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ABSTRACT

Existing deep-learning approaches to semantic column type anno-
tation (CTA) have important shortcomings: they rely on semantic
types which are fixed at training time; require a large number of
training samples per type; incur high run-time inference costs; and
their performance can degrade when evaluated on novel datasets,
even when types remain constant. Large language models have ex-
hibited strong zero-shot classification performance on a wide range
of tasks and in this paper we explore their use for CTA. We introduce
ArcheType, a simple, practical method for context sampling, prompt
serialization, model querying, and label remapping, which enables
large language models to solve CTA problems in a fully zero-shot
manner. We ablate each component of our method separately, and
establish that improvements to context sampling and label remap-
ping provide the most consistent gains. ArcheType establishes a
new state-of-the-art performance on zero-shot CTA benchmarks
(including three new domain-specific benchmarks which we re-
lease along with this paper), and when used in conjunction with
classical CTA techniques, it outperforms a SOTA DoDuo model on
the fine-tuned SOTAB benchmark.
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1 INTRODUCTION

The goal of semantic column type annotation (CTA) is to asso-
ciate each column of a relational table with one among several
pre-defined semantic types that go beyond atomic types such as
string, integer, or Boolean. CTA is a useful computational primitive
in numerous settings, including data cleaning, where detection,
correction, and transformation are performed using rules based on
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data types [24, 40], and schema matching for data discovery, where
the semantic type can be used to constrain the search for matching
attributes [22, 26]. Beyond being useful from a computational stand-
point, efficient methods for CTA can also enable democratization
of access to large, well-curated datasets by reducing labeling costs.

Learning-Based CTA. Recent approaches to CTA have increas-
ingly been based on learning-based techniques. Deep learning
approaches rely on the availability of large training corpora of
columns annotated with their semantic types to train a deep neu-
ral network from scratch that can perform CTA on new, unseen
columns of relational tables [21, 53]. Fine-tuned models, on the
other hand, rely on pre-trained transformer-based language models
(LMs) such as BERT [51] and fine-tune them for the specific task
of CTA [10, 45]. Learning-based approaches have been shown to
be effective for identifying generic types for which there exists
sufficient training data. However, these approaches exhibit impor-
tant limitations. First and foremost, their performance degrades
substantially when evaluated against test datasets that have been
acquired from different sources even when their column types match
closely. This problem is sometimes called distribution shift [38]. An
important desideratum of deep learning models is that they exhibit
predictable model behavior under natural distribution shifts, i.e.,
when evaluation data which differs from the data on which a model
was trained due to natural factors. However, recent works show that
the vast majority of standard deep models for image classification
perform significantly worse under natural shifts [18, 29, 41].

We posit that the same phenomenon occurs in closed-set deep
learning models for CTA. Suppose we fix a given column type
location and that our pre-training distribution is sourced from
NYC Open Data [32]. Then we might see entries like Broadway,
SoHo, Jamaica, which are locations in New York City. But if we
use this model to perform CTA on a dataset from the Brazilian
Dados Abertos [16], it is unlikely to assign the location label to
Corcovado and Lapa, which are locations in Rio de Janeiro. As
a simple empirical validation of this problem, we compared the
performance of the fine-tuned DoDuo CTA model [45], on the
Schema.Org Table Annotation Benchmark (SOTAB) [28]. We use
the DoDuo variant pretrained on the similar VizNet dataset [19],
reusing CTA labels from that benchmark wherever possible. We
find that performance declines over 60% (from 84.8% to 23.8%).

Even if existing models did not struggle under shift, their utility
is still constrained by the fact that label sets have to be specified
at training time. However, real-world data is vast, and pre-trained
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Figure 1: ArcheType: a four-stage method for column type annotation. (1) In the Context Sampling stage, an algorithm selects a few
representative samples from a column. (2) In the Prompt Serialization stage, the context and instruction string are serialized in a model-specific,
token-efficient manner. (3) The prompt is input to a LLM in the Model Querying stage. (4) If the output of the LLM is not one of the allowable

categories, the Label Remapping stage assigns the model output to a

type labels rarely map cleanly to categories of interest in newly-
encountered datasets; in many scenarios datasets do not have a
schema which fit neatly into these pre-trained types.

Consider the NYC Open Data repository [32] which contains
thousands of datasets published by NYC agencies and includes
NYC-specific semantic types such as public schools, agencies, parks,
and boroughs. As point of reference regarding the specificity of
this collection, Ota et al. [34] computed the overlap between the
contents of datasets in NYC Open Data and word vectors trained
with GloVe (which uses Wikipedia as a source) and found that GloVe
covers only 8% of the terms in the collection. We note that existing
ontologies and taxonomies such as DBpedia [2] define generic types
that encompass the NYC-specific types, gor example, a high school
can be classified as EducationalInstitution. However, this type
includes many institution types that are not public schools, such
as colleges, medical centers and libraries. If we use this semantic
type to find tables to augment information about NYC high schools,
many irrelevant tables would be retrieved.

Further, training a model to recognize new types is both time-
consuming and costly as it requires the acquisition of labeled data
and the training of new deep models. This can severely limit the ap-
plicability of learning-based approaches [10, 21, 45] to long-tail and
rare types, which can negatively affect downstream applications.

Moreover, the volume of training data required by modern CTA
models is substantial. For example, Sherlock [21] was trained on
over 675,000 columns retrieved from the VizNet corpus to recognize
78 semantic types from DBpedia [2]. Over 397,000 tables were used
for training versions of the current state-of-the-art DoDuo [45].
This imposes high data cleaning and labeling costs which can be
oppressive, particularly for infrequent classes.

Using LLMs for CTA. As a silver lining, the recent dramatic ad-
vances in generative large language models (LLMs) open the op-
portunity to address these challenges and create robust models for
a broad set of semantic types without requiring large volumes of
labeled data. LLMs are trained over a very large and diverse corpus

class.
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and they are thus able to accumulate knowledge that covers a plethora
of semantic types. Furthermore, these modes have the capability to
perform in-context learning, where the label set can be specified
as user-defined context during inference time, making it possible
to perform open-set classification even for rare types. For example,
when presented with the text Stuyvesant, GPT-3.5-Turbo learns
in-context that it is being asked to perform classification and asserts
it is a High School in New York City. This capability enables
zero-shot CTA as well as the generation of labels that can be used
to fine-tune models for domain-specific types. LLMs have also been
shown to perform much better than other learning-based models
under distribution shift [39], opening the possibility for the creation
of robust CTA models.

Our contributions. In this paper, we take several steps towards
establishing the effectiveness and limitations of LLMs for CTA. We
discuss the challenges involved in using LLMs for CTA and system-
atically delineate the different components required to perform CTA
using LLMs: sampling the data context, prompt serialization, model
querying, and label remapping (illustrated in Fig. 1). We propose
novel methods for these components and assess their effectiveness.

We also explore the impact of these components on two different
modes of operation: (a) using existing LLMs for zero-shot CTA and
(b) fine-tuning LLMs for CTA based on a training set of labeled
column types. For both modes of operation, we report a series of
results for open-source LLMs. As a basis of comparison we also study
and report the performance of a closed-source LLM (the GPT fam-
ily). However, we emphasize open-source LLMs in our work, since
closed-source models are not transparent: since we do not know
how they were constructed, it may be difficult to understand their
behavior; and since closed-source LLMs are constantly updated,
reported results cannot be reproduced [7].

We perform a detailed evaluation of our approach against state-
of-the-art learning-based CTA systems [10, 21, 45] as well as a new
zero-shot approach [25]. We use established benchmarks [6, 11, 19]
and the SOTAB benchmark, which was designed for comparing the



performance of annotation systems on CTA tasks [28]. However,

we observe that these benchmarks are primarily composed of well-

known semantic types drawn from widely-used ontologies and
taxonomies. To explore the breadth of LLM subject knowledge as
well as how LLM-based CTA performs for a wide range of types

(including rare, domain-specific types with novel characteristics),

we also introduce three new benchmark datasets for CTA, described

in Sec. 4.

Our main contributions can be summarized as follows:

(1) We introduce ArcheType, an open-source CTA framework
centered around large language models, which leverages their
strengths, adapts to their limitations, and is compatible with
both open-source and closed-source LLMs.

(2) We enumerate four essential components for any LLM-based
CTA (LLM-CTA) approach: sampling, serialization, querying,
and label remapping. We propose new approaches for context
sampling and label remapping, and demonstrate their impor-
tance to the overall accuracy of LLM-CTA (Sec. 3).

(3) We introduce three new zero-shot CTA benchmarks that cover
a range of domain-specific schemas and attribute types (Sec. 4).

(4) Through a detailed experimental evaluation (Sec. 5), we show
that ArcheType achieves strong fine-tuned performance and
state-of-the-art zero-shot performance on a large and diverse
suite of benchmarks, while requiring far less tabular data for
both training and inference than existing methods (Sec. 5.2).

2 BACKGROUND: FOUNDATION MODELS

The term foundation model applies to large machine learning
models that are pre-trained on vast amounts of raw data to capture
a wide range of knowledge, and then fine-tuned on more specific
tasks or datasets [3]. In the case of large language models (LLMs),
the pre-training objective is autoregressive; the model is tasked
with predicting the next word in a sequence based on the context
provided by the preceding words. The scale of LLMs results in new
emergent capabilities, and their effectiveness across a multitude of
tasks incentivizes the use of foundation models as a starting point
(or replacement) for fine-tuning task-specific models. However, this
last step must be done with care since the defects of the foundation
model are inherited by all the adapted models downstream [3].

2.1 LLMs and Tabular Data

The development of LLMs has largely been driven in the context
of NLP tasks as question-answering, logical inference, and word
disambiguation. Recent efforts based on instruction-following, such
as [35] and [8], have demonstrated that fine-tuning foundational
LLMs on a carefully curated corpus of prompt-response pairs is an
effective strategy for more generic classification tasks. However,
these approaches focus on natural language datasets that have small
label sets, clean labels, and balanced classes.

There have been only a handful of attempts to apply LLMs to
tasks that are germane to tabular data. Recently, Hegselmann et al.
[17] proposed a LLM-based framework for few-shot classification
of tabular data and experimented with different strategies to design
the prompt. They showed that their approach can outperform state-
of-the-art (SOTA) neural models both in the zero- and few-shot
settings. Narayan et al. [31] outline a vision for leveraging LLMs
for data management tasks and show that LLMs using few-shot
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Table 1: Cost of CTA benchmarking with GPT. Approximate cost
to perform CTA over the 15,040 column test set of the SOTAB dataset
varying the table serialization Method (column for column-at-once or
table for table-at-once); the number of context samples #Smp. drawn
per column; the percentage % k of serialized prompts whose tokenized
length is estimated to exceed a context window of size k.

Method #Smp. %>1k %>4k %>16k App.USD Cost
column 3 01.0% 00.1% 00.0% $7.85
column 10 06.5% 00.3% 00.0% $12.54
column 20 13.0%  01.3% 00.1% $19.97
column 100 93.0% 15.1.% 01.0% $90.38
column 1000 100.0%  100.0% 56.5% $1,072.06
table 10 89.8% 58.8% 25.8% $763.28

and zero-shot approaches can achieve SOTA performance for entity
matching, data imputation, and error detection.

2.2 LLMs for Zero-Shot CTA

As discussed in Sec. 1, LLMs present new opportunities to derive
robust models for CTA that can handle a broad set of classes at a
much lower cost than existing learning-based methods. Two recent
approaches have been proposed that leverage OpenAI’s GPT for
zero-shot and few-shot CTA [25, 27]. These methods do not re-
quire model training, and apply open-vocabulary labels either from
parametric memory [25], or from options provided at test time [27].

The promise of such a direction is clear, but existing implementa-
tions have important limitations. Both [25, 27], which are to the best
of our knowledge the only existing works on zero-shot CTA, rely
on closed-source models (see discussion below). They also require
access to the entire table at test time to achieve their best perfor-
mance, which in practice can be expensive for private models. Tab. 1
demonstrates that the cost to evaluate the SOTAB test set (assuming
sampling with replacement) scales poorly for table-at-once meth-
ods, and over 25% of the prompts exceed the maximum possible
context window. The cost is also high for column-at-once meth-
ods when a large sample is used. Since these methods are highly
sensitive to sample size, it is important to devise strategies that
are sample-efficient. However, only simple random sampling and
first-k-rows sampling methods have been explored for LLM-based
CTA. Note that while these methods are costly on closed-source
models, they can be impractical on open-source models, owing to
their limited context windows.

A distinct line of inquiry studied by Tu et al. [50] treats CTA as
one example of a family of matching tasks in data integration, and
is able to perform zero-shot binary matching on CTA instances.

2.3 Open vs. Closed-Source LLMs

We consider a model open-source if, and only if, sufficient specifics
of model design have been published to reproduce the architecture,
checkpoints with pre-trained weights have been released and the
contents of the pre-training corpus are available for inspection. The
advantages of utilizing open-source models are explainability, repro-
ducibility, and reduced cost, while the drawbacks are performance
and limited context length.

Explainability. The architectures of most closed-source models are
not known to the public; nor is it known how much prompt engi-
neering and behind-the-scenes modification of the model output is
being conducted. The specifics of the data on which these models



are trained is also unknown. These facts make it difficult to provide
rigorous explanations for the behavior of closed-source models.
Reproducibility. As noted recently, results from closed-source mod-
els are non-reproducible, non-deterministic, and cannot be ablated
with respect to the model architecture or dataset, all of which makes
them unreliable for reproducible research [37, 42].

Cost. As closed-source models charge by the token, the cost incurred
by any solution which relies on them can be considerable. Open-
source models, by contrast, require computational resources to host
and expertise to maintain.

Performance. As of this writing, the best open-source models un-
derperform the best closed-source models across a wide range of
benchmarks [4]. The causes of this performance gap are not fully
understood, as large language models tend to exhibit unpredictable
phase transitions as a function of scale. These transitions can lead
to sudden leaps in performance on standard benchmarks [36].
Context length. The open-source large language models in common
use at the time of this paper have context windows ranging from
512 to 2048 tokens [8, 48] (typically between 375 and 1500 words,
if the string is English). If the string is in a different language or
is largely numeric, however, the tokenization process tends to be
approximately 2-4x times less efficient, since standard tokenization
schemes employed by such models tend to handle unicode ineffi-
ciently [44]. Both phenomena are common in real-world tabular
data. Closed-source models are less constrained (GPT-3.5 allows
over 16,000 tokens at the time of this writing).

3 ARCHETYPE: METHODS AND SYSTEM

Formal Model of LLM-CTA. Consider a table T with ¢ columns
and r rows. We denote each column C € T as a function which maps
row indices to strings; i.e., for 0 <=i < t, we have C; : N — X,
where i is the column index. Here, 2. is the set of all possible strings,
S, is the set of all strings found in column C;, 3¢, C Z4 Vi, with
any individual string o € X¢,. We make no further assumptions;
C; may include a column name, and T may contain an additional
metadata field. However, neither of these properties is required to
exist, and so we do not include them in our analysis. Many of our
methods rely on a sample of unique values sampled from the column,
U; == unique(|Zc,|). We explore two LLM-based approaches for
CTA: fine tuned and zero shot.

Definition 3.1 (Fine-tuned LLM-CTA). Let L C 3, denote a label
set; these are our column types to be annotated. Standard CTA
assumes a fixed cardinality for this label set, indexed by a variable
we call j.1 Given the above definitions, we define fine-tuned single-
label CTA C T X L as a relation between tables and labels:

vC, 3l; | (Ci,lj) e CTA (1)

We seek a generative method M : 2, — X, that comes closest to
satisfying the following properties:

M(o,L) € LYC € T,M(0,L) € CTA )
i.e., the model requires a single string as input and generates a label
in L that correctly represents the type of C.

n existing benchmarks, j can be anywhere from 10 to 300 [27]
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Definition 3.2 (Zero-shot LLM-CTA). The definition of zero-shot
LLM-CTA is identical to that of fine-tuned, except that: in a zero-
shot setting, the number of rows r is presumed to be small enough
to preclude the possibility of fine-tuning a model; L is chosen at
test-time; and it is possible to define multiple values of L for one T.

3.1 Elements of LLM-CTA Methods

We observe that any LLM-CTA method must provide solutions
to four problems: context sampling, prompt serialization, model
querying, and label remapping. Individually, each is necessary for
LLM-CTA; collectively, they are sufficient. By considering and ab-
lating approaches to each of these problems separately, we designed
ArcheType, a LLM-CTA framework which generalizes to a wide
range of architectures, including popular open-source models. Fig. 1
provides an overview of ArcheType and in the remainder of this
section, we describe its components in detail.

Context Sampling. As of this writing, all SOTA large language
models (LLMs) are transformer-based [51]. By design, transformers
have a hard scaling limit over which their dense attention can be
applied, sometimes called a context window, W. Given a context C
and a set of labels L, if |C| + |L| > W, a representative sample must
be selected. From a practical standpoint, the context window sizes
of contemporary LLMs are small enough that this event takes place
quite frequently, e.g., [25] and [27] use simple random sampling and
first-k-rows sampling, respectively. We introduce a new sampling
method in Sec. 3.2 and provide ablation studies in Sec. 5.4.1.

Prompt Serialization. SOTA LLMs require prompts, or priors,
to complete. Prompt serialization (or prompt engineering) is the
process of transforming raw context into a prompt. Of the four
components we consider here, this one has received the most atten-
tion in the existing literature; the methods introduced by [25, 27]
are largely focused on improvements to prompt serialization. In
Sec. 5.4.2, we ablate prompt serialization, independent of other
components, and conclude prompt engineering should be treated
as a hyperparameter rather than as a methodological contribution
- we describe this approach in Sec. 3.3. When considering a range
of model architectures, we find that any reasonable serialization
method is about as likely to produce a good result as any other.

Model Querying. Model selection and querying is another impor-
tant element of LLM-CTA. The method must correctly submit a
query to some large language model(s) chosen in advance, and it
must retrieve and process the response. This query may be pro-
cessed on a local machine or via an API. This, too, has not been
ablated in prior work. While future work may attempt to train a
generative large language model from scratch specifically for this
task, [25, 27] use GPT, and only GPT. As part of our study, we
present ablations on architectures across a range of open-source
models as well as GPT (Sec. 5.4.3) and find that no model dominates.

Label Remapping. All LLMs sometimes produce responses which
do not match with any of the labels provided in the prompt, i.e.,
or ¢ L. Label remapping is a form of error correction which remaps
an unbounded LLM output space to a limited set of labels. Kayali
et al. [25] use an embedding-based method called anchoring to
remap labels, whereas Korini and Bizer [27] use a dictionary lookup.
As the latter approach is not compatible with zero-shot LLM-CTA,
we ablate only the former approach, along with two other baselines,



and develop CONTAINS+RESAMPLE (Sec. 3.5), an algorithm which
outperforms the baselines across model architectures. We ablate
our choice of remapping method in Sec. 5.4.4.

3.2 Context Sampling

CTA approaches using deep learning face severe data requirement
challenges in settings that require (very) large tables and open label
sets. To address these challenges, we introduce a new approach
which we call context sampling and outline in Algo. 1. Given the
unique values of a target column U; and a target sample size ¢, we
seek to construct the representative sample S that best summarizes
the column. While it is possible in LLM-CTA to have ¢ vary by
column, in this paper we consider the setting where ¢ is fixed in
advance and consistent across all columns.

In the simplest case, we have |U;| > ¢, and S is drawn without
replacement from a distribution whose construction is described
below. If |U;| < ¢, then S is drawn with replacement instead.

In the fine-tuned setting, we find it is beneficial to add features
to the context window, affecting both sampling and serialization.
The features we utilize are described later in this section, and are
sampled as described in Algo. 1. The context sample is then serial-
ized and embedded into a prompt which is passed to the LLM, the
format of which follows from recent works such as [30] and [8].

Context Sampling in ArcheType. The probability distribution
over U; from which we sample is weighted according to an impor-
tance function f. The probability of selecting an element o from U;
under Py, is given by:

ploy— — 1@

Yjeu, floj)’

We utilize two importance functions in ArcheType. For the Ameri-
can Stories (amstr) benchmark described in Sec. 4, we find that an
importance function which prioritizes unique samples that include
any target class name is most effective; f(o) = 1if, forany [; € L,
lj C o, else f(o) = 0.1. Note that this function does not require the
ground truth label of any particular sample, only the entire label
set, which is a required input for CTA.

For all other benchmarks, the importance function f is string
length - our experiments showed that long strings lead to better
results. One possible reason is that longer strings are more likely to
contain useful information than shorter ones. While an extensive
ablation of the choice of importance function is beyond the scope
of this paper, we note that ArcheType users (subject matter experts)
can define importance functions suitable for their applications.

There are challenges in the implementation of context sampling,
including low variance (degenerate) data U; < o(1) and high vari-
ance data U; > ¢. Each of these situations merits discussion.

High variance. In this case, helpful context may be lost in a limited
sample. This phenomenon may explain why increasing the size of
the context sample tends to improve model performance. However,
the improvements are slight, suggesting an exponential scaling of
data demands.

Low variance. CTA can easily become unsolvable for low-variance
or, in the extreme case, degenerate columns. Consider a column Cy
such that

Vk € U, ZUik =0
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Algorithm 1 Context sampling. Given a table T, a valid proba-
bility function P, and optional additional features, produce a context
sample S of the appropriate size. If |U;| — oo, methods like [15] can
be used to derive a finite-size U;.

1: procedure CoNTEXT-SAMPLE(T, i, S, ¢, P,SS, TN, E)
T: A table, i, a target column index, S, a context sample to be
returned, ¢: A hyperparameter (number of samples), P: a valid
probability function, SS: summary statistics, TN: table name,
OC: other columns, E: extended context flag

U; « UNIQUE(T;),S < 0

if E then S « SS(T;) + TN(T)

>

w

4 while |S| < ¢ do

5 S«S+0~Py, > Drawn without replacement
6: if (|S| < ¢) A E then

7: forjeT,j+ido

8: S« S+Tj[0]

9: if |S| > ¢ then BREAK

10: else

11:
12:

while |S| < ¢ do
S«S+0~ Py, > Drawn with replacement

13: return S

and a label set L = number, integer, quantity. There exists no
unique o, such that CTA(Cy,Lj) = o1,

In some cases, we find that incorporating additional metadata
(such as the filename of the table) can help with the classification
task, but in other cases, we found that it simply biases the LLM to
parrot back portions of the input string.

Feature Selection. In context sampling, feature selection refers
to what aspects of the original data we choose to include in the
context. In all of our experiments, our first feature is the context
sample itself (CS). We also experiment with including the file name
(EN) of the table, used by [10], summary statistics (SS), used by [21],
and samples from other columns (OC), used by [45].

Summary statistics (SS). SS feature selection proceeds as follows:

o We select statistics which support fast, accurate sketching.
e We select measures of center and spread which can provide
additional information about missing column values.

The list of summary statistics included in our fine-tuned models
was: standard deviation, average, mode, median, max, min. When
the summary statistic is a floating-point value, we round it to two
decimal places. When it is an integer, we exclude the decimal place.
When all sampled values are numeric, the statistics are computed
with respect to the individual column values. When any sampled
value is non-numeric, the statistics are computed with respect to
column value lengths.

We postulate that these statistics are useful because they help
the model disambiguate between numeric column samples by pre-
serving information about overall trends in the column. However,
we focused on simple-to-calculate statistics and did not extensively
ablate our choices; in future work we plan to explore this aspect.
Other columns. First, we take as many unique samples as are avail-
able from the target column. Then, we fill the remaining context
length with an equal number of samples from each other column.



INSTRUCTION: Select the category which best matches

the input.

INPUT: 'TABLE NAME: diaridegirona’, SAMPLES: Partit:
Armenia - Liechtenstein, Partit: Israel - Austria,
Partit: Shakhtar Donetsk - Atalanta ’std: 4.76’, mean:
27.52’, ’mode: 25’,’median: 25.0’

CATEGORY: "sporting event" Fine tuned

INSTRUCTION: Select the option which best describes

the input.
INPUT: 550mm, 608mm, 600mm, 520mm, 595mm OPTIONS:
text, date, age, telephone, jobposting, currency,

event, product, streetaddress, category, number, time,
zipcode, person, url, gender, country, email, price,

creativework, weight, language, boolean, company,
| __organization, sportsteam, coordinates _ ___________
ANSWER: number Zero shot

Figure 2: Examples of ArcheType fine-tuned (top) and zero-shot
(bottom) prompting.

We label samples from other columns with an index number in
order to identify from which column they originated. Performing
this improves fine-tuned performance, but has a negative effect on
zero-shot performance; see Fig. 6. This is likely because the LLM
cannot distinguish inter-column from intra-column values without
the presence of learned special characters as provided in [10, 45].

3.3 Prompt Serialization

The prompt serialization stage transforms the context sample S
into a prompt format suitable for querying an LLM; this includes
modification of prompts that exceed the maximum allowable length
of the context window and how to reformat the table.

Fig. 2 shows examples of prompts for both fine-tuned and zero-
shot regimes of ArcheType. We style our fine-tuned prompt after
the instruction-following method described in [46]. We treat the se-
mantics of the INSTRUCTION field as a hyperparameter, and fix it at
training time. The extended context includes the samples, the table
name, and computed summary statistics including standard devia-
tion, median and mode. In zero-shot, we again treat INSTRUCTION
as a hyperparameter, sweeping over a space of possible semantic
structures. INPUT is handled identically to fine-tuned. In zero-shot,
the prompt also includes OPTIONS, or allowable column names,
from which the model is expected to choose. The suffix ANSWER:
cues the LLM to supply the label (in this case, number”).

The heuristic optimization of this process is sometimes referred
to as prompt engineering, and is treated as an important contribu-
tion by existing zero-shot CTA methods [25, 27]. However, recent
phenomenological studies of foundation models have raised signif-
icant doubts as to the near-term stability and long-term viability of
prompt engineering as a method [43]. In fine-tuned ArcheType, we
fix a single prompt serialization strategy, as the prompt is learned
during the fine-tuning process and has little impact on the model
output, as long as it is consistent. In zero-shot ArcheType, unlike
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C:"For the following table column, select a schema.org
type annotation from <CLASSNAMES>.
<CONTEXT>. Output: "

Input column:

K: "Answer the question based on the task below. If
the question cannot be answered using the information
provided, answer with "I don’t know". Task: Classify
the column given to you into only one of these types:
<CLASSNAMES>. Input column: <CONTEXT>. Type: "

I: "Here is a column from a table: <CONTEXT>. Please
select the class from that best describes the column,
from the following options. Options: <CLASSNAMES>

Response:

S: "Pick the column’s class. Column: <CONTEXT>. Classes:
<CLASSNAMES>. Output: "

N: "Pick the column’s class. I mean if you want to.
It would be cool, I think. Anyway, give it a try, I
guess? Here’s the column itself! <CONTEXT>. And, um,
here are some column names you could pick from

<CLASSNAMES>. Ok, go ahead! "

B: "INSTRUCTION: Select the option | category which
best describes | matches the input. INPUT: <CONTEXT>
OPTION: <CLASSNAMES> ANSWER:"

Figure 3: Six prompt variations. In zero-shot ArcheType, we treat
prompting as a hyperparameter, and sweep over six distinct prompts,
each chosen according to a conceptual serialization strategy. <CLASS-
NAMES> stands in for the label set, <CONTEXT> for the output of the
context sampling step. We use two variants of the "B" prompt, with
semantic differences denoted by "[".

previous methods, we treat the choice of prompt as a hyperparam-
eter. We provide experimental support for this idea in Sec. 5.4.2.

Serialization strategies. We explore six distinct serialization strate-
gies, illustrated in Fig. 3. The strategies labeled "C" and "K" were
proposed in [25] and [27], respectively. The remaining serializa-
tion strategies are designed to test the effect of varying prompt
length, position, and tone; "N" adopts a casual, conversational tone
and uses simple language, "I" inverts the position of prompt and
context, compared to the other strategies, and "S" is designed to
be as short as possible while remaining clear. Our "B" prompt is
written in a technical and formal tone, similar to prompt "S", but
more verbose. We use a minor variant of our "B" prompt in our
fine-tuned experiments; the semantic differences are shown in [12].

Prompt Serialization in ArcheType Zero Shot (ZS). We have
evaluated ArcheType ZS using all six prompts in [12]; we report
performance on the best-performing configuration. Note that we



Algorithm 2 Fine-tuned ArcheType. Fine-tuning procedure for
ArcheType-LLAMA; the serialized prompts generated by ArcheType
are tokenized and passed to the model in batches. The autoregressive
objective during training is for the model to generate the appropriate
class token, given the prompt.

1: procedure FINETUNELM(M,D,H)> M, an LLM, D, a fine-tuning
dataset, H, hyperparameters
Tokenizer < LoadTokenizer() > tokenizer for the LM
D « Tokenizer.Tokenize(D) » Token. the fine-tuning data
for epoch = 1, Hyperparameters.Epochs do
for each B € D do
loss « M.Forward(B) » Compute the forward pass
loss.backward() > Backpropagate the loss
M « optimizer.step(M) > Update parameters

return Fine-tuned Model

include the label set L in the prompt. In order to simplify the label
space further for open-source models, we attempt to detect using
simple type testing whether all elements of the context are numeric;
if so, we limit L to labels which are numeric (selecting which labels
are exclusively numeric is a one-time optimization per dataset — on
SOTAB-27, it required about five minutes).

Prompt Serialization in ArcheType Fine Tuned (FT). We follow
the Alpaca instruction format described in [46] and omit the label
set L to make more efficient use of the context window.

Column-at-once Serialization. Both [27] and [25] use table-at-
once serialization; the entire table is presented to the LLM at in-
ference time, and all columns in that table are classified together.
ArcheType uses column-at-once serialization; only a single column
to be classified is passed to the LLM. [27] provides ablation studies
indicating that table-at-once outperforms column-at-once on their
test set, a very small subset of SOTAB.

Table-at-once serialization, however, is impractical to implement
on open-source models with small context windows, and inefficient
in that it requires classification of all columns, whether or not the
classes for all columns are required.

Handling Overflow. Using the length of each prompt, we pro-
duce a conservative estimate of whether the tokenized prompt
might overflow the context window. If so, we tokenize the prompt,
truncate it, add the classnames and response cue to the end of the
prompt, and pass it through. Examples of serialized prompts can
be found in Fig. 2.

3.4 Model Querying

The third stage of ArcheType involves passing the serialized prompt
as input to the LLM, a process which we refer to as model querying.
The key variable here is, naturally, the choice of model and, in the
case of fine-tuned CTA, the approach to training said model.

Fine-Tuned Models. In the fine-tuning regime, our model is a
LLAMA-7B, the smallest in a batch of LLMs from [48]. All models
in the LLAMA family were pre-trained on the standard unsuper-
vised language modeling task of next-token prediction, but had
no instruction tuning as part of pre-training. In order to improve
performance on instruction-following tasks, we apply the Alpaca
method of [46] prior to applying ArcheType. See Algo. 2 for an

2285

overview of the fine-tuning procedure utilized to train our model.
Fig. 2 contains an example of a single data point in the training set.

Our results for fine-tuning are reported using a fine-tuned LLAMA-
7B trained on the SOTAB-full training dataset, using our context
sampling and label remapping algorithms. Following [46], we fine-
tune LLAMA-7B for 3 epochs, with a learning rate of 2e-5. Fine
tuning took 8-12 hours on 4x A100-80GB GPUs.

Zero-Shot Models. In the zero-shot regime, we consider the recent
open-source OPT-IML and LLAMA-2 models from [23, 49] as well
as FLAN models introduced in [8, 47]. We also present results on
the closed-source, private GPT family of models from OpenAlI [35].
As zero-shot ArcheType is model-agnostic, we report results from
the three best-performing architectures in our experiments (Tab. 4).

3.5 Label Remapping

The fourth stage of ArcheType is label remapping; mapping the
generative output of the LLM to the space of allowed labels. A key
drawback of using standard LLMs for classification tasks (based on
instruction tuning alone) is that their outputs are not guaranteed to
only belong to the provided label set. In our experiments, we found
small decoder-only LLMs, such as LLAMA-7B, were particularly
susceptible to this behavior.

Previous works such as [8] have proposed simply discarding
all answers which are not an exact match for a label in the set,
and measuring performance with respect to exact matches only.
Another naive solution is to simply map all non-matching answers
to a default null class.

However, we find that such approaches tend to underrate what
the model actually provides, particularly in the CTA context. Often,
the LLM’s ‘best guess’ can be reasonably remapped to an answer
in the provided label set. Formally, we frame label remapping as
a function REMAP(or) : 2« — L. In other words, the REMAP
function is responsible for mapping arbitrary output strings (that
are outputs of the LLM) to some specific label in the label set o7, € L.
We explore multiple approaches, described below, and find that the
optimal approach varies depending on the LLM and whether we
are in a fine-tuned or zero-shot domain.

Remap-contains employs the simplest strategy of checking for
intersections: VL; € L,(0 S L; VLj C o) — (or := L;). In the case
of multiple matches, we accept the longest match. This is computa-
tionally efficient but has a high rate of failure; it can therefore be
used in conjunction with other label remapping strategies.

Remap-resample (Algo. 3) utilizes the probabilistic nature of LLM
outputs. We fix a hyperparameter k setting both how many times
we attempt the problem and how we adjust the hyperparameters
on each subsequent call. The parameter k can be utilized as either
an additive or a multiplicative factor; we find that additive k is
suitable for adjusting top_p and repetition_penalty, while a mul-
tiplicative factor works well for temperature. For more details on
these hyperparameters, please refer to [52].

Remap-similarity (Algo. 4) employs a similarity-search strategy.
Using an encoder-only transformer model, the input o is converted
to a vector embedding v, as are all the strings in L. Vj € L, we then
compute the vector cosine similarity COSSIM(vg, vr;). The ARGMAX
result becomes the model’s predicted class. For our experiments, we
used the S3Bert model introduced in [33]. This method has the ad-
vantage of always returning a solution. However, this solution may



Algorithm 3 Remap-resample. Remap-resample calls the LLM
up to k times with permuted hyperparameters in order to generate
increasingly diverse responses.

1: procedure REMAP(0, 07, L, k) » o: A text string, or, the label
assigned to o, L: A label set, k: A hyperparameter (number of
retries)
if o7 € L then
return o,
for i « 1to k do of « LLM(prompt, k)
LLM with k-permuted hyperparameters
if o € Lthen > Here, we can also call CONTAINS
return oy,

> We call the

Algorithm 4 Remap-similarity. Remap-similarity maps the em-
bedded LLM response which is not in L to the embedded response in L
which maximizes embedding cosine similarity.

1: procedure REMAP(0, o1, L) > o: A text string, oy, the label
assigned to o, L: A label set, M, a sentence embedding model

2: if o7 € L then
3: return op,
4 else
5: VjGL,ELj :=M(Lj)
(Eoy EL,)
6: oL, = ARGMAXJEL(—llEJLj ﬁ”EaL* I

7: return oy,

be not always the desired one; moreover, introducing an additional
model adds to overall computational complexity.

Rule-Based Label Remapping. We find that in many CTA datasets,
certain types are straightforward to detect or correct using simple
algorithmic approaches. Therefore, in order to provide a more re-
alistic picture of how our method would perform in a real-world
setting, we supplement both our baselines and ArcheType with
rule-based label remapping functions, applied both prior to and af-
ter model querying. These rules do not always lead to performance
improvements, but they can save considerable time and some space
in the context window; therefore, we predict they will be a valu-
able component of deployed CTA systems, and devote some time
to studying their effects. To conserve the zero-shot nature of the
problem, we limited ourselves to two hours per dataset for devising
these functions. As this is a one-time cost per label set, we consider
this a reasonable time budget.

In Tab. 2, we list the number of labels for which rules led to per-
formance improvements, and the average amount of the improve-
ment across all models and methods. The rules lead to a moderate
improvement for the different benchmarks.

ArcheType+. To separate the effects of rule-based remapping from
other elements of the ArcheType method, we report F1 scores with
and without rule-based remapping in Tab. 3 and Tab. 4. In both

tables, results with rules applied are denoted with a "+" symbol.

4 NEW ZERO-SHOT BENCHMARKS

Existing CTA benchmarks [5, 10, 20, 28] are useful sources of real-
world tabular data, but they were designed to evaluate methods
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Table 2: Manual label remapping complements LLM-CTA. Cer-
tain labels are faster and more reliable to solve using traditional
methods, rather than LLMs. We document the gains from manual
label remapping on our zero-shot benchmarks.

Dataset Num labels Avg. Pct. Gain

SOTAB 5 1.3%
D4 9 7.2%
Amstr 2 3.2%
Pubchem 5 9.9%

that perform CTA on a fixed set of labels that belong classes in well-
known ontologies and taxonomies. In order to probe the breadth of
LLM subject knowledge and assess the effectiveness of LLM-CTA
methods over rare classes with different characteristics, we create
three new zero-shot column type annotation benchmarks: D4Tables
(D4-20), derived from the D4 dataset [34] and [32], AmstrTables
(Amstr-56), derived from the American Stories dataset [9], and Pub-
chemTables (Pubchem-20), derived from the Pubchem dataset [14].

Each of our benchmarks is constructed using the same general
approach: we reprocess the dataset so that classes of data can be
interpreted as columns, fix a random seed, and sample from the
data pool to produce synthetic columns of a wide range of lengths,
treating all columns as independent. This approach to CTA bench-
marking stands in contrast with existing benchmarks and methods,
which leverage relationships at the level of a table. However, the def-
inition of CTA does not guarantee the existence of such informative
metadata. Furthermore, in some real-world settings, such informa-
tion is not available. We therefore regard these new benchmarks as
a distinct, but valuable, way to measure progress in CTA.

We follow the approach used in [28] and attempt to replicate, as
closely as possible, the distributions encountered in real-world data.
This results in some column types that are extremely low-variance
(such as ethnicity in D4Tables, with only 5 unique values). In
other types, the set of potential unique entries in one type is en-
tirely subsumed by another type, e.g., us-state, other-states
in D4-Tables. Others can be addressed model free with regex pat-
tern matching (such as Journal ISSN in Pubchem). As noted in
Sec. 3.5, when such solutions are possible, we utilize them in both
our baseline approaches and the ArcheType method itself.

D4, Amstr and Pubchem are generated from existing data distri-
butions - it is therefore possible to produce an arbitrary number
of tables using them. Balancing time constraints with the desire to
test a significant sample size, we heuristically select a sample size
of 2000 columns, and apply this consistently to each benchmark.
The complete class names for each dataset can be found in [12].

D4Tables. Ota et al. [34] clustered data from NYC Open Data in an
unsupervised manner, and the most coherent clusters (representing
semantic types) were assigned labels; in total, 20 clusters were
labeled. For more information on the clustering method and the
complete label list, please refer to our repository. For our paper, we
convert the clusters to columns and sample accordingly.

The classes in D4 are representative of open and public data
sources, including 2 classes which correspond to city agencies, 4
classes which relate to public schools, and 5 classes which corre-
spond to neighborhoods, streets or regions located in specific New



York City Boroughs. This dataset aims to assess the model’s under-
standing of regional information and fine-grained semantic types
relevant to governments and NGOs.

AmstrTables. The American Stories dataset consists of 20 million
OCR scans from the Library of Congress’s public domain Chron-
icling America collection. Each scan contains an article written
between 1774 and 1963. We adapt this dataset for CTA by: divid-
ing the articles in the dataset according to the state in which they
were originally published; and creating additional column types for
author bylines, newspaper names, and subheadings. Because this
dataset was published in 2023, it is unlikely that any of the models
evaluated in this study have trained on this data before, reducing
concerns of potential data contamination [9]. Another advantage
is that for the majority of column types, individual row entries
are quite long, corresponding to entire newspaper articles. This
phenomenon is commonplace in real-world data, but rare among
academic CTA benchmarks. The classes in AmstrTables mostly
pertain to journalism and history.

PubchemTables. Pubchem is the world’s largest collection of
freely accessible chemical information. Chemicals are identified
according to their name, molecular formula, structure, biological
activities, safety and toxicity information, and more. The database
also contains extensive information on patents related to chemistry,
such as patent abstracts and author names, as well as the names of
scientific journals. We convert the RDF triple format provided by
Pubchem to a columnar format suitable for CTA, and sample from
the resulting distributions to produce our target columns. Correct
classification requires specialist domain knowledge of chemistry.

SOTAB-27. The original SOTAB (SOTAB-91) is an unbalanced,
91-class classification problem where the task is to match each
unlabeled column name with its ground-truth label. We created a
zero-shot, simplified 27-class version of the benchmark (SOTAB-27)
to reduce the semantic overlap among SOTAB labels. The tables
in this dataset are identical to the original SOTAB benchmark;
however, we remap the 91 labels in the full SOTAB benchmark to
a smaller set of 27 labels. The exact details of the class remapping
can be found in our github repository [12].

5 EXPERIMENTS
5.1 Experimental Setup

Fine-tuned Baselines. For our fine-tuned experiments, we com-
pare our ArcheType LLAMA-7B (Sec. 3.4) to DoDuo [45], the state-
of-the-art model for column type annotation, as well as TURL [10].
We report DoDuo and TURL results following the approach
described in [28], which passes the entire table to the model at
inference time; we limit our own method to 15 samples per table.

Zero-shot Baselines. To the best of our knowledge, there exist no
open-source CTA models that can operate in a zero-shot manner;
therefore, we design strong baselines derived from zero-shot CTA
methods which have been introduced specifically for use with GPT:
C-Baseline, based on the method in [25], utilizes similarity label
remapping and simple random sampling, and our C-prompt.

K-Baseline, derived from [27], utilizes our K-prompt, no-op label
remapping and first-k-columns sampling. We omit the method
described in [27], which requires a custom hash table for each
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problem, as this invalidates the zero-shot nature of the problem we
consider here.

For all methods, we fix 5 samples per column and provide model
inputs a column-at-once manner. The prompt includes class names.

To evaluate the robustness of the methods to variations in archi-
tecture, we evaluate each method using three different architectures:
the closed-source GPT-3.5-Turbo model from OpenAlI (October
2023 version) denoted GPT and GPT-4.0-Turbo model (gpt-4-turbo-
preview, February 2024) denoted GPT4, and the open-source T5
and UL2 encoder/decoder LLMs from Google [47].

Benchmarks. A variety of realistic and challenging CTA bench-
marks have been developed in the last few years. Prominent among
these are GitTables from [20], WikiTables as modified in [10], and
WebTables from [5]. However, these are usually pre-processed in
an ad-hoc fashion and compared against some, but not all existing
methods, making it difficult to truly measure progress in the field.
For this reason, we use the recent SOTAB benchmark [28]. SOTAB
was independently tested on both state-of-the-art CTA approaches,
TURL and DoDuo, making it an ideal testing ground for new CTA
methods. Furthermore, it is, to the best of our knowledge, the most
challenging CTA benchmark in the literature; the strongest method
to date, DoDuo, achieves a Micro-F1 score of 84.8 on SOTAB-91,
while for WikiTables and VizNet it attains Micro-F1 scores between
91.47 and 96.4 [45].

For the zero-shot regime, we also use the benchmarks introduced
in Sec. 4 as well as established benchmarks: T2D [6], Efthymiou [11],
and VizNet [25].

5.2 ArcheType Effectiveness

Following [45], we report performance using the weighted micro-F1
score—the weighted average of F1 scores based on the sample size of
each class. We provide 95% confidence intervals for all results using
the normal approximation interval method. Boldface in tables
indicates the best-performing method(s) within the error bounds.

Tab. 3 summarizes our key results in fine-tuned CTA and Tab. 4
shows our zero-shot findings using SOTAB and the zero-shot bench-
marks (Sec. 4). We observe that: 1) in the fine-tuned regime, our
ArcheType-LLAMA model is competitive with DoDuo, despite train-
ing on less than 1% data; and 2) in the zero-shot regime, ArcheType
outperforms or matches baselines on all dataset/architecture pair-
ings we evaluate. These results underscore the effectiveness of
ArcheType and serve as evidence that, LLMs can enable CTA meth-
ods that are not just robust to distribution shift, but that handle
open-label sets defined at inference time, including rare types.

We also compare our zero-shot ArcheType to prior CTA ap-
proaches on established benchmarks, specifically: TURL, fine-tuned
on the T2D [6] and Efthymiou [11] benchmarks; CHORUS [25], zero-
shot on T2D and a stratified sample of the VizNet dataset (VizNet-
CHORUS); DoDuo, fine-tuned on VizNet (VN) and WikiTables (WT)
and evaluated on VizNet-CHORUS; and Sherlock, fine-tuned on
VizNet and evaluated on VizNet-CHORUS. In all cases, we follow as
closely as possible the methodology of the aforementioned authors,
adopting their metrics.

As Tab. 5 shows, ArcheType’s performance is comparable to that
of the other systems (both fine-tuned and zero-shot) even when
using the smallest (T5) backbone.



Table 3: ArcheType achieves strong performance on the SOTAB benchmark. Without rule-based remapping, our method (ArcheType-
LLAMA) achieves performance close to the best available pre-trained model (DoDuo), while requiring far less tabular pretraining data. With
rule-based remapping (ArcheType-LLAMA+), our method improves upon it.

Model Name Dataset (Train) Dataset (Eval) Micro-F1
ArcheType-LLAMA+ LLAMA + SOTAB-91 SOTAB-91 85.97 +0.6
DoDuo VizNet + SOTAB-91 SOTAB-91 84.82 £0.6
ArcheType-LLAMA LLAMA + SOTAB-91 SOTAB-91 82.9 £0.6
TURL TURL-Tables + SOTAB-91 SOTAB-91 78.96 +0.7

Table 4: ArcheType achieves state-of-the-art performance on zero-shot CTA benchmarks. ArcheType is the among the best-performing
methods across all zero-shot CTA benchmarks and model architectures in our suite. With respect to architectures, we find that neither open-source
model dominates. Surprisingly, closed-source models do not dominate either; GPT wins two benchmarks, ties one and loses one. In order to ablate
the effect of rule-based remapping, we separately report the performance of our models on all labels (denoted +) and on labels without rules. We
also indicate the number of labels remaining in each dataset after the change. All scores are weighted Micro-F1, scale 0-100.

Method Arch. SOTAB-27+ SOTAB-27 D4-20+ D4-11 Amstr-56+ Amstr-54 Pubchem-20+ Pubchem-15
OPEN-SOURCE
ArCheType UL2 60.9 +0.8 58.0 £0.9 82.4+1.7 70.8+2.7 35.8 £2.1 32.8 £2.1 70.9 £2.0 61.1 £2.5
C-Baseline UL2 52.2 £0.8 51.3+0.9 78.0+1.8 69.4+2.7 13.5 1.5 114 +1.4 61.7 £2.1 50.3 £2.5
K-Baseline  UL2 52.8 £0.8 52.5 £0.9 76.7 £1.9 67.6 £2.7 224 £1.8 20.1 £1.8 64.8 £2.1 54.7 £2.5
ArcheType T5 62.5 £0.8 60.8 £0.9 84.6 £1.6 74.5+2.6 29.2 £2.0  25.6 £2.0 72.0 £2.0 63.3 £2.4
C-Baseline T5 51.0 £0.8 50.0 £0.9 81.2 £1.7 75.0 £2.6 114 +1.4 08.5=*1.3 68.3 £2.0 59.0 £2.5
K-Baseline T5 52.6 £0.8 52.1+0.9 81.2+1.7 74.5+2.6 19.2 £1.7 15.1 £1.6 62.3 £2.1 51.3 £2.5
CLOSED-SOURCE
ArcheType GPT 66.0 £0.8 64.3 £0.9 87.3+1.5 83.0+2.2 27.2+£2.0 22.5+1.9 65.9 £2.1 60.2 £2.5
C-Baseline  GPT 59.3 £0.8 58.5+0.9 77.7+1.8 70.8 £2.7 09.0 £1.3  04.9 £0.9 56.0 £2.2 43.0 £2.5
K-Baseline  GPT 59.3 £0.8 57.2+0.9 81.8+1.7 80.9+2.3 10.0 £1.3  07.9 1.2 65.8 £2.1 55.8 £2.5

Table 5: ArcheType zero-shot is competitive with state-of-the-art models on well-established CTA benchmarks. Where results were

unavailable in the literature, we write n/a.

Dataset Metric TURL-FT Archetype-ZS-T5 Archetype-ZS-GPT4

T2D Unbal. Acc. 96.2 +3.3 90.4 +3.4 95.8 +3.3

Efthymiou Unbal. Acc. 74.6 +3.8 78.5 +3.8 95.7 +3.3
Dataset Metric DoDuo-VN-FT DoDuo-WT-FT Sherlock-FT Chorus-ZS-GPT Archetype-ZS-T5 Archetype-ZS-GPT4
T2D Weighted F1 65.4 £3.9 75.7 £3.8 n/a 92.3+3.4 88.9 +£3.4 95.3 +3.3
VizNet-Chorus ~ Weighted F1 90.0 +2.4 81.5+2.5 93.0 +2.4 86.5 +2.5 88.5 +2.5 90.5 +2.5

5.3 Observations

A detailed analysis of our results has both confirmed our hypotheses
regarding LLMs as well as uncovered insights into some of their
limitations. We summarize these below.

LLMs contain sufficient world knowledge to perform zero-shot CTA
on domain-specific classes. We find that LLM performance is consis-
tently strong across datasets and across benchmarks, emphasizing
the generality of LLM-CTA, compared to fine-tuned methods such
as DoDuo. In PubchemTables, we observe that models are con-
sistently able to disambiguate challenging classes such as disease,
chemical, taxonomy, patent, SMILES (simplified molecular input line
entry system), and molecular formula. On D4Tables, they are able
to disambiguate the names of NYC public schools and NYC govern-
mental agencies, as well as identify locations. With ¢ = 5, we find
that ArcheType-T5 and UL2 are able to correctly identify whether
the addresses are in Queens, the Bronx, Brooklyn or Manhattan
more than 50% of the time, on average. ArcheType-GPT is even
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more impressive; it is able to accurately classify regions in all five
boroughs more than 87% of the time, on average. Class-specific
accuracies for our zero-shot models can be found in the extended
version [13].

Model error tends to be patterned and predictable when the prompt
space is fixed. When zero-shot CTA fails, it tends to do so in ways
that are patterned and predictable, making it easier to correct errors.
The most common failure mode is class bias in favor of certain
dataset classes over others. For any given prompt/model/dataset
triple, this results in certain columns with near-perfect accuracy
and others with near-zero accuracy, with the confusion matrix
heavily concentrated in a few classes. We provide examples of this
phenomenon in the extended version of this paper [13].

Simple factors can be used to estimate zero-shot CTA performance.
Zero-shot performance is stronger on datasets such as PubchemTa-
bles and D4Tables; we attribute this to smaller label spaces, smaller
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Figure 4: ArcheType sampling outperforms baseline methods.
The sampling method used by Zero-shot ArcheType using different
architectures (GPT, UL2, and T5) on the SOTAB-27 dataset, substan-
tially outperforms simple random sampling (SRS) and first-k-entries
sampling (FS), as used in [25, 27].
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58 I ¥ ArcheType-ZS-UL2-Cont+Res

Micro-F1

5
Number of samples

10

Figure 5: ArcheType performance is affected by context size and
label remapping. The model benefits from increasing the context
size from 3 to 10 samples. All methods outperform a baseline no-op
method. CONTAINS+RESAMPLE performs best at every context scale.

individual sample sizes, and a high degree of intra-column similar-
ity and a low degree of inter-column similarity. Amstr, which has
more than twice as many labels as the next-largest dataset and a
high degree of inter-column similarity (because the vast majority
of the labels in the dataset correspond to newspaper articles drawn
from the same general distribution), is the most challenging dataset
in our benchmark.

ArcheType using open-source models is highly competitive with closed-
source models. ArcheType CTA works well with a range of LLMs,
small and large, open-source and closed-source, indicating that CTA
benefits from flexibility in the model querying phase. Although GPT
tends to have the strongest performance, the difference is not very
large, and on PubChem and Amstr, GPT underperforms compared
to the open-source models.

5.4 Ablation Studies

5.4.1 Ablations on Context Sampling. In Fig. 4, we ablate our choice
of strategy using the SOTAB dataset, and find that ArcheType
sampling consistently outperforms baseline methods.
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Figure 6: Expanding feature selection during context sampling
improves fine-tuned CTA performance, but degrades zero-shot
performance. A fine-tuned ArcheType-LLAMA model is able to learn
helpful associations from features such as summary statistics (SS),
table filenames (TN), and other columns (OC), but that same informa-
tion is not helpful when serialized in a zero-shot prompt, even when
the prompt is customized to explain what each feature is.

Sample size. The sample size 0 < ¢ < c is a hyperparameter fixed
at training time (in the case of fine-tuned) or inference time (in the
case of zero-shot). In general, we observe in Fig. 5 that larger values
of ¢ tend to result in better model performance, with the trade-off
of slower inference and a larger number of truncated prompts.
Feature selection. In Fig. 6, we ablate our feature selection method,
and find that ArcheType-FT benefits from each feature added, and
ArcheType-ZS exhibits the opposite trend, even when we clearly
identify the different types of incoming context:

TABLE NAME: " sourced from the

table named " + <TABLE_NAME>

OTHER COLUMNS: "For additional

context, here are some entries

from other columns in the table:

" + <OTHER_COLUMNS>

We consider the effective use of additional features an important
area for future zero-shot CTA research.

5.4.2  Ablations on Prompt Serialization. We observe that improve-
ments based on prompt serialization are quite sensitive to small
changes in prompts; furthermore, the effects of these small changes
differ depending on the LLM used. We explore six different prompts,
labeled C(horus-style), K(orini-style), I(nverted), S(hort), N(oisy),
B(aseline) (Sec. 3.3). The first two prompt styles are adapted from
[25, 27], respectively. We test these prompts on SOTAB-27, holding
other factors constant, across three architectures. As Tab. 6 shows:
(1) All models are very sensitive to the choice of prompt; and (2) No
prompt is a top-two performer on all three models. This supports
our choice of using prompt serialization strategy as a hyperparam-
eter. We also experimented with changing the label associated with
a class and the position of a label in the string, and observed that
these can have unpredictable effects on performance; namely, per-
formance of relabeled class may not change, while performances
of classes with the same labels does change. See [13] for details.

Prompt serialization as a hyperparameter. Our method treats prompt
serialization and classname selection as tunable hyperparameters to
be optimized and reported alongside experimental results. With the



Prompt T5 GPT UL2
C 494  57.6 | 56.4
K 540 532 534
I 52.1 625 552
S 53.0 | 646 545
N 486 614 472
B 471 634 521

Table 6: Prompt serialization has unpredictable effects across
models. A particular prompt can be engineered to perform well on a
given model and fail to reproduce on others. Results shown are zero-
shot Micro-F1 scores on the SOTAB-27 dataset. The best-performing
prompt is highlighted in green, the second-best in yellow, and the
lowest-performing in red.

ArcheType-ZS-T5
I'n ArcheType-ZS-UL2
I8 ArcheType-ZS-GPT

Ilﬂn

27-cls 91-cls

60

40

Micro-F1

20

Label set size
Figure 7: Zero-shot performance degrades with large label sets.
Both open and closed-source LLMs for zero-shot CTA struggle when
the size of the label set grows large, compared to fine-tuned CTA.

understanding that any reasonable prompt is as likely to succeed as
any other [43], for each model-dataset pair, we conduct a grid search
over our six prompt styles, each of which is stylistically distinct
but similar in content and meaning. All prompts follow general
best practices as described in [48], using capital letters, colons and
line breaks to delineate instructions, label sets and context, but
otherwise vary widely.

5.4.3 Ablations on Model Querying. The space of both open and
closed LLMs has exploded of late, and the performance of these
models on benchmarks can vary considerably. Rather than attempt
an exhaustive comparison which would quickly grow out-of-date,
we select strong representative models to stand for different cate-
gories of LLM which are frequently encountered in the literature.
We find that parameter count is not predictive of CTA performance,
and that encoder-decoder architectures outperform decoder-only ar-
chitectures on this task. Due to space limitations, we include further
details and experimental support in [13].

5.4.4 Ablations on Label Remapping. The choice of label remap-
ping algorithm can substantially impact model performance; how-
ever, the number of remapped labels depends considerably on the se-
lections made in the other three elements of the LLM-CTA method,
as well as the dataset itself. We found a positive correlation be-
tween the number of remapped labels and model accuracy. As
Fig. 5 shows, CONTAINS+RESAMPLE (Cont+Res) outperforms the
other remapping strategies for all sample sizes.
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5.5 Limitations

Like [31] and [17], we find that there is good reason to be optimistic
about the potential for large language models to dramatically impact
CTA and downstream data integration and discovery applications.
Despite their strong performance, we note some limitations.
Context window lengths. The ArcheType-LLAMA method requires
only 15 samples per column to reach parity with DoDuo, but it is
difficult to exceed 15 samples without truncating individual exam-
ples. For that same reason, it is difficult to present large numbers
of classes to zero-shot models. This limitation may be short-lived,
as context windows are already reaching 200k tokens [1].

High parameter counts. Despite generalizing very well to distri-
bution shifts, ArcheType models have very high parameter counts
when compared to previous deep learning solutions. We find that
increased parameter counts are likely necessary in order for the
model to contain sufficient world knowledge to be applicable for
CTA “in-the-wild”; however, the value added via zero-shot CTA
methods will have to be weighed against their higher latency, en-
ergy, and carbon costs when they are deployed.

Context sampling. As noted in Sec. 5.4.1, zero-shot ArcheType mod-
els struggle when new features are added during context sampling.
We consider this an important area of future work.

Numeric attributes. Although we benchmark ArcheType on all data
types, we see the system as being primarily useful for semantic
types (categorical or textual columns). Simpler approaches are likely
work just as well (or perhaps even better) for purely numeric or
alphanumeric columns.

Label set size. As Fig. 7 shows, all model architectures studied in
this paper struggle to maintain their performance as the label set
grows large, even when the context window is not exceeded. A
possible reason for this is the difficulty in disambiguating several
similar semantic concepts given only a brief label.

6 CONCLUSIONS AND FUTURE WORK

We introduce ArcheType, a novel CTA approach centered around
LLMs. We show that with effective context sampling and label
remapping, (a) LLMs can be made highly competitive with SOTA
CTA models in the fine-tuned setting, and (b) LLMs are both easier
to apply, and more accurate than existing deep models in the zero-
shot domain. Using newly curated benchmarks (Sec. 4), we show
that LLM-based CTA can generalize to considerable distribution
shifts, making them ideally suited for real-world tasks.

We anticipate that methods building upon ArcheType can be
useful in a variety of downstream dataset creation, curation, and
processing tasks. In the future, we will explore the possibility of
extending our methods to novel data tasks, such as semantic join-
ability, column property annotation, and dataset synthesis.
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