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Abstract. Elevated surface ozone (O3) concentrations can
negatively impact growth and development of crop produc-
tion by reducing photosynthesis and accelerating leaf senes-
cence. Under unabated climate change, future global O3
concentrations are expected to increase in many regions,
adding additional challenges to global agricultural produc-
tion. Presently, few global process-based crop models con-
sider the effects of O3 stress on crop growth. Here, we incor-
porated the effects of O3 stress on photosynthesis and leaf
senescence into the Decision Support System for Agrotech-
nology Transfer (DSSAT) crop models for maize, rice, soy-
bean, and wheat. The advanced models reproduced the re-
ported yield declines from observed O3-dose field experi-
ments and O3 exposure responses reported in the literature
(O3 relative yield loss RMSE < 10 % across all calibrated
models). Simulated crop yields decreased as daily O3 con-
centrations increased above 25 ppb, with average yield losses
of 0.16 % to 0.82 % (maize), 0.05 % to 0.63 % (rice), 0.36 %
to 0.96 % (soybean), and 0.26 % to 1.23 % (wheat) per ppb
O3 increase, depending on the cultivar O3 sensitivity. In-

creased water deficit stress and elevated CO2 lessen the neg-
ative impact of elevated O3 on crop yield, but potential yield
gains from CO2 concentration increases may be counteracted
by higher O3 concentrations in the future, a potentially im-
portant constraint to global change projections for the latest
process-based crop models. The improved DSSAT models
with O3 representation simulate the effects of O3 stress on
crop growth and yield in interaction with other growth fac-
tors and can be run in the parallel DSSAT global gridded
modeling framework for future studies on O3 impacts un-
der climate change and air pollution scenarios across agroe-
cosystems globally.

Highlights.

– Effects of O3 stress on photosynthesis and leaf senescence
were added to the DSSAT/pDSSAT maize, rice, soybean, and
wheat crop models.
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– The modified models reproduced growth and yields under dif-
ferent O3 levels observed in field experiments and reported in
the literature.

– Expected detrimental interactions between O3, CO2, and water
deficit were reproduced with the new models.

– The updated crop models can be used to simulate impacts of
O3 stress under future climate change and air pollution scenar-
ios.

1 Introduction

Surface or ground-level, ozone (O3) is a major air pollu-
tant that causes adverse impacts on agricultural productivity
worldwide (Mills et al., 2018a; Emberson et al., 2018; Tai
et al., 2021). O3 is formed through photochemical reactions
between incoming solar radiation and primary pollutants
such as nitrogen oxides (NOx = NO + NO2), volatile organic
compounds (VOCs), carbon monoxide (CO), or methane
(CH4) across all areas of the globe (Cooper et al., 2014;
Simpson et al., 2014). Global O3 concentrations have in-
creased 2 %–7 % per decade in northern mid-latitude regions
and 2 %–12 % per decade in tropical regions since the mid-
1990s (IPCC, 2021; Arias et al., 2021). Future O3 concen-
trations are projected to continue increasing if O3 precursor
emissions are not mitigated, i.e., following the shared socio-
economic pathways where regional rivalry leads to doubling
of CO2 emissions by 2100 (SSP3-7.0) or where fossil-fuel-
enabled growth leads to doubling of CO2 emissions by 2050
(SSP5-8.5) (IPCC, 2021; Arias et al., 2021; Szopa et al.,
2021; Griffiths et al., 2021).

Crops exposed to elevated levels of O3 concentrations can
experience reduced photosynthesis, accelerated senescence,
foliar chlorosis, and even necrosis from increased cumula-
tive oxidative stress (Ainsworth, 2017). These negative ef-
fects lead to decreased productivity resulting in global yield
losses between 2 %–16 % for the four main staple crops,
maize, rice, soybean, and wheat (Ainsworth, 2017; Schiferl
and Heald, 2018; Emberson, 2020), with global annual eco-
nomic damages of approximately USD 34 billion (Sampedro
et al., 2020; Feng et al., 2022). Climate change may exacer-
bate the negative effects from elevated O3 concentrations be-
cause O3 concentrations are highest in summer months, and
the projected higher temperatures with more frequent heat
waves may lead to a longer period of more active photochem-
ical reactions (Zhang and Wang, 2016; Hou and Wu, 2016;
Szopa et al., 2021). Elevated concentrations of atmospheric
CO2 and increased periods of water deficit stress cause stom-
atal closure that can reduce crop O3 uptake (Khan and Soja,
2003; Biswas et al., 2013), but in turn potential yield gains
associated with the CO2 fertilization effect (Toreti et al.,
2020; Jagermeyr et al., 2021) may be constrained by elevated
O3. Therefore, it is important to evaluate net O3 effects for
crop growth and consider the effects of O3 in global agricul-
tural assessments examining future scenarios.

Process-based crop simulation models have been used to
evaluate the impacts of O3 on crop yields (Guarin et al.,
2019; Tai et al., 2021), but most global gridded process-based
crop models are still unable to respond to O3 stress. Recently,
the global Lund–Potsdam–Jena managed Land (LPJmL) and
Joint UK Land Environment Simulator (JULES) models
were modified to include the effects of O3 stress on soybean
and wheat growth (Schauberger et al., 2019; Leung et al.,
2020). Additionally, the Agricultural Model Intercomparison
and Improvement Project (AgMIP; Rosenzweig et al., 2013)
ozone team has recently developed protocols for incorporat-
ing O3 stress into a wider body of crop models aiming to
establish the first multi-model assessment of ozone impacts
on agriculture at a global level (Emberson et al., 2018).

The aim of this study is to incorporate the effects of
O3 concentrations into the stress response functions of the
maize, rice, soybean, and wheat models within the estab-
lished Decision Support System for Agrotechnology Trans-
fer (DSSAT) v4.8.0 modeling platform (Jones et al., 2003;
Hoogenboom et al., 2019, 2021), and consequently the par-
allel DSSAT (pDSSAT) v4.8.0 global gridded modeling plat-
form that is used to run DSSAT in a global setup (Elliott et
al., 2014), to simulate O3 effects on global crop development
and yield for the four major staple crops. The observational
data from the free-air CO2 enrichment (FACE) field exper-
iments conducted in Champaign, Illinois, USA (Choquette
et al., 2020; Betzelberger et al., 2012), and well-known O3
exposure relationships reported in the literature are used to
develop and calibrate the model O3 response functions. Ad-
ditionally, the observed interactions between O3, CO2, and
water deficit stress are examined via sensitivity analyses con-
ducted with the modified models.

2 Materials and methods

2.1 Description of crop models

The crop models within the pDSSAT parallel modeling en-
vironment are based on the existing crop models within
the widely used DSSAT crop modeling platform (Jones et
al., 2003; Hoogenboom et al., 2019, 2021) combined with
the Center for Robust Decision-making on Climate and En-
ergy Policy (RDCEP) parallel System for Integrating Impact
Models and Sectors (pSIMS) framework (Elliott et al., 2014)
to allow for global gridded process-based crop modeling on
high-performance computational systems. The O3 stress rou-
tines presented here are also applied in the standard DSSAT
crop models and can be used for field-level simulations and
point-based testing in addition to the global-level modeling
applications.

The four DSSAT crop models used in this study are
the Crop Environment Resource Synthesis (CERES) -
Maize, CERES-Rice, Crop Growth Simulation (CROPGRO)
-Soybean, and Nitrogen Wheat (NWheat) models that have
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been used in previous AgMIP crop model intercomparisons
(Bassu et al., 2014; Li et al., 2015; Asseng et al., 2015;
Kothari et al., 2022). The CERES-Maize and CERES-Rice
models were previously used to estimate global ozone crop
losses (Schiferl and Heald, 2018); however, their approach
was based on the multiplication of the simulated global base
production by the relative yield–O3 response functions to de-
termine a response proxy. The approach used in this present
study integrates daily process-based stress calculations to
simulate daily crop growth and stress dynamics. Thus, the
models are more applicable to a much broader range of sce-
narios given that they can combine daily stress interactions
and can be used to scale across agroecosystems in a more
robust way.

2.2 O3 incorporation into the crop models

The incorporation of O3 effects into the DSSAT crop models
followed the same methodology as the O3 incorporation into
the DSSAT-NWheat crop model (Guarin et al., 2019), which
was based on the incorporation of previous abiotic stress rou-
tines (Asseng et al., 2004). O3 response was added to the
models via the inclusion of daily photosynthesis reduction
and leaf senescence acceleration functions. Additionally, the
interaction between O3 and water deficit stress and/or atmo-
spheric CO2 concentrations was incorporated into the mod-
els since these combined interactions can mitigate impacts
from O3 on crop production and vice versa. For example,
water deficit stress that induces stomatal closure in turn lim-
its O3 stress because of reduced aerosol uptake (Khan and
Soja, 2003; Biswas et al., 2013).

2.2.1 CERES-Maize and CERES-Rice models

The effects of O3 were incorporated into the CERES-Maize
and CERES-Rice models using similar methodology since
these two models share similar code. O3 was added into the
models using a photosynthesis reduction stress factor (FO3)
following Eq. (1):

FO3 = max
✓

0.0,�
✓

FOZ1

100

◆
· OZON7

+
✓

1.0 +
✓

FOZ1

100

◆
· 25.0

◆◆
, (1)

where OZON7 is the daily mean 7 h (M7, 09:00–15:59) O3
concentration (ppb) and FOZ1 is the O3 stress parameter for
photosynthesis calibrated for different O3 sensitivities of cul-
tivars divided by a decimal correction factor of 100. The
decimal correction factor ensures that the FOZ1 parameter
value ranges between 0.0 and 1.0 in the model ecotype pa-
rameter file for comprehensible user input. A minimum M7
O3 threshold of 25 ppb was set as the reference value based
on pre-industrial O3 concentrations and the United States
National Crop Loss Assessment Network (NCLAN) studies
indicating that O3 damage within crops occurs above this

threshold (Heck et al., 1984; Lesser et al., 1990; Feng and
Kobayashi, 2009). When the daily M7 O3 concentration ex-
ceeds this threshold, photosynthesis is reduced by a factor
between 0.0 and 1.0 (Eq. 1), and leaf senescence is accel-
erated by a factor between 0.0 and 1.0 (Eq. 5). The M7 O3
metric was chosen as the model input because it is the most
readily available metric in the literature, and conversion func-
tions exist to convert between M7 and AOT40, daily mean
12 h (M12), or daily mean 24 h (M24) O3 metrics (Osborne
et al., 2016).

Equation (1) does not include the interaction of O3
stress with water deficit stress or elevated atmospheric CO2.
To consider these combined interactions on crop growth
(PRFO3), FO3 was modified using Eq. (2):

PRFO3 = min
✓

1.0,

✓
FO3 · PCO2

SWFAC

◆◆
, (2)

where PCO2 is the atmospheric CO2 effect on potential daily
dry matter production and SWFAC is the water stress fac-
tor on photosynthesis (Jones and Kiniry, 1986; Ritchie et
al., 1987; Jones et al., 2003). Since PCO2 is always greater
than 1, multiplying by the CO2 effect mitigates the reduction
caused by FO3. Because SWFAC is a reduction factor be-
tween 0 and 1, dividing by this factor decreases the reduction
from FO3 under increased water deficit stress conditions.

The simulated daily biomass production (CARBO,
g plant�1 d�1) within the models was calculated based on
the existing photosynthesis stress factors with the addition
of PRFO3 using Eq. (3) for maize and Eq. (4) for rice:

CARBOmaize = PCARB

· min(PRFT, SWFAC, NSTRES,

PSTRES1,KSTRES,PRFO3) · SLPF, (3)
CARBOrice = PCARB

· min(PRFT, SWFAC, NSTRES,TSHOCK,

PSTRES1,KSTRES,PRFO3) · SLPF, (4)

where PCARB is daily potential dry matter production of
the crop accounting for light interception, radiation use ef-
ficiency, and the CO2 effect on photosynthesis (g plant�1);
PRFT, SWFAC, NSTRES, TSHOCK (CERES-Rice only),
PSTRES1, KSTRES, and PRFO3 are the temperature, soil
water, nitrogen, transplanting shock, phosphorous, potas-
sium, and O3 stress factors on photosynthesis, respectively;
and SLPF is the soil fertility factor (Jones and Kiniry, 1986;
Ritchie et al., 1987; Jones et al., 2003).

Leaf senescence acceleration due to O3 stress (SLFO3)
was added to the models using Eq. (5):

SLFO3 = max
✓

0.0,�
✓

SFOZ1

1000

◆
· OZON7

+
✓

1.0 +
✓

SFOZ1

1000

◆
· 25.0

◆◆
, (5)

where SFOZ1 is the O3 stress parameter for leaf senescence
calibrated for different O3 sensitivities of cultivars divided
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by a decimal correction factor of 1000 (to ensure the SFOZ1
parameter value ranges between 0.0 and 1.0 in the model eco-
type file). The SLFO3 factor was then included in the existing
daily rate of leaf area senescence function (PLAS, cm2 d�1)
within the models as shown in Eq. (6) for maize and Eq. (7)
for rice:

PLASmaize = (PLA � SENLA) · (1
�min(SLFW, SLFC, SLFT,SLFN,

SLFP,SLFO3)) , (6)

PLASrice = (PLA � SENLA) · (1
� min(SLFW, SLFC, SLFT,SLFN,

SLFP,SLFK,SLFO3)) , (7)

where PLA is daily plant leaf area (cm2 plant�1); SENLA
is daily normal leaf senescence (cm2 plant�1); and SLFW,
SLFC, SLFT, SLFN, SLFP, SLFK, and SLFO3 are the leaf
senescence stress factors due to water, light competition,
temperature, nitrogen, phosphorous, potassium (CERES-
Rice only), and O3 stress, respectively (Jones and Kiniry,
1986; Ritchie et al., 1987; Jones et al., 2003).

2.2.2 CROPGRO-Soybean model

The effects of O3 were incorporated into the CROPGRO-
Soybean model using a similar approach to that described
in the CERES crop models. O3 was added into the model us-
ing the same FO3 and PRFO3 factors as in Eqs. (1) and (2)
(for Eq. 2, PCO2 is called PRATIO in CROPGRO-Soybean).
However, CROPGRO-Soybean calculates daily photosynthe-
sis differently than the other models do and has two different
photosynthesis calculation options: leaf or canopy photosyn-
thesis (Wilkerson et al., 1983; Boote and Pickering, 1994;
Jones et al., 2003). This study focuses on the default leaf
photosynthesis calculation option (which was modified to
read in the CO2 ratio effect for the PRFO3 interaction). The
daily gross photosynthesis (PG, g [CH2O] m�2 d�1) within
the model was calculated based on the limiting photosynthe-
sis stress factors using Eq. (8) for leaf photosynthesis and
Eq. (9) for canopy photosynthesis:

PGleaf =
✓

PGDAY
44.0

· 30.0 · SLPF
◆

· min(SWFAC,PRFO3) · PSTRES1, (8)

PGcanopy = PTSMAX · SLPF · PGFAC · TPGFAC · EFAC

· PGSLW · PRATIO · PGLFMX
· min(SWFAC,PRFO3) , (9)

where PGDAY is daily potential photosynthesis
(g [CH2O] m�2 d�1) and SWFAC, PSTRES1, and PRFO3
are the soil water, phosphorous, and O3 stress factors on
photosynthesis, respectively. PTSMAX is the potential
amount of CH2O that can be produced for the full canopy
(g [CH2O] m�2 d�1), PGFAC is a factor to compute daily

PG as a function of leaf area index, TPGFAC is a reduction
factor due to less-than-optimal daytime temperature, EFAC
is the effect of nitrogen and phosphorous stress on daily
canopy photosynthesis, PGSLW is the relative effect of leaf
thickness on daily canopy photosynthesis, and PRATIO
is the relative effect of atmospheric CO2 on daily canopy
photosynthesis (Boote and Pickering, 1994).

Leaf senescence acceleration due to O3 stress (SLFO3)
was added to CROPGRO-Soybean using Eq. (10):

SLFO3 = max
✓

0.0,

✓
SFOZ1

1000

◆
· OZON7

�
✓✓

SFOZ1

1000

◆
· 25.0

◆
· WTLF

◆
, (10)

where WTLF is the dry mass of leaf tissue (gleaf m�2).
The CROPGRO leaf senescence routine is based on exist-
ing WTLF using a different approach than the CERES leaf
senescence reduction factor, so SLFO3 has the opposite trend
when compared to the CERES model calculation (Fig. 1).
The SLFO3 factor was then included in the existing daily de-
foliation due to daily leaf senescence (SLDOT, g m�2 d�1)
calculation within the model as shown in Eq. (11):

SLDOT = SLDOTn + max(SLNDOT,SLFO3) , (11)

where SLDOTn is the natural daily leaf senescence and
SLNDOT and SLFO3 are the daily leaf senescence due to
water and O3 stress (g m�2 d�1), respectively.

2.2.3 DSSAT-NWheat model

The incorporation of O3 into the NWheat crop model was
described and validated in Guarin et al. (2019) and was used
as the reference for the maize, rice, and soybean models.
The approach used the same FO3 and PRFO3 equations as
in Eqs. (1) and (2) (note that the NWheat equations were
simplified from Guarin et al. (2019) by the decimal correc-
tion factor and single FOZ1 parameter as in Eq. (1) for con-
sistency among all models) and a similar SLFO3 shown in
Eq. (12):

SLFO3 =
✓

SFOZ1

10

◆
· OZON7 +

✓
1.0 �

✓
SFOZ1

10
· 25.0

◆◆
. (12)

The O3 effect for the different cultivar sensitivities is con-
trolled by the FOZ1 and SFOZ1 parameters, as in the other
models (the SFOZ1 parameter is divided by 10 to ensure that
the value ranges between 0.0 and 1.0 in the model ecotype
file). The decimal correction factors vary between the crop
models because the different models calculate stresses using
different magnitudes.

The FO3 and SLFO3 responses calculated over increasing
M7 O3 concentrations are illustrated for each model in Fig. 1
using the parameter values for different O3 cultivar classifi-
cations shown in Table 1. The FOZ1 and SFOZ1 parameter
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values for all models were determined from the cultivar sen-
sitivities observed in the field experiments (Sect. 2.3) and the
sensitivities derived from the O3 exposure relationships from
the literature (Sect. 2.5).

2.3 Observed O3 exposure field experiments

In general, detailed field experiments of crop growth under
elevated O3 conditions for different crops are scarce and limit
the granularity of model calibration. All field experiments
examined in this study used dominant management condi-
tions to limit other stresses besides O3, e.g., water deficit or N
stress, so the simulations assumed negligible outside stresses.
For each crop, the DSSAT phenological and growth parame-
ters were calibrated based on the observed control treatment
with minimal O3 stress to ensure that the models were func-
tioning properly regardless of O3 impact. Then, the O3 re-
sponse parameters, FOZ1 and SFOZ1, were calibrated based
on the observed O3 exposure–yield response between the ele-
vated O3 treatments and the control to simulate the O3 effect.

For maize, the FACE experiment conducted at Cham-
paign, Illinois, USA (40.03° N, 88.27° W; 230 m eleva-
tion), in 2018 was used for calibrating the CERES-Maize
model (Choquette et al., 2020). The maize FACE exper-
iment consisted of six cultivars grown under an ambient
and an elevated O3 treatment with n = 4 (Table 2). Since
there was only 1 year of data, the model was validated
against the O3 exposure-relative yield response functions
from the literature (Sect. 2.5). The daily maximum temper-
ature (TMAX), minimum temperature (TMIN), and precipi-
tation (RAIN) weather data were collected from the nearby
National Oceanic and Atmospheric Administration (NOAA)
Willard Airport weather station, and the daily incoming solar
radiation (SRAD) was collected from the National Aeronau-
tics and Space Administration (NASA) Prediction Of World-
wide Energy Resources (POWER) database (https://power.
larc.nasa.gov/, last access: 14 September 2022). The soil con-
sisted of the Drummer silty clay loam soil series, and the
soil parameters for this series were obtained from the United
States Department of Agriculture (USDA) Natural Resources
Conservation Service (NRCS) Web Soil Survey database
(Table S1 in the Supplement) (NRCS, 2023). The cultivars
were planted in two 3.5 m rows with a row spacing of 0.76 m
on 13 May 2018 (Choquette et al., 2020). The hourly O3 fu-
migation (from 10:00 to 18:00) began on 25 May 2018 and
ended on 14 August 2018 and was used to calculate the daily
M7 O3 concentrations. The cultivar plots were harvested at
maturity on 21 September 2018. N and water deficit stress
were reported to be non-limiting, so the simulations used
the non-limiting N setting within the model, and the sim-
ulated water stress was confirmed to be non-limiting with
the provided rainfall. The DSSAT cultivar parameters were
calibrated for phenology and growth under negligible stress
conditions using the treatment with the ambient O3 concen-
tration (38 ppb) for each cultivar. After the phenology and

growth cultivar parameters were calibrated, the FOZ1 and
SFOZ1 O3 response parameters were calibrated using the
yield response from the elevated O3 concentration treatments
(Fig. S1a).

For soybean, data from the FACE experiment conducted
at the same location in Champaign, Illinois, USA (40.03° N,
88.27° W; 230 m elevation), in 2009 and 2010 were used
for model testing (Betzelberger et al., 2012). The 2009 data
were used for model calibration, and the 2010 data were
used for model validation. These data were previously used
to incorporate O3 effects on leaf photosynthesis into the
JULES model (Leung et al., 2020). The SoyFACE experi-
ment consisted of seven soybean cultivars grown under nine
O3 treatments with different target concentrations (Table 2).
The hourly O3 fumigation data (plots fumigated for 8 to 9 h
daily except when leaves were wet) for each treatment were
recorded in situ and were used to calculate the daily M7 O3
concentrations (Betzelberger et al., 2012). The weather data
were collected from the same sources as used in the maize
experiment (NOAA and NASA POWER), and the soil con-
sisted of either the Drummer silty clay loam or the Flanagan
silt loam series which were obtained from the USDA NRCS
Web Soil Survey database (Table S1). The initial soil con-
ditions of the simulations were set at 95 % available water
content and 100 kg N ha�1 to minimize water and N stress.
The cultivars were planted in plots eight rows wide and 5.4 m
long, with a row spacing of 0.38 m, on 9 June 2009 and
27 May 2010. The O3 fumigation started on 29 June 2009
and 6 June 2010 and ended on 27 September 2009 and
17 September 2010. The cultivar plots were harvested at ma-
turity on 20 October 2009 and 30 September 2010. For each
specified cultivar maturity group (Betzelberger et al., 2012),
the corresponding default DSSAT maturity group parameters
were used as reference and then calibrated for phenology and
growth under negligible stress using the treatment with the
ambient O3 concentration (37 ppb). After the phenology and
growth cultivar parameters were calibrated, the FOZ1 and
SFOZ1 O3 response parameters were calibrated using the
yield response from the elevated O3 concentration treatments
(Fig. S1b). The parameters for both maize and soybean were
calibrated using the using the one-factor-at-at-time method
(Morris, 1991) until the best fit was found for the phenology,
aboveground biomass and yield, and relative yield loss for
each cultivar across all O3 treatments.

For rice, there were no O3 field experiment data read-
ily available; thus a representative rice-producing location in
the main North American rice-producing area in Stuttgart,
Arkansas, USA (34.50° N, 91.55° W; 60 m elevation) (USDA
NASS, 2010), was simulated with the default DSSAT North
American rice cultivar. The year 2009 was selected for con-
sistency with the soybean simulations. The weather data were
collected from the NASA POWER database, and the domi-
nant soil series for Arkansas County, Dewitt silt loam, was
determined from the USDA NRCS Web Soil Survey database
(Table S1) (NRCS, 2023). The initial soil conditions of the
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Figure 1. Functions for the O3 photosynthesis reduction factor without interaction of water deficit stress and CO2 fertilization effect (FO3)
(first column) and the O3 leaf senescence acceleration stress factor (SLFO3) (second column) under increasing mean 7 h (M7) O3 concen-
trations for the (a, b) CERES-Maize, (c, d) CERES-Rice, (e, f) CROPGRO-Soybean, and (g, h) NWheat models. Each figure shows three
different O3 sensitivity cultivar classifications derived from the O3 exposure–yield responses from the literature: tolerant (solid blue line),
intermediate (gold short-dashed line), and sensitive (magenta long-dashed line). SLFO3 for CROPGRO-Soybean (Eq. 10) is shown with leaf
tissue dry mass (WTLF) of 1 g m�2 for simplicity. Steeper slopes indicate a higher sensitivity to O3 for both FO3 and SLFO3. Table 1 shows
the parameters used in the equations for each classification of O3 sensitivity (Eqs. 1, 5, 10, and 12).
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Table 1. Summary of the O3 photosynthesis stress parameters (FOZ1) and the O3 leaf senescence stress parameters (SFOZ1) used in the
FO3 and SLFO3 calculations (Eqs. 1, 5, 10, and 12) for the four DSSAT models under three different O3 sensitivity cultivar classifications.
The CERES and CROPGRO parameter values were determined from the O3 exposure–yield responses in the literature (Figs. S2 and S3 in
the Supplement). NWheat parameter values were from Guarin et al. (2019) and confirmed with the literature.

O3 sensitivity cultivar classifications CERES-Maize CERES-Rice CROPGRO-Soybean NWheat

FOZ1 SFOZ1 FOZ1 SFOZ1 FOZ1 SFOZ1 FOZ1 SFOZ1

Tolerant 0.15 0.10 0.10 0.08 0.15 0.15 0.06 0.08
Intermediate 0.30 0.20 0.30 0.10 0.25 0.25 0.10 0.25
Sensitive 0.60 0.40 0.65 0.12 0.40 0.35 0.50 0.40

Table 2. O3 fumigation target concentration and average mean 7 h
(M7, 09:00–15:59) O3 concentrations for the 2018 maize FACE ex-
periment (Choquette et al., 2020) and the 2009 and 2010 soybean
SoyFACE experiments (Betzelberger et al., 2012).

Crop O3 fumigation target Average M7 O3
experiment concentration (ppb) concentration (ppb)

Maize 2018 Ambient 38
100 77

Soybean 2009 Ambient 37
40 39
55 47
70 57
85 61

110 75
130 96
160 102
200 126

Soybean 2010 Ambient 37
55 46
70 52
85 59

110 69
130 76
150 70
170 84
190 84

simulations were set at 100 % available water content and
100 kg N ha�1 to ensure negligible water and N stress. A to-
tal of four 50 kg N ha�1 fertilizer applications were applied
throughout the season to ensure negligible N stress in the
simulations. The cultivar was planted on 20 April 2009 based
on the most active planting dates recorded for Arkansas in the
USDA Field Crops handbook (USDA NASS, 2010), and the
harvest date was automatically calculated based on when the
model simulations reached physiological maturity. The de-
fault DSSAT North American rice cultivar parameters were
used, and the FOZ1 and SFOZ1 O3 response parameters were
calibrated using the yield response from the elevated O3 ex-
posure functions from the literature (Sect. 2.5).

For wheat, the NWheat model was calibrated and validated
using an air exclusion system O3 exposure wheat field ex-
periment conducted in Wake County, North Carolina, USA
(35.73° N, 78.68° W; 116 m elevation), and is described in
detail in Guarin et al. (2019).

2.4 Sensitivity analysis of O3 equations and parameters

A sensitivity analysis for maize, rice, and soybean was con-
ducted using simulations of nine constant daily M7 O3 con-
centrations of 25, 40, 50, 60, 70, 80, 90, 100, and 120 ppb
with different FOZ1 and SFOZ1 parameter values under
combinations between normal or 50 % reduced rainfall and
350 or 550 ppm CO2 concentrations to confirm that the O3
modifications and stress interactions within the models were
behaving as expected. The simulated locations and manage-
ment setup for each crop were the same as the field exper-
iments described above (Sect. 2.3). For wheat, the sensitiv-
ity analysis was based on the 1993 FACE experiment con-
ducted in Maricopa, Arizona (33.06° N, 111.98° W; 361 m
elevation) (Hunsaker et al., 1996; Kimball et al., 1999, 2017).
The simulation setup for the Maricopa FACE experiment
used the same 9 M7 O3 concentrations with either a “Wet”
irrigation schedule (total of 629 mm sub-surface drip irriga-
tion at 0.23 m from planting to harvest) or a “Dry” irriga-
tion schedule (total of 347 mm sub-surface drip irrigation at
0.23 m from planting to harvest) under 350 and 550 ppm CO2
concentrations to examine the O3–CO2–water interactions as
detailed in Guarin et al. (2019). For all crops, each O3 param-
eter was first tested independently to examine the individual
effects on photosynthesis and leaf senescence; i.e., when ex-
amining FOZ1, SFOZ1 was set to zero and vice versa.

2.5 Observed O3 exposure relationships based on the
literature

To confirm that the models were able to reproduce the ob-
served relative yield loss due to O3 stress, the simulated re-
sults were compared to well-known literature reports of O3
exposure metrics and yield response for each crop using the
M7 O3 concentrations. The simulated locations and manage-
ment conditions were the same experimental conditions as
described above for each crop. For each crop, different O3
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classifications of cultivar sensitivities were defined based on
more severe response to O3 stress, i.e., tolerant, intermedi-
ate, and sensitive. These classifications of cultivar O3 sensi-
tivity were determined using the extensive literature review
data from Mills et al. (2018b) combined with the maize and
soybean FACE data for a total of 9 maize cultivars, 50 rice
cultivars, 49 soybean cultivars, and 23 wheat cultivars. The
literature review consisted of O3 exposure experiments con-
ducted in open-top chambers, experimental fields, or green-
houses and included the experiments that contributed to the
widely applied Weibull O3 response function (Heck et al.,
1984; Adams et al., 1989; Lesser et al., 1990; Wang and
Mauzerall, 2004; Tai et al., 2021; Feng et al., 2022). The se-
lection criteria of the data are described in detail in Mills et
al. (2018b).

The yield data from the literature experiments were stan-
dardized as performed by Mills et al. (2018b) and described
by Osborne et al. (2016). For each experiment, linear regres-
sion was used to determine the yield at 25 ppb M7 O3, and
this value was the reference for calculating the relative yield;
i.e., relative yield was calculated as the actual observed yield
divided by the yield at 25 ppb O3. The 25 ppb M7 O3 thresh-
old was chosen for proper comparison to the model results.
After calculating the yield relative to 25 ppb M7 O3, a linear
regression for each cultivar was performed using R statisti-
cal software, v4.3.0 (R Core Team, 2023; Wickham, 2016;
Wickham et al., 2023), to determine the O3 exposure re-
sponse (Fig. S2). The cultivar O3 exposure responses were
then classified into three evenly distributed quantiles, 0 %–
33 %, 33 %–66 %, and 66 %–100 %, chosen to represent the
three O3 sensitivity classifications, sensitive, intermediate,
and tolerant, respectively (Fig. S3). These data were used to
determine the model FOZ1 and SFOZ1 values of each of the
O3 cultivar classifications shown in Table 1 to evaluate if the
models could accurately reproduce the O3 exposure–yield re-
sponses.

3 Results

3.1 Calibration of crop models and simulated relative
yield loss against O3 exposure field experiments

The simulated phenology (anthesis (flowering) and physi-
ological maturity dates), biomass, yield, and relative yield
due to elevated O3 stress from the maize and soybean ex-
periments were compared to the field observations to de-
termine performance of the O3 equations within the mod-
els (Tables 3–5; Figs. 2, 3, and S1). The relative yield due
to O3 stress was calculated by dividing the yield of each
corresponding O3 treatment over the control yield, i.e., the
baseline O3 treatment, and multiplying by 100 to convert to
a percentage. The relative yield loss was the difference be-
tween 100 % and the calculated relative yield. There were no
O3 field experiment data for rice, so the rice O3 parameter

values and performance were compared to the O3 exposure–
yield response functions from the literature (Sect. 3.3).

The maize and soybean cultivars had different sensi-
tivities to O3 stress which were accounted for by using
different FOZ1 and SFOZ1 values (Fig. S1). The cali-
brated CERES-Maize and CROPGRO-Soybean models sim-
ulated the physiological maturity within 4 d of the observa-
tions (Table 5; root-mean-square error (RMSE) = 0.0 d for
maize 2018, 3.70 d for soybean 2009, and 3.30 d for soy-
bean 2010). The calibrated CERES-Maize model was able
to reproduce the yield and relative yield loss very well
across all six cultivars (Fig. 2; RMSE = 107 kg ha�1 and
2 %; r2 = 0.99 and 0.99, respectively). This ideal model per-
formance was because only two O3 treatments were avail-
able for each maize cultivar which simplified the calibra-
tion process (Fig. S1a). The CROPGRO-Soybean model
was able to reproduce the biomass, yield, and relative yield
loss due to O3 stress well for the calibration year, 2009
(Fig. 3a, b, c; RMSE = 1179 kg ha�1, 328 kg ha�1, and 10 %;
r2 = 0.81, 0.88, and 0.85), and acceptably for the evalu-
ation year, 2010, across all seven cultivars (Fig. 3d, e, f;
RMSE = 3339 kg ha�1, 1291 kg ha�1, and 16 %; r2 = 0.59,
0.71, and 0.66). The model overestimated biomass and yield
for all cultivars and treatments in 2010, which was likely
the result of a factor outside of the model setup that miti-
gated the increased incoming solar radiation when compared
to 2009 (Sect. 4.3). The calibration and evaluation for the
NWheat model was conducted and validated in Guarin et
al. (2019), where the model reproduced the observed relative
yield due to O3 stress with a normalized root-mean-square
error (NRMSE) of 23 % and an r2 of 0.94, 0.91, and 0.88 for
the tolerant, intermediate, and sensitive O3 sensitive cultivar
classifications.

3.2 Sensitivity analysis and combined effects of O3,
CO2, and water deficit stress on yields

The simulated relative yield losses due to O3 stress in-
creased for all crops as the M7 O3 concentrations increased
above the 25 ppb threshold when examining the photosyn-
thesis and leaf senescence responses independently, as ex-
pected (Figs. 4–7). The simulated actual yields for all crops
are shown in Tables S2–S9. Wheat was the most sensitive
crop to O3 stress of the four crops examined (compare slopes
in Figs. 4–7a and b), which agrees with previous literature
(Mills et al., 2018b). For each model, simulations using an
FOZ1 or SFOZ1 example value of 0.5 were examined in more
detail to illustrate the O3–CO2–water interactions (Figs. 4–
7c and d, respectively). For all crops, the Dry/reduced rain-
fall and low CO2 treatment produced the lowest yields, while
the Wet/normal rainfall and high CO2 produced the highest
yields (Tables S2–S9). The simulated O3 effect was larger
when water was non-limiting; i.e., the higher rainfall and ir-
rigated treatments experienced larger losses due to O3 stress
because of increased stomatal uptake. The simulated O3 ef-
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Table 3. CERES-Maize cultivar and O3 parameters used to simulate the six maize cultivars from the 2018 FACE field experiment (Choquette
et al., 2020). P1: thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above a base temperature
of 8 °C). P2: extent to which daily development is delayed for each hour increase in photoperiod above the longest photoperiod at which
development proceeds at a maximum rate (which is considered to be 12.5 h). P5: thermal time from silking to physiological maturity (ex-
pressed in degree days above a base temperature of 8 °C). G2: maximum possible number of kernels per plant. G3: kernel filling rate during
the linear grain filling stage and under optimum conditions (mg d�1). PHINT: phyllochron interval, i.e., the interval in thermal time (degree
days) between successive leaf tip appearances. FOZ1: O3 effect on photosynthesis. SFOZ1: O3 effect on leaf senescence.

Cultivar P1 P2 P5 G2 G3 PHINT FOZ1 SFOZ1

B73_x_Hp301 110 0.5 700 700 8.5 38.9 0.40 0.20
B73_x_Mo17 110 0.5 700 700 5.9 38.9 0.20 0.15
B73_x_NC338 110 0.5 700 700 7.8 38.9 0.65 0.40
Mo17_x_Hp301 110 0.5 700 700 5.5 38.9 0.10 0.10
Mo17_x_NC338 110 0.5 700 700 8.5 38.9 0.50 0.30
NC338_x_Hp301 110 0.5 700 700 5.1 38.9 0.10 0.10

Figure 2. CERES-Maize model calibration of the 2018 FACE O3 field experiment conducted in Champaign, Illinois, USA (Choquette et
al., 2020). Simulated and observed (a) yield and (b) relative yield due to elevated O3 stress (compared to the ambient control treatment) for
six maize cultivars (colored points). The root-mean-square error (RMSE) and coefficient of determination (r2) show the model performance
across all cultivars. The solid black line shows 1 : 1 comparison, and the dotted black line shows linear fit across all cultivars. For maize, only
1 year of experimental data were available for calibration and evaluation. The model cultivar parameters are shown in Table 3.

fect was reduced under the higher CO2 concentrations, thus
capturing the responses from stomatal closure and the photo-
synthetic benefits from the CO2 fertilization effect.

3.3 Simulated relative yield loss compared to O3
relationships in the literature

For all crops, the literature showed a large range of rela-
tive yield losses due to O3 stress caused by different cul-
tivar O3 sensitivities (Fig. S2). Wheat was the most sensi-
tive crop to O3 stress with an average yield loss of 0.70 ±
0.39 % (mean ± SD) per ppb M7 O3 increase above 25 ppb,
followed by soybean, maize, and then rice (average yield
losses of 0.60 ± 0.39 %, 0.39 ± 0.26 %, and 0.32 ± 0.37 %
per ppb M7 O3 increase above 25 ppb, respectively) (aver-
age of slopes in Table S10). To encompass the high variabil-

ity of yield losses, the cultivars were classified into the O3-
tolerant, -intermediate, and -sensitive cultivar O3 sensitivi-
ties (Fig. S3). Since the cultivar sensitivities were not orig-
inally specified in the literature, the FOZ1 and SFOZ1 pa-
rameters used in the models were adjusted to provide the
best fit across the O3 exposure responses (Table 1). Over-
all, the models reproduced the simulated O3 exposure re-
lationships from the literature well: the RMSE for maize,
rice, soybean, and wheat across all three O3 exposure sen-
sitivities were 6.6 %, 7.8 %, 4.0 %, and 5.4 %, respectively
(Fig. 8). The models performed better (lower RMSE) for the
O3-tolerant and O3-intermediate cultivar sensitivities com-
pared to the O3-sensitive cultivar sensitivity, but all models
explained the variance well (r2 > 0.96 across all O3 sensitiv-
ities). This suggests that different combinations of FOZ1 and
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Figure 3. CROPGRO-Soybean model performance and evaluation of the SoyFACE O3 field experiment conducted in Champaign, Illinois,
USA (Betzelberger et al., 2012). Simulated and observed (a, d) above-ground biomass, (b, e) yield, and (c, f) relative yield in response to the
nine progressive O3-increasing treatments (Table 2) for seven soybean cultivars (colored points). Relative yield is compared to the ambient
control treatment within each year. The 2009 SoyFACE field experiment was used for model calibration (a, b, c), and the 2010 SoyFACE
field experiment was used for model evaluation (d, e, f). The root-mean-square error (RMSE) and coefficient of determination (r2) show
the model performance across all cultivars. The solid black line shows 1 : 1 comparison, and the dotted black line shows linear fit across all
cultivars. The model cultivar parameters are shown in Table 4.

SFOZ1 can be calibrated for specific observations to emulate
the variation in different O3 exposure responses.

4 Discussion

4.1 Simulating O3 damage on crop yields

The measured yield losses for the maize FACE experi-
ment were between 5 % and 40 % for the M7 O3 con-
centrations when increasing from the ambient concentra-
tion (38 ppb) to the elevated O3 treatment (77 ppb), a yield
loss of 0.14 % to 1.01 % per ppb M7 O3 above the ambi-
ent concentration, depending on the O3 cultivar sensitivity
(Fig. 2b). ‘NC338xHp301’ and ‘Mo17xHp301’ were classi-
fied as O3-tolerant because of relatively small yield losses
of 5 % and 6 %, respectively; ‘B73xMo17’ was classified as
O3-intermediate with a yield loss of 11 %; and ‘B73xHp301’,
‘Mo17xNC338’, and ‘B73xNC338’ were sensitive to O3 ef-
fects with yield losses of 22 %, 30 %, and 40 %, respec-
tively (Fig. S1a, Table S10). These cultivar O3 sensitivities
are based on a single experimental year, so additional testing
is needed to further corroborate the classifications. Overall,
the calibrated CERES-Maize model was able to reproduce
these observed yield losses within 1 %, i.e., simulated yield
losses between 5 % and 41 %, or 0.12 % and 1.05 % per ppb
O3 increase above the ambient concentration. These yield
losses were also calculated relative to 25 ppb (as described in

Sect. 2.5) for consistency with the literature, which resulted
in simulated yield losses between 0.12 % and 0.93 % per ppb
M7 O3 increase above 25 ppb across the six cultivars.

When comparing the simulations to the maize O3
exposure–yield relationships from the literature, the model
simulated average yield losses of 0.16 %, 0.36 %, and 0.82 %
per ppb M7 O3 increase above 25 ppb for the O3-tolerant,
-intermediate, and -sensitive cultivar O3 sensitivities, respec-
tively (Fig. 8a solid lines). This agreed well with the litera-
ture yield losses of 0.24 %, 0.33 %, and 0.71 % per ppb M7
O3 increase above 25 ppb for the O3-tolerant, -intermediate,
and -sensitive cultivar sensitivities, respectively (Figs. S3a,
8a dotted lines). The O3 parameter values used for the lit-
erature comparison were determined to provide the best fit
across the literature experiments consisting of nine maize
cultivars, but these O3 parameter values could be calibrated
for other scenarios and cases, i.e., higher or lower cultivar O3
sensitivity.

The measured yield losses for the SoyFACE experiment
were between 51 % and 77 % for the M7 O3 concentrations
when increasing from the ambient concentration (37 ppb) to
the highest O3 treatment (126 ppb) in 2009, a yield loss of
0.57 % to 0.86 % per ppb M7 O3 above the ambient con-
centration, depending on the cultivar O3 sensitivity (Fig. 3c).
The calibrated CROPGRO-Soybean model reproduced ob-
served yield losses within 10 %, i.e., simulated yield losses
between 59 % to 80 %, or 0.66 % to 0.90 % per ppb O3 in-
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Figure 4. Sensitivity analysis using the CERES-Maize model to simulate relative yield due to elevated O3 stress (relative to 25 ppb M7 O3)
for a range of (a) the photosynthesis O3 stress parameter (FOZ1) and (b) the leaf senescence O3 stress parameter (SFOZ1) values under the
normal rainfall and 350 ppm CO2 scenario and an example of (c) FOZ1 and (d) SFOZ1 set at 0.5 under the 50 % reduced rainfall and 350 ppm
CO2 (solid red line), normal rainfall and 350 ppm CO2 (solid black line), 50 % less rainfall and 550 ppm CO2 (dashed red line), and normal
rainfall and 550 CO2 (dashed black line) scenarios. The Champaign, Illinois, USA, 2018 FACE weather, soil, and dominant management
conditions were used for the reference location. Each O3 parameter was tested independently; i.e., when examining FOZ1, SFOZ1 was set
to zero and vice versa. The simulated actual yields are shown in Tables S2 and S3.

crease. Based on the calculated O3 classifications from the
literature and low yield divergence across the seven culti-
vars (Fig. S1b), ‘Pioneer93B15’, ‘Dwight’, ‘ IA-3010’, and
‘LN97-15076’ were considered O3-intermediate, and ‘HS93-
4118’, ‘Loda’, and ‘Pana’ were considered O3-sensitive (Ta-
ble S10). In 2010, the observed soybean yield losses ranged
between 31 % and 76 % when increasing from the ambient
concentration (37 ppb) to the highest O3 treatment (84 ppb),
a yield loss of 0.65 % to 1.60 % per ppb M7 O3 above the am-
bient concentration. The model underestimated yield losses
in 2010, between 27 % and 44 %, but, because the experi-
mental setup was the same for both years, an external factor
that was not considered in the simulations may have affected
yields (Sect. 4.3). The 2010 yield losses were of a similar
magnitude to the 2009 yield losses, but the 2010 experiment
had higher yield loss and variation per ppb O3 increase with
lower average M7 O3 concentrations (Table 2, Fig. S4a).

When comparing the simulations to the soybean O3
exposure–yield relationships from the literature (Fig. 8c), an

average yield loss of 0.36 %, 0.64 %, and 0.96 % per ppb M7
O3 increase above 25 ppb was simulated for the O3-tolerant,
-intermediate, and -sensitive cultivar O3 sensitivities, respec-
tively. This was substantiated by the literature yield losses
of 0.45 %, 0.63 %, and 0.84 % per ppb M7 O3 increase above
25 ppb for the O3-tolerant, -intermediate, and -sensitive culti-
var O3 sensitivities, respectively (Figs. S3c, 8c dotted lines).
The literature data consisted of 49 soybean cultivars, which
had a smaller range of O3 sensitivities compared to the other
crops, although there were outliers where yield increased un-
der higher O3 concentrations (described in Sect. 4.2).

The CERES-Rice model simulated an average yield loss
of 0.05 %, 0.23 %, and 0.66 % per ppb M7 O3 increase above
25 ppb for the O3-tolerant, -intermediate, and -sensitive cul-
tivar O3 sensitivities, respectively (Fig. 8b solid lines). The
rice literature had the most cultivars (50) of the four crops
examined, and the simulated yield losses for the O3-tolerant
and -intermediate cultivar O3 sensitivities agreed well with
the literature yield losses of 0.07 % and 0.24 % per ppb M7
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Figure 5. Sensitivity analysis using the CERES-Rice model to simulate relative yield due to elevated O3 stress for a range of (a) FOZ1 and
(b) SFOZ1 values under the normal rainfall and 350 ppm CO2 scenario and an example of (c) FOZ1 and (d) SFOZ1 set at 0.5 under the 50 %
reduced rainfall and 350 ppm CO2 (solid red line), normal rainfall and 350 ppm CO2 (solid black line), 50 % less rainfall and 550 ppm CO2
(dashed red line), and normal rainfall and 550 CO2 (dashed black line) scenarios. The Stuttgart, Arkansas, USA, 2009 weather, soil, and
dominant management conditions were used for the reference location. Each O3 parameter was tested independently; i.e., when examining
FOZ1, SFOZ1 was set to zero and vice versa. The simulated actual yields are shown in Tables S4 and S5.

O3 increase above 25 ppb, respectively (Fig. 8b dotted lines).
A larger discrepancy between the simulated yield loss for
the O3-sensitive classification and the literature O3-sensitive
yield loss of 0.49 % per ppb M7 O3 increase above 25 ppb
was due to the higher variability within the literature data
(Fig. 8b shaded area).

Using the calibrated NWheat model, the simulated yield
losses were 0.26 %, 0.66 %, and 1.23 % per ppb M7 O3 in-
crease above 25 ppb for the O3-tolerant, -intermediate, and
-sensitive cultivar O3 sensitivities, respectively (Fig. 8d).
These simulated yield losses were corroborated by the re-
ported average yield losses of 0.33 %, 0.61 %, and 1.11 %
per ppb M7 O3 increase above 25 ppb for the O3-tolerant,
-intermediate, and -sensitive cultivar O3 sensitivities, respec-
tively. The literature expanded across different ranges of O3
concentrations for all crops, and yield loss per ppb is not al-
ways constant over an expansive range of O3 concentrations,
so the model O3 parameter values can be adjusted for higher
or lower cultivar O3 sensitivity.

As an additional check of model performance, the cal-
culated relative yield from the well-known Weibull O3 re-
sponse functions (Table S11) were compared to the lit-
erature O3 exposure linear yield responses for each crop
and O3 classification (Fig. 8). The Weibull function perfor-
mance was then compared to the simulated crop model re-
sults. Overall, the crop model simulations performed bet-
ter (lower RMSE and higher r2) than the Weibull response
functions across all crops for all three O3 classifications,
except the O3-intermediate classification for soybean which
had < 1 % difference between the RMSE (compare RMSE
and r2 in Fig. 8). The performance results suggest that it is
best to use calibrated crop models when available and that
the Weibull response functions are mainly representative of
O3-intermediate classifications for maize, rice, and soybean
and O3-tolerant classifications for wheat.
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Figure 6. Sensitivity analysis using the CROPGRO-Soybean model to simulate relative yield due to elevated O3 stress for a range of (a) FOZ1
and (b) SFOZ1 values under the normal rainfall and 350 ppm CO2 scenario and an example of (c) FOZ1 and (d) SFOZ1 set at 0.5 under the
50 % reduced rainfall and 350 ppm CO2 (solid red line), normal rainfall and 350 ppm CO2 (solid black line), 50 % less rainfall and 550 ppm
CO2 (dashed red line), and normal rainfall and 550 CO2 (dashed black line) scenarios. The Champaign, Illinois, USA, 2009 SoyFACE
weather, soil, and dominant management conditions were used for the reference location. Each O3 parameter was tested independently; i.e.,
when examining FOZ1, SFOZ1 was set to zero and vice versa. The simulated actual yields are shown in Tables S6 and S7. Figure S6 shows
the relative biomass loss corresponding to SFOZ1 (d) to explain the inverted CO2 effect under the 50 % rainfall treatment.

4.2 Simulated relative yield loss with the combined
effects of O3, CO2, and water deficit stress

The sensitivity analyses showed that the yield losses due
to O3 stress were higher under the normal rainfall and low
CO2 treatment, which agrees with previous literature that
increased water availability increases O3 impact due to in-
creased stomatal uptake (Khan and Soja, 2003; Biswas et al.,
2013). It was unexpected that the simulated O3 photosyn-
thetic response difference between the normal and reduced
rainfall treatments for maize was less than 1 % (Fig. 4c). This
was because the model simulated low water deficit stress un-
der the 50 % reduced rainfall treatment which obscured the
O3–water stress dynamics. Further reducing the rainfall to
40 % of the normal amount increased the simulated water
deficit stress and produced the photosynthetic O3–water dy-
namics consistent with the other models (Fig. S5). The el-
evated CO2 concentration mitigated the detrimental effect
of O3 stress in the photosynthetic response for all models

(Figs. 4–7c), which agrees with recent global findings that
elevated CO2 concentrations can mitigate and even negate
elevated O3 impacts (Xia et al., 2021; Tai et al., 2021). In-
terestingly, the CROPGRO-Soybean model simulated an in-
verse O3–CO2 effect on relative yield under the 50 % rainfall
condition when examining SFOZ1 in detail (Fig. 6d). This
inverse yield response was due to the low actual yield sim-
ulated under the 50 % rainfall and low CO2 treatment (<
2000 kg ha�1, Table S7) which resulted in smaller changes
in yield compared to the 50 % rainfall and high CO2 treat-
ment, but the overall simulated aboveground biomass O3–
CO2–water interaction was as expected (Fig. S6).

For several of the observations from the actual soybean
field experiment using ‘Pana’, the yield increased under
higher O3 concentrations (⇠ 2 % to 18 %; Figs. 3c, S1b, and
S7). In some cases it is possible that elevated O3 concentra-
tions can benefit a crop via hormesis, a process where low
levels of intermittent stress may benefit overall crop growth
through improved resiliency (Calabrese, 2014). It is also
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Figure 7. Sensitivity analysis using the NWheat model to simulate relative yield due to elevated O3 stress for a range of (a) FOZ1 and
(b) SFOZ1 values under the Wet irrigation and 350 ppm CO2 scenario and an example of (c) FOZ1 and (d) SFOZ1 set at 0.5 under the
Dry irrigation and 350 ppm CO2 (solid red line), Wet irrigation and 350 ppm CO2 (solid black line), Dry irrigation and 550 ppm CO2
(dashed red line), and Wet irrigation and 550 CO2 (dashed black line) scenarios. The Maricopa, Arizona, USA, 1993 FACE weather, soil,
and management conditions were used for the reference location (Kimball et al., 1999; Guarin et al., 2019). Each O3 parameter was tested
independently; i.e., when examining FOZ1, SFOZ1 was set to zero and vice versa. The simulated actual yields are shown in Tables S8 and
S9.

possible that if elevated O3 concentrations reduce biomass
growth throughout the season, and therefore reduce nutri-
ent resource demand throughout the season, small yield in-
creases can occur from a larger pool of resources available
during the key reproductive/grain filling period (Asseng and
Van Herwaarden, 2003; Guarin et al., 2019). This increase
in yield under higher O3 concentrations was also observed
under several other soybean and rice cultivars from the lit-
erature (Fig. S2b and c). However, a soybean cultivar from
the literature, ‘Cumberland’, was reported to have a 34 %
increase under elevated O3 (67 ppb) compared to the con-
trol treatment (25 ppb), but such a large increase may indi-
cate that another outside factor affected the yields. Mulchi
et al. (1988) speculated that the large yield difference was
due to changes in the seasonal water dynamics, thereby caus-
ing increased drought stress under the control treatment com-
pared to the elevated O3 treatment. Reproducing rare occur-
rences where elevated O3 may result in yield increases can
be a challenge for the models because of the linear response

of the stress equations (Fig. S7). However, it may be pos-
sible depending on the simulated interactions between sea-
sonal dynamics of resources, as shown with the sensitivity
analysis of wheat yields in Guarin et al. (2019).

4.3 Uncertainty in model simulations and O3 exposure
field experiments

Crop models contain uncertainties due to simplification of
complex biological processes, but field experiments may also
contribute uncertainty via measurement. The soybean simu-
lations overestimated both biomass and yield across all culti-
vars and treatments for the 2010 SoyFACE experiment. Since
both the ambient and elevated O3 treatments were over-
estimated, it is unlikely that the simulated O3 interactions
caused the discrepancy. Examining the weather input showed
a 14 % increase in cumulative incoming solar radiation for
the 2010 growing season compared to the 2009 growing sea-
son (Fig. S4b). The 2010 season was warmer than the 2009
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Figure 8. Simulated relative yield due to O3 stress (solid lines) compared to the O3 exposure relationships (dotted lines) from the literature
data (symbols) for the (a) CERES-Maize, (b) CERES-Rice, (c) CROPGRO-Soybean, and (d) NWheat models. The calculated relative yield
from the well-known Weibull O3 response functions (dashed black lines, equations listed in Table S11) is based on the US NCLAN network
O3 exposure field experiments conducted between the 1960s and the 1980s (Adams et al., 1989; Lesser et al., 1990; Wang and Mauzerall,
2004; Tai et al., 2021). The O3 exposure–yield response linear fits of the three O3 sensitivities, tolerant (blue), intermediate (gold), and
sensitive (magenta), are given in Fig. S3. The cultivars were classified by grouping the cultivar O3 exposure–yield response (Fig. S2) into
three evenly distributed quantiles: 66 %–100 %, 33 %–66 %, and 0 %–33 %, respectively. The O3 sensitivities determined for each cultivar
are listed in Table S10. The simulated results for the crop models use the FOZ1 and SFOZ1 values from Table 1. For each model, the
same weather, soil, and dominant management conditions as in the normal rainfall and 350 ppm CO2 treatment of the sensitivity analysis
were used as reference (the O3 response functions from the literature included O3 field experiments conducted when the atmospheric CO2
concentration was ⇠ 350 ppm). The literature data consist of the relative yields (scaled to 25 ppb M7 O3) of the cultivars examined in the
Mills et al. (2018b) literature review combined with the maize and soybean cultivars used in this study for a total of 9 maize cultivars, 50 rice
cultivars, 49 soybean cultivars, and 23 wheat cultivars (listed in Table S10). For the O3 sensitivity of each crop, the root-mean-square error
(RMSE) and coefficient of determination (r2) show the crop model performance (RMSEsim) and the Weibull response function performance
(RMSEweibull) compared to the linear fit of the O3 exposure literature data (text color corresponds to O3 sensitivity). The color-shaded area
shows the standard error for the linear fit of the literature data for each of the cultivar O3 sensitivities.
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season, average seasonal temperature of 23.4 °C compared to
19.1 °C, but no heat stress was reported, and the difference in
rainfall was negligible, 445 mm compared to 454 mm. Since
management was the same for both years, and no water or N
stresses were reported, it was expected that the 2010 yields
would be higher than the 2009 yields due to the increased
solar radiation, but the average 2010 yield across all cultivars
for the ambient treatment decreased, 3300 kg ha�1 in 2010
compared to 3700 kg ha�1 in 2009. Therefore, it is possible
that an outside stress factor not considered within the model
limited soybean growth in the field in 2010 which led to the
model overestimating biomass and yield. One possibility is
that increased rainfall during the beginning of the 2010 sea-
son (221 mm in first 30 d compared to 153 mm in first 30 d of
the 2009 season; Fig. S4c) may have resulted in germination
or emergence stress due to excessive water such as flooding
or lodging, which are factors not yet considered in the crop
models.

The sensitivity analyses showed that the CO2 effect was
more pronounced in the model photosynthesis response than
in the leaf senescence response (compare solid and dashed
lines in Figs. 4–7c and d). This is because the models do not
have a CO2 effect directly applied to the daily leaf senes-
cence calculation, whereas CO2 directly affects the daily
photosynthesis calculation (PCARB in Eqs. 3 and 4 and
PRATIO in Eq. 9). Improved CO2 representation within
the crop models is being explored through the Agricultural
Model Intercomparison and Improvement Project (AgMIP)
studies (Ahmed et al., 2017, 2019; Toreti et al., 2020), but
additional high-quality data is needed for model testing.

5 Conclusion

Crop responses to elevated O3 concentrations were in-
corporated into the DSSAT CERES-Maize, CERES-Rice,
CROPGRO-Soybean, and NWheat crop models via func-
tions reducing photosynthetic activity and accelerating leaf
senescence. Model testing showed that each of the four mod-
els reproduced the observed O3 response from field experi-
ments and previous literature and the expected interactions
between O3, CO2, and water deficit stress. The simulated
yield responses were also more representative of the O3 ex-
posure literature data than the well-known Weibull O3 re-
sponse functions for all crops. Thus, this incorporation al-
lows improved simulation of the heterogeneity of O3 impacts
across geographical regions and systems, and across years
within seasons, which is more representative of real-world
interactions than using a generic damage coefficient. Over-
all, increasing M7 O3 concentrations had a negative effect
on growth and yield across all four crops, and this negative
effect was exacerbated by increased water availability and
ameliorated by elevated CO2 concentrations. The O3 impact
and stress response of the crop depends on the stress severity,
duration, frequency, cultivar sensitivity, and seasonal timing
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Table 5. Observed and simulated anthesis day and maturity day for the six maize cultivars from the 2018 FACE experiment (Choquette et
al., 2020) and the seven soybean cultivars from the 2009 and 2010 soybean SoyFACE experiments (Betzelberger et al., 2012). The observed
maturity dates were estimated from the single reported harvest date for all cultivars, but there may have been minor variation between the
different cultivars. Observed anthesis was not available for soybean.

Crop experiment Cultivar Observed Simulated Observed Simulated
anthesis anthesis maturity maturity

(dap) (dap) (dap) (dap)

Maize 2018 B73_x_Hp301 48 48 97 97
B73_x_Mo17 48 48 97 97
B73_x_NC338 48 48 97 97
Mo17_x_Hp301 48 48 97 97
Mo17_x_NC338 48 48 97 97
NC338_x_Hp301 48 48 97 97

Soybean 2009 Pioneer93B15 52 133 131
Dwight 48 133 126
HS93-4118 53 133 133
IA-3010 50 133 128
LN97-15076 55 133 137
Loda 52 133 132
Pana 54 133 134

Soybean 2010 Pioneer93B15 48 126 129
Dwight 44 126 125
HS93-4118 48 126 129
IA-3010 47 126 126
LN97-15076 50 126 131
Loda 48 126 130
Pana 51 126 131

(i.e., developmental stage), which can be accounted for by
using the updated crop models.

The addition of O3 stress functionality into crop models
will improve both near- and long-term simulations of global
environmental interactions using a key factor that is often not
included in agricultural and climate change assessments. The
DSSAT models in this study can be used to simulate the O3
impacts on crops in combination with climate change. The
O3 parameter values in this study can be used as prelimi-
nary approximations, but, to further improve model perfor-
mance and robustness of the O3 stress routines, the models
and parameters should continue to be tested and calibrated
with additional O3 exposure experimental data when avail-
able. In addition, the models should be compared with other
O3-modified crop models as part of multi-model ensemble
intercomparison and improvement assessments conducted by
the AgMIP (https://agmip.org/, last access: 28 March 2024).
As a next step, the AgMIP ozone team is currently conduct-
ing a multi-model ensemble study with crop models that
have the capacity to evaluate the responses of future crop
yields to different ozone concentrations. This effort will help
produce more robust estimates of climate change impacts
in global agriculture. The framework described here can be
used by other process-based crop models, local or gridded,
to incorporate O3 stress interactions into the model. This

model improvement also suggests potential future collabora-
tion between crop modelers and remote sensing experts using
weather and climate models with dynamic chemistry com-
ponents, such as the NASA Atmosphere Observing System
(https://aos.gsfc.nasa.gov/, last access: 28 March 2024).

Code and data availability. The current version of the DSSAT crop
modeling platform is available to download from the DSSAT
Foundation website (https://dssat.net/, Hoogenboom et al., 2019,
2021). The current version of the pSIMS framework is avail-
able to download from the RDCEP website (http://www.rdcep.org/
research-projects/psims; RDCEP, 2024). The O3-modified version
of the DSSAT crop models will be available with the next DSSAT
version release, and the O3-modified version of the pDSSAT
crop models is available from the GitHub repository at https:
//github.com/jguarin4/dssat-csm-os/tree/develop_v4.8_pdssat (last
access: 28 March 2024). An archived version of the code is also
available on Zenodo at https://doi.org/10.5281/zenodo.8284732
(Porter et al., 2023). The R code used to classify the culti-
var O3 sensitivities is available on the Harvard Dataverse at
https://doi.org/10.7910/DVN/0NN9MH (Guarin et al., 2023).

All field experimental and literature data used in this study
are available from the sources referenced. The crop model sim-
ulated output data is available on the Harvard Dataverse at
https://doi.org/10.7910/DVN/0NN9MH (Guarin et al., 2023).
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Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-2547-2024-supplement.

Author contributions. JRG and JJ designed and conducted the
study. EAA provided the O3 exposure field data. KS collated the
O3 exposure literature data. JRG and FAAO incorporated the O3
modifications into the DSSAT/pDSSAT model code. SA, KB, LE,
GH, and ACR provided insight on O3–crop interactions within the
crop models. JE, IF, and DK provided technical support and guid-
ance for the pSIMS/pDSSAT framework. JRG and JJ co-wrote the
paper. All authors contributed to editing the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors would like to thank Amy Betzel-
berger and Nicole Choquette for sharing the O3 field experiment
data. Jose Rafael Guarin and Katrina Sharps would like to thank
Stephanie Osborne for help with collecting the O3 exposure litera-
ture data. Contributions from Jose Rafael Guarin, Jonas Jägermeyr,
and Alex C. Ruane were also enabled by the NASA Earth Science
Division’s support of the NASA GISS Climate Impacts group.

Financial support. This research has been supported by the Open
Philanthropy Project. Alex C. Ruane was funded by the NASA
Earth Sciences Division support of the NASA GISS Climate Im-
pacts Group.

Review statement. This paper was edited by Klaus Klingmüller and
reviewed by two anonymous referees.

References

Adams, R. M., Glyer, J. D., Johnson, S. L., and McCarl, B. A.:
A reassessment of the economic effects of ozone on United
States agriculture, J. Air Waste Manage. A., 39, 960–968,
https://doi.org/10.1080/08940630.1989.10466583, 1989.

Ahmed, M., Stockle, C. O., Nelson, R., and Higgins, S.: Assess-
ment of Climate Change and Atmospheric CO2 Impact on Winter
Wheat in the Pacific Northwest Using a Multimodel Ensemble,
Front. Ecol. Evol., 5, https://doi.org/10.3389/fevo.2017.00051,
2017.

Ahmed, M., Stockle, C. O., Nelson, R., Higgins, S., Ahmad, S.,
and Raza, M. A.: Novel multimodel ensemble approach to evalu-

ate the sole effect of elevated CO2 on winter wheat productivity,
Sci. Rep., 9, 7813., https://doi.org/10.1038/s41598-019-44251-x,
2019.

Ainsworth, E. A.: Understanding and improving global
crop response to ozone pollution, Plant J., 90, 886–897,
https://doi.org/10.1111/tpj.13298, 2017.

Arias, P. A., Bellouin, N., Coppola, E., Jones, R. G., Krinner, G.,
Marotzke, J., Naik, V., Palmer, M. D., Plattner, G.-K., Rogelj, J.,
Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P. W., Trewin, B.,
Achuta Rao, K., Adhikary, B., Allan, R. P., Armour, K., Bala, G.,
Barimalala, R., Berger, S., Canadell, J. G., Cassou, C., Cherchi,
A., Collins, W., Collins, W. D., Connors, S. L., Corti, S., Cruz,
F., Dentener, F. J., Dereczynski, C., Di Luca, A., Diongue Niang,
A., Doblas-Reyes, F. J., Dosio, A., Douville, H., Engelbrecht, F.,
Eyring, V., Fischer, E., Forster, P., Fox-Kemper, B., Fuglestvedt,
J. S., Fyfe, J. C., Gillett, N. P., Goldfarb, L., Gorodetskaya, I.,
Gutierrez, J. M., Hamdi, R., Hawkins, E., Hewitt, H. T., Hope,
P., Islam, A. S., Jones, C., Kaufman, D. S., Kopp, R. E., Kosaka,
Y., Kossin, J., Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T.,
Maycock, T. K., Meinshausen, M., Min, S.-K., Monteiro, P. M.
S., Ngo-Duc, T., Otto, F., Pinto, I., Pirani, A., Raghavan, K.,
Ranasinghe, R., Ruane, A. C., Ruiz, L., Sallée, J.-B., Samset,
B. H., Sathyendranath, S., Seneviratne, S. I., Sörensson, A. A.,
Szopa, S., Takayabu, I., Tréguier, A.-M., van den Hurk, B., Vau-
tard, R., von Schuckmann, K., Zaehle, S., Zhang, X., and Zick-
feld, K.: Technical Summary, in: Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to
the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pi-
rani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen,
Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lon-
noy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 33–144,
https://doi.org/10.1017/9781009157896.002, 2021.

Asseng, S. and van Herwaarden, A. F.: Analysis of the bene-
fits to wheat yield from assimilates stored prior to grain fill-
ing in a range of environments, Plant Soil, 256, 217–229,
https://doi.org/10.1023/a:1026231904221, 2003.

Asseng, S., Jamieson, P. D., Kimball, B., Pinter, P., Sayre,
K., Bowden, J. W., and Howden, S. M.: Simulated wheat
growth affected by rising temperature, increased water deficit
and elevated atmospheric CO2, Field Crops Res., 85, 85–102,
https://doi.org/10.1016/s0378-4290(03)00154-0, 2004.

Asseng, S., Ewert, F., Martre, P., Rotter, R. P., Lobell, D. B., Cam-
marano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White,
J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggar-
wal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J.,
De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vile, M., Gayler,
S., Hoogenboom, G., Hunt, L. A., Izaurralde, R. C., Jabloun,
M., Jones, C. D., Kersebaum, K. C., Koehler, A. K., Muller,
C., Kumar, S. N., Nendel, C., O’Leary, G., Olesen, J. E., Palo-
suo, T., Priesack, E., Rezaei, E. E., Ruane, A. C., Semenov,
M. A., Shcherbak, I., Stockle, C., Stratonovitch, P., Streck, T.,
Supit, I., Tao, F., Thorburn, P. J., Waha, K., Wang, E., Wal-
lach, D., Wolf, I., Zhao, Z., and Zhu, Y.: Rising temperatures
reduce global wheat production, Nat. Clim. Change, 5, 143–147,
https://doi.org/10.1038/nclimate2470, 2015.

Geosci. Model Dev., 17, 2547–2567, 2024 https://doi.org/10.5194/gmd-17-2547-2024

https://doi.org/10.5194/gmd-17-2547-2024-supplement
https://doi.org/10.1080/08940630.1989.10466583
https://doi.org/10.3389/fevo.2017.00051
https://doi.org/10.1038/s41598-019-44251-x
https://doi.org/10.1111/tpj.13298
https://doi.org/10.1017/9781009157896.002
https://doi.org/10.1023/a:1026231904221
https://doi.org/10.1016/s0378-4290(03)00154-0
https://doi.org/10.1038/nclimate2470


J. R. Guarin et al.: DSSAT v4.8.0 2565

Bassu, S., Brisson, N., Durand, J. L., Boote, K., Lizaso, J., Jones,
J. W., Rosenzweig, C., Ruane, A. C., Adam, M., Baron, C.,
Basso, B., Biernath, C., Boogaard, H., Conijn, S., Corbeels, M.,
Deryng, D., De Sanctis, G., Gayler, S., Grassini, P., Hatfield,
J., Hoek, S., Izaurralde, C., Jongschaap, R., Kemanian, A. R.,
Kersebaum, K. C., Kim, S. H., Kumar, N. S., Makowski, D.,
Muller, C., Nendel, C., Priesack, E., Pravia, M. V., Sau, F.,
Shcherbak, I., Tao, F., Teixeira, E., Timlin, D., and Waha, K.:
How do various maize crop models vary in their responses to
climate change factors?, Global Change Biol., 20, 2301–2320,
https://doi.org/10.1111/gcb.12520, 2014.

Betzelberger, A. M., Yendrek, C. R., Sun, J. D., Leisner, C. P., Nel-
son, R. L., Ort, D. R., and Ainsworth, E. A.: Ozone Exposure
Response for U.S. Soybean Cultivars: Linear Reductions in Pho-
tosynthetic Potential, Biomass, and Yield, Plant Physiol., 160,
1827–1839, https://doi.org/10.1104/pp.112.205591, 2012.

Biswas, D. K., Xu, H., Li, Y. G., Ma, B. L., and Jiang, G.
M.: Modification of photosynthesis and growth responses to
elevated CO2 by ozone in two cultivars of winter wheat
with different years of release, J. Exp. Bot., 64, 1485–1496,
https://doi.org/10.1093/jxb/ert005, 2013.

Boote, K. J. and Pickering, N. B.: Modeling photosynthe-
sis of row crop canopies, Hortscience, 29, 1423–1434,
https://doi.org/10.21273/hortsci.29.12.1423, 1994.

Calabrese, E. J.: Hormesis: a fundamental con-
cept in biology, Microb. Cell, 1, 145–149,
https://doi.org/10.15698/mic2014.05.145, 2014.

Choquette, N. E., Ainsworth, E. A., Bezodis, W., and Cavanagh, A.
P.: Ozone tolerant maize hybrids maintain Rubisco content and
activity during long-term exposure in the field, Plant Cell Envi-
ron., 43, 3033–3047, https://doi.org/10.1111/pce.13876, 2020.

Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N.
V., Cupeiro, M., Galbally, I. E., Gilge, S., Horowitz, L.,
Jensen, N. R., Lamarque, J.-F., Naik, V., Oltmans, S. J.,
Schwab, J., Shindell, D. T., Thompson, A. M., Thouret,
V., Wang, Y., and Zbinden, R. M.: Global distribution
and trends of tropospheric ozone: An observation-based re-
view, Elementa Science of the Anthropocene, 2, 000029,
https://doi.org/10.12952/journal.elementa.000029, 2014.

Elliott, J., Kelly, D., Chryssanthacopoulos, J., Glotter, M.,
Jhunjhnuwala, K., Best, N., Wilde, M., and Foster, I.:
The parallel system for integrating impact models and
sectors (pSIMS), Environ. Model. Softw., 62, 509–516,
https://doi.org/10.1016/j.envsoft.2014.04.008, 2014.

Emberson, L.: Effects of ozone on agriculture, forests
and grasslands, Philos. T. Roy. Soc. A, 378, 27,
https://doi.org/10.1098/rsta.2019.0327, 2020.

Emberson, L. D., Pleijel, H., Ainsworth, E. A., van den Berg, M.,
Ren, W., Osborne, S., Mills, G., Pandey, D., Dentener, F., Buker,
P., Ewert, F., Koeble, R., and Van Dingenen, R.: Ozone effects
on crops and consideration in crop models, Eur. J. Agron., 100,
19–34, https://doi.org/10.1016/j.eja.2018.06.002, 2018.

Feng, Z. Z. and Kobayashi, K.: Assessing the impacts of cur-
rent and future concentrations of surface ozone on crop
yield with meta-analysis, Atmos. Environ., 43, 1510–1519,
https://doi.org/10.1016/j.atmosenv.2008.11.033, 2009.

Feng, Z. Z., Xu, Y. S., Kobayashi, K., Dai, L. L., Zhang, T. Y.,
Agathokleous, E., Calatayud, V., Paoletti, E., Mukherjee, A.,
Agrawal, M., Park, R. J., Oak, Y. J., and Yue, X.: Ozone pollu-

tion threatens the production of major staple crops in East Asia,
Nature Food, 3, 47, https://doi.org/10.1038/s43016-021-00422-
6, 2022.

Griffiths, P. T., Murray, L. T., Zeng, G., Shin, Y. M., Abraham, N.
L., Archibald, A. T., Deushi, M., Emmons, L. K., Galbally, I.
E., Hassler, B., Horowitz, L. W., Keeble, J., Liu, J., Moeini, O.,
Naik, V., O’Connor, F. M., Oshima, N., Tarasick, D., Tilmes, S.,
Turnock, S. T., Wild, O., Young, P. J., and Zanis, P.: Tropospheric
ozone in CMIP6 simulations, Atmos. Chem. Phys., 21, 4187–
4218, https://doi.org/10.5194/acp-21-4187-2021, 2021.

Guarin, J. R., Kassie, B., Mashaheet, A. M., Burkey, K.,
and Asseng, S.: Modeling the effects of tropospheric ozone
on wheat growth and yield, Eur. J. Agron., 105, 13–23,
https://doi.org/10.1016/j.eja.2019.02.004, 2019.

Guarin, J. R., Jägermeyr, J., Ainsworth, E. A., Oliveira, F. A. A., As-
seng, S., Boote, K., Elliott, J., Emberson, L., Foster, I., Hoogen-
boom, G., Kelly, D., Ruane, A. C., and Sharps, K.: Data for mod-
eling the effects of tropospheric ozone on the growth and yield of
global staple crops with DSSAT v4.8.0, V2, Harvard Dataverse
[data set], https://doi.org/10.7910/DVN/0NN9MH, 2023.

Heck, W. W., Cure, W. W., Rawlings, J. O., Zaragoza, L. J.,
Heagle, A. S., Heggestad, H. E., Kohut, R. J., Kress, L.
W., and Temple, P. J.: Assessing impacts of ozone on agri-
cultural crops: 2. Crop yield functions and alternative ex-
posure statistics, J. Air Pollut. Control A., 34, 810–817,
https://doi.org/10.1080/00022470.1984.10465815, 1984.

Hoogenboom, G., Porter, C. H., Boote, K. J., Shelia, V., Wilkens, P.
W., Singh, U., White, J. W., Asseng, S., Lizaso, J. I., Moreno, L.
P., Pavan, W., Ogoshi, R., Hunt, L. A., Tsuji, G. Y., and Jones,
J. W.: The DSSAT crop modeling ecosystem, in: Advances in
Crop Modeling for a Sustainable Agriculture, edited by: Boote,
K. J., Burleigh Dodds Science Publishing, Cambridge, United
Kingdom, 173–216, https://doi.org/10.19103/AS.2019.0061.10,
2019.

Hoogenboom, G., Porter, C. H., Shelia, V., Boote, K. J., Singh, U.,
White, J. W., Pavan, W., Oliveira, F. A. A., Moreno-Cadena, L. P.,
Lizaso, J. I., Asseng, S., Pequeno, D. N. L., Kimball, B. A., Al-
derman, P. D., Thorp, K. R., Jones, M. R., Cuadra, S. V., Vianna,
M. S., Villalobos, F. J., Ferreira, T. B., Batchelor, W. D., Koo,
J., Hunt, L. A., and Jones, J. W.: Decision Support System for
Agrotechnology Transfer (DSSAT) Version 4.8, DSSAT Foun-
dation, Gainesville, Florida, USA [code], http://www.DSSAT.net
(last access: 28 March 2024), 2021.

Hou, P. and Wu, S. L.: Long-term Changes in Extreme Air Pollution
Meteorology and the Implications for Air Quality, Sci. Rep., 6,
23792, https://doi.org/10.1038/srep23792, 2016.

Hunsaker, D. J., Kimball, B. A., Pinter, P. J., LaMorte, R. L., and
Wall, G. W.: Carbon dioxide enrichment and irrigation effects on
wheat evapotranspiration and water use efficiency, Transactions
of the Asae, 39, 1345–1355, 1996.

IPCC: Climate Change 2021: The Physical Science Basis. Con-
tribution of Working Group I to the Sixth Assessment Re-
port of the Intergovernmental Panel on Climate Change,
edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Con-
nors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Gold-
farb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi,
O., Yu, R., and Zhou, B., Cambridge University Press, Cam-

https://doi.org/10.5194/gmd-17-2547-2024 Geosci. Model Dev., 17, 2547–2567, 2024

https://doi.org/10.1111/gcb.12520
https://doi.org/10.1104/pp.112.205591
https://doi.org/10.1093/jxb/ert005
https://doi.org/10.21273/hortsci.29.12.1423
https://doi.org/10.15698/mic2014.05.145
https://doi.org/10.1111/pce.13876
https://doi.org/10.12952/journal.elementa.000029
https://doi.org/10.1016/j.envsoft.2014.04.008
https://doi.org/10.1098/rsta.2019.0327
https://doi.org/10.1016/j.eja.2018.06.002
https://doi.org/10.1016/j.atmosenv.2008.11.033
https://doi.org/10.1038/s43016-021-00422-6
https://doi.org/10.1038/s43016-021-00422-6
https://doi.org/10.5194/acp-21-4187-2021
https://doi.org/10.1016/j.eja.2019.02.004
https://doi.org/10.7910/DVN/0NN9MH
https://doi.org/10.1080/00022470.1984.10465815
https://doi.org/10.19103/AS.2019.0061.10
http://www.DSSAT.net
https://doi.org/10.1038/srep23792


2566 J. R. Guarin et al.: DSSAT v4.8.0

bridge, United Kingdom and New York, NY, USA, 2391,
https://doi.org/10.1017/9781009157896, 2021.

Jagermeyr, J., Muller, C., Ruane, A. C., Elliott, J., Balkovic, J.,
Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A.,
Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T.,
Jain, A. K., Kelly, D., Khabarov, N., Lange, S., Lin, T. S., Liu,
W. F., Mialyk, O., Minoli, S., Moyer, E. J., Okada, M., Phillips,
M., Porter, C., Rabin, S. S., Scheer, C., Schneider, J. M., Schyns,
J. F., Skalsky, R., Smerald, A., Stella, T., Stephens, H., Webber,
H., Zabel, F., and Rosenzweig, C.: Climate impacts on global
agriculture emerge earlier in new generation of climate and crop
models, Nature Food, 2, 875, https://doi.org/10.1038/s43016-
021-00400-y, 2021.

Jones, C. A. and Kiniry, J. R. (Eds.): CERES-Maize: A simulation
model of maize growth and development, Texas A&M University
Press, College Station, TX, ISBN 0890962693, 1986.

Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batch-
elor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman,
A. J., and Ritchie, J. T.: The DSSAT cropping system model,
Eur. J. Agron., 18, 235–265, https://doi.org/10.1016/s1161-
0301(02)00107-7, 2003.

Khan, S. and Soja, G.: Yield responses of wheat to ozone
exposure as modified by drought-induced differences
in ozone uptake, Water Air Soil Pollut., 147, 299–315,
https://doi.org/10.1023/a:1024577429129, 2003.

Kimball, B. A., LaMorte, R. L., Pinter, P. J., Wall, G. W., Hun-
saker, D. J., Adamsen, F. J., Leavitt, S. W., Thompson, T.
L., Matthias, A. D., and Brooks, T. J.: Free-air CO2 enrich-
ment and soil nitrogen effects on energy balance and evap-
otranspiration of wheat, Water Resour. Res., 35, 1179–1190,
https://doi.org/10.1029/1998wr900115, 1999.

Kimball, B. A., Pinter Jr., P. J., LaMorte, R. L., Leavitt, S. W., Hun-
saker, D. J., Wall, G. W., Wechsung, F., Wechsung, G., Bloom,
A. J., and White, J. W.: Data from the Arizona FACE (free-air
CO2 enrichment) experiments on wheat at ample and limiting
levels of water and nitrogen, Open Data J. Agric. Res., 3, 29–38,
https://doi.org/10.18174/odjar.v3i1.15826, 2017.

Kothari, K., Battisti, R., Boote, K. J., Archontoulis, S. V., Con-
falone, A., Constantin, J., Cuadra, S. V., Debaeke, P., Faye,
B., Grant, B., Hoogenboom, G., Jing, Q., van der Laan, M.,
da Silva, F. A. M., Marin, F. R., Nehbandani, A., Nendel,
C., Purcell, L. C., Qian, B. D., Ruane, A. C., Schoving, C.,
Silva, E., Smith, W., Soltani, A., Srivastava, A., Vieira, N. A.,
Slone, S., and Salmeron, M.: Are soybean models ready for cli-
mate change food impact assessments?, Eur. J. Agron., 135, 15,
https://doi.org/10.1016/j.eja.2022.126482, 2022.

Lesser, V. M., Rawlings, J. O., Spruill, S. E., and
Somerville, M. C.: Ozone effects on agricultural
crops: Statistical methodologies and estimated dose-
response relationships, Crop Sci., 30, 148–155,
https://doi.org/10.2135/cropsci1990.0011183X003000010033x,
1990.

Leung, F., Williams, K., Sitch, S., Tai, A. P. K., Wiltshire, A., Gor-
nall, J., Ainsworth, E. A., Arkebauer, T., and Scoby, D.: Cali-
brating soybean parameters in JULES 5.0 from the US-Ne2/3
FLUXNET sites and the SoyFACE-O3 experiment, Geosci.
Model Dev., 13, 6201–6213, https://doi.org/10.5194/gmd-13-
6201-2020, 2020.

Li, T., Hasegawa, T., Yin, X. Y., Zhu, Y., Boote, K., Adam, M.,
Bregaglio, S., Buis, S., Confalonieri, R., Fumoto, T., Gaydon,
D., Marcaida, M., Nakagawa, H., Oriol, P., Ruane, A. C., Ruget,
F., Singh, B., Singh, U., Tang, L., Tao, F. L., Wilkens, P.,
Yoshida, H., Zhang, Z., and Bouman, B.: Uncertainties in pre-
dicting rice yield by current crop models under a wide range
of climatic conditions, Global Change Biol., 21, 1328–1341,
https://doi.org/10.1111/gcb.12758, 2015.

Mills, G., Sharps, K., Simpson, D., Pleijel, H., Broberg, M.,
Uddling, J., Jaramillo, F., Davies, W. J., Dentener, F., Van
den Berg, M., Agrawal, M., Agrawal, S. B., Ainsworth, E.
A., Buker, P., Emberson, L., Feng, Z. Z., Harmens, H.,
Hayes, F., Kobayashi, K., Paoletti, E., and Van Dingenen,
R.: Ozone pollution will compromise efforts to increase
global wheat production, Global Change Biol., 24, 3560–3574,
https://doi.org/10.1111/gcb.14157, 2018a.

Mills, G., Sharps, K., Simpson, D., Pleijel, H., Frei, M., Burkey, K.,
Emberson, L., Uddling, J., Broberg, M., Feng, Z. Z., Kobayashi,
K., and Agrawal, M.: Closing the global ozone yield gap: Quan-
tification and cobenefits for multistress tolerance, Global Change
Biol., 24, 4869–4893, https://doi.org/10.1111/gcb.14381, 2018b.

Morris, M. D.: Factorial sampling plans for preliminary
computational experiments, Technometrics, 33, 161–174,
https://doi.org/10.2307/1269043, 1991.

Mulchi, C. L., Lee, E., Tuthill, K., and Olinick, E. V.: Influence of
ozone stress on growth-processes, yields and grain quality char-
acteristics among soybean cultivars, Environ. Pollut., 53, 151–
169, https://doi.org/10.1016/0269-7491(88)90031-0, 1988.

NRCS, S. S. S.: Natural Resources Conservation Service, United
States Department of Agriculture, Web Soil Survey [data set],
https://websoilsurvey.nrcs.usda.gov/app/ (last access: 20 Jan-
uary 2023), 2023.

Osborne, S. A., Mills, G., Hayes, F., Ainsworth, E. A., Buker,
P., and Emberson, L.: Has the sensitivity of soybean cultivars
to ozone pollution increased with time? An analysis of pub-
lished dose-response data, Global Change Biol., 22, 3097–3111,
https://doi.org/10.1111/gcb.13318, 2016.

Porter, C., Hoogenboom, G., Murilodsv, Pavan, W., Ferreira, T.
B., Zhang, M., palderman, Thorp, K., Guarin, J., Mulugetaifdc,
Vásquez-Jiménez, J., Villalobos, C., Clifford, D., YujingGao-
git, singhu, and vshelia: jguarin4/dssat-csm-os: v4.8.0.27-
pDSSAT-archive (v4.8.0.27_pDSSAT-archive), Zenodo [code],
https://doi.org/10.5281/zenodo.8284732, 2023.

R Core Team: R: a language and environment for statistical com-
puting, R Core Team [code], https://www.R-project.org/ (last ac-
cess: 28 March 2024), 2023.

RDCEP: pSIMS, RDCEP [code], http://www.rdcep.org/
research-projects/psims (last access: 28 March 2024), 2024.

Ritchie, J. T., Alocilja, E. C., Singh, U., and Uehara, G.: IBSNAT
and the CERES-RICE model, in: Weather and Rice, Proceedings
of the International Workshop on The Impact of Weather Param-
eters on Growth and Yield of Rice, IRRI, Philippines, 271–283,
1987.

Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C.,
Boote, K. J., Thorburne, P., Antle, J. M., Nelson, G. C.,
Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert, F., Wal-
lach, D., Baigorria, G., and Winter, J. M.: The Agricultural
Model Intercomparison and Improvement Project (AgMIP): Pro-

Geosci. Model Dev., 17, 2547–2567, 2024 https://doi.org/10.5194/gmd-17-2547-2024

https://doi.org/10.1017/9781009157896
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1016/s1161-0301(02)00107-7
https://doi.org/10.1016/s1161-0301(02)00107-7
https://doi.org/10.1023/a:1024577429129
https://doi.org/10.1029/1998wr900115
https://doi.org/10.18174/odjar.v3i1.15826
https://doi.org/10.1016/j.eja.2022.126482
https://doi.org/10.2135/cropsci1990.0011183X003000010033x
https://doi.org/10.5194/gmd-13-6201-2020
https://doi.org/10.5194/gmd-13-6201-2020
https://doi.org/10.1111/gcb.12758
https://doi.org/10.1111/gcb.14157
https://doi.org/10.1111/gcb.14381
https://doi.org/10.2307/1269043
https://doi.org/10.1016/0269-7491(88)90031-0
https://websoilsurvey.nrcs.usda.gov/app/
https://doi.org/10.1111/gcb.13318
https://doi.org/10.5281/zenodo.8284732
https://www.R-project.org/
http://www.rdcep.org/research-projects/psims
http://www.rdcep.org/research-projects/psims


J. R. Guarin et al.: DSSAT v4.8.0 2567

tocols and pilot studies, Agric. Forest Meteorol., 170, 166–182,
https://doi.org/10.1016/j.agrformet.2012.09.011, 2013.

Sampedro, J., Waldhoff, S. T., Van de Ven, D. J., Pardo, G., Van Din-
genen, R., Arto, I., del Prado, A., and Sanz, M. J.: Future impacts
of ozone driven damages on agricultural systems, Atmos. En-
viron., 231, 11, https://doi.org/10.1016/j.atmosenv.2020.117538,
2020.

Schauberger, B., Rolinski, S., Schaphoff, S., and Muller, C.:
Global historical soybean and wheat yield loss estimates
from ozone pollution considering water and temperature
as modifying effects, Agric. Forest Meteorol., 265, 1–15,
https://doi.org/10.1016/j.agrformet.2018.11.004, 2019.

Schiferl, L. D. and Heald, C. L.: Particulate matter air pollu-
tion may offset ozone damage to global crop production, At-
mos. Chem. Phys., 18, 5953–5966, https://doi.org/10.5194/acp-
18-5953-2018, 2018.

Simpson, D., Arneth, A., Mills, G., Solberg, S., and Uddling, J.:
Ozone – the persistent menace: interactions with the N cy-
cle and climate change, Curr. Opin. Env. Sust., 9–10, 9–19,
https://doi.org/10.1016/j.cosust.2014.07.008, 2014.

Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins,
W. D., Fuzzi, S., Gallardo, L., Kiendler-Scharr, A., Klimont,
Z., Liao, H., Unger, N., and Zanis, P.: 2021: Short-Lived Cli-
mate Forcers, in: Climate Change 2021: The Physical Sci-
ence Basis. Contribution of Working Group I to the Sixth As-
sessment Report of the Intergovernmental Panel on Climate
Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Gold-
farb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi,
O., Yu, R., and Zhou, B., Cambridge University Press, Cam-
bridge, United Kingdom and New York, NY, USA, 817–922,
https://doi.org/10.1017/9781009157896.008, 2021.

Tai, A. P. K., Sadiq, M., Pang, J. Y. S., Yung, D. H. Y., and
Feng, Z. Z.: Impacts of Surface Ozone Pollution on Global Crop
Yields: Comparing Different Ozone Exposure Metrics and In-
corporating Co-effects of CO2, Front. Sust. Food Syst., 5, 18,
https://doi.org/10.3389/fsufs.2021.534616, 2021.

Toreti, A., Deryng, D., Tubiello, F. N., Muller, C., Kimball, B. A.,
Moser, G., Boote, K., Asseng, S., Pugh, T. A. M., Vanuytrecht,
E., Pleijel, H., Webber, H., Durand, J. L., Dentener, F., Ceglar,
A., Wang, X. H., Badeck, F., Lecerf, R., Wall, G. W., van den
Berg, M., Hoegy, P., Lopez-Lozano, R., Zampieri, M., Gal-
marini, S., O’Leary, G. J., Manderscheid, R., Contreras, E.
M., and Rosenzweig, C.: Narrowing uncertainties in the ef-
fects of elevated CO2 on crops, Nature Food, 1, 775–782,
https://doi.org/10.1038/s43016-020-00195-4, 2020.

USDA NASS: Field crops usual planting and harvest dates (Oc-
tober 2010), Agricultural Handbook Number 628, https://usda.
library.cornell.edu/concern/publications/vm40xr56k (last access:
20 January 2023), 2010.

Wang, X. P. and Mauzerall, D. L.: Characterizing distributions of
surface ozone and its impact on grain production in China, Japan
and South Korea: 1990 and 2020, Atmos. Environ., 38, 4383–
4402, https://doi.org/10.1016/j.atmosenv.2004.03.067, 2004.

Wickham, H.: ggplot2: Elegant Graphics for Data Analysis,
Springer-Verlag NY [code], ISBN 978-3-319-24277-4, https://
ggplot2.tidyverse.org (last access: 28 March 2024), 2016.

Wickham, H., François, R., Henry, L., Müller, K., and Vaughan,
D.: dplyr: A Grammar of Data Manipulation, R package version
1.1.2, GitHub [code], https://github.com/tidyverse/dplyr (last ac-
cess: 28 March 2024), 2023.

Wilkerson, G. G., Jones, J. W., Boote, K. J., Ingram, K. T., and
Mishoe, J. W.: Modeling soybean growth for crop management,
Transactions of the Asae, 26, 63–73, 1983.

Xia, L. L., Lam, S. K., Kiese, R., Chen, D. L., Luo, Y. Q., van
Groenigen, K. J., Ainsworth, E. A., Chen, J., Liu, S. W., Ma, L.,
Zhu, Y. H., and Butterbach-Bahl, K.: Elevated CO2 negates O3
impacts on terrestrial carbon and nitrogen cycles, One Earth, 4,
1752–1763, https://doi.org/10.1016/j.oneear.2021.11.009, 2021.

Zhang, Y. Z. and Wang, Y. H.: Climate-driven ground-level
ozone extreme in the fall over the Southeast United
States, P. Natl. Acad. Sci. USA, 113, 10025–10030,
https://doi.org/10.1073/pnas.1602563113, 2016.

https://doi.org/10.5194/gmd-17-2547-2024 Geosci. Model Dev., 17, 2547–2567, 2024

https://doi.org/10.1016/j.agrformet.2012.09.011
https://doi.org/10.1016/j.atmosenv.2020.117538
https://doi.org/10.1016/j.agrformet.2018.11.004
https://doi.org/10.5194/acp-18-5953-2018
https://doi.org/10.5194/acp-18-5953-2018
https://doi.org/10.1016/j.cosust.2014.07.008
https://doi.org/10.1017/9781009157896.008
https://doi.org/10.3389/fsufs.2021.534616
https://doi.org/10.1038/s43016-020-00195-4
https://usda.library.cornell.edu/concern/publications/vm40xr56k
https://usda.library.cornell.edu/concern/publications/vm40xr56k
https://doi.org/10.1016/j.atmosenv.2004.03.067
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://github.com/tidyverse/dplyr
https://doi.org/10.1016/j.oneear.2021.11.009
https://doi.org/10.1073/pnas.1602563113

	Abstract
	Highlights
	Introduction
	Materials and methods
	Description of crop models
	O3 incorporation into the crop models
	CERES-Maize and CERES-Rice models
	CROPGRO-Soybean model
	DSSAT-NWheat model

	Observed O3 exposure field experiments
	Sensitivity analysis of O3 equations and parameters
	Observed O3 exposure relationships based on the literature

	Results
	Calibration of crop models and simulated relative yield loss against O3 exposure field experiments
	Sensitivity analysis and combined effects of O3, CO2, and water deficit stress on yields
	Simulated relative yield loss compared to O3 relationships in the literature

	Discussion
	Simulating O3 damage on crop yields
	Simulated relative yield loss with the combined effects of O3, CO2, and water deficit stress
	Uncertainty in model simulations and O3 exposure field experiments

	Conclusion
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

