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Abstract—Relational data augmentation is a powerful tech-
nique for enhancing data analytics and improving machine
learning models by incorporating columns from external datasets.
However, it is challenging to efficiently discover relevant external
tables to join with a given input table. Existing approaches rely
on data discovery systems to identify “joinable” tables from
external sources, typically based on overlap or containment.
However, the sheer number of tables obtained from these systems
results in irrelevant joins that need to be performed; this can
be computationally expensive or even infeasible in practice. We
address this limitation by proposing the use of efficient mutual
information (MI) estimation for finding relevant joinable tables.
We introduce a new sketching method that enables efficient
evaluation of relationship discovery queries by estimating MI
without materializing the joins and returning a smaller set of
tables that are more likely to be relevant. We also demonstrate the
effectiveness of our approach at approximating MI in extensive
experiments using synthetic and real-world datasets.

Index Terms—data discovery, mutual information estimation

I. INTRODUCTION

Our increasing ability to collect and store data has led to

an explosion of data repositories, both for open [1]–[4] and

enterprise data [5]–[7]. This abundance creates opportunities

to enhance data analytics and machine learning models: by

incorporating columns from various external datasets, we can

explain confounding bias [8], test hypotheses and explain

salient features in data [9]–[11], as well as improve predictive

models [12], [13]. Consider the following example.

Example 1 (Understanding Taxi Demand). A data scientist
wants to improve a regression model for predicting taxi

demand that was constructed using historical data containing
pick-up times and ZIP Codes where the pick-up occurred
(see table Ttaxi in Figure 1(a)). Here demand is measured
by the total number of taxi rides (NumTrips) originating
from the same spatio-temporal region (ZIP Code and Time).
Since weather is known to impact taxi demand, the data
scientist obtains a new table Tweather (Figure 1(b)) that
contains information about temperature and precipitation. By
augmenting the taxi trips table Ttaxi (through a join on
Date) with hourly average temperature and hourly rainfall
as additional features, the mean absolute error of a random
forest regressor improves significantly. In an effort to identify
additional factors that may help explain the demand variabil-

ity in different neighborhoods, the data scientist joins Ttaxi
with Tdemographics (on ZipCode) containing demographics

statistics (Figure 1(c)). The association between demand and
population for the ZIP Codes of pick-up locations suggests a
strong dependency.
Relational Data Augmentation. The manual process users

must go through to discover external tables is time-consuming.

In an attempt to automate this process, approaches have been

proposed for relational data augmentation [12], [14]–[20].

Most of the existing work focuses on efficient support for data

integration queries, including algorithms to discover “joinable”

tables [14]–[17], [20]–[22], typically based on containment or

overlap. These have an important limitation in that they can

return too many irrelevant tables. Consider our example: if

we search the NYC Open Data repository [1] to discover ad-

ditional features that can help improve taxi demand prediction,

we will find a large number of datasets that overlap in time

with the taxi data, i.e., that are joinable with Ttaxi on Date.

Testing each of these by performing the join, re-training, and

testing the model is wasteful and can be too expensive.

Automatic relational data augmentation systems [12], [23]–

[25] attempt to address this problem by applying feature

selection techniques [26]: given a list of joinable tables, they

materialize the joins and automatically select attributes that

increase the accuracy of predictive model given as input.

Because they rely on data discovery systems [13], [16] to

return the joinable tables, they can end up with both a large

number of joins to perform and, consequently, too many

candidate features to consider. Given the cost of evaluating

the joins and the computational complexity of feature selection

methods, it is expensive to identify the useful features.

To reduce the number of irrelevant candidate features, recent

methods were proposed to discover tables that are not only

joinable with a query table but also have attributes strongly

correlated with an input target variable [27]–[29]. Instead of

joining all table pairs, these methods attain scalability by

relying on inverted indexes and sketching algorithms. While

indexes allow efficient identification of tables that have join

attributes with overlapping values, the sketches reduce the

cost of joins and correlation computation by enabling efficient

estimation of correlations between the input target variable

and the top-k discovered candidate attributes. In essence, these

methods allow performing feature pruning without materializ-

ing joins, and return tables (along with their corresponding

features) that are more likely to enhance model performance

or provide explanations for a target variable of interest.
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Fig. 1: Example of relational data augmentation for the problem of taxi demand prediction. Adding new features, such as

AVG[Temp] and AVG[Rainfall], derived from external tables helps predict, or explain the variance of, the NumTrips
attribute. The augmented table (d) is derived by joining Ttaxi and Tweather on Date, and with Tdemographics on ZipCode.

Unfortunately, these sketches have limitations. Notably, they

do not properly handle repeated values on join keys (that are

common in real data), which may cause estimation issues

when performing left joins (especially on skewed distribu-

tions). Furthermore, correlation measures may fail to identify

non-monotonic relationships and they are only applicable to

numerical attributes. For example, while Pearson’s correlation

may be used to identify the relationship between the numerical

attributes NumTrips and Rainfall, it cannot be directly

applied to Borough, which is a categorical attribute. It also

can fail to identify the non-monotonic relationship between

NumTrips and Population, assuming taxis have fewer

pick-ups both in neighborhoods with small populations (due to

fewer customers) and large populations (due to heavy traffic).

Beyond Correlation-Based Data Discovery. Ideally, we

would like to use a more general measure of statistical depen-

dence, such as Mutual Information (MI), which is invariant

under homomorphism. Because MI is defined over probability

distributions (for scalars and vectors), it is applicable to

multiple data types and dimensionalities. Due to its generality,

MI has found applications in numerous problems including

the analysis of gene expression [30], functional dependency

discovery [31]–[34], explanatory data analysis [35], causality

detection [36]. In machine learning, MI is also used in many

feature selection methods [26], [37], [38]. Moreover, strong

theoretical connections between MI and model generalization

error have been found showing that regression and classifi-

cation errors are minimized when features having the largest

conditional MI with the target are selected [39]–[41].

Challenges of MI Estimators. Estimating MI from finite data

samples is far from trivial. Commonly used MI estimators

based on empirical entropy do a poor job of modeling the

underlying distribution due not only to small sample sizes but

also to inherent estimator bias [42] (see Section II).

Moreover, while MI is well-defined for different data

types, existing estimators typically either handle only discrete-

categorical or continuous-numerical data. A common approach

to handle continuous data is to discretize it using binning

techniques [43] and then use an estimator for discrete data.

Unfortunately, binning makes strong assumptions about the

data distribution, may lead to information loss, and has bias

that increases with the number of distinct values for the

maximum likelihood estimator (MLE) on discretized data [44].

Instead of binning numerical data, some implementations

[45] employ different estimators depending on the attribute

data type. Specifically, they use the MLE estimator (i.e., max-

imum likelihood estimator plug-in of the empirical distribu-

tion [46]) for categorical/discrete data and the KSG estimator

for numeric [47] or mixed numeric-categorical [48] values.

While this approach avoids the pitfalls of data transformation

techniques, it is not clear if using this combination of estima-

tors with different properties (e.g., bias) is more effective.

MI Estimation over Joins. In the particular setting of re-

lational data augmentation, these issues are compounded by

additional problems created by many-to-one left joins and the

need for efficiency. In this scenario, the goal is to augment

a given base table with additional features that will be used

to train a machine learning model to better predict or explain

a target variable. Therefore, we need to keep the number of

rows in the original table intact via a left-outer join. However,

this creates some issues.

First, joining tables on non-unique join-key attributes leads

to the creation of feature attributes containing repeated values

that follow the distribution of the join key. For instance,

while the original Population attribute in Figure 1(c) may

have unique values, the derived Population attribute in the

augmented table shown in Figure 1(d) will have additional

repeated entries according the distribution of the ZipCode
join key. In the particular case where the external attribute has

a continuous distribution, the derived feature attribute will be a

mixture of continuous distributions (with repeated values) that

need to be handled properly by specialized MI estimators [49].

Second, to avoid the cost of fully materializing joins,

systems are limited to estimating MI using a small number of

samples of the join obtained using sketches [27], [50]. State-

of-the-art methods typically use coordinated sampling (based

on minwise hashing) to increase the number of samples that

contribute to the join [51]. However, given that coordination is

typically achieved by hashing values of the join-key attributes,

these algorithms may introduce sampling bias and dependence

194

Authorized licensed use limited to: New York University. Downloaded on September 06,2024 at 01:25:13 UTC from IEEE Xplore.  Restrictions apply. 



on the join-key that leads to violating the i.i.d. assumptions

of estimators. When this happens, the bias of MI estimators

is further increased (as shown in Sections IV-B and V).

Finally, existing join-sampling algorithms [50], [52], [53]

are not directly applicable as they use estimators that are spe-

cialized for the specific function they aim to estimate, typically

COUNT or SUM. Moreover, they have multiple sampling rate

parameters that are difficult to set in practice, and do not

provide a bound on sketch size.

Contributions. We define the problem of MI estimation over

joins for data augmentation, and identify challenges that arise

when estimating it over left joins with non-unique keys.

We propose a new sketch that has a single parameter, the

maximum sketch size, and addresses MI estimation challenges

while avoiding the full join computation, thus providing ef-

ficient support of MI-based data discovery. Unlike previous

approaches, our sketching method: does not assume that join

keys are unique, and guarantees a fixed-size sketch while

keeping an unbiased uniform sample of the join and thus can

be used with any existing sample-based MI estimator.

We assess the effectiveness of our sketching method and

different MI estimators through an extensive experimental

evaluation. To do so, we design a synthetic benchmark that

allows us to compare the estimated and the true MI obtained

analytically from the data distributions used to generate the

data. This benchmark allows us to observe the impact of

dependence between the join-key attributes and the feature

attributes on the MI estimates computed using the sketches.

Furthermore, it allows us to identify differences in the behavior

of various combinations of sketches and MI estimators, when

and why they fail. We also evaluate our sketches using real-

world data from open-data repositories. Our results confirm

that the proposed sketch enables efficient approximation of

the MI computed on the full join, and uncovered useful ob-

servations that help guide the implementation and deployment

of MI-based sketches for data augmentation.

II. BACKGROUND

Before presenting our approach, we first present the ter-

minology used in the paper and some information-theoretic

measures such as entropy and mutual information.

Data Types. As a simplification, we shall use the terms

discrete and continuous to distinguish types of value dis-

tributions, with the former reserved for what is referred to

in the literature as (often unordered) categorical, and the

latter as (ordered, often floating-point) numerical [54]. We are

aware that real data is more complicated and may include

integral categories (e.g., UPC code) and floating-point values

that represent discrete categories (e.g., Dewey Decimal). We

assume such cases are represented as strings in Section V.

It is also important to differentiate a single mixture at-

tribute, that contains a mixture of continuous distributions

(e.g., the variable AVG[Temp] from the weather table in

Figure 1(d) has repeated values for each zip code on the same

date), from a pair of attributes where each contains a different

data type.

Entropy. Entropy quantifies the amount of “information” or

“uncertainty” in the possible outcomes of a random variable.

Let X be a discrete random variable that assumes values from

dom(X) = {1, ..., uX} and has probability mass function
p(X). The entropy H(X) of the random variable X is:

H(X) = E[− log p(X)] = −
uX∑
i=1

p(i) log p(i) (1)

Analogously, when X is a continuous random variable whose

support is defined over the set X and has probability density

function f(X), the differential entropy is defined as:

H(X) = E[− log f(X)] = −
∫
X
f(x) log f(x) dx (2)

These measures can be generalized to multiple variables. Let

X and Y be random variables, whose support values are the

ranges [1, uX ] and [1, uY ], respectively, with joint probability

mass function p(X,Y ). We define the joint entropy as:

H(X,Y ) = −
uX∑
i=1

uY∑
j=1

p(i, j) log p(i, j) (3)

Analogously, if X and Y are continuous with support on

X and Y , respectively, and joint probability density function

f(x, y), the joint differential entropy is defined as:

H(X,Y ) = −
∫
X ,Y

f(x, y) log f(x, y) dx dy (4)

Mutual Information (MI). The MI between two variables X
and Y quantifies the amount of information obtained about

one variable by observing the other. It is defined as:

I(X,Y ) � H(X) +H(Y )−H(X,Y ) (5)

Intuitively, MI represents the amount of information learned

about the target variable Y after observing the feature X . It

is widely used in applications including feature selection [39],

data augmentation [24], and causality analysis [55]. In decision

tree learning, it is known as information gain.

Note that I(X,Y ) ≥ 0, with I(X,Y ) = 0 only when X
and Y are independent variables. What makes MI particularly

attractive is its robustness due to invariance under reparame-

terizations: any bijection on discrete values and any homomor-

phism on continuous values, including affine transformations,

has the same MI [47].

Estimating Entropy and Mutual Information. The measures

above are defined over probability distributions. However,

the distribution is usually unknown in real-life applications.

Therefore, applications often use an estimator based on a finite

number of observations to approximate the distribution.

The classical maximum likelihood estimator (MLE) of en-

tropy is obtained by estimating the probability mass function

using frequencies as follows. Given attribute X , let N be the

number of observations in X and Ni be the frequency of each

element i in X (hence, N =
∑uX

i=1 Ni). The empirical entropy

is estimated as:

ĤMLE(X) =

uX∑
i=1

Ni

N
log

Ni

N
.
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The MLE estimator is known to be systematically biased

downward from the true entropy, and the bias is influenced

by the number of samples N and distinct values mX , and the

distribution of X [42].

The MLE estimator is only applicable to discrete variables.

To estimate entropy over values from a continuous domain X ,

one can estimate H(X) from the average distance to the k-

nearest neighbor (k-NN), averaged over all xi ∈ X . It is well

known that H(X) ≈ 1
N−1

∑N−1
i=1 log(xi+1 − xi) + ψ(1) −

ψ(N), where ψ is the digamma function [47].

The mutual information (MI) can be obtained by estimat-

ing H(X), H(Y ), and H(X,Y ) separately and calculating

Equation 5. When both X and Y are discrete, estimates can

be obtained using the MLE estimator. When both of them

are continuous, MI can be obtained using the KSG estimator

[47] which computes I(X,Y ) in a slightly different way to

avoid compounding errors of the terms. Alternatively, if both

components are mixtures of discrete-continuous distributions,

the MixedKSG estimator [49] can be used. MixedKSG pro-

ceeds similarly to KSG but recovers the plug-in estimator in

discrete regions of the distribution (if they exist). Finally, when

components have different types of distributions (i.e., discrete-

continuous or continuous-discrete cases), another variation of

the KSG estimator can be used [48]: first, the k-NN distances

are computed for each discrete value using only the continuous

variable, then the cardinality among all continuous values for

those distances is calculated.

These MI estimators have different biases. The MLE esti-

mator (for the discrete-discrete case) has a bias proportional

to the number of distinct values and sample size [42]:

I(X,Y )− E[ÎMLE(X, I)] ≈ mX +mY −mXY − 1

2N
(6)

The KSG estimators, on the other hand, have a bias that stems

from uniformity assumptions on the density and depends on

neighbor distances [47]. In Section V, we provide an experi-

mental comparison of these estimators on multiple datasets.

III. MI ESTIMATION FOR DATA AUGMENTATION

We are interested in estimating mutual information in the

relational data augmentation setting: augment a given base

table with new attributes from an external table through a join

operation. Since these new attributes may be used as additional

features to train a machine learning model to predict a target

variable, we need to keep the number of rows in the original

base table intact by performing a left-outer join.

A. Problem Statement

Let Ttrain denote the base table containing (1) a target

variable Y that we want to predict or explain, and (2) an

attribute KY (or set of attributes) that can be used as a join

key in a relational equi-join operation. Let Taug be an external

table that contains (1) an attribute X (or a set of attributes)

that can be used as a feature; and (2) an attribute KX that can

be used to join Taug with the base table Ttrain on the attribute

KY . This is formally defined below. For exposition, we assume

the case where KX , KY and X are all single attributes, and

we discard any rows with NULL values resulting from Taug
not containing some key k in KX that is present in KY . 1

Definition. (MI Estimation over Joins) Given two tables
Ttrain and Taug , the goal is to estimate the mutual information
between the attributes X and Y from the table constructed
through a left-outer-join of the two tables, Ttrain �� Taug , on
keys KX and KY , without having to compute the join.

Consider the example in Figure 1. Here, Ttrain = Ttaxi
is a table containing the number of daily taxi trips in New

York City (NYC). The attribute Y represents the number of

taxi trips NumTrips that happened in a particular ZIP Code

with KX = KY = ZipCode. We are interested in enriching

Ttrain with new features that may help predict the taxi demand

(number of trips) on a given day. Taug = Tdemographics

represents another table discovered in a different source. To

determine if Taug may be useful for our predictive task, we

want to estimate the mutual information between the columns

X and Y (e.g., Borough and NumTrips), obtained after the

join between Ttrain and Taug , without computing the full join.

B. Joining Arbitrary Tables

Many-to-Many Joins. Our problem definition assumes that

there is a many-to-one relationship between Ttrain and Taug ,

that is, each tuple from Ttrain joins with at most one tuple

from Taug . This is required by applications such as model

improvement, where the number of rows in the original

training set must remain intact to avoid introducing bias.

Furthermore, if new rows are added during the join, it is

not clear which labels should be assigned to these rows.

However, while searching for augmentations, we can find

candidate tables Tcand that have a many-to-many relationship

with Ttrain. For example, when joining taxi trips Ttaxi and

weather Tweather on Date, since temperature Temp values

are recorded at hourly intervals, there are multiple temperature

readings associated with each Date.

In such cases, since the augmentation will lead to duplicate

key values, we transform the candidates to ensure that the

augmented table will have the same number of rows as Ttrain.

To do so, we define a featurization function AGG that derives

the augmentation table Taug from a candidate table Tcand.

Given a candidate table Tcand with key column KZ and value

column Z, and a featurization function AGG, the following

join-aggregation query maps Tcand[KZ , Z] → Taug[KX , X],
generating an intermediate aggregate table Taug which is

then combined with Ttrain. This can be expressed using the

following SQL query:

SELECT Ttrain[KY ], Ttrain[Y ], Taug[X]
FROM Ttrain

LEFT JOIN (
SELECT KZ AS KX, AGG(Z) AS X from Tcand

GROUP BY KZ

) AS Taug

ON Ttrain[KY ] = Taug[KX ];

1While we limit joins to having high containment, our method does not
prevent using existing strategies for handling NULLs in MI estimation [56],
[57]. Evaluating these approaches is beyond the scope of this paper.
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Note that while the aggregation of Tcand can be performed

separately as a preprocessing step, the materialization of Taug
is not required for MI estimation. As we will discuss in

Section IV, sketches can be constructed directly from Tcand,

which avoids the cost of aggregating join keys that are not

needed for estimating the MI.

Figure 1 illustrates an example where the attribute Z =
Temp in Tcand = Tweather is transformed (i.e., the values

associated with a given date averaged) and joined on Date
with Ttrain = Ttaxi, as shown in the resulting table in

Figure 1(d). Note that the numbers of rows in the tables Ttrain
and Tcand need not be equal and their join attributes may have

repeated values that need to be mapped to a feature value. We

give a more concrete example below.

Example 2. Let KY and KZ be the keys for the ta-
bles Ttrain and Tcand, respectively. Let Ttrain[KY ] =
[a, a, b, c] and Tcand[KZ ] = [a, b, b, b, c, c, c] and Tcand[Z] =
[1, 2, 2, 5, 0, 3, 3], respectively. The first step is to group values
based on the key values, i.e., {a → [1], b → [2, 2, 5], c →
[0, 3, 3]}. Next, the aggregate function AVG generates an
intermediate aggregate table Taug with the mappings [a →
1, b → 3, c → 2]. Joining Taug with the training table Ttrain

generates the column X = [1, 1, 3, 2]. Similarly, if we applied
MODE (to return the most frequent value), the output would be
X = [1, 1, 2, 3], and COUNT would generate X = [1, 1, 3, 3].

From the example above, we can draw a few observations

about featurization and its implications for MI estimation.

Data Distribution. The distribution of the feature Ttrain[X]
depends on the function AGG and the join key Ttrain[KY ]. For

instance, distribution parameters such as the mean of X will

likely be different for functions such as AVG and MAX. Note

also that repeated values in KY lead to repeated values in X ,

e.g., the value 1 is repeated twice in X because a repeats twice

in KY . Finally, note that Ttrain[X] may be even independent

of Tcand[Z] when using a function such as COUNT, in which

case it only depends on the key frequency distribution of KY

(assuming no NULL values exist in Y ).

Choice of Aggregation Function. There are many choices for

aggregate functions and some may be more appropriate for

specific data types, e.g., AVG for ordered-continuous data

versus MODE for unordered-discrete data. Furthermore, the

data type of the function output depends on the aggregation

function and the input data type (e.g., while COUNT always

outputs a discrete number regardless of input type, MODE
outputs the same type as the input data. Note also that

the aggregation function is not limited to outputting scalar

values. It could also return multidimensional vectors (such as

embeddings of text values), in which case, any MI estimator

that supports multidimensional variables such as KSG [47]

and its derivatives could be used (see Section II). In practice,

to support general datasets and information needs, it may

be necessary to create multiple augmentation columns using

different aggregation functions and then examine the results.

IV. MI ESTIMATION USING SKETCHES

The task of estimating quantities over join results without

materializing the join is a long-standing problem in the lit-

erature [50], [58]. One way to do so is to use sampling. A

naı̈ve approach to obtain samples of an equi-join is to join

rows sampled independently from the two tables via Bernoulli

sampling. Unfortunately, this results in a quadratically smaller

join size [58] which results in poor accuracy.

To address this issue, we use coordinated sampling [27],

[29], [50]–[53], [59]–[61]. In this approach, a shared-seed

random hashing function is applied to the join keys, and a

small set of tuples with the minimum hash values is selected

to be included in the sketch [50], [59]. This implies that

if a row with join key k is chosen from table Ttrain, then

a corresponding row with the same key k in Taug is more

likely to be sampled. Hence, we essentially forgo sample

independence for an increased join size. However, this may

lead to samples that are not identically distributed, which

increases estimator bias. While there exist weighting schemes

such as Horvitz-Thompson for correcting this bias [62], [63],

these estimators are tightly coupled with the measures being

estimated and, thus, are not directly applicable to estimating

MI (see Section II). We, therefore, focus on sampling schemes

that allow us to use existing MI estimators.

Another challenge is how to deal with repeated values in

the join key. Coordinated sampling, which chooses samples

based on hash values of join keys, typically assumes that

the keys are unique or, if not, can be aggregated [27], [52],

[59]. As discussed in Section III, this does not hold in the

relational data augmentation setting since the number of rows

must be kept intact. To address this issue, some join sampling

algorithms suggest an all-or-nothing approach that includes

all entries associated with a selected join key [52]. However,

this is known to increase the variance of estimators and

results in unbounded size [53]. Recent approaches introduce

multiple sampling-rate parameters to select a fraction of the

repeated entries [50], [53]. While this improves variance, these

parameters are hard to set in practice and the resulting size is

sensitive to table size and the join key distribution.

We propose new sampling-based sketches for estimating MI

over joins that address these challenges. We start by proposing

an extension of existing two-level sampling schemes [50], [53]

that takes only a single parameter as input and provides a hard

bound on sketch size (Section IV-A). We refer to this baseline

approach as LV2SK. We provide an analysis that shows that

LV2SK leads to non-uniform sampling (hence, not identically

distributed) that can increase the bias of MI estimators; this

is confirmed experimentally in Section V-B3. To address this

issue, we propose TUPSK (Section IV-B), a novel tuple-based

sampling scheme that leads to uniform sampling probabilities,

which better matches assumptions made by the MI estimators.

As shown in Section V-B3, this reduces bias and leads to

higher accuracy of MI approximation.

Approach Overview. We assume access to hash function hu

that maps input uniformly to the unit range [0, 1]. We also

assume that inputs to hu are integers. Otherwise, we transform
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the input to integers using a collision-free hash function h
that maps objects to integers before feeding them to hu, i.e.,

hu(h(x)) where x is the input data. In practice, it suffices to

use pseudorandom functions. To implement h, we used the

well-known 32-bit MurmurHash3 function. For hu, we used

Fibonacci hashing [64].

Our approach works as follows. Given tables TX and TY
with schemas [KX , X] and [KY , Y ] respectively, we first build

small sketches SX and SY . The sketch SX is composed of a

set of tuples 〈h(k), xk〉 where h(k) is the hash of a join key

value k ∈ KX and xk is a value from X; the sketch SY

is built analogously to SX . Sketches are typically built in

an offline preprocessing stage. When it is time to estimate

MI between attributes in two different tables, we merge their

sketches to recover a useful sample of the join for estimating

the mutual information. Specifically, given a pair of sketches

SX and SY , we create a sketch Sjoin by performing a join

between the sketches on their hashed keys h(k), resulting in

tuples 〈h(k), xk, yk〉. These tuples are a subset of the full table

join Tjoin. Finally, we apply a function F that uses the sample

of paired values 〈xk, yk〉 in Sjoin to estimate the MI of X
and Y , i.e., Î = F(Sjoin). The function F uses existing MI

estimators such as the ones described in Section II.

Our sketching algorithms only differ in the strategy they use

to select samples that are included in the sketch. As inputs,

they are given tables Ttrain (left table) and Tcand (right table).

Specifically, when sketching Ttrain, it must sample values

associated with repeated key values, whereas, for Tcand, it

must aggregate repeated values in order to create a sketch

that represents Taug . In what follows, we provide a detailed

description of these methods.

A. Baseline: Two-Level Sampling (LV2SK)
Our first sketching method works as follows. In the first

level, it performs coordinated sampling based on (distinct)

join keys to select the same set of keys from both tables,

thus maximizing the expected join size between TX and TY .

However, given that this does not provide a bound on the

sketch size, it performs a second sampling step to cap the

number of samples per key, limiting the final sketch size.

Building LV2SK Sketches. We choose the set of tuples

〈h(k), xk〉 as follows. At the first sampling level, we select

the n keys that have the minimum values of hu(k). For each

of these n keys, we filter a subset of the tuples having key k
using independent Bernoulli sampling. The number of tuples

to be included in the sketch is chosen in proportion to the

frequency of k in the original table T, as follows:

1) For Tcand, we apply aggregate function AGG to the set

of values {xk} associated with each key k to generate a

single value AGG({xk}).
2) For Ttrain, we keep nk = max(1, �npk	) samples per key,

where pk = Nk/N is the probability of the key k in KX .

The sampling strategy above guarantees that (1) the sketch

contains at least one sample for each of the n chosen keys,

and (2) for the chosen keys, the frequency of the key in the

sketch is proportional to the frequency of the key in Ttrain.

We can build the sketch described above after sorting Ttrain.

Alternatively, it can be done in a single pass using reservoir

sampling: we only need to maintain a reservoir with n samples

for each of the n minimum keys and the number of repeated

entries associated with each of the minimum keys, which is

needed to determine the desired number samples nk for each

join key [65]. At the end of this pass, we keep only the first

nk samples of the reservoir of each key k and discard the

remaining entries.

Sketch Size. The size of LV2SK sketches is upper bounded

by 2n, but it is typically close to n; To see this, note

that the sketch size is given by:
∑

ki∈KMV(KX) ni =∑
ki∈KMV(KX) max

(
1,
⌊
nNi

N

⌋)
where ki ∈ KMV(KX) de-

notes the set of n minimum values in KX selected in the

first-level sampling. It is easy to show that the upper bound

for its size is 2n, and
∑

ki∈KMV(KX) ni ≥ n holds whenever

the number of unique values in the join key mKX
≥ n.

Analysis. Let pi = Pr[ti] be the probability of selection of

one tuple ti in the first sampling level, and qi = Pr[ti] be the

selection probability of ti in the second-level. Since we assume

a uniform hashing function hu, in the first level any join-key

value ti[K] has a uniform inclusion probability pi = 1/mK ,

where mK is the number of distinct values in K. In the

second level, where we perform Bernoulli sampling of Ni

tuples that were sampled in the first level, we have that qi =
1/max

(
1,
⌊
nNi

N

⌋)
. Given that the inclusion in the second

level is independent of the first, the final probability of select-

ing the tuple ti is Pr[ti] = piqi = 1/
(
mK ·max

(
1,
⌊
nNi

N

⌋))
.

Here we can see that the tuple selection probability is clearly

dependent on the frequency distribution of the join-key values.

Note, however, that in the special case where join keys are

unique, i.e., mK = N , the sampling probability becomes

uniform as Pr[ti] = 1/
(
N ·max

(
1,
⌊
n 1

N

⌋))
= 1/(N · 1) =

1/N . An example of this arises when creating the sketch Saug ,

as it always aggregates the keys to a single value.

B. Proposed Approach: Tuple-based Sampling (TUPSK)

LV2SK sketches have important limitations. When a join

key k is not selected for inclusion in the sketch in the first-level

sampling, none of the rows that contain k will be included in

the sample. Moreover, the sampling of a join key value does

not take into account its frequency in the table. To see why

this is a problem, consider the following extreme example.

Assume that we have a table Ttrain[KY , Y ] of size

N = 100. Let KY = [a, b, c, d, e, f, f, f, ..., f ] and Y =
[0, 0, 0, 0, 0, 1, 2, 3, ..., 95]. Given that Pr[Y = 0] = 0.05 and

Pr[Y = i] = 0.01 when i 
= 0, we have that the entropy of Y
is Ĥ(Y ) = −0.05 log(0.05) − 95 × 0.01 log(0.01) ≈ 4.5247.

Now consider a LV2SK sketch of size n = 5. In the case

that the keys a, b, c, d, e are selected in the first-level sample,

then Strain[Y ] = [0, 0, 0, 0, 0], and thus its entropy estimate

Ĥ(Y ) = −1 log 1 = 0. Given that the entropy upper-bounds

MI, we also have that the MI estimate between Strain[Y ]
and any feature column X , regardless of what its values

are, must also be 0. Additionally, note that the probability
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of selecting a tuple ti such that the key value is equal to

f , Pr [ti[KY ] = f ], is 1/(6max(1, 4.75)) = 0.035 (since

nNi

N = 5 95
100 = 4.75), whereas for each of the other key values

is 1/(6max(1, 0.05)) ≈ 0.167. This example illustrates how

dependence between the join key and the target attribute can

lead to estimation bias.

To address these problems, we propose a coordinated sam-

pling scheme that (1) considers individual rows as a sampling

frame (i.e., each row is considered for sampling individually)

and (2) leads to identically distributed samples (i.e., each row

has the same probability of being sampled). Moreover, given

that the probability of sampling each row is uniform, the

expected number of sampled rows that contain a given join

key k is proportional to the frequency of k in the original

table. We refer to this method as TUPSK.

Building TUPSK Sketches. To build TUPSK sketches, we

select rows from Ttrain by hashing keys as follows. We use

the tuple 〈k, j〉 to identify the row where k appears for the

jth time in sequence, resulting in derived keys 〈k, 1〉, 〈k, 2〉,
..., 〈k,Nk〉. Then, instead of selecting the rows based on

the minimum hash values of hu(k), we select tuples based

on hu(〈k, j〉). The final sketch, however, stores only tuples

containing the hashed key and its associated value: 〈h(k), xk〉.
In other words, the tuples 〈k, j〉 are only used for deciding

whether or not to include a row in the final sketch Strain.

When sketching Tcand, we handle repeated values as in

LV2SK: we apply AGG to the set {xk}, of values from

X appearing with key k, to derive a single value xk =
AGG({xk}). Then we select tuples with the n minimum values

of hu(〈k, 1〉), since the aggregation results in unique keys.

Hashing on 〈k, 1〉 provides sample coordination between the

sketches Strain and Saug .

Analysis. Let pi be the probability of selecting a tuple ti
to be included in a TUPSK sketch. It is easy to see that

each 〈k, j〉 uniquely identifies a row in the table. Since hu

is a uniform hashing function, pi = 1/N . Note that, unlike

LV2SK sketches, the probability is uniform regardless of the

frequency distribution of the join keys. Note also that, for

the particular case of data augmentation, the tuples 〈k, j〉 also

uniquely identify the rows in the final left join since the join is

many-to-one and its output has the same size as the left table.

Hence, the sample recovered by a sketch join is a uniform

sample of the full join result.

It is worth noting that not all samples in the sketch are

coordinated. This happens because the aggregation of tuples

with repeated keys limits the domain of the tuples to 〈k, 1〉.
In contrast, when sketching Ttrain, the domain of the tuples

〈k, j〉 depends on the frequency distribution of the join key

Ttrain[KY ]. This implies that the hashes of all tuples from

Strain having j > 1 cannot match any tuples from Saug .

Consequently, the sampling of such tuples is equivalent to a

Bernoulli sampling.

Finally, note that unlike in LV2SK, each repeated key in

Ttrain may evict other tuples from the n minimum values

in Strain. While somewhat counter-intuitive, less coordination

means higher sample quality as this reduces dependence on the

join keys (i.e., the sample becomes closer to an independent

Bernoulli sample). Overall, our experimental results show that

this scheme leads to a better trade-off between coordination

and independence (Section V-B).

Accuracy Guarantees. TUPSK provides unbiased uniform

samples of the join, but the actual estimation accuracy guar-

antees provided by our sketch also depend on the selected

MI estimator used. All MI estimators used in this paper have

been proven to be consistent estimators [44], [44], [49] under

some assumptions, such as i.i.d samples. While TUPSK does

not guarantee sample independence (due to coordination), our

experiments (Section V-B1) show that the estimates converge

to true MI when the sample size increases. Moreover, the

high-probability error bounds for the empirical entropy and MI

using the MLE estimator proposed in [66] (and subsequently

improved in [67]) apply to sampling without replacement,

which is similar to our setting. These bounds guarantee that

the approximation error (i.e., the difference between an MI

estimate computed on a subsample and the MI estimate

computed on the full data) reduces in a near square root rate

with respect to the subsample size (i.e., the sketch join size,

in our case), and allow computing confidence intervals around

the estimate that get tighter as the sketch join size approaches

the full join size. While it is unclear if all assumptions in this

bound hold for the samples generated by TUPSK, we have

also observed this behavior in our experiments.

V. EXPERIMENTAL EVALUATION

To evaluate the efficacy of our proposed sketching methods,

we performed experiments using both synthetic and real-world

data to answer the following questions: (Q1) How accurate

are sketches at estimating the true mutual information of

attributes obtained after the join? (Section V-B2); (Q2) How

does join-key distribution affect the MI estimation accuracy?

(Sections V-B3 and V-B4); (Q3) How does accuracy vary de-

pending on target and feature data types and, thus, the applied

MI estimator? (Section V-B); (Q4) How do sketches behave

when estimating MI on real data collections? (Section V-C)

Mutual Information Estimators. Many MI estimators have

been proposed. We consider a representative set of estimators

that are widely used in practice. Unless otherwise noted, we

choose estimators based on the data types of variables X and

Y . When dealing with real data, we consider the following

cases: (1) If both X and Y have string values (i.e., the discrete-

discrete case), we use the maximum likelihood estimator

(MLE); (2) If X and Y are numerical variables (e.g., float,

integer), we consider the MixedKSG estimator [49]. This

estimator is able to handle not only continuous distributions

but also mixtures of discrete and continuous distributions in

the same variable, making it flexible for dealing with real data

where the distributions are unknown; (3) When one of the

variables is numerical and the other is string (the discrete-

continuous case), we use the estimator proposed by Ross in

[48] that handles this case, referred to here as DC-KSG.
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Sketching Methods. We evaluate LV2SK and TUPSK (Sec-

tion IV). We also implemented another two-level approach that

performs weighted sampling based on key frequencies (using

priority sampling [68]) instead of the uniform sampling used

in the first level of LV2SK, which we refer to as PRISK. Since

its results are very similar to those of LV2SK, we omit them

for the analysis using synthetic data. As baselines, we com-

pare against independent Bernoulli sampling (INDSK) and a

straightforward extension of Correlation Sketches (CSK) [27]

that estimates MI instead of correlation measures. Since CSK

does not prescribe how to handle repeated join keys, we use the

first value seen associated with a join key (instead of applying

an aggregation function that would modify the original values).

A. Synthetic Data Generation

To better understand the behavior of the proposed sketches

and answer questions Q1, Q2, and Q3, we used synthetic data

to control both the data distribution and join-key dependencies.

We designed a data generation process to create tables given

the join key distribution and true MI between X and Y post-

join as input. This is achieved by generating the post-join tar-

get Y and feature X by drawing random values from analytic

distributions as the join result. Then we decomposed the join

into two separate tables, establishing connections using key

(KY ) and foreign-key (KX ) attributes. This approach allows

us to calculate the true MI after the join, providing a reliable

measure to evaluate the effectiveness of our method.

Target/Feature Generation. In the first experiment, we gener-

ated random variables (X,Y ) using a multinomial distribution

Mult(m, 〈p1, p2〉), which we refer to as Trinomial. This

generates three discrete random variables that assume integer

values in {1, ...,m}. Each value represents the number of

times that each of the three possible outcomes has been

observed in m trials, with each outcome having probabilities

p1, p2, and (1 − p1 − p2). The number of trials m is chosen

based on the desired number of distinct values in the data. We

refer to the first two variables associated with p1 and p2 as X
and Y , and the third variable is discarded.

To control the desired level of MI between X and Y ,

we use the following property of the trinomial distribution

(see [69, chapter 11.1]). The central limit theorem ensures

that Mult(m, 〈p1, p2〉) converges to a bivariate normal dis-

tribution N(μ, σ) with mean μ = 〈mp1,mp2〉 and variance

σ2 = m
√
pipj(δij − √

pipj) as m → ∞. Hence, solely

for the purpose of selecting model parameters to achieve a

desired MI, we can use the closed-form MI formula from the

analogous bivariate normal distribution to approximate the MI

for the trinomial, which is known to be − 1
2 ln

(
1− r2

)
where

r is the Pearson’s correlation coefficient of X and Y . Based

on this and standard properties of the trinomial distribution,

we derived the following algorithm to select the distribution

parameters p1 and p2:

1) Choose the true mutual information Itrue ∼ Unif(0, 3.5),
then compute the equivalent correlation r =√
1− exp (−2 · Itrue); note that Itrue = 3.5 is equivalent

to r ≈ 0.999.

2) Choose p1 ∼ Unif(0.15, 0.85) (as the approximation

works better when p is not near to 0 or 1).

3) Finally, calculate p2 using the values of r and p1 based

on the trinomial variance and closed-form expression for

correlation r = −p1p2/
(√

p1(1− p1)
√
p2(1− p2)

)
. If

p2 is not in the desired range (i.e., [0.15, 0.85]) then repeat.

The approximation using bivariate normal distribution above

was only used to choose the parameters. To compute the

true MI of the distribution, we used the (open-form) entropy

formula for the trinomial distribution [70].

As done in [49], we also generated a combination of

discrete and continuous data for X and Y , respectively, which

we refer to as CDUnif. X follows a uniform distribution

over the integers {0, 1, ...,m − 1}, while Y is uniformly

distributed within the range [X,X + 2] for a given X . The

true mutual information between X and Y can be computed

as I(X,Y ) = log(m)− (m− 1) log(2)/m. Note that here the

MI is a function of parameter m, which also represents the

number of distinct values in Y .

Distribution Parameters. For Trinomial, we restrict

generated data to having MI ∈ [0, 3.5] and m ∈
{16, 64, 256, 512, 1024}. Since both X and Y are discrete

and have ordered numeric values, it is possible to treat the

data as either discrete, mixture, or continuous. A marginal

variable can be made continuous via perturbation, by breaking

ties using random Gaussian noise of low magnitude without

any significant impact on the MI [47]. Thus, by doing this

in just one of the marginals we can use an estimator for

discrete-continuous variable pairs such as the DC-KSG [48].

Additionally, MixedKSG [49] can also be applied to variables

with repeated values as it can handle ties naturally based on

its formulation. Hence, to evaluate the impact of these estima-

tors, we consider three representative data type combinations:

we use the MLE for discrete-discrete, MixedKSG [49] for

mixture-mixture, and DC-KSG [48] for discrete-continuous.

For CDUnif, we draw m uniformly in the range [2, 1000],
which leads to MI values in the range [0.3, 6.2]. In this

distribution, Y is continuous and X is discrete. Hence, we only

report results using MixedKSG [49] and DC-KSG [48], which

are able to deal with discrete and continuous distributions

seamlessly without any data transformation.

Decomposition Into Joinable Tables. To decompose (X,Y )
into tables Ttrain and Taug that can be joined to include X and

Y as columns, we employ two different methods of generating

key and foreign-key columns: KeyInd for one-to-one joins

and KeyDep for many-to-one joins (which allows us to answer

Q2). KeyInd provides maximum independence between keys

by generating (sequential) unique join keys in KX , leading to

a maximum number of different key values in KX pointing

to the same value in X (e.g., if the value x appears 10 times

in X then we have 10 different values in KX that co-occur

with x). This method establishes a one-to-one relationship

between attributes KY ∈ Ttrain and KX ∈ Taug . KeyDep
simulates a strong dependence of join keys by making the

value in KX , for each row, equal to the value in X . Hence,
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Fig. 2: True MI vs MI estimates computed using sketches of

size n = 256. Each plot shows a different method (LV2SK on

the left and TUPSK on the right) and each line shows results

for different data types/estimators and join key generation

processes. TUPSK is more robust to the join key distribution.

we have a single value in KX for all the occurrences of a

value in X , establishing a many-to-one relationship. Note that

KeyDep is only applicable when X is discrete, as it would

create unique join key values for continuous data distributions.

Moreover, while the marginal distribution of X (and hence

key frequencies in KX ) is uniform for CDUnif, it is a

binomial distribution for Trinomial. Note also that although

these methods represent two contrasting join scenarios, both

methods enable table joins that exactly recover (X,Y ).

B. Experiments Using Synthetic Data

1) True vs. Estimated MI on Full-Table Joins: Before

presenting our sketch evaluations, we conducted a preliminary

experiment to assess the behavior of different MI estimators.

Our goal is to establish a baseline of the expected behavior

of the MI estimators, especially when dealing with real data

in Section V-C, where the true MI is unknown. For each

data distribution, we consider all MI estimators that can be

used with the given data types without applying any data

transformations as described above: for Trinomial we used

MLE, DC-KSG, and MixedKSG; for CDUnif we used DC-

KSG and Mixed-KSG. We compare the true MI, calculated via

the distribution parameters that were used to generate the data,

to MI estimates obtained from the fully-materialized join con-

taining N = 10k rows. For both Trinomial and CDUnif,

the root mean squared error (RMSE) is smaller than 0.07, and

the Pearson’s correlation coefficient is greater than 0.99. We

omit plots for these results since they are close to a straight

line, as expected. The results demonstrate that MI estimates

obtained from the full-table join provide a good approximation

for the true MI (computed analytically), regardless of the data

type assumptions made by each estimator. Although we can

notice some small bias and variance in the range of lower

true MI (especially for Trinomial), the overall error is very

small in this setting with a large sample size.

2) Assessing Sketch Estimation Accuracy: Figure 2 shows

the results for MI estimates for the Trinomial distribution

(m = 512) computed using the proposed sketching methods,

LV2SK and TUPSK. In this setting with limited sample size

(n = 256), we see that both the bias and variance of the

estimators increase significantly. Here, the MI is overestimated

and the magnitude of the overestimation depends on the type

of MI estimator being used: while the bias is highest for MLE

estimator (�, �) when the true MI is low, MixedKSG (�, �)

reaches a peak bias around the mid-range MI values.

While the bias and variance are also influenced by other

factors (as discussed below), this result underscores the sig-

nificance of selecting the appropriate estimator for the data

type at hand. For example, while it may be simpler to use an

MLE estimator with discrete ordered data (or, e.g., with binned

continuous data), using a k-Nearest Neighbors approach may

lead to a smaller bias.

Furthermore, this result suggests that comparing estimates

of columns with different data types, which require distinct

estimators, may not yield meaningful results due to the distinct

bias and variance properties of different estimators. While the

results of these estimators converge to the true MI when the

sample size is large enough, as shown in Section V-B1, the

approximation accuracy depends on many factors such as the

data distribution, the sample size, and the underlying true MI.

When these are unknown, it becomes challenging to determine

whether such comparisons are meaningful. In Section V-C, we

further discuss this issue based on our results on data sourced

from real-world open data repositories.

3) Effect of the Join Key Distribution: In Section IV, we

described two different methods to select samples to include

in the sketch. In Figure 2, we can visualize how the join-

key distribution affects the MI estimation accuracy of these

methods. Specifically, we can compare the estimation differ-

ence caused by KeyInd vs KeyDep in a given estimator.

For instance, consider the LV2SK method in Figure 2(left).

When we compare the lines that represent the MLE estimator

(�, �), we note that the bias from KeyDep (�) is larger than

that from KeyInd (�). Similarly, KeyDep leads to increased

bias for the MixedKSG estimator (�) but, for the DC-KSG

estimator, KeyDep leads to a small downward bias (�).

Differently from LV2SK, TUPSK is not as affected by

the join-key distribution. We can see in Figure 2(right) that

TUPSK is able to attain the same performance regardless of

the join-key distribution. This is because the TUPSK sampling

scheme reduces the dependence on the join keys by hashing

on the tuple 〈k, j〉, which leads each row being sampled with

uniform probability (given that each tuple 〈k, j〉 is unique in

table Ttrain). LV2SK on the other hand, samples entries non-

uniformly and introduces additional bias due to its dependence

on the key frequency distribution and the existing key-target

correlation in the KeyDep distribution.

4) Effect of Distinct Values: To assess the impact of the

number of distinct values in the distribution on the MI esti-

mation accuracy, we vary the parameter m of Trinomial
and CDUnif distributions while keeping the desired sketch

size n = 256 constant. This means that the ratio m/n
increases making it increasingly harder to estimate the MI,

e.g., when X ∼ Uniform and m/n = 1 we expect to have

only 1 sample to estimate the probability mass p(x) of a

given value x ∈ X . For CDUnif, m = 256 is equivalent
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Fig. 3: True MI vs MI estimates computed using sketches

of size n = 256 for CDUnif. Each plot shows a different

sketching method while each line shows results for different

data types/estimators and join key generation processes.

to I(X,Y ) ≈ 4.85. As Figure 3 shows, the MI estimators

break down when I(X,Y ) approaches 4.85 for the CDUnif
distribution. For LV2SK, the DC-KSG estimator completely

breaks down even earlier, around I(X,Y ) ≈ 4.25. In contrast,

TUPSK degrades more gracefully as I(X,Y ) increases.

Figure 4 shows the impact of increasing m for the

Trinomial distribution. Here, the marginal distributions of

X and Y are non-uniform (binomial) distributions (unlike

CDUnif which has uniform marginals). The plots clearly

show that increasing m leads to increased bias for estimators

that handle discrete distributions such as MLE (�) and Mixed-

KSG (�). Although the estimators do not completely break

down here, we can see that the bias for the MLE estimator (�)

is so large when m = 1024 that all estimates are considered

to have a high MI in the small range [2.5, 3.5].

Note that the maximum true MI value for low values of m
is smaller than for large m. This is due to our data generation

process (Section V-A), which relies on the central limit theo-

rem and the bivariate normal distribution to approximate the

MI. This, however, does not affect our results since we use

the exact MI formula to compute the analytical MI in Fig. 4.

5) Comparison to Other Baselines: In Table I, we report

the average sketch join size and mean squared error (MSE) for

all sketches, including the additional baselines: independent

sampling (INDSK) and correlation sketches (CSK). Results

are computed for sketches of size n = 256 and include tables

with different join key distributions (KeyDep, KeyInd) and

different distribution parameters (m). The results demonstrate

that INDSK has difficulty matching join keys, resulting in

a smaller join size than coordinated sampling approaches,

which leads to large MSE. Coordinated sampling methods

achieve significantly larger join sizes, making them more

effective strategies. Among them, TUPSK achieves the best

MSE, which is due not only to the larger number of samples

recovered by the sketch join but also to unbiased samples. The

average join size of the two-level sampling sketches is highly

sensitive to the join key distribution: when keys are unique

(as in KeyInd), it behaves as TUPSK, and a sketch of size n
yields n join samples. However, when there are repeated keys,

it may lead to either more or fewer samples than n. In our

experiments, the average join size increases as m increases.

Dataset Sketch Avg. Sketch Join Size % MSE

CDUnif

CSK 194.2 75.87 4.56
INDSK 107.9 42.16 9.57
LV2SK 232.9 90.99 2.94
PRISK 232.9 90.99 2.94
TUPSK 256.0 100.00 0.77

Trinomial

CSK 155.2 60.62 1.37
INDSK 133.7 52.22 1.19
LV2SK 255.9 99.94 0.32
PRISK 255.9 99.94 0.32
TUPSK 256.0 100.00 0.22

TABLE I: Comparison of MI estimate versus the true MI using

sketches of size n = 256. The “%” column is the percentage

of “Avg. Sketch Join Size” relative to sketch size n.

C. Experiments Using Real Data

We now evaluate the behavior of our sketches on real-

world data collected from two different open-data portals:

the World Bank’s Finance (WBF) [71] and the NYC Open

Data (NYC) [1]. Our experimental data consists of snap-

shots of these repositories collected in September 2019 using

Socrata’s REST API [72].

From these collections, we sample pairs of tables Ttrain and

Taug as follows. For each table t in a data repository, we first

create the set Pt of two-column tables, denoted as TA[KA, A],
comprised of all pairs of join-key and data attributes 〈KA, A〉
from Pt such that KA is a string attribute and A contains

either strings or numbers (i.e., ints, longs, floats, or doubles).2

Let C =
⋃

t Tt be the set of all two-column tables in the

repository. We then draw a uniform sample of the set of

pairwise combinations PC = {(Ti, Tj) | Ti, Tj ∈ C} and

use the tables in these pairs as Ttrain and Taug . The final

sample includes 36k table pairs for the WBF collection and

59k pairs for the NYC collection. The average domain size of

join attributes for the left and right tables are approximately

3.1k and 3.5k for WBF, respectively, and 11.2k and 1k for

NYC, respectively. Finally, the average full join size is 34k

for WBF and 8.5k for NYC.

Given that it is not possible to know the true distribution of

the data in these tables, we use the MI estimated over the full

data as a proxy for the true MI. As shown in Section V-B1,

the full join provides a good approximation of the true MI

when the join size is large. Hence, from now on we compare

the sketch estimates to the full-join estimates. Even though

the full join may not always reflect the true MI, it is the only

option available in many practical scenarios [66].

1) Approximation Accuracy: Table II summarizes the re-

sults for each sketching method for the two dataset collections.

The results are computed using sketches with n = 1024.

To discard meaningless estimates, we only include estimates

computed on sketch join size greater than 100. First, we

confirm that LV2SK, which may use a higher storage size

for a given budget n (see Section IV-A), tends to generate a

larger average join size. However, despite using less storage,

2We used the Tablesaw library [73] to perform type inference.
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Fig. 4: Sketch MI estimate versus the true MI computed using distribution parameters. Sketch size is n = 256 for all plots.

Dataset Sketch Avg. Join Size Spearman’s R MSE

NYC
LV2SK 230.9 0.81 1.41
PRISK 231.1 0.79 1.36
TUPSK 185.3 0.86 0.93

WBF
LV2SK 231.2 0.40 1.75
PRISK 226.6 0.40 1.76
TUPSK 194.9 0.45 1.46

TABLE II: Comparison of MI estimate using different sketch-

ing strategies versus the full join. While LV2SK can theoreti-

cally have a sketch size twice as large as TUPSK, in practice

their sketch join sizes is similar. Even with this disadvantage,

TUPSK outperforms LV2SK in estimation accuracy (stronger

Spearman’s R correlation) using less storage.

TUPSK outperforms LV2SK in terms of estimation accuracy

measured by the mean squared error (MSE) metric.

We use Spearman’s correlation, a rank-based measure, to

quantify how well the ranking obtained using MI estimates

computed from sketches approximates the ranking of MI

estimates computed over the full tables. We can see that

Spearman’s correlation for TUPSK is the strongest. This is sig-

nificant since for automatic data augmentation it is important

to rank features based on their importance. This result confirms

that TUPSK is able to generate higher quality samples than

its competitors.

2) Effect of Sketch Join Size: In Figure 5, we break down

the results by data types (and hence, MI estimators) and sketch

join size. A larger sketch join size indicates that the tables are

more joinable (i.e., have a larger overlap) and that the MI

estimator is given a larger number of samples. Here, we can

observe a behavior similar to what we observed with synthetic

data. In particular, we note that when the sample size is small,

(1) the MLE estimator (�) tends to overestimate the MI, and

(2) the KSG-type estimators (�, �) tend to break down and

generate estimates close to zero.

3) Comparing MI Estimators: Another notable difference

is the magnitude of the MI estimates generated by different

estimators: the MLE estimator computes MI values that are

significantly larger than the ones generated by KSG-based

estimators: while MLE estimates reach the range [4, 6], KSG-

based estimates are never larger than 2. Although we cannot

confirm whether this is an artifact of the estimator limitations

or if numerical data indeed leads to smaller MI values, this

result suggests that comparing MI estimates from different

estimators may not be reasonable. For example, when ranking

attributes for data discovery, it might be preferable to produce

separate rankings of different MI estimators and then compare

the utility of top-ranked attributes using a downstream (task-

specific) evaluation measure (e.g., the increase in accuracy of

an ML model computed on the labels).

D. Performance Evaluation

Due to space constraints, we omit a detailed runtime evalu-

ation since the efficiency of the proposed sketches is similar to

others evaluated in previous work [27], [29]. For completeness,

we provide exemplar numbers for sketch size n = 256. As

the table size grows from N = 5k to N = 20k, the full join

size time increases from 0.35ms to 2.1ms, whereas the sketch

join time grows from 0.03ms to 0.18ms. Similarly, while MI

estimation time increases from 2.2ms to 10.7ms, the sketch is

approximately constant and took only 0.1ms.

VI. RELATED WORK

To the best of our knowledge, no prior work has addressed

the problem of estimating mutual information (MI) over joins

for relational data augmentation using sketches. In what fol-

lows, we examine related prior research on data discovery

systems, feature selection, MI estimation, and join sampling.

Data Discovery. The problem of finding related datasets (via

unions and joins) on the Web and in data lakes, to unlock

the utility of a provided table has been studied since [74].

Applications include decision support, data mining, ML model

improvement, and causality analysis, and have resulted in

systems including Aurum [16], ARDA [12] and Auctus [13].

Some related work focuses on methods that utilize sketches

and Locality-Sensitive Hashing (LSH) indexes to efficiently

discover joinable tables [14], [15]. Others address the problem

of finding tables that are both joinable with the input query

table and contain correlated columns, employing different

techniques to identify these relationships [22], [27], [29], [75],

[76]. MI has been used for discovering functional dependen-

cies (FDs), often between columns within the same table [32]–

[34]. FDs are not symmetric, unlike MI, so while MI can

help discover FDs, the reverse is not always true. Finally, our

method is complementary to the work of Kumar et. al. [75],

where they propose conservative decision rules to predict when

the features obtained through a join can improve models.

Feature Selection. There are three main classes of feature

selection methods (see [26] for a survey): filter methods, which

start from a join over all tables and use a lightweight proxy
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Fig. 5: Sketch MI estimate versus the MI estimate computed using the full join output for tables from the WBF collection.

Sketches are created using TUPSK with size n = 1024 for all plots.

such as correlation to remove features; wrapper methods,

which incrementally choose features based on the (more

expensive) downstream task either by joining one table/feature

at a time (forward selection) or removing one at a time

from a join over all tables; and embedding methods, which

use a proxy to select multiple features at a time and then

measure using the downstream task. This work is related to

filter methods since it enables the estimation of MI, which is

a proxy measure commonly used in several feature selection

algorithms [26], [41].

Mutual Information Estimation. When the number of available

observations is large, computing the MI can be expensive.

Various papers have considered efficient approximation al-

gorithms, with confidence intervals, for entropy estimation

via subsampling [66], [67], which can be extended to MI.

Some approaches considered MI estimation over data streams

[77]–[79]. Ferdosi et. al. [80] show how to approximately

find a pair of columns having the largest mutual information

in sub-quadratic time, however, they assume binary-valued

attributes and that table joins are materialized. While our prior

work on Correlation Sketches [27] examined the problem of

sketches to avoid a full join, we are not aware of any work

addressing the problem of estimating MI while avoiding the

cost of materializing the entire join. There is also an extensive

body of research on different estimators for MI, some of

which we cover in Section II. Additionally, recent work has

shown that no estimator can guarantee an accurate estimate

of mutual information without making strong assumptions on

the population distribution [81]. While previous work had

provided intractability results for specific estimators, such as

KSG [82], this result is universal to all MI estimators.

Join Sampling. The problem of creating samples of table join

results has been extensively studied [50], [52], [53], [63]. We

use ideas similar to the ones employed by these algorithms,

such as sample coordination and two-level sampling. Unlike

our sketches, however, these algorithms lead to variable sample

sizes that depend on the input size and data distribution. More-

over, they usually employ unequal probability sampling that

requires adjusting the estimators to remove bias. In contrast,

we seek sampling strategies that lead to uniform probabilities

that allow us to use existing MI estimators.

VII. CONCLUSION

In this paper, we introduced a new method for estimating

mutual information (MI) using sketches. Our proposed method

addresses the challenges of estimating MI over joins with non-

unique keys and efficiently approximates the MI without the

need to materialize the full join. Our experiments demonstrate

the effectiveness of our sketches in approximating the true

MI values. Additionally, we have shown how data types and

estimators impact the accuracy of MI estimates, emphasizing

the need for careful consideration when comparing MI esti-

mates from different data types. Our results show that some

estimators underestimate while others overestimate, there is

thus a need to carefully choose an appropriate estimator based

on application requirements. E.g., while MLE may offer high

recall, estimators based on Laplace smoothing [34] may be

more appropriate for controlling false discoveries. Exploring

this trade-off further is a promising avenue for future work.
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[47] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Physical review E, vol. 69, no. 6, p. 066138, 2004.

[48] B. C. Ross, “Mutual information between discrete and continuous data
sets,” PloS one, vol. 9, no. 2, p. e87357, 2014.

[49] W. Gao, S. Kannan, S. Oh, and P. Viswanath, “Estimating mutual
information for discrete-continuous mixtures,” Advances in neural in-
formation processing systems, vol. 30, 2017.

[50] D. Huang, D. Y. Yoon, S. Pettie, and B. Mozafari, “Joins on samples:
a theoretical guide for practitioners,” Proceedings of the VLDB Endow-
ment, vol. 13, no. 4, pp. 547–560, 2019.

[51] E. Cohen, “Sampling big ideas in query optimization,” in Proceedings
of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, 2023, pp. 361–371.

[52] D. Vengerov, A. C. Menck, M. Zait, and S. P. Chakkappen, “Join
size estimation subject to filter conditions,” Proc. VLDB Endow.,
vol. 8, no. 12, p. 1530–1541, Aug. 2015. [Online]. Available:
https://doi.org/10.14778/2824032.2824051

[53] Y. Chen and K. Yi, “Two-level sampling for join size estimation,”
in Proceedings of the 2017 ACM International Conference on
Management of Data, ser. SIGMOD ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 759–774. [Online].
Available: https://doi.org/10.1145/3035918.3035921

[54] V. Shah, J. Lacanlale, P. Kumar, K. Yang, and A. Kumar, “Towards
benchmarking feature type inference for automl platforms,” in
Proceedings of the 2021 International Conference on Management
of Data, ser. SIGMOD ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1584–1596. [Online]. Available:
https://doi.org/10.1145/3448016.3457274

[55] V. Solo, “On causality and mutual information,” in 2008 47th IEEE
Conference on Decision and Control, 2008, pp. 4939–4944.

[56] G. Doquire and M. Verleysen, “Feature selection with missing data
using mutual information estimators,” Neurocomputing, vol. 90, pp.
3–11, 2012, advances in artificial neural networks, machine learning,
and computational intelligence (ESANN 2011). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231212001841

[57] M. Hutter and M. Zaffalon, “Distribution of mutual information from
complete and incomplete data,” Computational Statistics & Data Anal-
ysis, vol. 48, no. 3, pp. 633–657, 2005.

[58] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy,
“Join synopses for approximate query answering,” SIGMOD Rec.,
vol. 28, no. 2, p. 275–286, Jun. 1999. [Online]. Available:
https://doi.org/10.1145/304181.304207

[59] A. Bessa, M. Daliri, J. Freire, C. Musco, C. Musco, A. Santos,
and H. Zhang, “Weighted minwise hashing beats linear sketching for
inner product estimation,” in Proceedings of the 42nd ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, 2023.

[60] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla,
“On synopses for distinct-value estimation under multiset operations,”
in Proceedings of the 2007 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’07. New York, NY, USA:
ACM, 2007, pp. 199–210. [Online]. Available: http://doi.acm.org/10.
1145/1247480.1247504

[61] E. Cohen, “Coordinated sampling,” in Encyclopedia of Algorithms,
2016, pp. 449–454. [Online]. Available: https://doi.org/10.1007/978-1-
4939-2864-4 576

[62] M. Daliri, J. Freire, C. Musco, A. Santos, and H. Zhang, “Sampling
methods for inner product sketching,” arXiv preprint arXiv:2309.16157,
2023.

[63] C. Estan and J. F. Naughton, “End-biased samples for join cardinality
estimation,” in 22nd International Conference on Data Engineering
(ICDE’06), 2006, pp. 20–20.

[64] D. Knuth, Addison-Wesley, and P. Education, The Art of Computer
Programming, ser. Addison-Wesley series in computer science and
information processing. Addison-Wesley, 1997, no. v. 3.

[65] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software (TOMS), vol. 11, no. 1, pp. 37–57, 1985.

[66] C. Wang and B. Ding, “Fast approximation of empirical entropy via
subsampling,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 658–
667.

[67] X. Chen and S. Wang, “Efficient approximate algorithms for empirical
entropy and mutual information,” in Proceedings of the 2021 Interna-
tional Conference on Management of Data, 2021, pp. 274–286.

[68] N. Duffield, C. Lund, and M. Thorup, “Priority sampling for estimation
of arbitrary subset sums,” J. ACM, vol. 54, no. 6, p. 32–es, Dec. 2007.
[Online]. Available: https://doi.org/10.1145/1314690.1314696

[69] H.-O. Georgii, Stochastics: Introduction to Probability and Statistics.
Berlin, Boston: De Gruyter, 2012. [Online]. Available: https://doi.org/
10.1515/9783110293609

[70] Wikipedia contributors, “Multinomial distribution — Wikipedia,
the free encyclopedia,” 2023, [Online; accessed 01-August-
2023]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Multinomial distribution&oldid=1167221208

[71] “World Bank Group Finances,” https://finances.worldbank.org.
[72] “The Socrata Open Data API,” https://dev.socrata.com.
[73] “The Tablesaw Library,” https://github.com/jtablesaw/tablesaw.
[74] A. D. Sarma, L. Fang, N. Gupta, A. Y. Halevy, H. Lee, F. Wu, R. Xin,

and C. Yu, “Finding related tables,” Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, 2012.

[75] A. Kumar, J. Naughton, J. M. Patel, and X. Zhu, “To join or not to join?
thinking twice about joins before feature selection,” in Proceedings of
the 2016 International Conference on Management of Data, 2016, pp.
19–34.

[76] J. Becktepe, M. Esmailoghli, M. Koch, and Z. Abedjan, “Demonstrating
mate and cocoa for data discovery,” in Companion of the 2023 Interna-
tional Conference on Management of Data, 2023, pp. 119–122.

[77] P. Indyk and A. McGregor, “Declaring independence via the sketching
of sketches,” in Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, ser. SODA ’08. USA: Society
for Industrial and Applied Mathematics, 2008, p. 737–745.

[78] F. Keller, E. Müller, and K. Böhm, “Estimating mutual information
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