale and multiphysics coupling.

From a numerical standpoint, the energy-dissipation law (1.1) also serves as a
valuable guideline for developing structure-preserving numerical schemes for these
variational systems, as many straightforward PDE-based discretizations may fail to
preserve the continuous variational structures, as well as the physical constraints, such
as the conservation of mass or momentum, the positivity of mass density, and the
dissipation of the energy. As a recent development in this field, in [50], the authors
proposed a numerical framework, called a discrete energetic variational approach,
to address these challenges. Similar methods are also used in [72, 82]. The key
idea of this approach is to construct numerical discretizations directly based on the
continuous energy-dissipation laws without using the underlying PDE (see section 3.1
for details). The approach has advantages in preserving a discrete counterpart of the
continuous energy-dissipation law, which is crucial for avoiding unphysical solutions
and the long-term stability of numerical computations. Within the framework of the
discrete energetic variational approach, Eulerian [55], Lagrangian [50, 51], and particle
methods [73] have been developed for various problems.

However, tackling high-dimensional variational problems remains a challenge.
Traditional numerical discretizations, such as finite di↵erence, finite element, and
finite volume methods, su↵er from the well-known curse of dimensionality (CoD) [27].
Namely, the computational complexity of the numerical algorithm increases exponen-
tially with the dimensionality of the problem [4, 27]. Although particle methods hold
promise for addressing high-dimensional problems, standard particle methods often
lack accuracy and are not suitable for problems involving derivatives.

During recent years, neural networks have demonstrated remarkable success across
a wide spectrum of scientific disciplines [12, 31, 41, 43, 47]. Leveraging the potent ex-
pressive power of neural network [3, 10, 20], particularly deep neural network (DNN)
architectures, there exists a growing interest in developing neural network-based algo-
rithms for PDEs, especially for those in high dimensions [13, 21, 37, 38, 42, 62, 68, 70,
77]. Examples include physics-informed neural network (PINN) [62], deep Ritz method
(DRM) [21], deep Galerkin method (DGM) [68], variational PINN [37], and weak
adversarial network (WAN) [84] to name a few. A key component of these aforemen-
tioned approaches is to represent solutions of PDEs via neural networks. All of these
approaches determine the optimal parameters of the neural network by minimizing a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2530 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

loss function, which is often derived from either the strong or weak form of the PDE
(see section 2.1 for more details). By employing neural network approximations, the
approximate solution belongs to a space of nonlinear functions, which may lead to a
robust estimation by sparser representation and cheaper computation [37].

The goal of this paper is to combine neural network-based spatial discretization
with the framework of the discrete energetic variational approach [50], to develop
e�cient and robust numerical schemes, termed as energetic variational neural network
(EVNN) methods. To clarify the idea, we consider the following two types of gradient
flows modeled by EnVarA:

• L2-gradient flow that satisfies an energy-dissipation law

d

dt
F ['] =�

Z

⌦
⌘(')|'t|2dx.(1.3)

• Generalized di↵usion that satisfies an energy-dissipation law

d

dt
F [⇢] =�

Z

⌦
⌘(⇢)|u|2dx,(1.4)

where ⇢ satisfies ⇢t +r · (⇢u) = 0, known as the mass conservation.
Derivation of the underlying PDEs for these types of systems is described in sec-
tions 2.1.1 and 2.1.2 of this paper.

Our primary aim is to develop structure-preserving Eulerian algorithms to solve
L2-gradient flows and structure-preserving Lagrangian algorithms to solve general-
ized di↵usions based on their energy-dissipation law by utilizing neural networks as
a new tool of spatial discretization. To overcome di�culties arising from neural net-
work discretization, we develop a discretization approach that performs temporal
discretizations before spatial discretizations. This approach leads to a computer-
memory-e�cient implementation of neural network-based algorithms. Since neural
networks are advantageous due to their ability to serve as parametric approximations
for unknown functions even in high dimensions, the proposed neural-network-based al-
gorithms are capable of solving gradient flows in high-dimension, such as these appear
in machine learning [19, 32, 69, 73].

The rest of this paper is organized as follows. Section 2 reviews the EnVarA
and some existing neural network-based numerical approaches for solving PDEs. Sec-
tion 3 of the paper is devoted to the development of the proposed EVNN schemes for
L2-gradient flows and generalized di↵usions. Various numerical experiments are pre-
sented in section 4 to demonstrate the accuracy and energy stability of the proposed
numerical methods. Conclusions are drawn in section 5.

2. Preliminary.

2.1. Energetic variational approach. In this subsection, we provide a de-
tailed derivation of underlying PDEs for L2-gradient flows and generalized di↵usions
by the general framework of EnVarA. We refer interested readers to [24, 74] for a more
comprehensive review of the EnVarA. In both systems, the kinetic energy K= 0.

2.1.1. L2-gradient flow. L2-gradient flows are those systems satisfying the
energy-dissipation law:

d

dt
F ['] =�

Z

⌦
⌘|'t|2dx,(2.1)

where ' is the state variable, F ['] is the Helmholtz free energy, and ⌘ > 0 is the
dissipation rate. One can also view ' as the generalized coordinates of the system

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2531

[14]. By treating ' as x, the variational procedure (1.2) leads to the following L2-
gradient flow equation:

�(12
R
⌘|'t|2dx)
�'t

=��F
�'

) ⌘'t =��F
�'

.

Many problems in soft matter physics, material science, and machine learning can be
modeled as L2-gradient flows. Examples include Allen–Cahn equation [15], Oseen–
Frank and Landau–de Gennes models of liquid crystals [11, 45], phase field crystal
models of quasicrystal [34, 44], and generalized Ohta–Kawasaki model of diblock and
triblock copolymers [56]. For example, by taking

F ['] =

Z

⌦

1

2
|r'|2 + 1

4✏2
('2 � 1)2dx,

which is the classical Ginzburg–Landau free energy, and letting ⌘(') = 1, one gets the
Allen–Cahn equation

't =�'� 1

✏2
('2 � 1)'.

2.1.2. Generalized di↵usion. Generalized di↵usion describes the space-time
evolution of a conserved quantity ⇢(x, t). Due to the physics law of mass conservation,
⇢(x, t) satisfies the kinematics

@t⇢+r · (⇢u) = 0,(2.2)

where u is an averaged velocity in the system.
To derive the generalized di↵usion equation by the EnVarA, one should introduce

a Lagrangian description of the system. Given a velocity field u(x, t), one can define
a flow map x(X, t) through

8
<

:

d

dt
x(X, t) = u(x(X, t), t),

x(X,0) =X,

where X 2 ⌦0 is the Lagrangian coordinates and x 2 ⌦t is the Eulerian coordinates.
Here ⌦0 is the initial configuration of the system, and ⌦t is the configuration of the
system at time t. For a fixed X, x(X, t) describes the trajectory of a particle (or a
material point) labeled by X; while for a fixed t, x(X, t) is a di↵eomorphism from
⌦0 to ⌦t (See Figure 2.1 for the illustration). The existence of the flow map x(X, t)
requires a certain regularity of u(x, t), for instance, being Lipschitz in x.

In a Lagrangian picture, the evolution of the density function ⇢(x, t) is determined
by the evolution of the x(X, t) through the kinematics relation (2.2) (written in the

Fig. 2.1. Schematic illustration of a flow map x(X, t).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2532 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

Lagrangian frame of reference). More precisely, one can define the deformation tensor
associated with the flow map x(X, t) by

F̃(x(X, t), t) = F(X, t) =rXx(X, t).(2.3)

Without ambiguity, we do not distinguish F and F̃ in the rest of this paper. Let ⇢0(X)
be the initial density, then the mass conservation indicates that

⇢(x(X, t), t) = ⇢0(X)/detF(X, t) 8X2⌦0(2.4)

in the Lagrangian frame of reference. This is equivalent to ⇢t +r · (⇢u) = 0 in the
Eulerian frame.

Within (2.4), one can rewrite the energy-dissipation law (1.4) in terms of the flow
map x(X, t) and its velocity xt(X, t) in the reference domain ⌦0. A typical form of
the free energy F [⇢] is given by

F [⇢] =

Z

⌦
!(⇢) + ⇢V (x) +

1

2

✓Z

⌦
K(x,y)⇢(x)⇢(y)dy

◆
dx,(2.5)

where V (x) is a potential field, andK(x,y) is a symmetric nonlocal interaction kernel.
In Lagrangian coordinates, the free energy (2.5) and the dissipation in (1.4) become

F [x(X, t)] =

Z

⌦0

!
⇣ ⇢0
detF

⌘
detF+ V (x)⇢0(X) +

⇢0(X)

2

✓Z

⌦0

K(x,y)⇢0(X)dX

◆
dX

and

D(x,xt) =
1

2

Z

⌦0

⌘(⇢0/detF)|xt|2 detFdX,

By a direct computation, the force balance equation (1.2) can be written as (see [24]
for a detailed computation)

⌘(⇢)u=�⇢rµ, µ= !0(⇢) + V (x) +K ⇤ ⇢.(2.6)

In Eulerian coordinates. Combining (2.6) with the kinematics equation (2.2), one
obtains a generalized di↵usion equation

⇢t =r · (m(⇢)rµ) , m(⇢) = ⇢2/⌘(⇢),(2.7)

where m(⇢) is known as the mobility in physics. Many PDEs in a wide range of
applications, including the porous medium equations (PME) [71], nonlinear Fokker–
Planck equations [35], Cahn–Hilliard equations [50], Keller–Segel equations [36], and
Poisson–Nernst–Planck (PNP) equations [22], can be obtained by choosing F [⇢] and
⌘(⇢) di↵erently.

The velocity equation (2.6) can be viewed as the equation of the flow map x(X, t)
in Lagrangian coordinates, i.e.,

⌘

✓
⇢0(X)

detF(X)

◆
d

dt
x(X, t) =� ⇢0(X)

detF(X)
F�TrXµ

✓
⇢0(X)

detF(X)

◆
,(2.8)

where F(X) =rXx(X, t). The flow map equation (2.8) is a highly nonlinear equation
of x(X, t) that involves both F and detF. It is rather unclear how to introduce
a suitable spatial discretization to (2.8) by looking at the equation. However, a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2533

generalized di↵usion can be viewed as an L2-gradient flow of the flow map in the
space of di↵eomorphism. This perspective gives rise to a natural discretization of
generalized di↵usions [50].

Remark 2.1. In the case that ⌘(⇢) = ⇢, a generalized di↵usion can be viewed as a
Wasserstein gradient flow in the space of all probability densities having finite second
moments P2(⌦) [35]. Formally, the Wasserstein gradient flow can be defined as a
continuous time limit (⌧ ! 0) from a semidiscrete Jordan-Kinderleherer-Otto (JKO)
scheme,

⇢n+1 = argmin
⇢2P2(⌦)

1

2⌧
W2(⇢,⇢

n)2 +F [⇢], n= 0,1,2 . . . ,(2.9)

where P2(⌦) =
�
⇢ :⌦! [0,1) |

R
⌦ ⇢ dx= 1,

R
⌦ |x|

2⇢(x)dx<1

and W2(⇢,⇢n) is

the Wasserstein distance between ⇢ and ⇢n. The Wasserstein gradient flow is an
Eulerian description [6]. Other choices of dissipation can define other metrics in the
space of probability measures [1, 46].

2.2. Neural-network-based numerical schemes for PDEs. In this subsec-
tion, we briefly review some existing neural network-based algorithms for solving
PDEs. We refer interested readers to [18, 52] for detailed reviews.

Considering a PDE subject to a certain boundary condition

L'(x) = f(x), x2⌦⇢Rd, B'(x) = g(x), x2 @⌦,(2.10)

and assuming the solution can be approximated by a neural network, denoted by
'NN(x;⇥), where ⇥ is the set of parameters in the neural network, the PINN [62]
and similar methods [13, 68, 77] find the optimal parameter ⇥⇤ by minimizing a loss
function defined as

L(⇥) =
1

Nin

NinX

i=1

(L'NN(xi,⇥)� f(xi))
2 +

�

Nb

NbX

j=1

(B'NN(sj ;⇥)� g(sj))
2.(2.11)

Here {xi}Nin
i=1 and {sj}Nb

j=1 are sets of samples in ⌦ and @⌦, respectively, which can be
drawn uniformly or by following some prescribed distributions. The parameter � is
used to weigh the sum in the loss function. Minimizers of the loss function (2.11) can
be obtained by using some optimization methods, such as AdaGrad and Adam. Of
course, the objective function of this minimization problem, in general, is not convex
even when the initial problem is. Obtaining the global minimum of (2.11) is highly
nontrivial.

In contrast to the PINN, which is based on the strong form of a PDE, the DRM
[21] is designed for solving PDEs using their variational formulations. If (2.10) is an
Euler–Lagrangian equation of some energy functional

I[',r'] =
Z

⌦
W ('(x),rx'(x))dx+ �

Z

@⌦
|B'� g(x)|2dS,(2.12)

then the loss function can be defined directly by

L(✓) =
1

Nin

NinX

i=1

W ('NN(xi),rx'NN(xi)) +
�

Nb

NbX

j=1

(B'NN(sj)� g(sj))
2.(2.13)

The last term in (2.12) is a penalty term for the boundary condition. The original
Dirichlet boundary condition can be recovered with � ! 1. Again, the samples

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2534 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

{xi}Nin
i=1 and {sj}Nb

j=1 can be uniformly sampled in ⌦ and @⌦ or sampled following
some other prescribed distributions, respectively. Additionally, both the variational
PINN [37] and the WAN [84] utilize the Galerkin formulation to solve PDEs. The
variational PINN [37] stems from the Petrov–Galerkin method, represents the solution
via a DNN, and keeps test functions belonging to linear function spaces. The WAN
employs the primal and adversarial networks to parameterize the weak solution and
test functions, respectively [84].

The neural network-based algorithms mentioned above focus on elliptic equations.
For an evolution equation of the form

(
@t'(x, t) = F (t,x,'), (x, t)2⌦⇥ (0,1),

'(x,0) ='0(x), x2⌦
(2.14)

with a suitable boundary condition, the predominant approach is to treat the time
variable as an additional dimension, and the PINN type techniques can be applied.
However, these approaches are often expensive and may fail to capture the dynamics
of these systems. Unlike spatial variables, there exists an inherent order in time,
where the solution at time T is determined by the solutions in t < T . It is di�cult to
generate samples in time to maintain this causality. Very recently, new e↵orts have
been made in using neural networks to solve evolution PDEs [8, 16]. The idea of these
approaches is to use neural networks with time-dependent parameters to represent the
solutions. For instance, Neural Galerkin method, proposed in [8], parameterizes the
solution as 'h(x;⇥(t)) with ⇥(t) being the neural network parameters, and defines
a loss function in terms of ⇥ and ⇥̇ through a residual function, i.e.,

J(⇥,⌘) =
1

2

Z
|r⇥'h · ⌘� F (x, t,'h(x;⇥))|2d⌫⇥(x),(2.15)

where ⌫⇥(x) is a suitable measure which might depend on ⇥. By taking variation of
J(⇥,⌘) with respect to ⌘, the neural Galerkin method arrives at an ODE of ⇥(t):

M(⇥)⇥̇= F (t,⇥), ⇥(0) =⇥0,(2.16)

where M(⇥) =
R
r⇥'h ⌦ r⇥'hd⌫⇥(x), and F (t,⇥) =

R
r⇥'hF (x, t,'h)d⌫⇥(x).

The ODE (2.16) can be solved by standard explicit or implicit time-marching schemes.
It’s important to note that, with the exception of DRM, all existing neural-

network-based methods are developed based on either the strong or weak forms of
PDEs. While DRM utilizes the free energy functional, it is only suitable for solv-
ing static problems, i.e., finding the equilibrium of the system. Additionally, most
of these existing approaches are Eulerian methods. For certain types of PDEs, like
generalized di↵usions, these methods may fail to preserve physical constraints, such
as the positivity and conservation of mass of a probability function.

3. Energetic variational neural network. In this section, we present the
structure-preserving EVNN discretization for solving both L2-gradient flows and gen-
eralized di↵usions. As mentioned earlier, the goal is to construct a neural-network
discretization based on the energy-dissipation law, without working on the underly-
ing PDE. One can view our method as a generalization of the DRM to evolution
equations.

3.1. EVNN scheme for L2-gradient flows. Before we discuss the neural
network discretization, we first briefly review the discrete energetic variational ap-
proach proposed in [50]. Given a continuous energy-dissipation law (1.1), the discrete

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2535

energetic variational approach first constructs a finite-dimensional approximation to
this law by introducing a spatial discretization of the state variable ', denoted by
'h(x;⇥(t)), where ⇥(t)2RK is the parameter to be determined. By replacing ' by
'h, one can obtain a semidiscrete energy-dissipation law (here we assume K = 0 in
the continuous model for simplicity) in terms of ⇥:

d

dt
Fh [⇥(t)] =�4h[⇥(t),⇥0(t)],(3.1)

where Fh [⇥(t)] =F ['h(x;⇥)], and 4h[⇥(t),⇥0(t)] =
R
⌘('h)|r⇥'h ·⇥0(t)|2dx. For

example, in Galerkin methods, one can let 'h(x, t) be 'h(x, t) =
PK

i=1 �i(t) i(x)
with { i}Ki=1 being the set of basis functions. Then ⇥(t) is a vector given by ⇥(t) =
(�1(t),�2(t), . . . ,�K(t))T 2RK .

By employing the energetic variational approach in the semidiscrete level (3.1),
one can obtain an ODE system of ⇥(t). Particularly, in the linear response regime,
Dh(⇥(t),⇥0(t)) = 1

2

R
⌘('h)|r⇥'h ·⇥0(t)|2dx is a quadratic function of ⇥0. The ODE

system of ⇥(t) can then be written as

D (⇥)⇥0(t) =��Fh

�⇥
,(3.2)

where

�Fh

�⇥
=
�F
�'

r⇥'h, D (⇥) =

Z
⌘('h)(r⇥'h ⌦r⇥'h)dx.(3.3)

The ODE (3.2) is the same as the ODE (2.16) in the Neural Galerkin method [8] for
L2 gradient flows, although the derivation is di↵erent.

Since (3.2) is a finite-dimensional gradient flow, one can then construct a mini-
mizing movement scheme for ⇥ [25]: finding ⇥n+1 such that

⇥n+1 = argmin
⇥2Sh

ad

Jn(⇥), Jn(⇥) =
(Dn

⇤ (⇥�⇥n)) · (⇥�⇥n)

2⌧
+Fh(⇥).(3.4)

Here Sh
ad is the admissible set of ⇥ inherited from the admissible set of ', denoted

by S, and Dn
⇤ is a constant matrix. A typical choice is Dn

⇤ =D(⇥n). An advantage of
this scheme is that

Fh(⇥
n+1) Jn

h (⇥
n+1) Jn

h (⇥
n) =Fh(⇥

n),(3.5)

if Dn
⇤ is positive definite, which guarantees the energy stability with respect to the

discrete free energy Fh(⇥). Moreover, by choosing a proper optimization method, we
can assure that 'n+1

h stays in the admissible set S.
Although neural networks can be used to construct 'h(x;⇥(t)), it might be ex-

pensive to compute r⇥'h ⌦r⇥'h in D(⇥). Moreover, D(⇥) is not a sparse matrix
and requires a lot of computer memory to store when a deep neural network is used.

To overcome these di�culties, we propose an alternative approach by introducing
temporal discretization before spatial discretization. Let ⌧ be the time step size.
For the L2-gradient flow (2.1), given 'n, which represents the numerical solution at
tn = n⌧ , one can obtain 'n+1 by solving the following optimization problem: finding
'n+1 in some admissible set S such that

'n+1 = argmin
'2S

Jn('), Jn(') =
1

2⌧

Z
⌘('n)|'�'n|2dx+F ['].(3.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2536 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

Let 'h(x;⇥) be a finite-dimensional approximation of ' with ⇥ 2RK being the pa-
rameter of the spatial discretization (e.g., weights of linear combination in a Galerkin
approximation) yet to be determined, then the minimizing movement scheme (3.6)
can be written in terms of ⇥: finding ⇥n+1 such that

⇥n+1 = arg min
⇥2Sh

Jn
h (⇥), Jn

h (⇥) =
1

2⌧

Z
⌘n|'h(x;⇥)�'h(x;⇥

n)|2dx+Fh[⇥].

(3.7)

Here ⇥n is the value of ⇥ at time tn, Fh[⇥] =F ['h(x;⇥)], and ⌘n = ⌘('h(x;⇥
n)).

Remark 3.1. The connection between the minimizing movement scheme (3.7),
derived by a temporal-then-spatial approach, and the minimizing movement scheme
(3.4), derived by a spatial-then-temporal approach, can be shown with a direct cal-
culation. Indeed, according to the first-order necessary condition for optimality, an
optimal solution of the minimization problem (3.7) ⇥n+1 satisfies

�Jn
h (⇥)

�⇥

���
⇥n+1

=
1

⌧

Z
⌘n('h(x;⇥

n+1)�'h(x;⇥
n))r⇥'h

���
⇥n+1

dx+
�Fh

�⇥

���
⇥n+1

=

Z
⌘nr⇥'h

���
⇥⇤

⌦r⇥'h

���
⇥n+1

dx
⇥n+1 �⇥n

⌧
+
�Fh

�⇥

���
⇥n+1

= 0

(3.8)

for some ⇥⇤, where the second equality follows the mean value theorem. In the case
of Galerkin methods, as r⇥'h is independent on ⇥, ⇥n+1 is a solution to an implicit
Euler scheme for the ODE (3.2) in which ⌘('h) is treated explicitly.

By choosing a certain neural network to approximate ', denoted by 'NN(x;⇥)
(⇥ is used to denote all parameters in the neural network), we can summarize the
EVNN scheme for solving L2-gradient flows in Algorithm 3.1.

It can be noticed that both (3.9) and (3.10) involve integration in the computa-
tional domain ⌦. This integration is often computed by using a grid-based numerical
quadrature or Monte–Carlo/Quasi–Monte–Carlo algorithms [65]. It is worth mention-
ing that due to the nonconvex nature of the optimization problem and the error in
estimating the integration, it might be di�cult to find an optimal ⇥n+1 at each step.
But since we start the optimization procedure with ⇥n, we’ll always be able to get a
⇥n+1 that lowers the discrete free energy at least on the training set. In practice, the
optimization problem can be solved by either deterministic optimization algorithms,
such as L-BFGS and gradient descent with Barzilai–Borwein step-size, or stochastic
gradient descent algorithms, such as AdaGrad and Adam.

Algorithm 3.1 Numerical algorithm for solving L2-gradient flows.

For a given initial condition '0(x), compute ⇥0 by solving

⇥0 = argmin
⇥

Z

⌦
|'NN(x;⇥)�'0(x)|2dx.(3.9)

At each step, update ⇥n+1 by solving the optimization problem

⇥n+1 = argmin
⇥

✓
1

2⌧

Z

⌦
⌘n|'NN(x;⇥)�'NN(x,⇥

n)|2dx+F ['NN(x;⇥)]

◆
.(3.10)

We have 'NN(x;⇥
n) as a numerical solution at time tn = n⌧ .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2537

Remark 3.2. It is straightforward to incorporate other variational high-order
temporal discretizations to solve the L2-gradient flows. For example, a second-order
accurate BDF2 scheme can be reformulated as an optimization problem

⇥n = argmin
⇥

⌘

⌧

Z

⌦
|'NN(x;⇥)�'NN(x,⇥

n�1)|2dx

� ⌘

4⌧

Z

⌦
|'NN(x;⇥)�'NN(x,⇥

n�2)|2dx+F ['NN(x;⇥)]

!
.

(3.11)

A modified Crank–Nicolson time-marching scheme can be reformulated as

⇥n = argmin
⇥

⌘

⌧

Z

⌦
|'NN(x;⇥)�'NN(x,⇥

n�1)|2dx+F ['NN(x;⇥)]

+ hr⇥F ['NN(x;⇥
n�1)],⇥�⇥n�1i

!
.

(3.12)

Here we assume that ⌘ is a constant for simplicity.

3.2. Lagrangian EVNN scheme for generalized di↵usions. In this subsec-
tion, we show how to formulate an EVNN scheme in the Lagrangian frame of reference
for generalized di↵usions.

As discussed previously, a generalized di↵usion can be viewed as an L2-gradient
flow of the flow map x(X, t) in the space of di↵eomorphisms. Hence, the EVNN
scheme for a generalized di↵usion can be formulated in terms of a minimizing move-
ment scheme of the flow map given by

�n+1 = argmin
�2Di↵

1

2⌧

Z
|�(X)��n(X)|2⇢0(X)dX+F [�#⇢0] ,(3.13)

where �n(X) is a numerical approximation of the flow map x(X, t) at tn = n⌧ , ⇢0(X)
is the initial density, F [⇢] is the free energy for the generalized di↵usion defined in
(2.5), and

(�#⇢0)(x) :=
⇢0(��1(x))

detF(��1(x))
, Di↵ = {� :Rd !Rd | � is a di↵eomorphism}.

One can parameterize � : Rd ! Rd by a suitable neural network. The remaining
procedure is nearly identical to that of the previous subsection. However, it is often
di�cult to solve this optimization problem directly, and one might need to build a
large neural network to approximate �n+1 when n is large.

To overcome this di�culty, we propose an alternative approach. Instead of seeking
an optimal map �n+1 between ⇢0 and ⇢n+1, we seek an optimal map n+1 between
⇢n and ⇢n+1. More precisely. we assume that

�n+1 = n+1 � n � n�1 · · · � 1.

Given ⇢n, one can compute n+1 by solving the following optimization problem:

 n+1 = argmin
 2Di↵

1

2⌧

Z
| (x)�x|2⇢n(x)dx+F [#⇢

n].(3.14)

The corresponding ⇢n+1 can then be computed through ⇢n+1(x) = (n+1
⇢n)(x).

An advantage of this approach is that we only need a small size neural network to
approximate n+1 at each time step when ⌧ is small.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2538 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

Remark 3.3. The scheme (3.14) can be viewed as a Lagrangian realization of the
JKO scheme (2.9) for the Wasserstein gradient flow, although it is developed based
on the L2-gradient flow structure in the space of di↵eomorphism. According to the
Benamou–Brenier formulation [5], the Wasserstein distance between two probability
densities ⇢1 and ⇢2 can be computed by solving the optimization problem

W2(⇢1,⇢2)
2 = min

(⇢,u)2S

Z 1

0

Z
⇢|u|2dxdt,(3.15)

where the admissible set of (⇢,u) is given by

S = {(⇢,u) | ⇢t +r · (⇢u) = 0, ⇢(x,0) = ⇢1, ⇢(x,1) = ⇢2}.(3.16)

Hence, one can solve the JKO scheme by solving

(u⇤, ⇢̂⇤) = argmin
(u,⇢̂)

1

2

Z ⌧

0

Z

⌦
⇢̂|u|2dxdt+F [⇢̂(⌧)]

s.t. @t⇢̂+r · (⇢̂u) = 0, ⇢̂(0) = ⇢n.

(3.17)

and letting ⇢n+1 = ⇢̂⇤(⌧). In Lagrangian coordinates, (3.17) is equivalent to

x⇤(X, t) = argmin
x(X,t)

1

2

Z ⌧

0

Z

⌦
⇢0(X)|xt(X, t)|2dXdt+F(⇢̂(x, ⌧)),(3.18)

where ⇢0 = ⇢n and ⇢̂(x(X, ⌧), ⌧) = ⇢0(X)/detF(X, ⌧). By taking variation of (3.18)
with respect to x(X, t), one can show that the optimal condition is xtt(X, t) = 0 for
t 2 (0, ⌧), which indicates that x(X, t) = t((X) � X)/⌧ + X if x(X, ⌧) = (X).
Hence, if ⇤ is the optimal solution of (3.14), then x⇤(X, t) = t(⇤(X)�X)/⌧ +X is
the optimal solution of (3.18).

Remark 3.4. If ⌘(⇢) 6= ⇢, we can formulate the optimization problem (3.14) as

 n+1 = argmin
 2Di↵

1

2⌧

Z
| (x)�x|2⌘(⇢n(x))dx+F [#⇢

n].(3.19)

by treating ⌘ explicitly. A subtle fact is that detFn = 1 since we always start with an
identity map.

The numerical algorithm for solving generalized di↵usions is summarized in
Algorithm 3.2.

Algorithm 3.2 Numerical algorithm for solving generalized di↵usions.

• Given {xn
i }Ni=1 and the densities ⇢ni at t= n⌧ and xn

i .
• Find n+1 (x) : Rd ! Rd, by solving the optimization problem (3.14). To

guarantee energy stability, we should take as an approximation to an
identity map initially when solving the optimization problem (3.14).

• After obtaining n+1, update {xn+1
i }Ni=1 and ⇢n+1 by

xn+1
i = n+1(xn

i), ⇢n+1
i =

⇢ni
det(r n+1(xn

i))
.(3.20)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2539

The next question is how to accurately evaluate the numerical integration in
(3.14). Let xn

i = �n(x0
i), for the general free energy (2.5). One way to evaluate the

integrations in (3.14) is using

J() =
1

2⌧

NX

i=1

⇢ni k (xn
i)�xn

i k2|⌦n
i |+

NX

i=1

✓
!

✓
⇢ni

det(r (xn
i))

◆
det(r (xn

i))

◆
|⌦n

i |

+
NX

i=1

V ((xn
i))⇢

n
i |⌦n

i |+
1

2

NX

i,j=1

K((xn
i), (x

n
j))⇢

n
i ⇢

n
j |⌦n

j ||⌦n
i |,

(3.21)

where |⌦n
i | is the volume of the Voronoi cells associated with the set of points {xn

i }, ⇢ni
stands for ⇢n(xn

i). Here the numerical integration is computed through a piecewisely
constant reconstruction of ⇢n based on its values at {�n(x0

i)}Ni=1. However, it is
not straightforward to compute |⌦n

i |, particularly for high-dimensional cases. In the
current study, we assume that the initial samples are drawn from ⇢0, one can roughly
assume that {xn

i } follows the distribution ⇢n, then according to the Monte–Carlo
approach, the numerical integration can be evaluated as

J() =
1

2⌧

1

N

NX

i=1

k (xn
i)�xn

i k2
!

+
1

N

NX

i=1

✓
f!

✓
⇢ni

det(r (xn
i))

◆
+ V ((xn

i))

◆
+

1

2N2

NX

i,j=1

K
�
 (xn

i), (x
n
j)
�
,

(3.22)

where f!(⇢) = !(⇢)/⇢. The proposed numerical method can be further improved if one
can evaluate the integration more accurately, i.e., have an e�cient way to estimate
|⌦n

i |. Alternatively, as an advantage of the neural network-based algorithm, we can
get ⇢n(x) = ⇢0�̃(�n)�1(x) = (⇢0�(�n)�1(x))/(det(r�n)|(�n)�1(x)) 8x, which enables
us to estimate J() by resampling. More precisely, assume µ is a distribution that is
easy to sample

J() =
1

2⌧

1

N

NX

i=1

k (xn
i)�xn

i k2
!
⇢ni
µn
i

+
1

N

NX

i=1

✓
f!

✓
⇢ni

det(r (xn
i))

◆◆
⇢ni
µn
i

+ V ((xn
i))

⇢ni
µn
i

+
1

2N2

NX

i,j=1

K
�
 (xn

i), (x
n
j)
� ⇢ni ⇢nj
µn
i µ

n
j

,

(3.23)

where xi ⇠ µ, ⇢ni = ⇢n(xi). We will explore this resampling approach in future work.
The remaining question is how to parameterize a di↵eomorphism using neural

networks. This is discussed in detail in the next subsection.

3.3. Neural network architectures. In principle, the proposed numerical
framework is independent of the choice of neural network architectures. However,
di↵erent neural network architectures may lead to di↵erent numerical performances,
arising from a balance of approximation (representation power), optimization, and
generalization. In this subsection, we briefly discuss several neural network architec-
tures that we use in the numerical experiments.

3.3.1. Neural network architectures for Eulerian methods. For Eulerian
methods, one can construct a neural network to approximate an unknown function
f : Rd ! R. Shallow neural networks (two-layer neural networks) approximate f by
functions of the form

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2540 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

f(x;⇥) =
NX

i=1

↵i�(!i ·x+ bi) + ↵0 =↵ · �(Wx+ b) + ↵0,(3.24)

where �(·) : R ! R is a fixed nonlinear activation function, N is the number of
hidden nodes (neurons), and ⇥= {↵i,!i, bi} are the neural network parameters to be
identified. Typical choices of activation functions include the ReLU �(x) =max(x,0),
the sigmoid �(x) = 1/(1+e�2x) and the hyperbolic tangent function tanh(x). A DNN
can be viewed as a network composed of many hidden layers. More precisely, a DNN
with L hidden layers represents a function f :Rd !R by [67]

f(x;⇥) = g � TL � TL�1 � · · · � T (1)(x),(3.25)

where g(z) =
PNL

i=1 �izi + �0 is a linear map from RNl to R, T (l) is a nonlinear map
from RNl�1 to RNl , and N0 = d. The nonlinear map T l takes the form

T (l)(xl�1) = �(W lxl�1 + bl),(3.26)

where W l 2 RNl�1⇥Nl , bl 2 Rl, and �(·) is a nonlinear activation function that acts
componentwisely on vector-valued inputs.

Another widely used class of DNN model is residual neural network (ResNet).
A typical K-block ResNet approximates an unknown function f(x) :Rd !R by

fK(x;⇥) = g(zK(x)),(3.27)

where g(z) =
PN

i=1 �izi + �0 is a linear map from RN !R and zK(x) :Rd !RN is a
nonlinear map defined through

z0 =V x, zk = �2
⇣
↵kT

Lk
k � TL�1

k � · · · � T (1)
k (zk�1) + zk�1

⌘
, k= 1,2, . . . ,K.

(3.28)

Here Li is the number of fully connected layer in ith block, T (l)
k is the same non-

linear map defined in (3.26) with W k
l 2 RM⇥N , bkl 2 RM , V 2 RN⇥d, ↵i 2 RN⇥M

and �i(·) is an elementwise activation function. The model parameters are ⇥ =
{�,↵i,W

k
l ,b

k
l ,V }. The original ResNet [29] takes �2 as a nonlinear activation func-

tion such as ReLU. Later studies indicate that one can also take �2 as the identity
function [18, 30]. Then at an infinite length, i.e., L ! 1, (3.28) corresponds to the
ODE

dz

dt
= f(z), z0 =x.(3.29)

Compared with fully connected DNN models, which may su↵er from numerical insta-
bilities in the form of exploding or vanishing gradients [19, 28, 40], very deep ResNet
can be constructed to avoid these issues.

Given that the proposed numerical scheme employs neural networks with time-
dependent parameters to approximate the solution of a gradient flow, there is no need
to employ a deep neural network. In all numerical experiments for L2-gradient flows,
we utilize ResNet with only a few blocks. The detailed settings for each numeri-
cal experiment will be described in the next section. We’ll compare the numerical
performance of di↵erent neural network architectures in future work.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2541

3.3.2. Neural network architectures for Lagrangian methods. The pro-
posed Lagrangian method seeks for a neural network to approximate a di↵eomorphism
from Rd to Rd. This task involves two main challenges: one is ensuring that the map is
a di↵eomorphism, and the other is e�ciently and robustly computing the deformation
tensor F and its determinant detF. Fortunately, various neural network architectures
have been proposed to approximate a transport map. Examples include planar flow
[64], auto-regressive flow [39], continuous-time di↵usive flow [69], neural spline flow
[17], and convex potential flow [32].

One way to construct a neural network Rd ! Rd for approximating a di↵eomor-
phism is to use a planar flow. A K-layer planar flow is defined by T = TK � · · ·T1 �T0,
where Tk :Rd !Rd is given by

xk+1 = Tk(x
k) =xk +ukh(w

T
kx

k + bk).(3.30)

Here, wk,uk 2 Rd, bk 2 R, and h is a smooth, elementwise, nonlinear activation
function such as tanh. Direct computation shows that

Jk =det(rTk) = 1+ h0(wT
kx

k + bk)u
T
kwk.(3.31)

Clearly, Tk is a di↵eomorphism if h0(wT
kx

k + bk)uT
kwk < 1 8xk. The determinant

of the transport map can be computed as det(rT) = JKJK�1 . . . J0. and we have
'(T (x)) = 'n(x)

det(rT) .
One limitation of the planar flow is its potential lack of expressive power. An-

other commonly employed neural network architecture for approximating a map is
the convex potential flow [32], which defines a di↵eomorphism via the gradient of a
strictly convex function that is parameterized by an Input Convex Neural Network
(ICNN) [2]. A fully connected, K-layer ICNN can be written as

zl+1 = �l(W lzl +AlX+ bl), l= 0,1, . . .K � 1,(3.32)

where z0 = 0, W 0 = 0, ⇥= {W l,Al,bl} are the parameters to be determined, and �l
is the nonlinear activation function. As proved in [2], if all entriesW l are nonnegative,
and all �l are convex and nondecreasing, then f(X;⇥) is a convex function with
respect to X. Hence rXf(X;⇥) provides a parametric approximation to a flow map.
In the current study, we adopt the concept of the convex potential flow to develop the
Lagrangian EVNN method. We’ll explore other types of neural network architectures
in future work.

Remark 3.5. It is worth mentioning that the gradient of a convex function f only
defines a subspace of di↵eomorphism, and it is unclear whether the optimal solution
of (3.14) belongs to this subspace.

4. Numerical experiments. In this section, we test the proposed EVNN meth-
ods for various L2-gradient flows and generalized di↵usions. To evaluate the accuracy
of di↵erent methods, we define the l2-error

0

@ 1

N

NX

i=1

�����'NN(xi)�'ref(xi)

�����

2
1

A
1/2

and the relative l2-error
0

@
NX

i=1

�����'NN(xi)�'ref(xi)

�����

2

/
NX

i=1

�����'ref(xi)

�����

2
1

A
1/2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2542 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

between the neural network solution 'NN and the corresponding reference solution
'ref on a set of test samples {xi}Ni=1. The reference solution 'ref(x) is either an
analytic solution or a numerical solution obtained by a traditional numerical method.
In some numerical examples, we also plot pointwise absolute errors |'ref � 'NN| at
the grid points.

4.1. Poisson equations. Although the proposed method is designed for evo-
lutionary equations, it can also be used to compute equilibrium solutions for elliptic
problems. In this subsection, we compare the performance of the EVNN method with
two classical neural network-based algorithms, PINN and DRM, in the context of
solving Poisson equations.

We first consider a two-dimensional (2D) Poisson equation with a Dirichlet bound-
ary condition

(
��u(x) = f(x), x2⌦⇢Rd,

u(x) = g(x), x2 @⌦.
(4.1)

Since EVNN is developed for evolution equations, we solve the following L2-gradient
flow

d

dt

✓Z

⌦

1

2
|ru|2 � f(x)u(x)dx+ �

Z

@⌦
|u(x)� g(x)|2dS

◆
=�

Z

⌦
|ut|2dx(4.2)

to get a solution of the Poisson equation (4.1). Here, �
R
@⌦ |u(x) � g(x)|2dS is the

surface energy that enforces the Dirichlet boundary condition. The corresponding
gradient flow equation is given by

ut =�u(x) + f(x),(4.3)

subject to a Robin boundary condition u(x) � g(x) = 1
2�

@u
@n , where n is the outer

normal of @⌦. One can recover the original Dirichlet boundary condition by letting
�!1. Such a penalty approach is also used in PINN and DRM, and we take �= 500
in all numerical experiments below.

We consider the following two cases:
• Case 1: ⌦= (0,⇡)⇥ (�⇡/2,⇡/2), f(x) = 2sinx cosy and g(x) = 0. The exact

solution is u(x) = sinx cosy.
• Case 2: ⌦= {(x, y) | |x| 1}, f(x) = ⇡2

4 sin
�
⇡
2 (1� |x|)

�
+ ⇡

2|x| cos
�
⇡
2 (1� |x|)

�

and g(x) = 0. The exact solution is u(x) = sin(⇡2 (1� |x|)).
We employ a 1-block ResNet with 20 hidden nodes and one hidden layer for all
cases. The total number of parameters is 501. We apply Xavier Initialization [26] to
initialize the weights of neural networks in all cases. To evaluate the integration in all
methods, we generate 2500 samples in ⌦ using a Latin hypercube sampling (LHS) and
50 samples on each boundary of @⌦ using a one-dimensional (1D) uniform sampling
for case 1. For case 2, we generate 2500 samples in (�1,1)2 using LHS, but only use
the samples satisfies x2 + y2 < 1 as training samples. Additionally, we generate 200
training samples (cos✓i, sin✓i)200i=1 on the boundary, with {✓i}200i=1 being generated by
a uniform distribution on (0,2⇡). For PINN and DRM, we use Adam to minimize
the loss function and use a di↵erent set of samples at each iteration. For EVNN, we
use a di↵erent set of samples at each time step and employ an L-BFGS to solve the
optimization problem (3.10).

Due to randomness arising from the stochastic initialization of the neural network
and the sampling process, we repeated each method 10 times and plotted the mean
and standard error of the relative l2-errors. Figure 4.1(a) shows the relative l2-errors

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2543

Fig. 4.1. Relative l2 error with respect to CPU time for di↵erent methods for 2D Poisson
equations.

of di↵erent methods with respect to the CPU time for both cases. The training was
executed on a MacBook Pro equipped with an M2 chip. In case 1, the relative l2
error of each method is evaluated on a test set comprising a uniform grid of 101⇥101
points within the domain (0,1)2. For case 2, the test set is defined as the collection of
points {(xi, yj)|x2

i +y2j < 1}, where (xi, yj) forms a uniform 201⇥201 grid on (�1,1)2.
The CPU time is computed by averaging the time of 10 trials at nth iteration. The
numerical results clearly show that the proposed method is more e�cient than both
PINN and DRM. It significantly enhances the e�ciency and test accuracy of DRM
through the introduction of time relaxation. While PINN may achieve better test
accuracy in case 2, it exhibits a larger standard error in both cases.

Next, we consider a high-dimensional Poisson equation

��u= f(x), x2⌦= (�1,1)d,(4.4)

with a homogeneous Neumann boundary condition @u
@n |@⌦ = 0. We take f(x) =

⇡2
Pd

k=1 cos(⇡xk). Similar numerical examples are tested in [21, 53]. The exact so-
lution to this high-dimensional Poisson equation is u(x) =

Pd
k=1 cos(⇡xk). Following

[53], we solve an L2-gradient flow associated with the free energy

F [u] =

Z

(�1,1)d

1

2
|ru|2 � fu dx+ �

 Z

(�1,1)d
u dx

!2

,(4.5)

where the last term enforces
R
[�1,1]d u dx = 0. We take � = 0.5 as in [53] in all

numerical tests.
Since it is di�cult to get an accurate estimation of high-dimensional integration,

we choose Adam to minimize (3.10) at each time step and use a di↵erent set of samples
at each Adam step. This approach allows us to explore the high-dimensional space
with a low computational cost. The samples are drawn using LHS. Table 4.1 shows
the final relative l2-error with di↵erent neural network settings in di↵erent spatial
dimensions. The relative l2-error is evaluated on a test set that comprises 40000
samples generated by LHS. The model is trained with 200 outer iterations (⌧ = 0.01)
and at most 200 iterations for inner optimization (3.10). An early stop criterion was
applied if the l2-norm of the model parameters between two consecutive epochs is less
than 10�6. The first column of Table 4.1 specifies the numerical setting as follows: the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2544 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

Table 4.1
Relative l2-error of high-dimensional Poisson equation with di↵erent settings in di↵erent di-

mensions. The first column shows the number of residual blocks, the number of nodes in each fully
connected layer, and the number of samples.

Setting d= 4 d= 8 d= 16 d= 32

(2, 10, 1000) 0.024 0.046 0.623 0.867
(3, 60, 1000) 0.042 0.048 0.077 0.117
(3, 60, 10000) 0.018 0.022 0.036 0.077

entry (2,10) means a ResNet with two residual blocks, each with two fully connected
layers having 10 nodes is used, and 1000 represents the number of samples drawn
in each epoch. As we can see, the proposed method can achieve comparable results
with results reported in similar examples in previous work by DRM [21, 53]. It can
be observed that increasing the width of the neural network improves test accuracy
in high dimensions, as it enhances the network’s expressive power. Furthermore,
increasing the number of training samples also significantly improves test accuracy in
high dimensions. We’ll explore the e↵ects of ⌧ , the number of samples, and neural
network architecture for the high-dimensional Poisson equation in future work.

4.2. L2-gradient flow. In this subsection, we apply the EVNN scheme to two
L2-gradient flows to demonstrate its energy stability and numerical accuracy.

4.2.1. Heat equation. We first consider an initial-boundary value problem of
a heat equation:

8
>><

>>:

ut =�u(x), x2⌦= (0,2)2, t2 (0, T],

u(x, t) = 0, x2 @⌦, t2 (0, T],

u(x,0) = sin
⇣⇡
2
x1

⌘
sin
⇣⇡
2
x2

⌘
, x2⌦= (0,2)2,

(4.6)

which can be interpreted as an L2-gradient flow satisfying the energy-dissipation law

d

dt

✓Z

⌦

1

2
|ru|2 dx+ �

Z

@⌦
|u|2dS

◆
=�

Z
|ut|2 dx.(4.7)

Again, a surface energy term is added to enforce the Dirichlet boundary condition.
In the numerical simulation, we take ⌧ = 0.01 and use a 1-block ResNet with 20

nodes in each layer. The nonlinear activation function is chosen to be tanh. The
total number of parameters is 501. To achieve energy stability, we fix the training
samples to eliminate the numerical fluctuation arising from estimating the integration
in (3.10). The set of training samples comprises a 301⇥ 301 uniform grid on (0,2)2,
and an additional 1000 uniformly spaced grid points on each edge of the boundary.
To test the accuracy of the solution over time, we compare the EVNN solution with
a numerical solution obtained by a finite di↵erence method (FDM). We apply the
standard central finite di↵erence and an implicit Euler method to obtain the FDM
solution. The numerical scheme can be reformulated as an optimization problem:

�n+1
h = argmin

uh2C

1

2⌧
kuh � un

hk2h +Fh(uh), Fh(uh) =
1

2
hrhuh,rhuhi⇤.(4.8)

Here, C = {ui,j | 0< i< I, 0< j < J} is the set of grid functions defined on a uniform
mesh, rh is the discrete gradient, Fh is the discrete free energy, k · kh is the discrete
L2-norm induced by the discrete L2-inner product hf, gi= h2

PN�1
i=1 fi,jgi,j , and h·, ·i⇤

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2545

(a) ût : t = 0.01 (b) ût : t = 0.2 (c) ût : t = 0.4 (d) ût : t = 0.6

(e) |ût −ut | : t = 0.01 (f) |ût −ut | : t = 0.2 (g) |ût −ut | : t = 0.4 (h) |ût −ut | : t = 0.6

(i)

Fig. 4.2. Numerical results for the heat equation. (a)–(d) are the EVNN solutions at t =
0.01,0.2,0.4, and 0.6. (e)–(h) are the absolute di↵erences between the EVNN solutions and the FDM
solutions. (i) The evolution of discrete free energy with respect to time for both the EVNN and FDM
solutions.

is the discrete inner product defined on the staggered mesh points [49, 66]. We use a
101⇥ 101 uniform grid and take ⌧ = 0.01 in the FDM simulation. Figure 4.2(a)–(d)
shows the EVNN solution at t= 0.01,0.2,0.4, and 0.6. The corresponding pointwise
absolute errors are shown in Figure 4.2(e)–(h). The evolution of discrete free energy
(evaluated on 101 ⇥ 101 uniform grid) for both methods is shown in Figure 4.2(i).
Clearly, the neural-network-based algorithm achieves energy stability and the result
is consistent with the FDM. It is worth mentioning that the size of the optimization
problem in the neural network-based algorithm is much smaller than that in the
FDM, although (4.8) is a quadratic optimization problem and can be solved directly
by solving a linear equation of ui,j .

4.2.2. Allen–Cahn equation. Next, we consider an Allen–Cahn type equation,
which is extensively utilized in phase-field modeling, and becomes a versatile technique
to solve interface problems arising from di↵erent disciplines [15]. In particular, we
focus on the following Allen–Cahn equation on ⌦= (�1,1)2:

8
>>>><

>>>>:

@'

@t
(x, t) =�

✓
F 0(')

"2
�4'(x, t) + 2W

✓Z
'dx�A

◆◆
, x2⌦, t > 0,

'(x, t) =�1, x2 @⌦, t > 0,

'(x,0) =� tanh(10(
q
4x2

1 + x2
2 � 0.5)), x2⌦.

(4.9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2546 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

where '(x, t) is the phase-field variable, constants ✏, W , and A are model parameters.
The Allen–-Cahn equation (4.9) can be regarded as an L2-gradient flow, derived from
an energy-dissipation law

d

dt
F [']=�

Z

⌦
|'t|2dx, F [']=

Z

⌦

1

2
|r'|2+ 1

4"2
�
'2�1

�2
dx+W

✓Z

⌦
'dx�A

◆2

.

(4.10)

Here, the last term in the energy is a penalty term for the volume constraint
R
'dx=

A, as the standard Allen–Cahn equation does not preserve the volume fraction
R
'dx

over time. In the numerical simulation, we take A=�(4�⇡r2)+⇡r2, r= 0.5, 1
✏2 = 100,

and W = 1000.
Due to the complexity of the initial condition, we utilized a larger neural netwok

compared to the one employed in the previous subsection. Our choice was a 1-block
ResNet, which has two fully connected layers, each containing 20 nodes. The total
number of parameters is 921. The nonlinear activation function is chosen to be tanh.
The set of training samples comprises a 301⇥ 301 uniform grid on (�1,1)2, and an
additional 1000 uniformly spaced grid points on each edge of the boundary. To test
the numerical accuracy of the EVNN scheme for this problem, we also solve (4.9) by
a finite element method, which approximates the phase-field variable ' by a piecewise
linear function 'h(x, t) =

PN
i=1 �i(t) i(x), where i(X) are hat functions supported

on the computational mesh. Inserting 'h into the continuous energy–dissipation law
(4.10), we get a discrete energy–dissipation law with the discrete energy and dissipa-
tion given by

FFEM
h (�) =

NeX

e=1

Z

⌧e

1

2

�����

NX

i=1

�ir i(x)

�����

2

+
1

✏2

NX

i=1

(�2i � 1)2 i(x)dx,

and DFEM
h (�,�0) =

PNe

e=1

R
⌧e
|
PN

i=1 �
0
i(t) i(x)|2dx, respectively. Here ⌧e is used to

denote a finite element cell, and Ne is the number of cells. This form of discretization
was used in [79], which constructs a piecewise linear approximation to the nonlinear
term in the discrete energy. We can update �i at each time step by solving the
optimization problem (3.7), i.e.,

�n+1 = argmin
�2RN

1

2⌧
D(� � �n) · (� � �n) +Fh(�),(4.11)

where Dij =
R
⌦ i jdx is the mass matrix. The optimization problem (4.11) is solved

by L-BFGS in our numerical implementation.
The simulation results are summarized in Figure 4.3. It clearly shows that our

method can achieve comparable results with the FEM. Numerical simulation of phase-
field type models is often challenging. To capture the dynamics of the evolution of the
thin di↵use interface, the mesh size should be much smaller than ✏, the width of the
di↵use interface. Traditional numerical methods often use an adaptive or moving mesh
approach to overcome this di�culty. In contrast, a neural network-based numerical
scheme has a mesh-free feature. The number of parameters of the neural network can
be much smaller than the number of samples needed to resolve the di↵use interface.
Consequently, the dimension of the optimization problem in the neural network-based
scheme is much smaller than that in the FEM scheme without using adaptive or
moving meshes.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2547

Fig. 4.3. Numerical results for the Allen–Cahn equation with a volume constraint. (a)–(d)
EVNN solutions at t = 0,0.05,0.1, and 0.3, respectively. (e)–(h) Absolute di↵erences between the
EVNN solutions and the FEM solutions at t = 0,0.05,0.1, and 0.3, respectively. (i) Evolution of
numerical free energies with respect to time for both the FEM and EVNN solutions.

4.3. Generalized di↵usions. In this subsection, we apply the proposed La-
grangian EVNN scheme to solving a Fokker–Planck equation and a porous medium
equation.

4.3.1. Fokker–Planck equation. We first consider a Fokker–Planck equation
(
⇢t =r · (r⇢+ ⇢rV), x2Rd, t2 (0, T],

⇢(x,0) = ⇢0(x), x2Rd,
(4.12)

where V (x) is a prescribed potential energy. The Fokker–Planck equation can be
viewed as a generalized di↵usion satisfying the energy-dissipation law

d

dt

Z

Rd

⇢ ln⇢+ ⇢V (x)dx=�
Z

Rd

⇢|u|2dx,(4.13)

where the probability density ⇢ satisfies the kinematics ⇢t +r · (⇢u) = 0.
We test our numerical scheme for solving the Fokker–Planck equation in two

dimensions and four dimensions, respectively. For both numerical experiments, we
adopt the augmented-ICNN proposed in [32]. We use a 1 ICNN block of six fully
connected layers with 32 hidden nodes in each layer. The activation function is chosen

as the Gaussian-Softplus function �(x) =
q

2
⇡ (

p
2x
R x/

p
2

0 e�t2dt+ e�
x2

2 +
p

⇡
2x). In

addition, we use L-BFGS to solve the optimization problem at each time step.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2548 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

In the 2D case, we consider V (x) as follows:

V =
1

2
(x� µtarget)

T⌃�1
target(x� µtarget) with µtarget =

✓
1

3
,
1

3

◆
,

and ⌃target =
h

5

8
� 3

8

� 3

8

5

8

i
. The initial condition ⇢0(x) is set to be the 2D standard

Gaussian N (0, I). The exact solution of (4.12) takes the following analytical form
[33]:

⇢(x, t)⇠N (µ(t),⌃(t)),(4.14)

where µ(t) = (1� e�4t)µtarget and ⌃(t) =
h

5

8
+ 3

8
⇥e�8t � 3

8
+ 3

8
⇥e�8t

� 3

8
+ 3

8
⇥e�8t 5

8
+ 3

8
⇥e�8t

i
. We draw 10000

samples from ⇢0(x) as the training set. As an advantage of the neural network-
based algorithm, we can compute ⇢n(x) point-wisely through a function composition
⇢n(x) = ⇢0�̃(�n)�1(x), where (�n)�1(x) can be computed by solving a convex opti-
mization problem, i.e., ��1(x) = argminy�(y)�xTy. Figure 4.4(a) - (d) shows the
predicted density on a 301⇥ 301 uniform grid on (�3,3)2. The absolute and relative
l2-errors on the grid are shown in Figures 4.4(e)-(f). It can be noticed that the relative
l2-error for the predicted solution is around 10�2, which is quite accurate given the
limited number of samples used.

In the 4D case, we take V (x) to be

V =
1

2
(x� µtarget)

T⌃�1
target(x� µtarget) with µtarget =

✓
1

3
,
1

3
,0,0

◆
,

and ⌃target =
h

5

8
� 3

8

� 3

8

5

8

iL
[1 0
0 1]. The initial condition ⇢0(x) is set to be a 4D standard

normal distribution N (0, I). The exact solution of (4.12) follows a normal distribution

with µ(t) = ((1 � e�4t) 13 , (1 � e�4t) 13 ,0,0), and ⌃(t) =
h

5

8
+ 3

8
⇥e�8t � 3

8
+ 3

8
⇥e�8t

� 3

8
+ 3

8
⇥e�8t 5

8
+ 3

8
⇥e�8t

iL

(a) ρ : t = 0.01 (b) ρ : t = 0.1 (c) ρ : t = 0.5 (d) ρ : t = 1

(e) l2 Error (f) Relative l2 Error

Fig. 4.4. Numerical results for the 2D Fokker–Planck equation. (a)–(d) Predicted solution on
a 301⇥ 301 uniform mesh on (�3,3)2 at t= 0,0.1,0.5, and 1, respectively. (e)–(f) The absolute and
relative l2-errors of the solution over time, evaluated on the uniform mesh.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2549

(a) x1 − x2 plane (t = 0) (b) x1 − x2 plane (t = 0.1) (c) x1 − x2 plane (t = 0.5) (d) x1 − x2 plane (t = 1)

(e) x3 − x4 plane (t = 0) (f) x3 − x4 plane (t = 0.1) (g) x3 − x4 plane (t = 0.5) (h) x3 − x4 plane (t = 1)

(i) l2 Error (j) Relative l2 Error

Fig. 4.5. Numerical results for the four-dimensional (4D) Fokker–Planck equation. (a)–(d) Dis-
tribution of samples, projected in x1-x2 plane, as well as its weight at t= 0,0.1,0.5, and 1, respec-
tively. (e)–(h) Distribution of samples, projected in x3-x4 plane, as well as its weight at t= 0,0.1,0.5,
and 1, respectively. (i)–(j) The l2-errors and the relative l2-errors of the solution over time, evaluated
in the training set.

[1 0
0 1] . Here

L
is the direct sum. Same as the 2D case, we draw 10000 initial samples

from ⇢0(x). Figure 4.5 shows the evolution of samples as well the values of the
numerical solution on individual samples over space and time. Interestingly, the
relative l2-error in 4D case is similar to the 2D case. The dimension-independent error
bound suggests the potential of the current method for handling higher-dimensional
problems.

Fokker–Planck type equations have a wide range of application in machine learn-
ing. One of the fundamental tasks in modern statistics and machine learning is to
estimate or generate samples from a target distribution ⇢⇤(x), which might be com-
pletely known, partially known up to a normalizing constant, or empirically given by
samples. Examples include Bayesian inference [7], numerical integration [54], space-
filling design [61], density estimation [69], and generative learning [59]. These prob-
lems can be transformed as an optimization problem, which is to seek for a ⇢opt 2Q
by solving an optimization problem

⇢opt = argmin
⇢2Q

D(⇢||⇢⇤),(4.15)

where Q is the admissible set, D(p||q) is a dissimilarity function that assesses the
di↵erences between two probability measures p and q. The classical dissimilarities

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2550 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

Fig. 4.6. The distribution of samples and their weight at di↵erent times for the Fokker–Planck
equation with a complicated V (x), which corresponds to an eight-component mixture Gaussian dis-
tribution. The initial 10,000 samples are drawn from a standard normal distribution N (0, I).

include the Kullback–Leibler (KL) divergence and the Maximum Mean Discrepancy
(MMD). The optimal solution of the optimization problem can be obtained by solving
a Fokker–Planck type equation, given by

⇢t =r · (⇢rµ), µ=
�D(⇢||⇢⇤)

�⇢
.(4.16)

The developed numerical approach has potential applications in these machine learn-
ing problems.

To illustrate this point, we consider a toy problem that is widely used in the
machine learning literature [32]. The goal is to sample from a target distribution
⇢⇤, which is known up to a normalizing constant. We take the dissimilarity function
as the KL divergence KL(⇢||⇢⇤) =

R
⌦ ⇢(x) ln(

⇢
⇢⇤)dx, then (4.16) is reduced to the

Fokker–Planck equation (4.12) with V (x) =� ln⇢⇤. In the numerical experiment, we
take the target distribution ⇢⇤(x) = 1

8

P8
i=1N(x|µi,⌃), an eight component mixture

Gaussian distribution, where µ1 = (0,4), µ2 = (2.8,2.8), µ3 = (4,0), µ4 = (�2.8,2.8),
µ5 = (�4,0), µ6 = (�2.8,�2.8), µ7 = (0,�4), µ8 = (2.8,�2.8), and ⌃=diag(0.2,0.2).
The simulation results are summarized in Figure 4.6, in which we first draw 10000
samples from a standard normal distribution N (0, I) and show the distribution of
samples as well as their weights at di↵erent time. It can be noticed that the proposed
neural network-based algorithm can generate a weighted sample from a complicated
target distribution.

4.3.2. Porous medium equation. Next, we consider a porous medium equa-
tion (PME), ⇢t = �⇢↵,where ↵ > 1 is a constant. The PME is a typical example of
nonlinear di↵usion equations. One important feature of the PME is that the solution
of the PME has a compact support at any time t > 0 if the initial data has a compact
support. The free boundary of the compact support moves outward with a finite
speed, known as the property of finite speed propagation [71]. As a consequence,
numerical simulations of the PME are often di�cult to conduct using Eulerian meth-
ods, which may fail to capture the movement of the free boundary and su↵er from

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2551

numerical oscillations [50]. In a recent work [50], the authors developed a variational
Lagrangian scheme using a finite element method. Here we show the ability of the
Lagrangian EVNN scheme to solve the PME with a free boundary. Following [50], we
employ the energy-dissipation law

d

dt

Z

Rd

↵

(↵� 1)(↵� 2)
⇢↵�1dx=�

Z

Rd

|u|2dx(4.17)

to develop the EVNN scheme.
We take ↵ = 4 in the simulation. To test the numerical accuracy of the EVNN

scheme for solving the PME, we consider a 2D Barenblatt–Pattle solution of the PME.
The Barenblatt–Pattle solution in d-dimensional space is given by

B↵(x, t) = t�k

"✓
C0 �

k(↵� 1)

2d↵

|x|2

t2k/d

◆

+

#1/(↵�1)

, x2Rd,(4.18)

where k= (↵�1+2/d)�1, u+ :=max(u,0), and C0 is a constant that is related to the
initial mass. This solution is radially symmetric, self-similar, and has compact support

|x|  ⇠↵(t) for any finite time, where ⇠↵(t) =
q

2d↵C0

k(↵�1) t
k/d. We take the Barenblatt

solution (4.18) with C0 = 0.1 at t = 0.1 as the initial condition, and compare the
numerical solution at T with the exact solution B↵(x, T +0.1). We choose {x0

i }Ni=1 as
a set of uniform grid points inside a disk {(x, y) |

p
x2 + y2  ⇠↵(0.1)}. To visualize

the numerical results, we also draw 500 points distributed with equal arc length on
the initial free boundary and evolve them using the trained ICNN. The numerical
results with ⌧ = 0.005 are shown in Figure 4.7. It can be noticed that the proposed
neural network-based algorithm can well approximate the Barenblatt–Pattle solution
and capture the movement of the free boundary.

We note that numerical methods to solve generalized di↵usions (1.4) can also be
formulated in the Eulerian frame of reference based on the notion of Wasserstein gra-
dient flow [35]. However, it is often challenging to compute the Wasserstein distance

(a) ρ : t = 0 (b) ρ : t = 0.05 (c) ρ : t = 0.25 (d) ρ : t = 0.5

(e) l2 Error (f) Relative l2 Error

Fig. 4.7. Numerical results for the porous medium equation. (a)–(d) The numerical solution
at t= 0,0.05,0.25, and 0.5, respectively. (e)–(f) The l2-errors of the solution.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2552 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

between two probability densities e�ciently with high accuracy, which often requires
solving an additional min-max problem or minimization problem [5, 6, 9, 33]. In a
recent study [33], the authors initially employ a fully connected neural network to
approximate ⇢ and subsequently utilize an additional ICNN to calculate the Wasser-
stein distance between two probability densities. Compared with their approach, our
method is indeed more e�cient and accurate.

5. Conclusion. In this paper, we develop structure-preserving EVNN schemes
for simulating L2-gradient flows and generalized di↵usions by utilizing neural networks
as a tool for spatial discretization, within the framework of the discrete energetic
variational approach. These numerical schemes are directly constructed based on a
prescribed continuous energy-dissipation law for the system, without the need for
the underlying PDE. The incorporation of mesh-free neural network discretization
opens up exciting possibilities for tackling high-dimensional gradient flows arising in
di↵erent applications in the future.

Various numerical experiments are presented to demonstrate the accuracy and
energy stability of the proposed numerical schemes. In our future work, we will
explore the e↵ects of di↵erent neural network architectures, sampling strategies, and
optimization methods, followed by a detailed numerical analysis. Additionally, we
intend to employ EVNN schemes to investigate other complex fluid models, including
the Cahn–Hilliard equation and Cahn–Hilliard–Navier–Stokes equations, as well as
solve machine learning problems such as generative modeling and density estimation.

Appendix A. In this appendix, we provide the detailed computation for the
EnVarA derivation of a generalized di↵usion. Due to the kinematics relation (2.4),
the action functional A[x] can be written as

A[x] =�
Z T

0

Z

⌦0

!

✓
⇢0(X)

detF

◆
detF+ V (x(X, t))⇢0(X)

+
1

2
⇢0(X)

✓Z

⌦0

K(x(X, t),y(X, t))⇢0(X)dX

◆
dXdt

in Lagrangian coordinates. A direct computation leads to (see [24] for more detailed
computations)

�A=�
Z T

0

Z

⌦0


�!0

✓
⇢0(X)

detF

◆
· ⇢0(X)

detF
+ !

✓
⇢0(X)

detF

◆�
⇥
�
F�T :rX�x

�
detF

+ ⇢0(X)rV (x) · �x+ ⇢0(X)

Z
⇢0(X)rK(x,y) · �xdX dXdt,

where �x(X, t) is the test function satisfying �̃x · n = 0 with n being the unit out-
ward normal of @⌦ and�̃x(x(X, t), t) = �x(X, t). We omit the tilde when there is no
ambiguity. Pushing forward to the Eulerian frame, we have

�A=�
Z T

0

Z

⌦
(�!0(⇢)⇢+ !)r · (�x) + (⇢rV + ⇢(rxK ⇤ ⇢)) · �x dxdt

=�
Z T

0

Z

⌦
(r (!0(⇢)⇢� !) + ⇢rV + ⇢(rxK ⇤ ⇢)) · �x dxdt

=�
Z T

0

Z

⌦
⇢r (!0(⇢) + V + (K ⇤ ⇢)) · �x dxdt.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2553

Hence,

�A
�x

=�⇢rµ, µ=
�F
�⇢

= !0(⇢) + V (x) +K ⇤ ⇢,

where µ is called the chemical potential. Since D = 1
2

R
⌘(⇢)|u|2dx, it is easy to

compute that �D
�u = ⌘(⇢)u. So the force balance condition leads to

⌘(⇢)u=�⇢rµ, µ= !0(⇢) + V (x) +K ⇤ ⇢.

REFERENCES

[1] S. Adams, N. Dirr, M. Peletier, and J. Zimmer, Large deviations and gradient flows, Philos.
Trans. Roy. Soc. A, 371 (2013), 20120341.

[2] B. Amos, L. Xu, and J. Z. Kolter, Input convex neural networks, in Proceedings of the
International Conference on Machine Learning, PMLR, 2017, pp. 146–155.

[3] A. Baron, Universal approximation bounds for superposition of a sigmoid function, IEEE
Trans. Inform. Theory, 39 (1993), pp. 930–945.

[4] R. Bellman, Dynamic Programming, Dover Publications, Mineola, NY, 1957.
[5] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-

Kantorovich mass transfer problem, Numer. Math., 84 (2000), pp. 375–393.
[6] J.-D. Benamou, G. Carlier, and M. Laborde, An augmented lagrangian approach to wasser-

stein gradient flows and applications, ESAIM Proc. Surveys, 54 (2016), pp. 1–17.
[7] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, Variational inference: A review for

statisticians, J. Amer. Statist. Assoc., 112 (2017), pp. 859–877.
[8] J. Bruna, B. Peherstorfer, and E. Vanden-Eijnden, Neural Galerkin schemes with active

learning for high-dimensional evolution equations, J. Comput. Phys., 496 (2024), 112588.
[9] J. A. Carrillo, K. Craig, L. Wang, and C. Wei, Primal dual methods for Wasserstein

gradient flows, Found. Comput. Math., 22 (2022), pp. 389–443.
[10] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals

Systems, 2 (1989), pp. 303–314.
[11] P.-G. De Gennes and J. Prost, The Physics of Liquid Crystals, Internat. Ser. Monogr. Phys.

83, Oxford University Press, 1993.
[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of

Deep Bidirectional Transformers for Language Understanding, preprint, https://arxiv.
org/abs/1810.04805, 2018.

[13] T. Dockhorn, A Discussion on Solving Partial Di↵erential Equations Using Neural Networks,
preprint, https://arxiv.org/abs/1904.07200, 2019.

[14] M. Doi, Onsager’s variational principle in soft matter , J. Phys. Condens. Matter, 23 (2011),
284118.

[15] Q. Du and X. Feng, The phase field method for geometric moving interfaces and their numer-
ical approximations, Handb. Numer. Anal. 21, Elsevier/North-Holland, Amsterdam, 2020,
pp. 425–508.

[16] Y. Du and T. A. Zaki, Evolutional deep neural network , Phys. Rev. E, 104 (2021), 045303.
[17] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, Neural spline flows, in Pro-

ceedings of the 33rd Conference on Neural Information Processing Systems, Adv. Neural
Inform. Process. Syst., 32, 2019, pp. 7511–7522.

[18] W. E, J. Han, and A. Jentzen, Algorithms for solving high dimensional pdes: From nonlinear
Monte Carlo to machine learning, Nonlinearity, 35 (2022), pp. 278–310.

[19] W. E, C. Ma, and L. Wu, Machine learning from a continuous viewpoint, I, Sci. China Math.,
63 (2020), pp. 2233–2266.

[20] W. E, C. Ma, L. Wu, and S. Wojtowytsch, Towards a mathematical understanding of neural
network-based machine learning: What we know and what we don’t , CSIAM Trans. Appl.
Math., 1 (2020), pp. 561–615.

[21] W. E and B. Yu, The deep ritz method: A deep learning-based numerical algorithm for solving
variational problems, Commun. Math. Stat., 6 (2018), pp. 1–12.

[22] B. Eisenberg, Y. Hyon, and C. Liu, Energy variational analysis of ions in water and chan-
nels: Field theory for primitive models of complex ionic fluids, J. Chem. Phys., 133 (2010),
104104.

[23] J. L. Ericksen, Introduction to the Thermodynamics of Solids, Appl. Math. Sci. 275, Springer,
1998.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1904.07200

A2554 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

[24] M.-H. Giga, A. Kirshtein, and C. Liu, Variational modeling and complex fluids, in Hand-
book of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, 2018, pp.
73–113.

[25] E. D. Giorgi, Movimenti minimizzanti , in Proceedings of the Conference on Aspetti e problemi
della Matematica oggi, Lecce, 1992.

[26] X. Glorot and Y. Bengio, Understanding the di�culty of training deep feedforward neural
networks, in Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.

[27] J. Han, A. Jentzen, and W. E, Solving high-dimensional partial di↵erential equa-
tions using deep learning, Proc. Natl. Acad. Sci., 115 (2018), pp. 8505–8510,
https://doi.org/10.1073/pnas.1718942115.

[28] B. Hanin, Which neural net architectures give rise to exploding and vanishing gradients? , in
NIPS’18: Proceedings of the 32nd International Conference on Neural Information Pro-
cessing Systems, 2018, pp. 580–589.

[29] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 770–778.

[30] K. He, X. Zhang, S. Ren, and J. Sun, Identity mappings in deep residual networks, in
Proceedings of the European Conference on Computer Vision, Springer, 2016, pp. 630–
645.

[31] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury, Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups, IEEE Signal
Proc. Mag., 29 (2012), pp. 82–97.

[32] C.-W. Huang, R. T. Chen, C. Tsirigotis, and A. Courville, Convex Potential Flows: Uni-
versal Probability Distributions with Optimal Transport and Convex Optimization, pre-
print, https://arxiv.org/abs/2012.05942, 2020.

[33] H. J. Hwang, C. Kim, M. S. Park, and H. Son, The Deep Minimizing Movement Scheme,
preprint, https://arxiv.org/abs/2109.14851, 2021.

[34] K. Jiang and P. Zhang, Numerical methods for quasicrystals, J. Comput. Phys., 256 (2014),
pp. 428–440.

[35] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker–
Planck equation, SIAM J. Math. Anal., 29 (1998), pp. 1–17,.

[36] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability ,
J. Theor. Biol., 26 (1970), pp. 399–415.

[37] E. Kharazmi, Z. Zhang, and G. E. Karniadakis, hp-vpinns: Variational physics-informed
neural networks with domain decomposition, Comput. Methods Appl. Mech. Engrg., 374
(2021), 113547.

[38] Y. Khoo, J. Lu, and L. Ying, Solving parametric PDE problems with artificial neural net-
works, Eur. J. Appl. Math., 32 (2021), pp. 421–435.

[39] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling,
Improved variational inference with inverse autoregressive flow , in NIPS’16: Proceedings
of the 30th International Conference on Neural Information Processing Systems, Adv.
Neural Inf. Process. Syst. 29 2016, pp. 4743–4751.

[40] J. F. Kolen and S. C. Kremer, Gradient flow in recurrent nets: The di�culty of learn-
ing longterm dependencies, IEEE Press, 2001, pp. 237–243, https://doi.org/10.1109/
9780470544037.ch14.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolu-
tional neural networks, Comm. ACM, 60 (2017), pp. 84–90.

[42] I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural networks for solving ordinary
and partial di↵erential equations, IEEE Trans. Neural Networks, 9 (1998), pp. 987–1000.

[43] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE, 86 (1998), pp. 2278–2324.

[44] R. Lifshitz and H. Diamant, Soft quasicrystals–why are they stable? , Philos. Mag., 87 (2007),
pp. 3021–3030.

[45] F. H. Lin and C. Liu, Static and dynamic theories of liquid crystals, J. Partial Di↵erential
Equations, 14 (2001), pp. 289–330.

[46] S. Lisini, D. Matthes, and G. Savaré, Cahn–Hilliard and thin film equations with nonlinear
mobility as gradient flows in weighted-Wasserstein metrics, J. Di↵erential Equations, 253
(2012), pp. 814–850.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1073/pnas.1718942115
https://arxiv.org/abs/2012.05942
https://arxiv.org/abs/2109.14851
https://doi.org/10.1109/9780470544037.ch14
https://doi.org/10.1109/9780470544037.ch14

EVNN DISCRETIZATIONS OF GRADIENT FLOWS A2555

[47] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A.
Van Der Laak, B. Van Ginneken, and C. I. Sánchez, A survey on deep learning in
medical image analysis, Med. Image Anal., 42 (2017), pp. 60–88.

[48] C. Liu and H. Sun, On energetic variational approaches in modeling the nematic liquid crystal
flows, Discrete Contin. Dyn. Syst., 23 (2009), pp. 455–475.

[49] C. Liu, C. Wang, and Y. Wang, A structure-preserving, operator splitting scheme for reaction-
di↵usion equations with detailed balance, J. Comput. Phys., 436 (2021), 110253.

[50] C. Liu and Y. Wang, On Lagrangian schemes for porous medium type generalized di↵u-
sion equations: A discrete energetic variational approach, J. Comput. Phys., 417 (2020),
109566.

[51] C. Liu and Y. Wang, A variational Lagrangian scheme for a phase-field model: A dis-
crete energetic variational approach, SIAM J. Sci. Comput., 42 (2020), pp. B1541–B1569,
https://doi.org/10.1137/20M1326684.

[52] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, DeepXDE: A deep learn-
ing library for solving di↵erential equations, SIAM Rev., 63 (2021), pp. 208–228,
https://doi.org/10.1137/19M1274067.

[53] Y. Lu, J. Lu, and M. Wang, A priori generalization analysis of the deep Ritz method for solv-
ing high dimensional elliptic partial di↵erential equations, in Proceedings of the Conference
on Learning Theory, PMLR, 2021, pp. 3196–3241.

[54] T. Müller, B. McWilliams, F. Rousselle, M. Gross, and J. Novák, Neural importance
sampling, ACM Trans. Graphics (TOG), 38 (2019), 145.

[55] J. Noh, Y. Wang, H.-L. Liang, V. S. R. Jampani, A. Majumdar, and J. P. Lagerwall,
Dynamic tuning of the director field in liquid crystal shells using block copolymers, Phys.
Rev. Res., 2 (2020), 033160.

[56] T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules,
19 (1986), pp. 2621–2632.

[57] L. Onsager, Reciprocal relations in irreversible processes. I., Phys. Rev., 37 (1931), pp. 405–
426.

[58] L. Onsager, Reciprocal relations in irreversible processes. II., Phys. Rev., 38 (1931), pp. 2265–
2279.

[59] G. Papamakarios, E. T. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshmi-
narayanan, Normalizing flows for probabilistic modeling and inference, J. Mach. Learn.
Res., 22 (2021), 57.

[60] M. A. Peletier, Variational Modelling: Energies, Gradient Flows, and Large Deviations,
preprint, https://arxiv.org/abs/1402.1990, 2014.

[61] L. Pronzato and W. G. Müller, Design of computer experiments: Space filling and beyond ,
Stat. Comput., 22 (2012), pp. 681–701.

[62] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics Informed Deep Learning
(Part I): Data-driven Solutions of Nonlinear Partial Di↵erential Equations, preprint,
https://arxiv.org/abs/1711.10561, 2017.

[63] L. Rayleigh, Some general theorems relating to vibrations, Proc. Lond. Math. Soc., 4 (1873),
pp. 357–368.

[64] D. Rezende and S. Mohamed, Variational inference with normalizing flows, in Proceedings
of the International Conference on Machine Learning, PMLR, 2015, pp. 1530–1538.

[65] G. M. Rotskoff, A. R. Mitchell, and E. Vanden-Eijnden, Active Importance Sampling for
Variational Objectives Dominated by Rare Events: Consequences for Optimization and
Generalization, preprint, https://arxiv.org/abs/2008.06334, 2020.

[66] A. J. Salgado and S. M. Wise, Classical Numerical Analysis: A Comprehensive Course,
Cambridge University Press, 2022.

[67] Z. Shen, H. Yang, and S. Zhang, Nonlinear Approximation via Compositions, preprint,
https://arxiv.org/abs/1902.10170, 2019.

[68] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial dif-
ferential equations, J. Comput. Phys., 375 (2018), pp. 1339–1364.

[69] E. G. Tabak and E. Vanden-Eijnden, Density estimation by dual ascent of the log-likelihood ,
Commun. Math. Sci., 8 (2010), pp. 217–233.

[70] B. P. van Milligen, V. Tribaldos, and J. Jiménez, Neural network di↵erential equation and
plasma equilibrium solver , Phys. Rev. Lett., 75 (1995), pp. 3594–3597.

[71] J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford University Press,
2007.

[72] H. Wang, T. Qian, and X. Xu, Onsager’s variational principle in active soft matter , Soft
Matter, 17 (2021), pp. 3634–3653, https://doi.org/10.1039/D0SM02076A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/20M1326684
https://doi.org/10.1137/19M1274067
https://arxiv.org/abs/1402.1990
https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/2008.06334
https://arxiv.org/abs/1902.10170
https://doi.org/10.1039/D0SM02076A

A2556 ZIQING HU, CHUN LIU, YIWEI WANG, AND ZHILIANG XU

[73] Y. Wang, J. Chen, C. Liu, and L. Kang, Particle-based energetic variational inference, Stat.
Comput., 31 (2021), 34.

[74] Y. Wang and C. Liu, Some recent advances in energetic variational approaches, Entropy, 24
(2022), pp. 721.

[75] Y. Wang, C. Liu, P. Liu, and B. Eisenberg, Field theory of reaction-di↵usion: Law of mass
action with an energetic variational approach, Phys. Rev. E, 102 (2020), 062147.

[76] Y. Wang, T.-F. Zhang, and C. Liu, A two species micro–macro model of wormlike micel-
lar solutions and its maximum entropy closure approximations: An energetic variational
approach, J. Non-Newton. Fluid Medh., 293 (2021), 104559.

[77] Q. Wei, Y. Jiang, and J. Z. Y. Chen, Machine-learning solver for modified di↵usion equa-
tions, Phys. Rev. E, 98 (2018), 053304.

[78] E. Weinan, Machine Learning and Computational Mathematics, preprint, https://arxiv.org/
abs/2009.14596, 2020.

[79] J. Xu, Y. Li, S. Wu, and A. Bousquet, On the stability and accuracy of partially and fully
implicit schemes for phase field modeling , Comput. Methods Appl. Mech. Engrg., 345
(2019), pp. 826–853.

[80] S. Xu, P. Sheng, and C. Liu, An energetic variational approach for ion transport , Commun.
Math. Sci., 12 (2014), pp. 779–789.

[81] S. Xu, Z. Xu, O. V. Kim, R. I. Litvinov, J. W. Weisel, and M. S. Alber, Model predictions
of deformation, embolization and permeability of partially obstructive blood clots under
variable shear flow , J. R. Soc. Interface, 14 (2017).

[82] X. Xu, Y. Di, and M, Variational method for liquids moving on a substrate, Phys. Fluids, 28
(2016), 087101.

[83] P. Yue, J. J. Feng, C. Liu, and J. Shen, A di↵use-interface method for simulating two-phase
flows of complex fluids, J. Fluid Mech., 515 (2004), pp. 293–317.

[84] Y. Zang, G. Bao, X. Ye, and H. Zhou, Weak adversarial networks for high-dimensional
partial di↵erential equations, J. Comput. Phys., 411 (2020), 109409.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/0

5/
24

 to
 1

69
.2

35
.6

4.
14

2
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2009.14596
https://arxiv.org/abs/2009.14596

	Introduction
	Preliminary
	Energetic variational approach
	<0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	L2?></0:tex-math></0:inline-formula>-gradient flow
	Generalized diffusion

	Neural-network-based numerical schemes for PDEs

	Energetic variational neural network
	EVNN scheme for <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	L2?></0:tex-math></0:inline-formula>-gradient flows
	Lagrangian EVNN scheme for generalized diffusions
	Neural network architectures
	Neural network architectures for Eulerian methods
	Neural network architectures for Lagrangian methods

	Numerical experiments
	Poisson equations
	<0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	L2?></0:tex-math></0:inline-formula>-gradient flow
	Heat equation
	Allen–Cahn equation

	Generalized diffusions
	Fokker–Planck equation
	Porous medium equation

	Conclusion
	References
	Appendix A

