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Lipschitz Stability Estimate for An Initial Wave
Reconstruction Problem of Telegraph Type with

Gaussian Noise
Dat-Thuc Nguyen, Ngoc Tuan Duong and Vo Anh Khoa

Abstract—This work is devoted to the study of an initial wave
reconstruction problem of telegraph type. Our specific goal is to
determine the initial spikes of an idealized signal in a telegraph
wire from two consecutive observations contaminated by Gaus-
sian noise. Our main result shows that the initial reconstruction
is Lipschitz stable in the expectation operator. The proof relies
upon the integral representation of solution for Cauchy data,
together with the use of the truncated Fourier approximator.
Additionally, we prove that the reconstructed initial data are
exactly observable. Some numerical tests are given to validate
our theoretical findings.

Index Terms—Initial wave reconstruction, Telegraph equation,
Stability, Exact observability, Gaussian noise.

I. INTRODUCTION

Nowadays, time-dependent coefficient inverse problems are of
interest in various applications. These include computed to-
mography in acoustical problems [1]–[4], reconstructing blood
perfusion rates in thermal-wave models [5], recovering the
so-called potential in structural geology [6], [7], and several
publications cited therein. In this work, we are interested in
an inverse model of the telegraph equation with the aim of
determining the initial spikes of an idealized signal, which
is referred to as the initial wave reconstruction problem of
telegraph type.

The telegraph equation is a partial differential equation
(PDE) that describes the propagation of electrical signals
along transmission lines, helping in understanding various
phenomena in telecommunications and signal processing, such
as signal distortion, transmission delay, and attenuation. In
principle, this equation can be understood as an extension of
the more familiar wave equation (cf. [8]), incorporating both
wave-like and diffusion-like behavior. Formally, the telegraph
equation is expressed as:

utt + (a+ b)ut + abu = c2uxx, (1)
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for (x, t) ∈ ΩT := (0, ℓ)× (0, T ) and

a =
R

L
, b =

G

C
, c =

1√
LC

.

Here, u represents the voltage along the transmission line, and
L,C,R denote the inductance, capacitance, and resistance per
unit length of the transmission line, respectively.
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Fig. 1. A typical modeling of a transmission line of a length ∆x. In this
figure, V (x, t) indicates the voltage at the position x with respect to ground
at any time t, and I(x, t) is the current at x and time t. C(x, t) and G(x, t)
represent capacitance and conductance to ground; L(x, t) and R(x, t) stand
for inductance and resistance, respectively, at x and time t. These result in
the total capacitance, conductance, inductance, and resistance ∆xC(x, t),
∆xG(x, t), ∆xL(x, t), ∆xR(x, t), respectively, for the line of length ∆x.

It is worth mentioning that significant efforts have been
made in the literature to advance the development of the
forward model of the telegraph equation. For instance, Koksal
et al. [9] and Mittal et al. [10], [11] have had various numerical
studies on different types of the telegraph equation. Recently,
Koksal et al. [12] expanded on their contributions by exploring
different numerical methods for solving telegraph equations
with variable coefficients. Additionally, Cohen and Loughlin
[13] developed phase space approximators to analyze the
telegraph PDE.

A. Reconstruction model

We assume that the voltage clamped at both ends can be
described using the following time-dependent C2 functions

u (0, t) = A (t) , u (ℓ, t) = B (t) for t ∈ (0, T ) . (2)

The reference voltage is r (x, t) = A (t) + x
ℓ [B (t)−A (t)] .

Then, define v (x, t) = u (x, t) − r (x, t). Based on (1),
function v = v (x, t) obeys the following PDE:

vtt + (a+ b) vt + abv = c2vxx + F (x, t) (3)
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for (x, t) ∈ ΩT , where

F (x, t) =
(x
ℓ
− 1
)
[Att(t) + (a+ b)At(t) + abA(t)]

− x

ℓ
[Btt(t) + (a+ b)Bt(t) + abB(t)] .

In this scenario, the non-homogeneous equation (3) satisfies
the zero Dirichlet boundary conditions. Now, we state the
inverse model of interest.

Initial Wave Reconstruction (IWR). Determine the initial
signal u (x, 0) = g0 (x) from two consecutive snaphots:

u (x, T ) = gT (x) , u
(
x, T̃

)
= hT (x) , (4)

where T̃ = T +∆t with ∆t < 1 being fixed.
In practice, data measurements always contain noise. Here,

to denote noisy functions, we use the superscript ε, which is
typically understood as the noise level.

Remark 1. In our theory below, we rely on the terminal data
ut (x, T ) ∈ L2(0, ℓ), and for ease of presentation, we denote
ut (x, T ) = qT (x). By the Taylor expansion of u

(
x, T̃

)
about

t = T , we can find a small quantity η∆t ∈
(
T, T̃

)
such that

qT (x) =
hT (x)− gT (x)

∆t
− ∆t

2
utt (x, η∆t) . (5)

Let gεT and hεT be the noisy functions of gT and hT , respec-
tively. Accordingly, we define the corresponding terminal data
qεT as

qεT (x) = uεt (x, T ) =
hεT (x)− gεT (x)

∆t
.

In this scenario, we obtain the error estimate between qT (x),
as established in the sense of the Taylor expansion above, and
its noisy function qεT (x) ∈ L2(0, ℓ), as follows:

∥qεT − qT ∥L2(0,ℓ) ≤
2ε

∆t
+

∆t

2
∥utt (η∆t)∥L2(0,ℓ) ,

provided that utt(·, t) ∈ L2(0, ℓ) for t ∈ (T, T̃ ). Note that to
get utt ∈ C(T, T̃ ;L2(0, ℓ)), we take into account the source
condition u ∈ C1(T, T̃ ;L2(0, ℓ))∩C(T, T̃ ;H2(0, ℓ)); cf. (1).

B. Outline of the paper

Of particular interest to us is the stability of the IWR when
both gT and hT are contaminated by Gaussian noise. All
definitions related to this stochastic noise can be found in
[14], [15], and for clarity, we recall them in section II. From
there, we elaborate on the relation between qεT and qT in this
stochastic setting.

Our primary finding is centered around Theorem 6 in section
III, leading to the Lipschitz-like stability. To achieve this, we
delve into the expansion of the solution by eigen-elements
under the assumption that the continuous data qT is known.
Thereby, we also obtain Theorem 5 for the exact observability
result. Finally, we present in section IV numerical results
to corroborate our theoretical findings, followed by some
conclusions and future work to summarize the paper in section
V.

II. GAUSSIAN NOISE FOR THE SNAPSHOTS

Gaussian process is a stochastic process or a collection of
random variables, such that every finite collection of those
random variables has a multivariate normal distribution. The
distribution of a Gaussian process is the joint distribution of
all those random variables, and as such, it is a distribution
over functions with a continuous domain.

Definition II.1. A time continuous stochastic process or a
sequence of random variables {Xt : t ∈ T} in a probability
space is Gaussian process if and only if for every finite set of
indices t1, . . . , tk in the index set T

Xt1,...,tk = (Xt1 , . . . , Xtk)

is a multivariate Gaussian random variable.
In the following, H is a Hilbert space.

Definition II.2. The stochastic error is a Hilbert-space process
or a bounded linear operator ξ : H → L2(Ω,A, P ) where
(Ω,A, P ) is a complete probability space and L2(·) is the
space of all square integrable measurable functions.

Thus, for every g1 and g2 ∈ H, ξ(g1) and ξ(g2) are
random variables in L2(Ω,A, P ) by defining E [ξ(g1)] =
0,E [ξ(g2)] = 0. Then, we define their covariance Covξ as
the bounded linear operator (∥Covξ∥ ≤ 1) from H to H such
that ⟨Covξg1, g2⟩ = Cov (ξ(g1), ξ(g2)).

Definition II.3. The operator ξ is a Gaussian white noise
process in H, if Covξ = I and the induced random variables
are Gaussian, this means for all functions g1, g2 ∈ H

ξ(g1), ξ(g2) ∼ N (0, ∥g1∥2),N (0, ∥g2∥2),

and Cov (ξ(g1), ξ(g2)) = ⟨g1, g2⟩.

Lemma 2. Let ξ be a Gaussian white noise in H and {ψj}j∈N
be an orthonormal basis in H. Then, {ξ(ψj)}j∈N are i.i.d.
standard Gaussian random variables.

Proof. One can find the proof of this lemma in [14].

From now on, we suppose to observe our two consecutive
snapshots (cf. (4)) in the presence of Gaussian white noise
processes ξ1, ξ2, i.e.

gεT (x) = gT (x) + εξ1(x), hεT (x) = hT (x) + εξ2(x), (6)

Thereby, the relation between the boundary data qT and its
noisy one qεT is given by

qεT (x) = qT (x) +
ε [ξ2(x)− ξ1(x)]

∆t
+

∆t

2
utt(x, η∆t). (7)

Accordingly, assuming that the observations (6) can
only be obtained in a discretized form, we only have
two vectors of normally distributed random variables{
uε,jT

}
j=1,m

,
{
uε,j
T̃

}
j=1,m

and a vector
{
qjT

}
j=1,m

given by

gε,jT := ⟨uεT , ψj⟩ = ⟨gT , ψj⟩+ εξ1(ψj), (8)

hε,jT :=
〈
uε
T̃
, ψj

〉
= ⟨hT , ψj⟩+ εξ2(ψj), (9)

qε,jT := ⟨qεT , ψj⟩ = ⟨qT , ψj⟩

+
ε [ξ2(ψj)− ξ1(ψj)]

∆t
+

∆t

2
⟨utt(η∆t), ψj⟩ ,

(10)
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where m ∈ N is the number of discrete observations. Note
that in our numerical results below, we impose the uniform
constraint on ξ1, ξ2 in (10), |ξ2(ψj)− ξ1(ψj)| < ∆t, to ensure
the same scale of smallness in all types of data being used.

Besides, {ψn}n∈N is an orthonormal basis of L2(0, ℓ) and
ψn ∈ H1

0 (0, ℓ) ∩ C[0, ℓ] for all n ∈ N. We also recall the
Dirichlet eigenvalues {λn}n∈N forming an infinite sequence
which goes to infinity, viz.

0 ≤ λ0 < λ1 < λ2 < . . . , and lim
n→∞

λn = ∞.

In this one-dimensional setting, we remark that

λn =
(nπ
ℓ

)2
, ψn (x) =

√
2

ℓ
sin
(nπ
ℓ
x
)
. (11)

Note that our observations are not in general elements
of L2(0, ℓ). Henceforth, assuming the true ones are smooth
enough such that gT , hT ∈ H2p(0, ℓ) for p > 0, we employ
the so-called truncated Fourier approximators and rely on them
to prove the target stability result. In principle, we make use
of the following lemma.

Lemma 3. Let g ∈ H2p(0, ℓ) for p > 0 and gε(x) = g(x) +
εξ(x), where ξ is a Gaussian white noise. Let Gε,m ∈ L2(0, ℓ)
be the truncated Fourier approximator of gε,

Gε,m =
m∑
j=1

⟨gε, ψj⟩ψj ,

where m ∈ N is the number of steps of discrete observations.
Then, the following estimate holds

E
(
∥Gε,m − g∥2L2(0,ℓ)

)
≤ ε2m+

∥g∥2H2p(0,ℓ)

λ2pm
.

Proof. Cf. [16], the proof of this lemma is very straightfor-
ward. Indeed, we see that

E
(
∥Gε,m − g∥2L2(0,ℓ)

)
= E

 m∑
j=1

⟨gε − g, ψj⟩2
+

∞∑
j=m+1

⟨g, ψj⟩2

= ε2E

 m∑
j=1

ξ(ψj)
2

+
∞∑

j=m+1

λ−2p
j λ2pj ⟨g, ψj⟩2 .

As ξ(ψj) has standard Gaussian distribution, the target esti-
mation is obtained.

Remark 4. In terms of
{
qε,jT

}
j=1,m

, consider Qε,m
T as its trun-

cated Fourier approximator. Then, proceeding as in Lemma 3,
we obtain

E
(
∥Qε,m

T − qT ∥
2

L2(0,ℓ)

)
≤ 6mε2

∆t2

+
3∆t2

4
∥utt(η∆t)∥2L2(0,ℓ) +

∥qT ∥2H2p(0,ℓ)

λ2pm
.

Cf. (1) and (5), to fulfill qT ∈ H2p(0, ℓ), one can take
into account the source condition u ∈ C1(0, T̃ ;H2p(0, ℓ)) ∩
C(0, T̃ ;H2p+2(0, ℓ)).

III. MAIN RESULTS

This section is two-fold. First, we employ the method of
eigenfunction expansion to derive the integral representation
of v, provided that the continuous data qT is known. In this
scenario, we also prove the exact observability of the initial
data for the telegraph equation. Second, we prove the Lipschitz
stability (with respect to ε) for the IWR problem. This is
our target of this paper. Our proof relies upon the explicit
representation of function v in the first part, together with
Lemma 3.

A. Integral representation of solution

Observe that ∂xxψn = −λnψn holds true. Multiplying (3)
by the eigenfunction ψn and then integrating the resulting
equation with respect to x, we arrive at

∂tt ⟨v, ψn⟩+ (a+ b) ∂t ⟨v, ψn⟩
+
(
ab+ λnc

2
)
⟨v, ψn⟩ = ⟨F (·, t) , ψn⟩ .

By setting vn = ⟨v, ψn⟩ and Fn = ⟨F (·, t) , ψn⟩, we solve
the non-homogeneous differential equation v′′n + (a+ b) v′n +(
ab+ λnc

2
)
vn = Fn. Then, by superposition principle, we

take vn = w1,n + w2,n in which w1,n is the complementary
solution and w2,n is known as the particular solution. Letting
gn = ⟨g, ψn⟩, qn = ⟨q, ψn⟩, where two functions g, q are

g(x) = gT (x)−A(T )− [B(T )−A(T )]
x

ℓ
, (12)

q(x) = qT (x)−A′(T )− [B′(T )−A′(T )]
x

ℓ
, (13)

the complementary solution w1,n satisfies{
w′′

1,n + (a+ b)w′
1,n +

(
ab+ λnc

2
)
w1,n = 0,

w1,n (T ) = gn, w
′
1,n (T ) = qn.

As to the particular solution, it is of the form w2,n (t) =
z1,n (t) y1,n (t) + z2,n (t) y2,n (t) and satisfies w2,n (T ) =
w′

2,n (T ) = 0. Here, y1,n, y2,n, which will be clarified
later, are obtained from the complementary solution w1,n =
C1 (n) y1,n (t) + C2 (n) y2,n (t), and z1,n, z2,n are unknown.
By Wronskian rule, we know that

z′1,n =
−y2,nFn

y1,ny′2,n − y2,ny′1,n
, z′2,n =

y1,nFn

y1,ny′2,n − y2,ny′1,n
.

For each n, the characteristic equation in this case is κ2 +
(a+ b)κ + ab + λnc

2 = 0, whose roots are κ±n = −d ± ωn.

Here, d = a+b
2 and ωn = 1

2

√
(a− b)

2 − 4λnc2. Consider the
following sets

S1 :=
{
n ∈ N : (a− b)

2 − 4λnc
2 ≥ 0

}
, (14)

S2 :=
{
n ∈ N : (a− b)

2 − 4λnc
2 < 0

}
. (15)

Low-frequency mode: If n ∈ S1, ωn is real and thus,
wn,1 (t) = C1 (n) y1,n (t) + C2 (n) y2,n (t), where y1,n (t) =
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eκ
+
n t and y2,n (t) = eκ

−
n t. This gives y1,ny′2,n − y2,ny

′
1,n =

(κ−n − κ+n ) e
κ+
n teκ

−
n t and

z1,n(T )− z1,n (t) = − 1

κ−n − κ+n

∫ T

t

e−κ+
n sFn (s) ds,

z1,n(T )− z2,n (t) =
1

κ−n − κ+n

∫ T

t

e−κ−
n sFn (s) ds.

It is clear that z1,n (T ) , z2,n (T ) must satisfy the following
system so these functions are such that w′

2,n (T ) = 0.{
z1,n(T )e

κ+
nT + z1,n(T )e

κ−
n T = 0

z1,n(T )κ
+
n e

κ+
nT + z1,n(T )κ

−
n e

κ−
n T = 0

By this way, the particular solution w2,n is obtained.
Now, evaluating w1,n and its derivative w′

1,n at t = T yields{
C1 (n)κ

+
n e

κ+
nT + C2 (n)κ

−
n e

κ−
n T = qn,

C1 (n) e
κ+
nT + C2 (n) e

κ−
n T = gn.

Solving this system leads to

w1,n (t) =
qn − κ−n gn

κ+n − κ−n
eκ

+
n (t−T ) +

κ+n gn − qn

κ+n − κ−n
eκ

−
n (t−T ).

Hence, the sought solution vn = w1,n+w2,n is obtained, viz.

vn (t) = ed(T−t)

[
− (qn + dgn) sinh (ωn (T − t))

ωn

+ gn cosh (ωn (T − t)) ]

−
∫ T

t

ed(s−t) sinh (ωn (t− s))Fn (s)

ωn
ds. (16)

High-frequency mode: If n ∈ S2, ωn is purely imaginary
number, then we take its imaginary part. Therefore, w1,n (t) =
e−dt [C1 (n) cos (ωnt) + C2 (n) sin (ωnt)]. This means that
y1,n (t) = e−dt cos (ωnt) and y2,n (t) = e−dt sin (ωnt),
leading to y1,ny′2,n − y2,ny

′
1,n = e−2dtωn. Thus, we find that

z1,n(T )− z1,n (t) = −
∫ T

t

eds sin (ωns)Fn (s)

ωn
ds,

z2,n(T )− z2,n (t) =

∫ T

t

eds cos (ωns)Fn (s)

ωn
ds.

It is easy to check that z1,n (T ) = z2,n (T ) = 0 and
w′

2,n (T ) = 0. Thereby, the particular solution w2,n is ob-
tained. Now, evaluating w1,n and w′

1,n at t = T yields{
qn+dgn

ωn
edT = −C1 (n) sin (ωnT ) + C2 (n) cos (ωnT ) ,

gne
dT = C1 (n) cos (ωnT ) + C2 (n) sin (ωnT ) .

This system admits the following C1 (n) and C2 (n)

C1 = edT
[
− (qn + dgn) sin (ωnT )

ωn
+ gn cos (ωnT )

]
,

C2 = edT
[
(qn + dgn) cos (ωnT )

ωn
+ gn sin (ωnT )

]
.

Therefore, we can conclude the complementary solution
w1,n (t). Hence, the sought solution vn = w1,n +w2,n is also
concluded, viz.

vn (t) = ed(T−t)

[
− (qn + dgn) sin (ωn (T − t))

ωn

+ gn cos (ωn (T − t)) ]

−
∫ T

t

ed(s−t) sin (ωn (t− s))Fn (s)

ωn
ds. (17)

Overall, our solution to the telegraph equation (1) can be
written in the following form

u(x, t) =
∑

n∈S1∪S2

vn(t)ψn(x) + r(x, t). (18)

Now we are in a position to study the exact observability
result before deriving the stability estimate. The idea behind
observability is the property that knowledge of the output data
over a finite interval uniquely determines the initial state.

Let the space of initial conditions be Z = H1(0, ℓ) ×
L2(0, ℓ). We accordingly define an observability map from
Z → Z as

LT

[
v(x, 0)
vt(x, 0)

]
=

[
v(x, T )
vt(x, T )

]
. (19)

Cf. [8], for equation (1) with the zero Dirichlet bound-
ary conditions, the system is said to be exactly observable
under LT on [0, T ] if the initial state can be uniquely and
continuously constructed from knowledge of the output in
L2 (0, T ;Z).

At this stage, it is vital to find out the form of the derivative
of u with respect to t. In the sequel, we define two functions

Sn(t
′, t) =

{
sinh (ωn(t

′ − t)) for n ∈ S1,

sin (ωn(t
′ − t)) for n ∈ S2,

(20)

Cn(t
′, t) =

{
cosh (ωn(t

′ − t)) for n ∈ S1,

cos (ωn(t
′ − t)) for n ∈ S2.

(21)

Observe that ut can be written in the form

ut(x, t) =
∑

n∈S1∪S2

v′n(t)ψn(x) + rt(x, t), (22)

where

v′n(t) = (23)

ed(T−t)

[
qnCn (T, t) +

(
dqn + d2gn

ωn
∓ ωngn

)
Sn (T, t)

]
+

∫ T

t

ed(s−t)

[
d

ωn
Sn (t, s)− Cn (t, s)

]
Fn(s)ds.

Remark in (23) and below that by the ∓ we mean, the “−”
is valid when n ∈ S1, and the “+” is enabled when n ∈ S2.
Now, we state the theorem for the exact observability result.

Theorem 5. System (1)-(2) with Cauchy observations at t =
T , u(x, T ) ∈ H1(0, ℓ) and ut(x, T ) ∈ L2(0, ℓ), is exactly
observable under the mapping LT .

Proof. The proof of this theorem is presented in the Appendix.
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B. Stability estimate

Now we prove the Lipschitz stability estimate for the IWR
problem. By the presence of m, the number of discrete
observations, in the data, we denote by uε,m the solution of
the IWR problem. Based upon the integral representation of
v, cf. (12) and (13), we consider two functions gε, qε:

gε(x) = gεT (x)−A(T )− [B(T )−A(T )]
x

ℓ
, (24)

qε(x) = qεT (x)−A′(T )− [B′(T )−A′(T )]
x

ℓ
, (25)

Accordingly, the truncated Fourier approximators of these
functions are given by

Gε,m(x) =
m∑
j=1

gε,jψj(x), Qε,m(x) =
m∑
j=1

qε,jψj(x),

Similar to (22), uε,m has the following form:

uε,m(x, t) =
∑
n∈N

vε,mn (t)ψn(x) + r(x, t), (26)

where qn and gn in vε,mn (t) are, respectively, replaced by

Qε,m
n = ⟨Qε,m, ψn⟩ , Gε,m

n = ⟨Gε,m, ψn⟩ .

Theorem 6. Let u be the true solution of problem (1)-(2) associated with the true data gT , qT ∈ H2p(0, ℓ) for p > 0. Let
uε,m be the solution of problem (1)-(2) subject to the Gaussian noisy data gεT , q

ε
T with m discrete observations. Then, the

following estimate holds

E
(
∥uε,m(·, t)− u(·, t)∥2L2(0,ℓ)

)
≤ 3e2d(T−t)

[(
M2

C,n0
+

d2

ω2
n0

M2
S,n0

)(
ε2m+

∥g∥2H2p(0,ℓ)

λ2pm

)
+
M2

S,n0

ω2
n0

(
6mε2

∆t2
+

3∆t2

4
∥utt(η∆t)∥2L2(0,ℓ) +

∥q∥2H2p(0,ℓ)

λ2pm

)]
,

where MS,n0 ,MC,n0 > 0 are independent of ∆t and ε, m, and ω2
n0

= 1
4

∣∣∣(a− b)
2 − 4λn0c

2
∣∣∣ for a finite n0 ∈ N.

Proof. By (22), (26) and using direct calculations, we estimate that

∥uε,m(·, t)− u(·, t)∥2L2(0,ℓ) = e2d(T−t)

∥∥∥∥∥∑
n∈N

(
(Gε,m

n − gn)

(
Cn(T, t)−

d

ωn
Sn(T, t)

)
− (Qε,m

n − qn)

ωn
Sn(T, t)

)
ψn

∥∥∥∥∥
2

L2(0,ℓ)

≤ 3e2d(T−t)

1

2

∥∥∥∥∥∑
n∈N

(Gε,m
n − gn)

(
Cn(T, t)−

d

ωn
Sn(T, t)

)
ψn

∥∥∥∥∥
2

L2(0,ℓ)

+

∥∥∥∥∥∑
n∈N

(Qε,m
n − qn)

ωn
Sn(T, t)ψn

∥∥∥∥∥
2

L2(0,ℓ)

 ,

where we have used Minkowski’s inequality and the elementary inequality (a+ b)2 ≤ 3(a
2

2 + b2).

Observe that S1 is of a non-zero finite measure. Particularly, in this set, |ωn| = 1
2

√
(a− b)

2 − 4λnc2 decreases as n increases.

Meanwhile, in S2, |ωn| = 1
2

√
4λnc2 − (a− b)

2 increases to the infinity. Therefore, there exists a finite number n0 ∈ N such
that |ωn| is minimized. Accordingly, the minimal value of |ωn| is denoted by |ωn0

|. Cf. (20) and (21), the existence of such
a n0 guarantees that we can find the upper bounds MS,n0

and MC,n0
of Sn(T, t) and Cn(T, t) over [0, T ] for all n ∈ N.

Thus, by Parseval’s identity, we have∥∥∥∥∥∑
n∈N

(Gε,m
n − gn)

(
Cn(T, t)−

d

ωn
Sn(T, t)

)
ψn

∥∥∥∥∥
2

L2(0,ℓ)

=
∑
n∈N

|⟨Gε,m − g, ψn⟩|2
(
Cn(T, t)−

d

ωn
Sn(T, t)

)2

≤ 2

(
M2

C,n0
+

d2

ω2
n0

M2
S,n0

)∑
n≤m

|⟨gε − g, ψn⟩|2 +
∑
n>m

|⟨g, ψn⟩|2
 .

Using Lemma 3, one obtains the following estimate in the expectation manner,

E

∥∥∥∥∥∑
n∈N

(Gε,m
n − gn)

(
Cn(T, t)−

d

ωn
Sn(T, t)

)
ψn

∥∥∥∥∥
2

L2(0,ℓ)

 ≤ 2

(
M2

C,n0
+

d2

ω2
n0

M2
S,n0

)(
ε2m+

∥g∥2H2p(0,ℓ)

λ2pm

)
(27)

By the same process, we also get the estimate for the second sum

E

∥∥∥∥∥∑
n∈N

(Qε,m
n − qn)

ωn
Sn(T, t)ψn

∥∥∥∥∥
2

L2(0,ℓ)

 ≤
M2

S,n0

ω2
n0

(
6mε2

∆t2
+

3∆t2

4
∥utt(η∆t)∥2L2(0,ℓ) +

∥q∥2H2p(0,ℓ)

λ2pm

)
(28)

Combining (27), (28), we complete the proof of the theorem.
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The Lipschitz stability estimate is a direct consequence of the central Theorem 6. Indeed, let ûε,m be the solution to the
same system with two consecutive snapshots ĝT , ĥT . Then, proceeding as in the proof of Theorem 6, we obtain the following
estimate:

E
(
∥uε,m(·, t)− ûε,m(·, t)∥2L2(0,ℓ)

)
≤ 3e2d(T−t)

[(
M2

C,n0
+

d2

ω2
n0

M2
S,n0

)
∥gε − ĝε∥2L2(0,ℓ) +

M2
S,n0

ω2
n0

∥qε − q̂ε∥2L2(0,ℓ)

]
.

(29)

Furthermore, if we choose m = ⌊ε−α⌋, the greatest integer less than or equal to ε−α, and ∆t = εβ , for all α ∈ (0, 2) and
β > 0, then the following Hölder rates of convergence hold true

E
(
∥uε,m(·, t)− u(·, t)∥2L2(0,ℓ)

)
≤ 3e2d(T−t)

[(
M2

C,n0
+

d2

ω2
n0

M2
S,n0

)(
ε2−α +

ε4αp ∥g∥2H2p(0,ℓ) ℓ
4p

(1− εα)4pπ4p

)

+
M2

S,n0

ω2
n0

(
6ε2−α+2β +

3ε2β

4
∥utt(η∆t)∥2L2(0,ℓ) +

ε4αp ∥q∥2H2p(0,ℓ) ℓ
4p

(1− εα)4pπ4p

)]
.

IV. NUMERICAL RESULTS

A. Forward solver and numerical settings

In our numerical settings, a uniform grid of mesh points
(x, t) = (xh, tk) are used. Here xh = (h − 1)∆x and
tk = (k − 1)∆t for 1 ≤ h ≤ Nx and 1 ≤ k ≤ Nt where
∆x = ℓ

Nx−1 ,∆t = T
Nt−1 and Nx, Nt ∈ N. Herewith, we

choose Nx = 600 and Nt = 600. We need such a high value
of Nx to get a good resolution for our graphical illustration
(since the cable is long, 10 km). Meanwhile, as we use the
Riemann sum for time integration, taking Nt = 600 helps to
ensure the accuracy of the entire reconstruction process. Last
but not least, such a choice of Nx and Nt satisfy the stability
condition of the forward model; see (31).

Here, we expound upon our forward solver for the data
generation of the inverse model. Our forward solver means
solving (1) with (2) and the initial data u(x, 0) = g0(x),
ut(x, 0) = 0. We have chosen the initial time derivative to
be zero for simplicity.

The forward solver can be derived using the same method
of eigenfunction expansion. However, to avoid the so-called
inverse crime (cf. e.g. [17], [18]), we deliberately apply the
conventional finite difference method. For clarity, the fully
discrete version of Equation (1) is given by

uk+1
h − 2ukh + uk−1

h

(∆t)2
+ (a+ b)

uk+1
h − uk−1

h

2∆t
+ abukh

= c2
ukh+1 − 2ukh + ukh−1

(∆x)2
. (30)

Let A1 = a+b
2 ∆t, A2 = ab(∆t)2 and A3 = c2 (∆t/∆x)

2.
Cf. [19], the stability of the scheme (30) is guaranteed if 0 <
A3 < 1− A2

4 , or equivalently,

Nt >

√
c2(Nx − 1)2

(
T

ℓ

)2

+
abT 2

4
+ 1. (31)

In our numerical results below, we do not choose the true
solution of (1). Instead, we choose its boundary data at two
ends A(t), B(t) and the initial function g0. Then, the data for
gT and hT are obtained from the forward solution at t = T and

t = T +∆T . Accordingly, qT is approximated by a first-order
divided difference. Besides, ∆T = 0.01 is fixed.

As for our choices of A,B and g0, we, cf. [20], take into
account the following compatibility conditions:

A(0) = g0(0), B(0) = g0(ℓ), A
′(0) = B′(0) = 0,

A′′(0) + abg0(0) = c2g′′0 (0),

B′′(0) + abg0(ℓ) = c2g′′0 (ℓ).

(32)

Based on [21], we take parameter data for 24-gauge tele-
phone polyethylene insulated cable (PIC) at 70oF with R =
172.28 Ω/km, L = 612.5 µH/km, G = 0.072 µS/km and
C = 51.57 nF/km. The length of the underlying cable is
ℓ = 10 km, and the observation time is T = 10 s. Thereby,
all the coefficients in (1) are calculated as

a = 0.2813, b = 0.0014, c = 0.0056, d = 0.1413.

As seen, we mainly utilize inner products to demonstrate
the solutions. To calculate them numerically, we apply the
standard Filon quadrature method; cf. e.g. [22]. For the time
integral in vn, we use the standard Riemann sum.

As readily expected, we need truncation to compute the
infinite sum of the inverse solution; see (26). The truncation
number, called N , is chosen such that the following relative
error is fulfilled:

E(N, g0) =

∥∥∥g0 −∑N
n=1 ⟨g0, ψn⟩ψn

∥∥∥
L2

∥g0∥L2

< 1%. (33)

As to the data reliability, we define that the data is reliable
if the relative error between g0 and the reconstructed initial
spikes from our inverse problem with noiseless data is less
than 1% and N satisfies (33).

Remark 7. There are numerous numerical differentiation tech-
niques developed to compute the contaminated Neumann data
qεT ; see e.g. [23] and references cited therein. However, it
is beyond the scope of our inceptive work to apply other
techniques. Cf. Remark 1, the most natural finite difference
approach being used provides us with the direct estimation
between the exact and noisy Neumann data, leading to our
central convergence theorem.
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B. Test 1: Modulated wave with A(t) = B(t) = 0

In this test, we choose

g0(x) = exp
(
− x

10

)
sin

(
3πx

10

)
sin(4πx).

We remark that this case satisfies 4 out of 6 compatibility
conditions in (32), while the last two are approximately
fulfilled, i.e. A′′(0) + abg0(0) = B′′(0) + abg0(ℓ) = 0 and
c2g′′0 (0) ≈ 0.0037, c2g′′0 (ℓ) ≈ −0.0013.

By increasing N , we see the relative error E decreases grad-
ually. Notably, we get E(63, g0) = 1.0476% and E(64, g0) =
0.9354%, indicating that we need at least N = 64 to meet
condition (33). Besides, we note that the relative error between
g0 and the (noiseless) reconstructed spikes is 0.9988%; see
in the first column of Figure 2 the graphical illustration of
the spikes compared with the true one. This ensures the data
reliability for our inverse model.

We report that the relative error between the noisy recon-
structed signal uε,m (m = 100) at t = 0 and the true one
g0 decreases significantly from 179.7513% (for ε = 10−1) to
17.5534% (for ε = 10−3) and 1.0180% (for ε = 10−5). As
can be seen in the first column of Figure 4, when ε reduces
to 10−3, the reconstruction becomes great in shape. Similar
observation can be found in the data; see the first row of
Figure 3. We also remark that even though the measurement of
Dirichlet data at t = T performs well in shape when ε = 10−1,
the performance of the corresponding Neumann data is in a
different situation. This is the main factor that hinders us from
getting a good initial reconstruction.

C. Test 2: Square-like wave with A(t) = t3e−t2 , B(t) = 0

In this test, we take

g0(x) =
5∑

n=1

sin [(2n− 1)πx]

2n− 1
.

Here, the square-like signal g0 and A,B satisfy all compati-
bility conditions (32). Numerically, we find that N = 45 is the
optimal choice for the truncation number since E(44, g0) =
10.2118% and E(45, g0) = 0.0058%. On the other hand, the
relative error between g0 and the noiseless reconstructed spikes
is 0.1101%, which shows the data reliability of our forward
solver. Graphs of these functions are presented in the second
column of Figure 2.

Similar to what we have observed in Test 1, the reconstruc-
tion becomes good when ε = 10−3; see the second column of
Figure 4. In particular, when decreasing ε from 10−1 to 10−3,
the relative error between the noisy reconstructed signal and
the true one reduces more than 100 times from 605.9129%
to 5.8719%. And when ε = 10−5, this error goes under 1%,
particularly 0.1333%. This essentially shows a good accuracy
of the reconstruction process. We also depict in the second
row of Figure 3 the performance of the Cauchy observations
for different values of ε ∈

{
10−1, 10−3, 10−5

}
.

D. Test 3: Sawtooth-like wave with A(t) = B(t) = t3e−t2

In this last test, we consider

g0(x) =
5∑

n=1

sin(nπx)

n
.

Note that by the choices of g0 and A,B, all compatibility
conditions (32) are fulfilled.

To check the data reliability, we see from the forward solver
that the relative error E stays under 1% (cf. (33) for the crite-
ria) once N = 50. In particular, we have E(50, g0) = 0.0014%
compared to E(49, g0) = 16.5316%. Moreover, we report that
the relative error between g0 and the noiseless reconstructed
spikes yields 0.1931%, as also consistently visualized in the
last column of Figure 2.

As to the noisy reconstruction, we find it similar to the
previous tests, albeit the complication in the shape of the true
initial data. When ε = 10−1, the relative error between the
noisy reconstruction and the true one is huge, 539.7934%.
This is due to the entire loss of accuracy in the Neumann data,
while the Dirichlet measurement shows the acceptable shape;
see the last row of Figure 3. Once ε = 10−3, the relative error
then reduces significantly to 5.8310%. We also report that this
error drops under 1% (0.1845% to be exact) when ε = 10−5.
To graphically see the entire accurate reconstruction process,
the reader can be referred to the last column of Figure 4.
Remark 8. Taking into account the relative error between
the noiseless and noisy reconstructed spikes for all tests,
we see the consistency of our Lipschitz stability estimate
(29). Approximately, the error is reduced by a factor of 100,
corresponding to the reduction in ε. In Test 1, we particularly
observe that the error decreases significantly from 180.3735%
with ε = 10−1 to 17.5850% with ε = 10−3, and further to
0.1826% with ε = 10−5. Similarly, in Test 2, the error reduces
from 606.0757% (ε = 10−1) to 5.8649% (ε = 10−3) and
then to 0.0655% (ε = 10−5). In Test 3, we report the error
decreasing from 540.0488% with ε = 10−1 to 5.8502% with
ε = 10−3, and finally to 0.0579% with ε = 10−5.

V. CONCLUSIONS AND FUTURE WORK

We have studied the initial reconstruction of the telegraph
equation from the data at two Gaussian contaminated consec-
utive snapshots. Using the so-called truncated Fourier approx-
imator, we have obtained the Lipschitz stability estimate of the
reconstruction. We have also added to the theoretical findings
the exact observability result. Several numerical experiments
are conducted to verify the stability of the reconstruction.

By using the method of eigenfunction expansion, our the-
oretical findings can be similarly obtained for Dirichlet, Neu-
mann, and Robin cases in rectangle-like domains Ω = [0, l1]×
. . . × [0, ld] ⊂ Rd (with li > 0); cf. [24]. The extension may
also work for circular annuli, spheres, and similar shapes when
the eigen-elements are derived explicitly. In principle, as long
as the eigen-elements satisfy the theoretical properties of non-
negative and increasing-to-infinity eigenvalues, and complete
and orthonormal eigenfunctions, the same derivations apply.
However, the problem will become more challenging if arbi-
trarily complicated (Lipschitz) domains are taken into account.
In that case, numerical methods for the eigenvalue problem are
needed. This discrete framework, together with the perspective
of non-constant coefficients, will be our upcoming target.

Our future work will, on the other hand, include the Neu-
mann data reconstruction ut(x, 0). In that perspective, just like
what have been done for the conventional Stefan problem [25],
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(a) Test 1 (b) Test 2 (c) Test 3

Fig. 2. Reconstructed initial spikes in Tests 1, 2, 3 from noiseless data with ∆T = 0.01. Graphs of the true initial data g0 are also presented to show the
data reliability.

(a) Test 1

(b) Test 2

(c) Test 3

Fig. 3. Gaussian contaminated data (Gε,m and Qε,m) and true data (g and q) in Tests 1, 2, 3 with 100 samples and ε ∈ {10−1, 10−3, 10−5}.
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(a) Test 1 (b) Test 2 (c) Test 3

Fig. 4. Numerical comparison between the noisy reconstructed solution and the true solution in Tests 1, 2, 3 with 100 samples and ε ∈ {10−1, 10−3, 10−5}.

some regularization may be needed if a stable result cannot
be obtained for the noisy data.
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APPENDIX: PROOF OF THEOREM 5

First, we show that LT is injective. To do so, we take into account the forward mapping from t = 0 to t = T . Below, for
simplicity, let h0(x) = u(x, 0)−r(x, 0) and k0(x) = ut(x, 0)−rt(x, 0), and we, respectively, denote the inner product between
them and ψn by hn and kn. Cf. (17) and (19)–(21), we have

LT

[
v(x, 0)
vt(x, 0)

]
=

[
v(x, T )
vt(x, T )

]
= e−dT



∑
n∈N

(
hnCn(T, 0) +

kn + dhn
ωn

Sn(T, 0) +

∫ T

0

edsSn(T, s)Fn(s)

ωn
ds

)
ψn(x)

∑
n∈N

{
knCn(T, 0)−

(
dkn + d2hn

ωn
∓ ωnhn

)
Sn(T, 0)

−
∫ T

0

eds
[
d

ωn
Sn(T, s)− Cn(T, s)

]
Fn(s)ds

}
ψn(x)


.

To prove the injectivity of LT , we suppose that [ṽ(x, T ), ṽt(x, T )]
T
= [v(x, T ), vt(x, T )]

T in Z. In addition, the initial data
associated with ṽ are h̃0 and k̃0, corresponding to h0 and k0, respectively. Thus, we accordingly denote the inner product
between them (h̃0 and k̃0) and ψn by h̃n and k̃n. Then, we set Hn = h̃n − hn and Kn = k̃n − kn. By the injectivity’s
definition, we deduce the following system of two equations:

Kn
Sn(T, 0)

ωn
+Hn

(
Cn(T, 0) +

d

ωn
Sn(T, 0)

)
= 0,

Kn

(
1

d
Cn(T, 0)−

1

ωn
Sn(T, 0)

)
−Hn

(
d

ωn
∓ ωn

d

)
Sn(T, 0) = 0.

By Crammer’s rule, we obtain Hn = 0 and Kn = 0 for all n ∈ N, which directly implies the injectivity of the operator LT .
Next, let [v(x, T ), vt(x, T )]

T ∈ Z. By the integral representation of v above, we can construct [v(x, 0), vt(x, 0)]
T . Furthermore,

by (16), (17), (23), it indicates that [v(x, 0), vt(x, 0)]
T ∈ Z. Henceforth, LT is bijective.

The inverse operator of LT , denoted by LT
−1, is given as

LT
−1

[
v(x, T )
vt(x, T )

]
=

[
v(x, 0)
vt(x, 0)

]
= edT



∑
n∈N

(
gnCn(T, 0)−

qn + dgn
ωn

Sn(T, 0)−
∫ T

0

ed(s−T )Sn(0, s)Fn(s)

ωn
ds

)
ψn(x)∑

n∈N

{
qnCn(T, 0) +

(
dqn + d2gn

ωn
∓ ωngn

)
Sn(T, 0)

+

∫ T

0

ed(s−T )

[
d

ωn
Sn(0, s)− Cn(0, s)

]
Fn(s)ds

}
ψn(x)


.

Now, we show that the inverse of LT is bounded on its range. Notice that ed(s−T ) ≤ 1 for all s in [0, T ] and recall from (20)
and (21) that there exist two upper bounds MC,n0 and MS,n0 of Cn(0, s) and Sn(0, s) on [0, T ]×{0}. Moreover, we can find
n0 ∈ N such that |ωn0

| ≤ |ωn| for all n ∈ N. Therefore, for v(x, 0), using Parseval’s identity, we estimate that

1

3
∥v(·, 0)∥2L2(0,ℓ) ≤

∑
n∈N

g2n

(
MC,n0

+
d

ωn
MS,n0

)2

+
∑
n∈N

q2n
M2

S,n0

ω2
n

+
∑
n∈N

(∫ T

0

ed(s−T )Sn(s, 0)Fn(s)

ωn
ds

)2

≤
(
MC,n0

+
d

ωn0

MS,n0

)2

∥g∥2L2(0,ℓ) +
M2

S,n0

ω2
n0

∥q∥2L2(0,ℓ) +
TM2

S

ω2
n0

∫ T

0

∥F (·, s)∥2L2(0,ℓ) ds.

By Parseval’s identity again, vt(x, 0) is bounded in the sense of L2 by

1

4
∥vt(x, 0)∥2L2(0,ℓ) ≤

(
MC,n0

+
d

ωn0

MS,n0

)2

∥q∥2L2(0,ℓ) +
d2

ωn0

M2
S,n0

∥g∥2L2(0,ℓ) +M2
S,n0

∑
n∈N

ω2
ng

2
n

+ 2T

(
d2M2

S

ω2
n0

+M2
C,n0

)∫ T

0

∥F (·, s)∥2L2(0,ℓ) ds.
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As S1 is finite, we deduce that

M2
S

∑
n∈N

ω2
ng

2
n =M2

S

∑
n∈S1

[
(a− b)

2

4
− λnc

2

]
g2n +M2

S

∑
n∈S2

[
λnc

2 − (a− b)2

4

]
g2n

≤M2
S

[
(a− b)2

4
∥g∥2L2(0,ℓ) + c2 ∥g′∥2L2(0,ℓ)

]
.

Hence, the inverse of LT is bounded on its range, indicating that the system is exactly observable. We complete the proof of
the theorem.
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