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Abstract—We present simple constructions of good approxi-
mate locally decodable codes (ALDCs) in the presence of a d-
fraction of errors for § < 1/2. In a standard locally decodable
code C: % — 37, there is a decoder M that on input i € [k]
correctly outputs the i-th symbol of a message = (with high
probability) using only g queries to a given string w that is
d-close to C(x). In an ALDC, the decoder M only needs to
be correct on a 1 — & fraction of ¢ € [k] for ¢ much smaller
than J. We present a construction of explicit ALDCs for all
constants 1/2 > § > e with a constant number of queries
q and with constant, near-optimal rate. Standard LDCs with
constant number of queries and any constant rate are known to
be impossible.

We additionally explore what is the lowest error probability
one can achieve for fixed § and g. We show that for any ALDC,
e = Q(879/21). We then show that there exist explicit constant
rate ALDCs for any constant ¢ that achieve ¢ = O(8'%/21). In
particular, for ¢ = 3, we have a constant rate ALDC with error
probability e = O(§?).

A full version of this paper is available at https://eccc.
weizmann.ac.il/report/2023/056/.

I. INTRODUCTION

Locally decodable codes (LDCs) are a useful and perva-
sive tool in both application and theory, and there has been
intense study towards constructing such codes with optimal
parameters. By the seminal work of Katz and Trevisan [1]],
asymptotically good LDCs with the “dream” parameters of
constant rate, distance, and query complexity cannot exist. In
this work, we show that simple constructions can achieve such
ideal parameters for the relaxed notion of approximate locally
decodable codes (ALDCs), which are natural codes that, like
LDCs, often emerge in complexity theory.

In a standard (g,8,¢)-LDC C: X¥ — X2, there exists a
randomized decoding algorithm M that takes as input i € [k]
and has query access to a string w that is d-close to a
codeword C'(x). This sublinear-time decoder must correctly
output M™ (i,r) = x; with probability at least 1 — ¢ over its
internal randomness r for any 4 € [k], using at most ¢ (non-
adaptive) queries to w. In contrast, an approximate locally
decodable code only requires that M successfully decodes
most of the message coordinates with few queries. That is, for
a (g, 6, ¢)-approximate locally decodable code C': ¥¥ — ¥7

there again exists a randomized algorithm 1} that takes as
input ¢ € [k] and makes at most ¢ queries to a string w that
is d-close to a codeword C(x). This time, the decoder must
correctly output M (i,r) = x; with probability 1 — e over its
internal randomness 7 on average over all coordinates i € [k]
of the messageﬂ The identity code is a trivial (1, d, ¢)-ALDCs
for 6 = ¢, so ¢ <« § is the only parameter regime where
ALDCs make sense.

To make sense of this definition, suppose we would like to
amplify the decoding radius of a code C': f — X7 from ¢ to
J. It is natural to seek a map C': X} — X7* equipped with a
decoder which can, given any input which is d-close to some
C'(x), return a string 2’ which is e-close to x. Then, C' o C
is a new code with a decoding radius of §: run the decoder of
C’ on any input which is d-close to C’ o C to get =’ which
is e-close to some codeword of C', and then run the decoder
of C on 2’ to uniquely recover the message. If the decoder of
C’ features locality, then C” is precisely an ALDC which can
be used to amplify the decoding radius of an LDC [3]].

Historically, the notion of ALDCs is motivated by topics in
computational complexity theory such as hardness amplifica-
tion. Informally, suppose there is a function f with a truth table
that differs from the truth table of every possible efficiently
computable function on at least an ¢ fraction of inputs—that
is, no efficient algorithm can compute f with accuracy better
than 1 — . Then, we can encode the truth table of f with
an ALDC to get the truth table of a new, harder, function
which cannot be computed by any efficient algorithm with
accuracy better than 1 — § < 1 — e: if there existed such an
algorithm, then we could combine it with an algorithm that
computes the ALDC decoder to build an algorithm computing
f with accuracy better than 1 — ¢, which is a contradiction.
Explicit ALDCs considered in this context are the XOR code
and the direct product code as well as their derandomized
counterparts [4]—[6].

Versions of ALDCs also appear in the context of probalis-
tically checkable proofs, which are proofs that can be verified

IThe decoder does not necessarily know which indices i are decoded
correctly. A different relaxed definition, known as relaxed locally decodable
codes |2]], requires the decoder to report which indices are corrupted.
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with very few queries and randomness. In this research area,
certain constructions allow for symbols of the witness to be
decoded from the proof using few queries, a concept called
a PCP of proximity [2] or decoding PCP [7], [8]. Such
constructions typically only guarantee that most (instead of
all) symbols are decoded correctly.

II. OUR RESULTS

We give both constructions and lower bounds, demonstrat-
ing the possibility and limits of ALDCs in terms of rate
and locality. The first constructive result gives constant query
ALDCs with near optimal rate and arbitrary error reduction.

A. Constant Query ALDCs with Nearly Optimal Rate

In the case of unique decoding, the Singleton bound tells
us that a code that can be decoded from § fraction errors must
have rate at most 1 — 2§ + o(1), because a decoding radius
of § implies a distance of at least 2J. Notably, the Reed—
Solomon code is a uniquely (non-local) decodable code that
achieves this bound. Kopparty, Meir, Ron-Zewi, and Saraf [9]
use Reed—Solomon as the base code for Alon—-Edmonds—Luby
distance amplification [[10], [11] to construct ALDCs with
rate approaching the Singleton bound; this construction is
crucial to their construction of asymptotically-good LDCs with
subpolynomial query complexity:

Theorem 2.1 (due to [9) Lemma 3.2]): For any J,¢ > 0 and
any parameter « > 0, there is an explicit (g, 0, €)-ALDC with
rate 1 — 2§ — 2« and query complexity ¢ = poly(1/eq).

This theorem shows a quite striking contrast. One cannot
hope to have an LDC with both constant rate and constant
number of queries. Nevertheless, it is possible to have an
ALDC that reduces any sufficiently small constant error rate 4,
to any arbitrarily smaller constant error €, with constant query
complexity and with arbitrarily high rate.

Then, a natural question to ask is: what is the optimal
rate for a (g,d,¢)-ALDC? In particular, the Singleton rate
upper bound of 1 — 20 + o(1) does not apply to (g,9,¢)-
ALDCs, because they can have distance less than 2§: an
ALDC’s decoder is only required to return most of the message
correctly, so two messages can map to the same ALDC
codeword as long as these messages are e-close to each other.
We take advantage of this fact to get an ALDC construction
with higher rate slightly exceeding the Singleton bound:

Theorem 2.2 (See Corollary[3.6): For any constants d,¢ > 0,
any sufficiently small constant parameter «, any constant sized
finite field X1, and any sufficiently large &, there is an explicit
C: X% — X2 which is a (g, §,€)-ALDC with ¢ = poly(1/ea)
with |Xs| < |Zl|q2om. The rate of the code is

1-26 -2« ~o(1)
1— 9Hy, (e/2) "

To achieve this, we refine the Alon—-Edmonds—Luby tech-
nique [10]], [11] as used by Kopparty, Meir, Ron-Zewi, and
Saraf [9]. This technique builds a code that divides the
message into small constant-size blocks, encodes each block
with a base code, and then permutes all of the symbols

according to a sampler graph to form the codeword. The
sampler graph guarantees that no matter which § fraction of
codeword symbols are corrupted, at least a 1 —¢ fraction of the
blocks will “see” an approximately J fraction of corruption.
Because the sampler graph permutes symbols but does not
duplicate them, the rate of this code is the same as the
rate of the base code. In addition, each message symbol can
be decoded by querying all of the (constant many) symbols
in its corresponding block. If Reed—Solomon is used as the
base code, then this yields an ALDC with constant query
complexity and rate approaching the Singleton bound [9]. The
1 —¢ fraction of blocks have bounded distance from the Reed—
Solomon base code and can be uniquely decoded, while the
remaining ¢ fraction of blocks which have too much corruption
are written off.

We improve the rate by using a (, €)-approximate codeE]
as the base code for the AEL construction instead of Reed-
Solomon. This base code is weaker than a uniquely decodable
code such as Reed—Solomon, and hence can have higher rate.
Then, in each of the blocks with bounded corruption, a 1 — ¢
fraction of message symbols can be recovered. Since 1 — ¢ of
the blocks have at most O(d) corruption, a 1 — O(¢) fraction
of the entire message can be decoded. Hence, we can spread
the message corruption across all of the blocks, instead of
concentrating it in the € fraction of blocks written off by the
sampler, in order to relax the base code and get a higher rate.

The final step is to show that an approximate code with
higher rate exists. This code will be used on constant-sized
blocks, so we can afford to construct it by brute force.
Because this code only needs to preserve 1 —e of the message
coordinates, we can pick a subset D (known as a covering
code) of the message space X* such that every message is
e-close to some string in D. Then, we can view D as a
new, smaller set of messages Y*" and encode it using Reed—
Solomon with distance 2§. To approximately decode, we can
use the Reed—Solomon decoder to fully recover an element
of D which is guaranteed to be e-close to our true original
codeword. The rate of this code is k/k’ - (1 — 2§), which
“exceeds” the Singleton bound.

B. Rate Upper Bound

Theorem demonstrates that an ALDC can have rate
slightly exceeding a uniquely decodable code of the same
decoding radius. We show that this rate is in fact nearly
optimal for approximate codes in general, even without lo-
cality. Simply observe that composing an approximate code
with a uniquely decodable code yields a uniquely decodable
code, which is then governed by traditional coding theory rate
bounds. Hence, adding locality incurs almost no cost on rate.

Theorem 2.3 (See Theorem [3.3): A (8, )-approximate code
C: X% — X2 must have rate

1—26+o(1)
r = 1 —H‘Zl‘(Qe’:‘) —0(1)‘

2A (8, €)-approximate code is an ALDC with no requirement of locality:
there is some (potentially global) decoder that reduces error from § to e.



C. 3-Query ALDCs and Optimal Error Reduction

In the most extreme setting of local decoding, one may ask
what is possible with only 3 queries. Indeed, this has been
the subject of extended study in the case of LDCs with both
upper bounds [[12]-[14] and lower bounds [15]-[19]], and as
discussed, it is impossible to achieve constant rate in that case.

Evidently, relaxing the goal of the decoder to error reduction
rather than “error elimination" drastically improves the state
of what is feasible in the constant rate regime. Thus it is
natural to ask, what is the best error reduction possible given ¢
queries for a constant rate ALDC? We show that for 3 queries,
one cannot hope for better than a (3, §, ©(§?))-ALDC for any
rate. Intuitively, a randomized decoder makes three uniformly
random queries to the coordinates of a codeword with a J-
fraction of corruptions. When at least two of these queries
read a corrupted symbol, there is no hope the decoder will
output the correct message symbol. In fact, we show that any
g-query decoder cannot succeed (with probability over both
its randomness and a uniform choice of message coordinate)
with probability better than the probability that the majority
of its queries land on uncorrupted symbols.

Theorem 2.4 (See Theorem : Let C: X} — X% be a
(¢,9,¢)-ALDC with query complexity ¢ = O(1) and decoding
radius § < 1/2. Then ¢ = Q(519/21).

In addition, we show that it is indeed possible to construct a
constant rate 3-query ALDC with this optimal error reduction.
In fact we show that it is possible to obtain optimal error re-
duction for any given constant number of queries, by adapting
a different but related distance amplification technique due to
Alon-Bruck—Naor-Naor—Roth [20].

Theorem 2.5 (See Corollary H.3): Let ¢ > 1 and 0 <

0 < 1/2 be constants. Let 3; be any alphabet. There are
explicit (¢, 6,¢)-ALDCs C': % — 3% with constant rate, and
Yy = 2P5 where ¢ = O(619/21), Dy, = O(%zlog STaraT )
and Dp = 202"
This construction is similar to the near-optimal rate ALDC
construction. We can use a sampler graph with the repetition
code for each message symbol, and decode by taking the
majority over ¢ uniformly random copies of the desired
message symbol.

III. ALDCSs WITH NEARLY OPTIMAL RATE

In this section, we will first present an approximate code
with high rate. We will then prove that such a rate is (nearly)
optimal. Finally we’ll show how to use this approximate code
to construct an explicit ALDC with efficient encoding and
decoding procedure with roughly the same rate.

A. An Approximate Code “Surpassing” the Singleton Bound

Since the decoding radius ¢ is the relevant parameter for an
approximate code, one might believe that, analogously to the
Singleton bound, the rate of an approximate code is at most
roughly 1—24. We first present an approximate code showing
that we can in fact do slightly better. To achieve slightly better
rate, we will make use of nearly-optimal covering codes.

Proposition 3.1 (due to [21| Corollary 1.4]): Foralle > 3/k
and all constant size alphabets ¥, there (non-explicitly) exists
a covering code D C Yk of radius ¢ such that

="

— |E‘(17H\Z|(E)+O(1))k.
V01‘2| (E,k‘)

D] < O(cklog (ck)) -

We show that approximate codes exist for any constants
0 > ¢ > 0 with nearly-optimal rate by using a covering
code to compress the message space, and then applying Reed-
Solomon.

Lemma 3.2: For any constants 1/2 > § > ¢ > 0, any
constant size field F, and any k > 3/e, there exists an
approximate code C': F*¥ — (F')" with decoding radius 4,
error ¢, and rate Wzﬂo(l), where F’ is an extension field
of F and [F'| < |F|n.

Proof sketch: Let D C F* be a covering code of radius
¢ from Proposition [3.1] so that

ID| = |F‘(1—H\F|(E)+O(1))k _. |]F|k/

We can (inefficiently) obtain D by brute force. Let f: FF —
D be a function such that for all w € F¥, f(w) is some
element of D which is e-close to w (if there are multiple
such elements in the covering code, pick one arbitrarily and
deterministically). Let g: D — F* be an arbitrary bijection.
Both f and g can be obtained by brute force. For any given
message w € F¥, we can then let z = g(f(w)) € F¥', and
then encode this string using Reed—Solomon with distance 24.
Since k'/k = 1— H\g|(¢)+o0(1) and the rate of Reed—Solomon
is at least 1 — 24, the overall rate is

k 1-26
y . (1—25) - l—H“F‘(E)-‘rO(l)’

as desired. |

B. An “Approximate” Singleton Bound

We now show that the rate of the code above is in fact es-
sentially optimal. To do so, we prove an approximate analogue
of the Singleton bound.

Theorem 3.3: Suppose C': XX — 10 is a (6, £)-approximate
code with rate R. Then

1—26+o(1)
R S 1— H‘El‘(2€) —0(1)'

Proof: Let C': {0,1}* — X% be a standard code of
radius € and rate R' = 1 — Hy,|(2¢) — o(1) guaranteed by
the Gilbert—Varshamov bound.

The composition C'oC” is a code with radius ¢. The rate of
this code is RR'. Moreover, the rate of this code must obey
the Singleton bound. Thus we have

(1— Hps, (2¢) —0(1))R< RR <1-25+0(1). m

Note that this same approach can be applied to any classical
coding theory rate upper bound, and we can pick whichever
is strongest for the desired alphabet size.
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Fig. 1. The construction of our ALDC with nearly optimal rate. We first divide the message into blocks of constant length b and encode each block with
a near-optimal rate approximate code Cp found via brute force. On the right hand side, we have a biregular (J, £)-sampler between k' = k/b nodes and n
nodes with left degree Dy, and right degree D . Each coordinate of the final codeword is the tuple of neighboring symbols. The code inherits the rate of Cp.

C. An ALDC Approaching the
Bound

Now that we see that our approximate code has nearly
optimal rate, we turn to the task of making such codes local.
To do so, we closely follow the techniques of [[10]] and [9]]. We
will sketch the ideas here, which are also depicted in Figure [I]
and leave the technical details for the full version.

To build our ALDC, we will instantiate the Alon—-Edmonds—
Luby distance amplification technique with our nearly-optimal
approximate code. As we described in the introduction, this
technique is built on using samplers.

Definition 3.4: A bipartite graph G with bipartition ([k], [n])
and with left degree D is an oblivious («, 3)-sampler if for
every function f: [n] — [0,1],

o

where N (i) denotes the right vertices neighboring the ith left
vertex in G.

The value of an oblivious sampler is it provides a blueprint for
redistributing message symbols such that if any § fraction of
codeword symbols are corrupted (represented by an indicator
function f), then most of the message symbols will still
have roughly 0 fraction of their relevant codeword symbols
affected. Indeed, we use a well-known oblivious sampler
based on random walks on expanders in both of our ALDC
constructions.

Theorem 3.5 (due to [22|]): For any «,8 > 0 and for
sufficiently large k, there exists an efficiently constructable
biregular (o, 3)-sampler with & left vertices, left degree D =
O(z log ), and n = k/2°(P) right vertices.

Hence, if we wish to construct a (¢, d,¢)-ALDC C: ¥¥ —
Y5 with good rate and small ¢ for some 39 and n, we can
begin by choosing any 0 < o < min{l/4 —4§/2,¢e} be
a parameter. There is an explicit biregular («,e/2)-sampler
with left degree D, = ©(Zz log 1), so we can choose some
integer b such that there exists a (§ + «,&/2)-approximate

“Approximate” Singleton

E N — E
jeN(i)f(j)] J'€[n]

f(j’)]‘ < a] >1-4,

code Cp: X8 — 2P from Lemma with rate at least

1-25—2« : .
T Hyn, (c/2)" Since Dy, is a constant, we can afford to brute

force t]ﬂe covering code necessary to construct Cj.

a) Encoding: To encode a length k input message =z,
we divide the message into k' = k/b blocks of length b,
and encode each block using Cj. This gives us a string
y € ((Z0)Pr)¥F. We treat each index of y as a left vertex
of G. The final codeword C(z) € X% for ¥y = (Xo)PR is
defined as follows. Fix any ¢ € [n]. We now define C'(z);. For
every neighbor j € [k'] of i, let e(j) € [Dy] be the number
such that the edge entering j from i is the e(j)-th edge leaving
7 in some arbitrary ordering of the edges leaving j. Finally let
oj € ¥ be the e(j)-th symbol in the block corresponding to
neighbor j. The i-th symbol of C(x) is the concatenation of
all such o;-s.

b) Decoding and analysis: The rate of this code is clearly
the same as the rate of Cy, because the sampler step permutes
symbols but does not duplicate any symbols. In addition,
the query complexity for decoding is D because we can
approximately decode an entire b-sized block of message
symbols by querying each of the neighboring D; codeword
symbols and running the decoder for Cy. This procedure is
deterministic, and it satisfies the ALDC definition because by
the sampler property, all but at most ¢/2-fraction of the &’
message blocks have a neighborhood with at most (§ 4+ «)-
fraction of neighbors in the corrupted set. This means that on
at least (1 — /2)-fraction of blocks, the decoding algorithm
for C will return a string s € {0, 1}° that is ¢/2-close to the
true message on that block. Thus the decoder will only err on
at most e-fraction of the message coordinates overall.

Finally, it remains to express Dy, in terms of our parameters.
The parameters we compute here incorporate ancillary factors
due to technicalities with rounding, padding, etc. which can
be found in the full version.

Corollary 3.6: For any constants d,¢ > 0, any constant
parameter 0 < « < min{1/4 —§/2,¢}, any constant sized
alphabet >; which is a finite field, and any sufficiently large



k, there exists an explicit C': X¥ — %% is a (g, d,¢)-ALDC
O(a)
with ¢ = O (L log 1) with |[S| < 247 . The rate of the

code is
1-25 -2«

1— .99H5,((¢/2)

—o(1).

IV. ACHIEVING OPTIMAL ERROR REDUCTION

What is the best possible error reduction that a g-query
ALDC can achieve, and what structure would such a decoder
have? In fact, we are able to show that the best possible error
reduction, even for inefficient ALDCs, is ¢ = ©(5/%/21) which
is achieved by taking the majority of ¢ queries. We construct
an efficient g-query ALDC with constant rate and alphabet that
achieves this optimal error reduction up to constant factors.

A. Majority Lower Bound on Error

Let C' be some nonadaptive (g, d,¢)-ALDC, over any size
alphabet and with any rate. Then, we can show that ¢ >
Qo fa/ 2W); in particular, for two queries, this shows that C
must have error > § which is already achieved by the 1-query
identity code.

Theorem 4.1: Let C: ¥%¥ — X2 be a nonadaptive (g, J, €)-
ALDC with ¢ = O(1), 0 < 0 < 1/2, and sufficiently large n.
Then, £ > Q(879/21),

Proof sketch: At a high level, we can use the probabilistic
method to craft a corrupted codeword on which an ALDC
decoder must fail with probability at least (6/9/21). Begin
with two messages m and m’ which differ from each other
in every coordinate. Then, choose a uniformly random subset
S and craft two corrupted codewords w and w’, such that
wlg = C(m)|g and w|s = C(m')|s, and vice versa for
w’. Thus, if the decoder queries w inside S, it sees symbols
that look like C'(m’), and if it queries w outside S, it sees
symbols that look like C(m). Through some computation,
we can prove that the decoder must fail on either w or w’
with at least the probability that half of its queries land in
S, which is Q(¢ fa/ 21). Intuitively, if the decoder succeeds on
message m even if most of its queries are corrupted, then it
is biased towards returning the content of m, causing it to
perform worse on m/. ]
The exact form of this bound (in the full version) proves that
there is no 2-query ALDC that outperforms the identity code
(where C(z) = z), which is a (1,9, )-ALDC for € = 4.

Corollary 4.2: A nonadaptive ALDC with ¢ < 2 queries
has error > 4.

B. Achieving the Majority Lower Bound

Although the majority lower bound applies to all (g, d,€)-
ALDC:s, including ones with inefficient decoders, huge code-
word lengths, or huge alphabet size, we can show that the
bound can be achieved up to a constant factor by explicit
and efficient (g, 5, 0(6/%/21))-ALDCs with constant rate and
alphabet size. To do so, we apply the Alon-Bruck—Naor—
Naor—Roth technique [20].

a) Encoding: Let 0 < v < 1 be an arbitrarily small
constant, ¢ be a positive constant integer, and 0 < 6 < 1/2.
To construct an ALDC C': ¥¥ — X7, begin with a biregular
graph G corresponding to an oblivious (ov = 74, 3 = y619/21)-
sampler with bipartition ([k], [n]), left degree Dy, and right
degree Dgr. Let m € XF be an arbitrary message. The jth
codeword symbol C'(m); is defined as the string (m;);en(;) €
> Pr where N(j) is the set of left vertices neighboring the jth
right vertex.

Immediately, we can see that the rate of this code will be
1/Dy, because each message symbol is duplicated Dy, times
in the codeword, and the alphabet is Yo = ElD B

b) Decoding and analysis: For a message index ¢ and
input string w, consider the decoder which independently
repeats the following step ¢ times, and takes the majority of
the results:

1) Pick a uniformly random right vertex j neighboring left
vertex ¢ in the sampler graph G.

2) Query the jth index of w, and then return the symbol
of w; which corresponds to message index 4.

If w is d-close to some codeword C'(m), then by the sampler
property, a 1—3 = 1—~49/2 fraction of message coordinates
will be “good”: these coordinates ¢ have at most a < § + o =
(14 )4 fraction of their neighbors which are corrupted. If a
message index ¢ is good, then the probability of a uniformly
random neighbor being corrupt is < (1 + ~)d, and so the
probability that the majority of ¢ repetitions is corrupt is

< O((1+7)9) 7).
Hence the decoder achieves the following error:
< B+ (1= 8)-0((1+7)8)[721) < O((1 +~)8)l/?T).

If v = 1/100¢ = O(1), we can apply the sampler from
Theorem to complete the construction.

Corollary 4.3: For any 0 < 0 < 1/2 and constant positive
integer ¢, there exists an explicit code C': ¥ — Y2 which is
a (g,8,0(679/21))-ALDC with rate 1/Dy, and alphabet ¥y =
»Pr where Dy, = O(g—z log srd37) and D = 9DL27(PL)
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