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Personalized recommender systems play a crucial role inmodern society, especially in e-commerce, news, and

ads areas. Correctly evaluating and comparing candidate recommendation models is as essential as construct-

ing ones. The common offline evaluation strategy is holding out some user-interacted items from training

data and evaluating the performance of recommendation models based on how many items they can retrieve.

Specifically, for any hold-out item or so-called target item for a user, the recommendationmodels try to predict

the probability that the user would interact with the item and rank it among overall items, which is called

global evaluation. Intuitively, a good recommendation model would assign high probabilities to such hold-

out/target items. Based on the specific ranks, some metrics like Recall@K and NDCG@K can be calculated

to further quantify the quality of the recommender model. Instead of ranking the target items among all items,

Koren first proposed to rank them among a small sampled set of items, then quantified the performance of the

models, which is called sampling evaluation. Ever since then, there has been a large amount of work adopting

sampling evaluation due to its efficiency and frugality. In recent work, Rendle and Krichene argued that the

sampling evaluation is “inconsistent” with respect to a global evaluation in terms of offline top-K metrics.

In this work, we first investigate the “inconsistent” phenomenon by taking a glance at the connections

between sampling evaluation and global evaluation. We reveal the approximately linear relationship between

sampling with respect to its global counterpart in terms of the top-K Recall metric. Second, we propose a

new statistical perspective of the sampling evaluation—to estimate the global rank distribution of the entire

population. After the estimated rank distribution is obtained, the approximation of the global metric can be

further derived. Third, we extend the work of Krichene and Rendle, directly optimizing the error with ground

truth, providing not only a comprehensive empirical study but also a rigorous theoretical understanding of

the proposed metric estimators. To address the “blind spot” issue, where accurately estimating metrics for

small top-K values in sampling evaluation is challenging, we propose a novel adaptive sampling method

that generalizes the expectation-maximization algorithm to this setting. Last but not least, we also study the

user sampling evaluation effect. This series of works outlines a clear roadmap for sampling evaluation and

establishes a foundational theoretical framework. Extensive empirical studies validate the reliability of the

sampling methods presented.
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1 INTRODUCTION

Recommender systems have become a vital and integral part of modern lives, transforming user
experiences across various sectors such as e-commerce, online advertising, streaming, and social
media platforms [15, 19, 33, 34, 39]. By analyzing users’ profiles, preferences, and historical data,
recommender systems offer personalized suggestions tailored to individual interests and needs.
Their capacity to process massive amounts of information helps users navigate the abundance
of available content and discover relevant products, services, or materials. Consequently, recom-
mender systems not only enhance user engagement and loyalty, providing them with a better
experience, but also contribute to increased sales and revenue for businesses, such as Amazon and
YouTube. Thus, recommendation, or personalization, which aims to best match the preferences
and/or needs of an individual customer across all available choices, is simply indispensable.
As personalization and recommendation continue to play an integral role in the emerging AI-

driven economy [15, 21, 30, 39], proper and rigorous evaluation of recommendation models has
become increasingly important in recent years for both academic researchers and industry practi-
tioners [4, 6, 7, 13, 32]. Thanks to the widely available and ever-increasing recommendation mod-
els [12, 39], data scientists today spend significant amounts of time evaluating, deploying, testing,
and fine-tuning recommendation models. Online A/B tests are the ultimate criteria for discerning
different recommendation models; however, running such a test often takes days or even weeks to
draw a conclusion. Offline evaluations thus play a critical role in helping to choose promising/right
recommendation models for online testing. Offline evaluation typically holds out some interacted
items from the training data. Specifically, for any hold-out items or so-called target items for a
user, the recommendation models attempt to predict the probability of user-item interaction and
rank the item among all items, which is referred to as global evaluation. Intuitively, an effective
recommendation model would assign high probabilities to such hold-out/target items, and based
on their specific ranks, metrics like Recall@K and NDCG@K can be calculated to further quantify
the model’s quality.
History on Sampling Top-K Evaluation. Contrary to global evaluation, Koren [22], for the first
time, used the sampling top-K method in his seminal work as an approach to measure the suc-
cess of top-K recommenders. Specifically, he uses 1, 000 additional random movies (which may
include already-ranked ones) against the targeted movie i for a user. He ranks these 1, 001 movies
by the predicted rating (relevance score), and he normalizes the ranking score between 0 and 1.
Finally, he draws the cumulative distributions of all users, with respect to the ranking score. In
summary, ranking the target item among a small sampled set of items, and then quantifying the
performance of themodels, is called item-sampling-based evaluation. Another highly citedwork [5]
has utilized this metric to evaluate the performance of a variety of recommendation algorithms on
top-N recommendation tasks. This method was first adopted by deep learning based recommen-
dation papers in 2015 [11] and then in 2017 [16]. Here, the authors go beyond the top-K Hit-Ratio
suggested by Koren [11, 16], extending to metrics such as Mean Reciprocal Rank (MRR) and NDCG.
Since Koren, various deep learning based recommendation studies [10, 17, 23, 36–38] have adopted
such sampling-based top-K evaluation metrics. In these studies, they typically sample only those
“irrelevant” items (not scored by the users), unlike the work in Koren, which may sample relevant
items, as well. The number of items sampled typically ranges from 100 to 1,000.
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Inconsistency of Sampled Metrics. Despite the popularity of sampling-based evaluation [10, 16,
17, 23, 36–38], recently, Rendle [32] and Krichene and Rendle [24] argued that sampling-based top-
K evaluation metrics, such as Recall/Precision (Hit-Ratio), Average Precision (AP), and NDCG,
excluding AUC, are “inconsistent” with global metrics. More specifically, since the core of evalua-
tion metrics is to compare different recommendation models’ performance, they observed that the
relative order of models’ performance is not maintained when utilizing sampled metrics in com-
parison to the original global metrics. For example, Model A has a larger value than Model B in
terms of Recall@10 globally (RecallA@10 > RecallB@10), whereas it would be the opposite order
when using a sampled metric (RecallA@10 < RecallB@10). They claim that a “sampled metric can
be a poor indicator of the true performance of recommender algorithms” [24]. Thus, cautionary
use is suggested or even sampling should be avoided for metric calculation.
This claim challenges a considerable amount of work [10, 16, 17, 23, 36–38] within the recom-

mendation community. What are the implications for existing studies that utilize sampling top-K
criteria? Does this render their results somewhat invalid? Does it imply that a meaningful top-K
evaluation requires the use of all items? To be able to firmly answer these questions, a better un-
derstanding of the sampling-based top-K metrics is much needed. In the meantime, a sampling
approach, where acceptable, can be a useful tool for saving computational costs and speeding
up evaluation time. Although computational resources might not be a big problem for enormous
mega-corporations, such as Google or Amazon, for many smaller, resource-constrained organi-
zations and businesses, it may still be an issue. For instance, if valid, a sampling approach can
be a quick way to help evaluate the promise of a given algorithm, screening for the eventual ex-
act/global top-K evaluation.
Contribution 1: A Sampling-Based Top-K Recall Metric Can Be Mapped to the Global One
at f(K). Krichene and Rendle [24] state that a sampling-based top-K metric cannot properly re-
flect the global metric at the same K. Slightly contrary to the claim, we propose that there exists
an approximately linear mapping function f such that the Recall@K metric in sampling-based
evaluation is approximate to the Recall@f (K ) in global evaluation, where K and f (K ) represent
different top-K selections. We take Figure 1 as an example to intuitively explain the insight. The
left side of Figure 1 plots the top-K global Recall curve, where each point (K ,Recall@K ) on the
curve is a top-K metric. Here the range of K is from 1 to N (total number of items). The mid-
dle part of Figure 1 is the top-K sample Recall curve. Since the rank ru is obtained in the sample
set (n = 100), the range of sampling-based top-K Recall is from 1 to n = 100. As we discovered,
there is an approximately linear relation between global and sample metrics. One could come up
with some mapping functions that align the sample Recall curve to the global scale (shown on the
right side of Figure 1). These findings we make could partially save the amount of sampling-based
evaluation work [10, 17, 23, 36–38] in danger.
Efforts to Estimate Global Metrics. Since the sampled metrics are inconsistent with the global
metrics [24], to make the sampled metric useful, at the same time, Krichene and Rendle [24] heuris-
tically proposed a few estimators to correct the sampledmetrics. The first correction that they used

is an unbiased estimator of the rank. They tried to find vector-liked corrected metrics F̂ that min-

imizes the following equation: argminF̂ ∈Rn
∑N

R=1 p (R) (Er [F̂r |R] − F (R))2, where n is the sample

set size, N is the total number of items, F (·) is the ground truth global metric function, F̂ (·) is the
corrected metric function applied to sampled rank, and p (R) is a prior on the distribution of ranks.

The central idea of this equation is trying to come up with a correction of the metric function F̂ (·)
so that once it is applied to sampled rank {ru }u=1, one can still derive similar results as the original
metric F (·) applied to global rank {Ru }u=1. As pointed out by Krichene and Rendle [24], the po-
tential issue with this estimator is that it could raise high variance practically. Thus, they propose
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Fig. 1. Curve relationship of model NeuMF on the pinterest-20 dataset. Left: TRecall@K is the top-K global

Recall curve. Middle: T S
Recall@K

is the sampling top-K Recall curve. Right: T S
Recall@K

curve mapped to the

global scale by a baseline mapping function.

another BV estimator by introducing a variance term, which borrows an idea from Bias-Variance

(BV) tradeoff: argminF̂ ∈Rn
∑N

R=1 p (R) ((Er [F̂r |R]−M (R))2 +γ ·Var r [F̂r |R]), where γ is a positive
constant.
Contribution 2: Solution for Global Metrics Estimation. The preceding BV estimator [24] does
not directly minimize the expected errors between the item-sampling-based top-K metrics and the
global top-K metrics. In addition, there are no optimality results that have been established for
that expected error. To tackle this issue, we propose two classes of methods. Method 1 is estimat-

ing global ranking distribution. We bring in a new intermediate fundamental problem—estimate
the global rank distribution {Ru }Mu=1 given the sampling-based rank information {ru }Mu=1, where
M is the total number of user and Ru is the global rank of target item for user u and ru is that
of sampling-based rank. By theoretically analyzing the sampling process, we derive the statistical
relations between these two rank distributions. We leverage MLE (Maximum Likelihood Estima-
tion) and MES (Maximal Entropy with Squared distribution distance) methods to help estimate
the global rank distribution. As long as the global rank distribution is obtained, the expectation of
global metrics can be further inferred. Although these two methods are comparable to the BV
estimator in the work of Krichene and Rendle [24], a more accurate estimator is still needed.
Method 2 is multinomial global metric estimation. Similar to Krichene and Rendle [24], where
global metrics are directly estimated, we propose to find the expected estimation of the global
metric by directly optimizing the expectation error between the corrected metrics and the origi-

nal one: E[ 1
M

∑M
u=1 F̂ (ru ) −

∑N
R=1 P (R) · F (R)]2. We then highlight subtle differences from the BV

estimator derived and point out the potential issues of the BV estimator because it fails to link the
user population size with the estimation variance.
Contribution 3: Adaptive Sampling Could Improve Estimating Accuracy and Solve the
“Blind Spot” Issue. Despite the preceding efforts, we still face the “blind spot” issue, where the
estimation can be quite inaccurate when K is small. In offline evaluation, we are interested in
the top-ranked items and top-K metrics, when K is relatively small. However, the current item-
sampling estimation seems to have a “blind spot” for the top-rank distribution. For example, when
there are n = 100 samples and N = 10k , the estimation granularity is only at around the 1% (1/n)
level [24, 26]. We can only infer that the top items in the samples are the top 1% (top 100) in the
global rank, and we are unable to further tell whether the top items in the sample set are in the
top-50, for example. Given this, even with the best estimator for the item sampling, we may still
not be able to provide accurate results for the top-K metrics. A remedy is increasing the sampling

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 7. Publication date: March 2024.



On Item-Sampling Evaluation for Recommender System 7:5

Table 1. Notations for Leave-One-Out Evaluation Setting

U The set of overall users, and |U | = M

I The set of overall items, and |I | = N

M Total # of users

N Total # of items

iu The target item (to be ranked) for each user u

Iu Sampled test set for user u, consisting of 1 target item iu , n − 1 sampled items

n Sample set size, |Iu | = n
Ru Rank of item iu among all items I for user u

ru Rank of item iu among Iu for user u

T Evaluation metric (for a recommendation model) (e.g., Recall , Recall@K )

F Individual evaluation metric function (for each item rank) (e.g., Recall (·), Recall@K (·))
T S Sampled evaluation metric

T̂ Estimated evaluation metric

size, but it can significantly increase the estimation cost too, limiting the benefits of item sampling.
To solve this issue, we introduce the adaptive sampling method. Intuitively, instead of sampling
a fixed number of negative items during evaluation, we dynamically sample negative items for
different users, leading to an informative sampling-based rank distribution. By leveraging MLE
and the Expectation-Maximization (EM) algorithm, we are able to derive an adaptive estimator
that exhibits efficiency and effectiveness.
Contribution 4: The User Sampling Problem. In addition, we bring in another interesting
sampling-based evaluation problem where the number of users is much more than that of the
item. In this case, sampling from the user perspective and deriving the estimated metrics could
lead to more efficient and accurate results.
In summary, in this article, we thoroughly investigate the item-sampling-based recommenda-

tion evaluation problem. We build a connection between the sampled top-K Recall metric and
its global counterpart. To resolve the inconsistent issue, we propose several estimators to help
estimate accurate global metrics. Then we stress the “blind spot” issue that was overlooked and
propose an adaptive method to tackle this task. Finally, we take another perspective to investigate
the user sampling approach. This extensive and thorough study helps build a complete theoretical
foundation for sampling-based recommendation evaluation problems. It also provides evidence for
making item sampling a useful tool for recommendation evaluation.
The rest of the article is structured as follows. Section 2 introduces the background and pre-

liminaries, and provides an overview of previous efforts of metric estimation. Section 3 (Contri-
bution 1) reveals the linear relation between sampling-based Recall and the global one. Section 4
(Contribution 2; Method 1) discusses various sampling-based estimators by estimating global rank
distribution. Section 5 (Contribution 2; Method 2) presents estimators directly from optimizing
the expectation error. Section 6 (Contribution 3) proposes the novel adaptive sampling and estima-
tion method. Section 7 (Contribution 4) explores sampling evaluation from the user perspective.
Section 8 reports on the experimental results. Finally, Section 9 offers concluding remarks.

2 BACKGROUND

2.1 Leave-One-Out Recommendation Evaluation Setting

There are a user setU , (|U | = M) and a item set I , (|I | = N ) Table 1. Assume each useru is associated
with one and only one target item iu (hold out from the training set for u). A recommendation
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model A is trained on the training set and would compute a personalized rank Ru = A(iu |u, I )
for item iu among all the items I , and {Ru }Mu=1 is called global rank distribution. In contrast, one
can also compute the other type personalized rank ru = A(iu |u, Iu ) for item iu among sampled set
Iu = { i ∼ I\iu } ∪ {iu }, |Iu | = n. In this case, {ru }Mu=1 is called sampled rank distribution. Given

{Ru }Mu=1 or {ru }Mu=1, the (global or sampling-based) evaluation metrics can be computed according
to specific metric functions.

2.2 Global Top-K Evaluation Metrics

A metric function F maps its integer input (any rank Ru ) to a real-valued score. The aggregation
of these scores over all the users is called (global) metric T :

T =
1

M

M∑

u=1

F (Ru ). (1)

It is worth noting that a metric function F is an operation on some integer rank input and a
metric T is a corresponding aggregation of the output, which is a real value and represents the
performance of a recommendation model. When we talk about Recall , NDCG or Recall@K , and
NDCG@K , they can be both metric functions and metrics, depending on the context. Similar to
Krichene and Rendle [24], we define the simplified top-K metric functions F in the followingways:

FRecall@K (x ) = δ (x ≤ K ), FNDCG@K (x ) = δ (x ≤ K ) · 1

log2 (x + 1)
, FAP@K (x ) = δ (x ≤ K ) · 1

x
,

(2)

where δ (x ) = 1 if x is true and 0 otherwise. The corresponding global metrics T for a given
distribution {Ru }Mu=1 are

TRecall@K =
1

M

M∑

u=1

FRecall@K (Ru ) =
1

M

M∑

u=1

δ (Ru ≤ K )

TNDCG@K =
1

M

M∑

u=1

FNDCG@K (Ru ) =
1

M

M∑

u=1

δ (Ru ≤ K ) · 1

log2 (Ru + 1)

TAP@K =
1

M

M∑

u=1

FAP@K (Ru ) =
1

M

M∑

u=1

δ (Ru ≤ K ) · 1

Ru
.

(3)

2.3 Sampling-Based Top-K Evaluation Metrics

As aforementioned in Sections 1 and 2.1, it is also a common choice [5, 10, 16, 17, 22, 23, 36–38] to
use sampling-based top-K metrics to evaluate recommendation models, denoted asT S in general:

T S
=

1

M

M∑

u=1

F (ru ). (4)

It is obvious that ru and Ru differ substantially—for example, ru ∈ [1,n], whereas Ru ∈ [1,N ].
Therefore, for the same K , the item-sampling-based top-K metric T S and the global top-K metric
T correspond to distinct measures (no direct relationship):T � T S (TRecall@K � T

S
Recall@K

even in

expectation). This problem is highlighted in other works [24, 32], referring to these two metrics
being inconsistent. From the perspective of statistical inference [25], the basic sampling-based top-
K metric T S is not a reasonable or good estimator of T .
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2.4 Statistical View of the Sampling Process: Sampling with Replacement (Binomial

Distribution)

For a given user u, let Xu denote the number of sampled items that are ranked in front of relevant
item iu :

Xu =

n−1∑

i=1

Xui , Xui ∼ Bernoulli

(

bu =
Ru − 1
N − 1

)

,

where Xui is a Bernoulli random variable for each sampled item i: Xui = 1 if item i has rank range
in [1,Ru − 1] (bu is the corresponding probability) and Xui = 0 if i is located in [Ru + 1,N ]. Thus,
Xu follows binomial distribution:

Xu ∼ Binomial

(

n − 1,bu =
Ru − 1
N − 1

)

. (5)

And the random variable ru = Xu + 1, and we have

pu = CDF (K ;n − 1,bu ) = Pr (ru ≤ K ) =
⎧⎪⎨⎪⎩
∑k−1
l=0

(
n−1
l

)

blu (1 − bu )n−1−l ,Ru ≥ K

1 ,Ru < K .

2.5 Efforts Toward Metric Estimation

Given the sampling ranked results in the test dataset, {ru }Mu=1, how to infer/approximate the T

(Equation (1)) without the knowledge {Ru }Mu=1? The work of Krichene and Rendle [24] is the most
closely related work that studies metric estimation problems.
Krichene andRendle’s Approaches.Krichene and Rendle [24]develop a discrete correctedmetric

function F̂ (r ) to approach:

T =
1

M

M∑

u=1

F (Ru ) ≈
1

M

M∑

u=1

F̂ (ru ) =

n∑

r=1

P̃ (r )F̂ (r ) = T̂ , (6)

where P̃ (r ) is the empirical rank distribution on the sampling data. They have proposed a few
estimators based on this idea, including estimators that use unbiased rank estimators, with mono-
tonicity constraint (CLS):

arg min
F̂ ∈Rn

N∑

R=1

p (R) (Er [F̂r |R] − F (R))2 (7)

and utilize BV tradeoff:

arg min
F̂ ∈Rn

N∑

R=1

p (R)
(

(Er [F̂r |R] −M (R))2 + γ ·Var r [F̂r |R]
)2

(8)

Their study shows that only BV is competitive [24] and the solution is

F̂ =
(

(1.0 − γ )ATA + γdiag(ccc )
)−1

ATbbb, (9)

A ∈ RN×n , AR,r =

√

P (R)P (r |R), bbb ∈ RN , bR =
√

P (R)F (R), ccc ∈ Rn , cr =

N∑

R

P (R)P (r |R).

(10)
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3 TOP-K RECALL METRIC ESTIMATION VIA MAPPING FUNCTION

In this section, we would like to introduce our first finding—the linear mapping relation between
the sampled top-K Recall metric and the global one. In short, there exists a function f (K ) such
that the sampled top-K Recall metric is approximately equal to the global top-f (K) Recall metric:
T S
Recall@K

≈ TRecall@f (K ) .

3.1 Statistical View of the Recall Metric

Let us consider the definition of the global top-K Recall (or Hit-Ratio) metric (rewrite Equation (3)):

TRecall@K =
1

M

M∑

u=1

δ (Ru ≤ K ) =

N∑

R=1

P̃ (R) · δ (R ≤ K ), (11)

where P̃ (R) is the frequency of users with item iu rank in position R, also denoted as empirical
global rank distribution:

P̃ (R) =
1

M

M∑

u=1

δ (Ru = R). (12)

Next, let us revisit the top-K Recall (Hit-Ratio) under-sampling in Equation (4). For a given user
u and the relevant item iu , we first sample n − 1 items from the entire set of items I , forming the
subset Iu (including iu ). Let the relative rank of iu among In be denoted as ru = A(iu |u, Iu ). Note
that ru is a random variable depending on the sampling set Iu .
Given this, the sampling top-K Recall metric can be written as follows:

T S
Recall@K =

1

M

M∑

u=1

Zu , Zu ∼ Bernoulli (pu = Pr (ru ≤ K )), (13)

where Zu is a random variable for each useru and follows a Bernoulli distribution with probability
pu = Pr (ru ≤ k ), where pu is defined in Section 2.4. Now, recall that we are trying to study the
relation between T S

Recall@K
and TRecall@K . We note that the population sum

∑M
u=1 Zu is a Poisson

binomial distributed variable (a sum of M independent Bernoulli distributed variables). Its mean
and variance will simply be sums of the mean and variance of the n Bernoulli distributions:

μ =

M∑

u=1

pu , σ 2
=

M∑

u=1

pu (1 − pu ).

Given this, the expectation and variance of T S
Recall@K

in Equation (13):

E[T S
Recall@K

] =
1

M

M∑

u=1

pu =

N∑

R=1

P̃ (R) · P (R), (14)

Var [T S
Recall@K

] =
1

M2

M∑

u=1

pu (1 − pu ) =
1

M

N∑

R=1

P̃ (R) · P (R) (1 − P (R)), (15)

where P (R) is the probability that users who are in the same group (Ru = R) share the same pu .

3.2 A Functional View of TRecall@K and T S
Recall@K

To better understand the relationship between TRecall@K (global top-K Recall) and T S
Recall@K

(the

sampling version), it is beneficial to take a functional view of them. Let R be the random variable
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Fig. 2. Global vs sampling top-K Hit-Ratio on the yelp dataset. To display the details clearly, we zoom in

on the global Recall curves (a) and the sampling Recall curves (b) at different range scales to (c) and (d),

respectively. Comparing the two figures, we can easily conclude that sampling evaluation maintains the

same curve trend as global evaluation for different algorithms even at small error range.

for the user’s item rank, with probability mass function Pr (R = R); then, TRecall@K is simply the

empirical cumulative distribution of R (P̂r ):

TRecall@K = P̂r (R ≤ K ), P̃ (R) = P̂r (R = R). (16)

For T S
Recall@K

, its direct meaning is more involved and will be examined in the following. For

now, we note that T S
Recall@K

is a function of K varying from 1 to n, where n − 1 is the number of

sampled items.
Figure 2(a) displays the curves of empirical accumulative distributionTRecall@K (a.k.a. the global

top-K Hit-Ratio, varying K from 1 to N = 25,815), for five representative recommendation algo-
rithms (three classical and two deep learning methods), on the yelp dataset. To observe the perfor-
mance of thesemethodsmore closely, we zoom in on the rangeK from 5,000 to 12,000 in Figure 2(c).
Figure 2(b) displays the curves of functional fitting of functionT S

Recall@K
(the sampling top-K Hit-

Ratio, varying K from 1 to n = 100) with n − 1 samples, under sampling with replacement, for the
same five representative recommendation algorithms on the same dataset. Similarly, we zoom in
and highlight K from 20 to 50 in Figure 2(d).
How can the sampling Recall curves help to reflect what happened in the global curves? Before

we consider the more detailed relationship between them, we introduce the following results:

Theorem 3.1 (Sampling Theorem). Let us assume we have two global Recall curves (empirical

cumulative distribution), T
(1)
Recall@K

and T
(2)
Recall@K

, and assume one curve dominates the other one,

(i.e.,T
(1)
Recall@K

≥ T (2)
Recall@K

for any 1 ≤ K ≤ N ); then, for their corresponding sampling curve at any

k for any size of sampling, we have

E[T
S, (1)
Recall@K

] ≥ E[T S, (2)
Recall@K

].

The preceding theorem shows that, under the strict order of global Recall curves (although
it may be quite applicable for searching/evaluating better recommendation algorithms, like in
Figure 2), sampling Hit-Ratio curves can maintain such order. However, this theorem does not
explain the stunning similarity, shapes, and trends shared by the global and their corresponding
sampling curves. Basically, the detailed performance differences among different recommendation
algorithms seem to be well preserved through sampling. However, unless n ≈ N , T S

Recall@K
does

not correspond toTRecall@K (as in what is being studied by Rendle [32]). Those observations hold
on other datasets and recommendation algorithms as well, not only on this dataset. Thus, intu-
itively and through the preceding experiments, we may conjecture that it is the overall curve
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TRecall@K that is being approximated by T S
Recall@K

. Since these functions are defined on different

domain sizes N vs n, we need to define such approximation carefully and rigorously.

3.3 Mapping Function f

To explain the similarity between the global and sampling top-K Recall curves, we hypothesize
the following:

There exists a function f (K ) such that the relationT S
Recall@K

≈ TRecall@f (K ) holds for

different ranking algorithms on the same dataset.

In a way, the sampling metricT S
Recall@K

is like “signal sampling” [31], where the global metrics

between top 1 to N are sampled (and approximated) at only f (1) < f (2) < · · · < f (n) locations,
which corresponds to T S

Recall@K
(k = 1, 2, . . . ,n). In general, f (k ) � k (when n << N ) ( [32]).

To identify such a mapping function, let us take a look at the error between T S
Recall@K

and

TRecall@f (K ) :

|T S
Recall@K

−TRecall@f (K ) | ≤ |T S
Recall@K

− E[T S
Recall@K

]| + |E[T S
Recall@K

] −TRecall@f (K ) |. (17)

Thanks to the Hoeffding’s bound, we observe

Pr ( |T S
Recall@K

− E[T S
Recall@K

]| ≥ t ) ≤ 2 exp(−2Mt2).

This can be a rather tight bound, due to the large number of users in the population. For example,
ifM = 30K , t = 0.01,

Pr ( |T S
Recall@K

− E[T S
Recall@K

] ≥ 0.01| ≤ 0.005.

If we want to look more closely, we may use the law of large numbers and utilize the variance
in Equation (15) for deducing the difference between T S

Recall@K
and its expectation. Overall, for

a large user population, the sampling top-k Hit-Ratio will be tightly centered around its mean.
Furthermore, if the user number is, indeed, small, an average of multiple sampling results can
reduce the variance and error. In the publicly available datasets, we found that one set of samples
is typically very close to the average of multiple runs.
Given this, our problem is how to find the mapping function f such that |E[T S

Recall@K
] −

TRecall@f (K ) | can be minimized (ideally close to or equal to 0). Note that f should work for all
K (from 1 to n), and it should be independent of algorithms on the same dataset.

3.4 Approximating Mapping Function f

Baseline. To start, we may consider the following naive mapping function. We notice that for
any n,

E[Xu ] = (n − 1) · bu = (n − 1)Ru − 1
N − 1 = E[ru ] − 1, E[ru ] = 1 + (n − 1)Ru − 1

N − 1 .

When n is large, we simply use the indicator function δ (E[ru ]) ≤ K to approximate and replace
Pr (ru ≤ K ). Thus,

1 + (n − 1)Ru − 1
N − 1 ≤ K , Ru ≤

K − 1
n − 1 ∗ (N − 1) + 1 � f (K ). (18)

To wrap to, this baseline function f (K ) enable us that: for any given T S
Recall@K

, we can obtain its

approximation - TRecall@K ′ , where K
′
= f (K ). This guarantees us that we can plot the T S

Recall@K

curve in the global range (1 toN ) aswell, whichwould help us directly observe the relation between
T S
Recall@K

and TRecall@K (Figure 3).

ACM Transactions on Recommender Systems, Vol. 2, No. 1, Article 7. Publication date: March 2024.



On Item-Sampling Evaluation for Recommender System 7:11

Fig. 3. Curve relationship of the model EASE on theyelp dataset.TRecall@K is the top-K global Recall curve;

T S
Recall@K

is the sampling top-K Recall curve shown in global scale (by baseline Equation (18)); and P̃R is

the empirical user ranking distribution, where we make it five times larger (multiply) for displaying purpose.

Since the indicator function, δ (E[ru ] ≤ K ) is a rather crude estimation of the CDF of ru at K ,
and this only serves as a baseline for our approximation of the mapping function f .
Approximation Requirements. Before we introduce more carefully designed approximations of
the mapping function f , let us take a close look at the expectation of the sampling top-K Recall
E[T S

Recall@K
] and T S

Recall@f (K )
. Figure 3 shows how the user empirical probability mass function

P̃ (R) works with the step indicator function δ (Ru ≤ f (K )), and bu (assuming a hypergeometric
distribution), to generate the global top-K and sampling Recall.
We have the following requirements:

• Existence of mapping function f for each individual TRecall@K curve: Given any K , assuming
TRecall@f (K ) is a continuous cumulative distribution function (i.e., assuming that there is
no jump/discontinuity on the CDF, and that f (K ) is a real value), then there is f (K ) such
that TRecall@f (K ) = E[T

S
Recall@K

]. In our problem setting, where f (K ) is integer valued and

ranges between 0 and N , the best f (K ), theoretically, is

f (K ) = argf min |TRecall@f (K ) − E[T S
Recall@K ]|.

• Mapping function f for differentTRecall@f (K ) curves: Since our main purpose is forT S
Recall@K

to be comparable across different recommendation algorithms, we prefer f (K ) to be the same
for different Recall curves (on the same dataset). Thus, by comparing differentT S

Recall@K
, we

can infer their corresponding RecallTRecall at the same f (K ) location. Figure 2 and Figure 3
show that the sampling Recall curves are comparable with respect to their respective coun-
terparts and suggest that such a mapping function, indeed, may exist.

But how does the second requirement coexist with the first requirement of the minimal error of
individual curves? We note that for most of the recommendation algorithms, their overall Recall
curve TRecall@K is actually fairly similar (see Figure 2). From another viewpoint, if we allow in-
dividual curves to have different optimal f (K ), the difference (or shift) between them is rather
small and does not affect the performance comparison between them, using the sampling curves
T S
Recall@K

. In this section, we will focus on studying dataset-algorithm-independent mapping

functions.
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3.5 Boundary Condition Approximation

Consider that sampling with replacement, for any individual user, Xu from Equation (5), obeys
binomial distribution. Apply the general case of bounded variables Hoeffding’s inequality:

Pr ( |Xu − E[Xu ]| ≥ t ) ≤ 2e−
2t2

n−1

since ru = Xu + 1, and E[ru ] = E[Xu ] + 1 = (n − 1)bu + 1:
⎧⎪⎪⎨⎪⎪⎩

Pr (ru ≥ (n − 1)bu + 1 + t ) ≤ 2e−
2t2

n−1

Pr (ru ≤ (n − 1)bu + 1 − t ) ≤ 2e−
2t2

n−1 .
(19)

The preceding inequalities indicate that ru is restricted around its expectation within the range
defined by t . The second term of error in Equation (17) can be written as follows:

E[T S
Recall@K ] −TRecall@f (K ) = −

f (K )
∑

R=1

P̃ (R) · Pr (rR ≥ k + 1) +

N∑

R=f (K )+1

P̃ (R) · Pr (rR ≤ K ), (20)

where rR = ru for Ru = R. For some relatively large t (compared to
√
n − 1), the probability in

Equation (19) can come extremely close to 0. Based on this fact, if we would like to limit the first
term Pr (rR ≤ K + 1) to approach 0, K + 1 must be greater than (n − 1)bu + 1 + t . Similar to the
second term, we have

⎧⎪⎨⎪⎩
ru ≥ K + 1 ≥ (n − 1) R−1

N−1 + 1 + t ), R = 1, . . . , f lower (K )

ru ≤ K ≤ (n − 1) R−1
N−1 + 1 − t , R = f upper (k ) + 1, . . . ,N ,

where f lower (K ) and f upper (K ) are the lower bound and upper bound for f (K ), respectively.
Explicitly,

f lower (K ) ≤ (K − t ) · N − 1
n − 1 + 1, f upper (K ) ≥ (K + t − 1) · N − 1

n − 1 . (21)

Given this, define f as the average of above two bounds

f (K ) =

⎢⎢⎢⎢⎢⎣
f lower (K ) + f upper (K )

2

⎥⎥⎥⎥⎥⎦ =
⌊(
K − 1

2

)
N − 1
n − 1 +

1

2

⌋
. (22)

Note that although this formula appears similar to our baseline Equation (18), the difference be-
tween them is actually pretty big (≈ 1

2
N−1
n−1 ). As we will show in the experimental results, this

formula is remarkably effective in reducing the error |E[T S
Recall@K

] −TRecall@f (K ) |.

3.6 Beta Distribution Approximation

In this approach, we try to directly minimize E[T S
Recall@K

] − TRecall@f (K ) , and this is equivalent
to

N∑

R=1

P̃ (R) · δ (R ≤ f (K )) =

N∑

R=1

P̃ (R) · Pr (rR ≤ K ). (23)

To get a closed-form solution of f (K ) from the preceding equation, we leverage the Beta dis-

tribution Beta(a, 1) to represent the user ranking distribution P̃ (R), inspired by Li et al. [28]:

P̃ (R) = 1
B (a,1) (

R−1
N−1 )

a−1 1
N−1 , where a is a constant parameter and 1

N−1 is the constant for discretized

Beta distribution. Note that R−1
N−1 normalizes the user rank Ru from [1,N ] to [0, 1]. Especially when
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Fig. 4. Beta distributions and empirical user rank distribution P̃ (R).

a < 1, this distribution can represent exponential distribution, which can help provide fit for the

Recall distribution. Figure 4 illustrates the Beta distribution fitting of P̃ (R).
According to the detailed derivation in Appendix B, we have the following recurrent formula:

f (k + 1;a) =
[
a[N − 1]a

(

n − 1
k

)

B (a + k,n − k )[f (k ;a) − 1]a
]1/a
+ 1, (24)

f (1;a) = (N − 1)[aB (a,n)]1/a + 1. (25)

Figure 5 shows the relative difference of all f (k ;a) sequences. (For detailed analysis please refer
to Appendix C).

4 TOP-K METRIC ESTIMATION VIA GLOBAL RANK DISTRIBUTION LEARNING

4.1 Learning the Empirical Rank Distribution Problem

In this section, our new proposed approach is based on the following observation:

T =
1

M

M∑

u=1

F (Ru ) =

K∑

R=1

P̃ (R) · F (R). (26)

Again,T is any metric to quantify the quality of a recommendation model and F is the correspond-

ing specific metric function in Section 2.2. Thus, if we can estimate P̂ (R) ≈ P (R) ≈ P̃ (R), then we
can derive any metric estimator as

T̂ =

K∑

R=1

P̂ (R) · F (R). (27)

Given this, we introduce the new problem of learning and estimating the empirical rank distribu-

tion {P̃ (R)}N
R=1 based on sampling {ru }Mr=1. To our knowledge, this problem has not been formally

and explicitly studied before for sampling-based recommendation evaluation.
The importance of the problem is twofold: on one side, the learned empirical rank distributions

can directly provide estimators for any metric T ; on the other side, since this question is closely
related to the underlying mechanism of sampling for recommendation, tackling it can help bet-
ter understand the power of sampling and resolve the questions as to if and how we should use
sampling for evaluating recommendation. Furthermore, since metric T is the linear function of

{P̃ (R)}KR=1, the statistical properties of estimator P̂ (R) can be nicely preserved by T̂ [25]. In addition,
this approach can be considered as metric independent: We only need to estimate the empirical

rank distribution P̃ (R) once; then we can utilize it for estimating all the top-K evaluation metrics
T (including for different K ) based on Equation (27).
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Fig. 5. Relative error w.r.t. f (k ;a = 1). Example

on the yelp dataset, n = 100.

Fig. 6. Learning empirical rank distribution P (R).

For the first time, we show that the BV estimator [24] can also be used to estimate P (R):

P̂ (R) = F̂BV (R) − F̂BV (R − 1) = (P̃ (r ))nr=1

(

(1.0 − γ )ATA + γdiag(ccc )
)−1

AT ·bbbR , (28)

where F̂BV (R) is the BV estimator for the Recall@R metric function, (P̃ (r ))nr=1 is the row vector
of empirical rank distribution over the sampling data, and bbbR has the R-th element as bR (Equa-
tion (10)) and other elements as 0. We consider this as our baseline for learning the empirical rank
distribution.
In the following, we introduce a list of estimators for the empirical rank distribution {P (R)}N

R=1

based on sampling ranked data: {ru }Mr=1. Figure 6 sketches the different approaches to learning
the empirical rank distribution P (R), including the MLE and the maximal entropy based approach
(MES).

4.2 Sampling Rank Distribution: Mixtures of Binomial Distributions

Assume an item i is ranked R in the entire set of items I . Then there are R − 1 items whose rank
is higher than item i . Under the (uniform) sampling (with replacement), the probability of picking
up an item with a higher rank than R is θ � R−1

N−1 . Let x be the number of irrelevant items ranked
in front of the relevant one, x = r − 1. Thus, the rank r − 1 under sampling follows a binomial
distribution: r − 1 ∼ Binomial (n − 1,θ ), the conditional rank distribution P (r |R) is

P (r |R) = Binomial (r − 1;n − 1,θ ) =
(

n − 1
r − 1

)

θr−1 (1 − θ )n−r . (29)

Given this, an interesting observation is that the sampling ranked data {ru }Mr=1 can be directly

modeled as a mixture of binomial distributions. LetΘΘΘ = (θ1 . . . ,θR , . . . ,θN )
T , where

θR �
R − 1
N − 1 , R = 1, . . . ,N . (30)

Let the empirical rank distribution P̃̃P̃P = {P̃ (R)}N
R=1, then the sampling rank follows the distribution

P (r |P̃̃P̃P ) =
N∑

R=1

P (r |R) · P (R) =
N∑

R=1

Bin(r − 1;n − 1,θR ) · P (R) =
N∑

R=1

P (R)

(

n − 1
r − 1

) (
R − 1
N − 1

)r−1 (
1 − R − 1

N − 1

)n−r
. (31)

Thus, P (R) can be considered as the parameters for the mixture of binomial distributions.

4.3 Maximum Likelihood Estimation

The basic approach to learning the parameters of the mixture of binomial distributions given
{ru }Mu=1 is based on MLE. Let ΠΠΠ = (π1, . . . ,πR , . . . ,πN )

T be the parameters of the mixture of
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binomial distributions. Then we have p (ru |ΠΠΠ) =
∑N

R=1 πR · (ru |θR ), where p (ru |θR ) = Binomial (ru −
1;n − 1,θR ).

Then MLE aims to find the particular ΠΠΠ, which maximizes the log-likelihood:

logL =
M∑

u=1

logp (ru |ΠΠΠ) =
M∑

u=1

log

N∑

R=1

πRp (ru |θR ). (32)

By leveraging the EM algorithm (for details, see Appendix D),

πnewR =

1

M

M∑

u=1

πold
R

p (ru |θR )
∑N
j=1 π

old
j p (ru |θ j )

. (33)

When Equation (33) converges, we obtain ΠΠΠ∗ and use it to estimate PPP (i.e., P̂ (R) = π ∗R ). Then, we

can use P̂ (R) in Equation (27) to estimate the desired metric T in Equation (26).

4.3.1 Speedup and Time Complexity. To speed the computation, we can further rewrite Equa-
tion (33) as follows:

πnewR =

n∑

r=1

P̃ (r )
πold
R
· p (r |θR )

∑N
j=1 π

old
j · p (r |θ j )

, (34)

where P̃ (r ) = 1
M

∑M
u=1 δ (ru = r ) is the empirical rank distribution on the sampling data. Thus, the

time complexity improves toO (kNn) (fromO (kNM ) using Equation (33)), where k is the iteration
number. This is faster than the least squares solver for the BV estimator (Equation (9)) [24], which

is at leastO (n2N ). Furthermore, we note P̂ (R) can be used for any metricT for the same algorithm,
whereas the BV estimator has to be performed for each metric T separately.

4.4 Maximal Entropy with Minimal Distribution Bias (MES)

Another commonly used approach for estimating a (discrete) probability distribution is based on
the principle of maximal entropy [3]. Assume a random variable x takes values in (x1,x2, . . . ,xn )

with pmf: p (x1),p (x2), . . . ,p (xn ). Typically, given a list of (linear) constraints in the form of
∑n

i=1 p (xi ) fk (xi ) ≥ Fk (k = 1, . . .m), together with the equality constraint (
∑n

i=1 p (xi ) = 1), it
aims to maximize its entropy H (p) = −∑n

i=1 p (xi ) logp (xi ).
In our problem, let the random variable R take on rank from 1 to N . Assume its pmf is ΠΠΠ =

(π1, . . . ,πR , . . . ,πN ), and the only immediate inequality constraint is πR ≥ 0 besides
∑N

R=1 πR = 1.
Now, to further constrainπππ , we need to consider how they reflect and manifest on the observation
data {ru }Mu=1. The natural solution is to simply utilize the (log) likelihood. However, combining
them together leads to a rather complex non-convex optimization problem which will complicate
the EM solver.
In this article, we introduce amethod (to constrain themaximal entropy) that utilizes the squared

distance between the learned rank probability (based on ΠΠΠ) and the empirical rank probability in
the sampling data:

E = 1

M

M∑

R=1

(

p (ru |ΠΠΠ) − P̃ (ru )
)2
=

n∑

r=1

P̃ (r )
���
N∑

R=1

P (r |R)πR − P̃ (r )���
2

. (35)

Again, P̃ (r ) is the empirical rank distribution in the sampling data. Note that E can be considered
to be derived from the log-likelihood of independent Gaussian distributions if we assume the error

term p (ru |ΠΠΠ) − P̃ (ru ) follows the Gaussian distribution. Given this, we seek to solve the following
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optimization problem:

ΠΠΠ = argmax
ΠΠΠ

(
η

n
· H (πππ ) − E

)

s .t . πR ≥ 0 (1 ≤ R ≤ N ),
∑

R

πR = 1,
(36)

where η is the hyperparameter, and n is the sample set size. Note that this objective can also be
considered as adding an entropy regularizer for the log-likelihood. The objective function Equa-
tion (36) is concave (or its negative is convex). This can be easily observed as both the negative of
entropy and the sum of squared errors are convex functions. Given this, we can employ available
convex optimization solvers [1] to identify the optimization solution. Thus, we have the estimator

P̂ (R) = π ∗R , where Π
∗ is the optimal solution for Equation (36).

5 TOP-K METRIC ESTIMATION VIA AN OPTIMIZED BV ESTIMATOR

In this section, we introduce a new estimator that aims to directly minimize the expected errors
between the item-sampling-based top-K metrics and the global top-K metrics. Here, we consider
a strategy similar to that of Krichene and Rendle [24], although our objective function is different

and aims to explicitly minimize the expected error. We aim to search for a sampled metric F̂ (r ) to

approach T̂ ≈ T :

T̂ =

n∑

r=1

P̃ (r ) · F̂ (r ) =
1

M

M∑

u=1

F̂ (ru ) ≈
1

M

M∑

u=1

F (Ru ) =

N∑

R=1

P (R) · F (R) = T ,

where P̃ (r ) = 1
M

∑M
r=1 δ (ru = r ) is the empirical sampled rank distribution and F̂ (r ) is the adjusted

discrete metric function. An immediate observation is this:

E[T̂ ] =

n∑

r=1

E[P̃ (r )] · F̂ (r ) =

n∑

r=1

P (r ) · F̂ (r ). (37)

Following the classical statistical inference [2], the optimality is measured by Mean Squared
Error (MSE):

E

⎡⎢⎢⎢⎢⎣T̂ −
N∑

R=1

P (R) · F (R)

⎤⎥⎥⎥⎥⎦
2

= E[E[T ] −
N∑

R=1

P (R) · F (R) +T − E[T ]]2

=
���E[T ] −

N∑

R=1

P (R) · F (R)
���
2

+ E[T − E[T ]]2

=
���
n∑

r=1

P (r ) · F̂ (r ) −
N∑

R=1

P (R) · F (R)
���
2

+ E

⎡⎢⎢⎢⎢⎣
n∑

r=1

P̃ (r ) · F̂ (r ) −
n∑

r=1

P (r ) · F̂ (r )

⎤⎥⎥⎥⎥⎦
2

=
���
n∑

r=1

N∑

R=1

P (r |R) · P (R)F̂ (r ) −
N∑

R=1

P (R) · F (R)
���
2

+E

⎡⎢⎢⎢⎢⎣
n∑

r=1

N∑

R=1

P̃ (r |R) · P (R)F̂ (r ) −
n∑

r=1

N∑

R=1

P (r |R) · P (R)F̂ (r )

⎤⎥⎥⎥⎥⎦
2

.

(38)

Remark that P̃ (r |R) is the empirical conditional sampling rank distribution given a global rank R.
We leverage Jensen’s inequality to bound the first term in Equation (38). Specifically, we may treat
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∑n
r=1 P (r |R) · F̂ (r ) − F (R) as a random variable and use (EX )2 ≤ EX 2 to obtain

���
n∑

r=1

N∑

R=1

P (r |R) · P (R) · F̂ (r ) −
N∑

R=1

P (R) · F (R)
���
2

≤
N∑

R=1

P (R) ��
n∑

r=1

P (r |R) · F̂ (r ) − F (R)��
2

.

Therefore, we have

E

[
T̂ −

N∑

R=1

P (R)F (R)

]2
≤

N∑

R=1

P (R)

{( n∑

r=1

P (r |R)F̂ (r ) − F (R)

)2

︸�������������������������������������������︷︷�������������������������������������������︸
L1

+E

[ n∑

r=1

P̃ (r |R) · F̂ (r ) −
n∑

r=1

P (r |R) · F̂ (r )

]2}
︸���������������������������������������������������︷︷���������������������������������������������������︸

L2

.

Let L = L1 + L2, which gives an upper bound on the expected MSE. Therefore, our goal is to

find F̂ (r ) to minimize L. We remark that a seemingly innocent application of Jensen’s inequality
results in an optimization objective that possesses a range of the following interesting properties.
(1) Statistical Structure. The objective has a variance-bias tradeoff interpretation—that is,

L1 =

N∑

R=1

P (R)

(

E(F̂ (r ) |R) − F (R)

)2
, L2 =

N∑

R=1

1

M
Var [F̂ (r ) |R], (39)

where L1 can be interpreted as a bias term and L2 can be interpreted as a variance term. Note
that while Krichene and Rendle [24] also introduce a variance-bias tradeoff objective, their objec-
tive is constructed from heuristics and contains a hyperparameter (that determines the relative
weight between bias and variance) that needs to be tuned in an ad-hoc manner. Here, because
our objective is constructed from direct optimization of the MSE, it is more principled and also re-
moves dependencies on hyperparameters. See Section 5.2 for more comparison against estimators
proposed in the work of Krichene and Rendle [24].
(2) Algorithmic Structure. Although the objective is not convex, we show that the objective
can be expressed in a compact manner using matrices and we can find the optimal solution in
a fairly straightforward manner. In other words, Jensen’s inequality substantially simplifies the
computation at the cost of having a looser upper bound. See Section 5.2.
(3) Practical Performance.Our experiments also confirm that the new estimator is effective (Sec-
tion 8), which suggests that Jensen’s inequality makes only inconsequential and moderate perfor-
mance impact on the estimator’s quality.

5.1 Analysis of L2

To analyze L2, let us take a close look of P̃ (r |R). Formally, let Xr be the random variable repre-
senting the number of items at rank r in the item-sampling data whose original rank in the entire

item set is R. Then, we rewrite P̃ (r |R) = Xr

M ·P (R ) . Furthermore, it is easy to observe that (X1, . . .Xn )

follows the multinomial distributionMulti (P (1|R), . . . , P (n |R)).
E[Xr ] = M · P (R) · P (r |R), Var [Xr ] = M · P (R) · P (r |R) (1 − P (r |R)) (40)

Next, let us define a new random variable B �
∑n

r F̂ (r )Xr , which is the weighted sum of random
variables under a multinomial distribution. According to Appendix E, its variance is give by

Var [B] = E
⎡⎢⎢⎢⎢⎣
n∑

r=1

Xr F̂ (r ) −
n∑

r=1

EXr ]F̂ (r )

⎤⎥⎥⎥⎥⎦
2

= M · P (R)
( n∑

r

F̂ 2 (r )P (r |R) −
(

n∑

r

F̂ (r )P (r |R)
)2
)

.

L2 can be rewritten (see Appendix F) as L2 =
∑N

R=1
1
M
Var [F̂ (r ) |R].
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5.2 Closed-Form Solution and Its Relationship to the BV Estimator

We can rewrite L as a matrix format and correspond it to a constraint least square optimization
(see Appendix G),

L = | |
√
DAx −

√
Db| |2F +

1

M
| |
√
Λ1x| |2F −

1

M
| |Ax| |2F , (41)

and its solution,

x =

(

ATDA − 1

M
ATA +

1

M
Λ1

)−1
ATDb, (42)

whereM is the number of users and diaдM (·) is a diagonal matrix:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
F̂ (r = 1)
.
.
.

F̂ (r = n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
F (R = 1)
.
.
.

F (R = N )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ RN

AR,r = P (r |R) ∈ RN×n , D = diaдM
(

P (R)
)

∈ RN×N , Λ1 = diaдM
���
N∑

R=1

P (r |R)��� ∈ R
n×n .

Relationship to the BV Estimator. The BV estimator is given by Krichene and Rendle [24]:

LBV =
N∑

R=1

P (R) (E[F̂ (r ) |R] − F (R))2

︸����������������������������������︷︷����������������������������������︸
L1

+

N∑

R=1

γ · P (R) ·Var [F̂ (r ) |R]
︸�����������������������������︷︷�����������������������������︸

L2

.

We observe that the main difference between the BV and our new estimator is on the L2 compo-

nents (variance components): for our estimator, eachVar [F̂ (r ) |R] is regularized by 1/M (M is the
number of users), where in BV, this term is regularized by γ · P (R) (or γ

N
if we take uniform distri-

bution P (R) = 1
N
). Our estimator reveals that as the number of users increases, the variance in the

L2 components will continue to decrease, whereas the BV estimator does not consider this factor.
Thus, as the user size increases, the BV estimator still needs to deal with L2 or has to manually
adjust γ .

Finally, both BV and the new estimator rely on prior distribution P (R), which is unknown. In
the work of Krichene and Rendle [24], the uniform distribution is used for the estimation purpose.
In this article, we propose to leverage the latest approaches in the work of Jin et al. [20], which
provide a more reasonable estimation of P (R) for this purpose.

6 BOOSTING GLOBAL TOP-K METRIC ESTIMATION ACCURACY VIA ADAPTIVE

ITEM SAMPLING

6.1 Blind Spot Issue and Adaptive Sampling

In recommendation, top-ranked items are vital, and thus it is more crucial to obtain an accurate
estimation for these top items. However, current sampling approaches treat all items equally and
particularly have difficulty in recovering the global top-K metrics when K is small. In Figure 7,
we plot the distribution of target items’ rank in the sample set and observe that most target items
rank top 1 (highlighted). This could lead to the “blind spot” problem—when K gets smaller, the
estimation of basic estimators is more inaccurate (Figure 8). Intuitively, when ru = 1, it does
not mean its global rank Ru is 1; instead, its expected global rank may be around 100 (assuming
N = 10K and sample set size n = 100) according to the analysis in Section 3. And the estimation
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Fig. 7. Distribution of ru with sample set size n =

100. Rank r = 1 is highlighted.

Fig. 8. The relative error of the MLE estimator for

different top-K . The result is obtained by the EASE

model [33] over the ml-20m dataset.

ALGORITHM 1: Adaptive Sampling Process

INPUT: Recommender Model RS , test user setU , initial size n0, terminal size nmax

OUTPUT: {(u, ru ,nu )}
1: for all u ∈ U do

2: sampling n0 − 1 items, form the sample set I su
3: nu = n0, ru = RS (iu , I

s
u )

4: while ru = 1 and nu � nmax do

5: sampling extra nu items, form the new set I su
6: nu = 2nu , ru = RS (iu , I

s
u )

7: end while

8: record nu , ru for user u
9: end for

granularity is only at around the 1% (1/n) level. This blind spot effect brings a big drawback for
current estimators.
Based on the preceding discussion, we propose an adaptive sampling strategy, which increases

the acceptable test sample size for users whose target item ranks top (say ru = 1) in the sampled
data. When ru = 1, we continue doubling the sample size until ru � 1 or until the sample size
reaches a pre-determined ceiling. See Algorithm 1. Specifically, we start from an initial sample set
size parameter n0. We sample n0 − 1 items and compute the rank ru for all users. For those users
with ru > 1, we take down the sample set sizenu = n0. For those with ru = 1, we double the sample
set sizen1 = 2n0; in other words, we sample another set ofn0 items (since we already samplen0−1).
Consequently, we check the rank ru and repeat the process until ru � 1 or the sample set size is
nmax . We will discuss how to determine nmax later in Section 6.3.

The benefits of this adaptive strategy are twofold: high granularity, where with more items sam-
pled, the counts of ru = 1 shall reduce, which could further improve the estimating accuracy;
efficiency, where we iteratively sample more items for users whose ru = 1 and the empirical ex-
periments (see Table 5) confirm that a small average adaptive sample size (compared to uniform
sample size) is able to achieve better performance.

6.2 MLE by EM

To utilize the adaptive item sampling for estimating the global top-K metrics, we review two routes:
(1) approaches from Krichene and Rendle [24] and our aforementioned estimators in this article;
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Fig. 9. Sample efficiency w.r.t. terminal size. The illustration result is obtained by the EASE model [33] over

the yelp dataset while it consistently is observed in other datasets.

(2) methods based on MLE and EM in Section 4. Since every user has different number of item
samples, we found that the first route is hard to extend (which requires equal sample size), but
luckily the second route is much more flexible and can be easily generalized to this situation.
To begin with, we note that for any user u (his/her test item ranks ru in the sample set (with

size nu ) and ranks Ru (unknown)), its rank ru follows a binomial distribution:

P (r = ru |R = Ru ;nu ) = Binomial (ru − 1;nu − 1,θu ). (43)

Given this, let ΠΠΠ = (π1, . . . ,πR , . . . ,πN )
T be the parameters of the mixture of binomial distribu-

tions, and πR is the probability for user population ranks at position R globally. And then we have
p (ru |ΠΠΠ) =

∑N
R=1 πR · p (ru |θR ;nu ), where p (ru |θR ;nu ) = Bin(ru − 1;nu − 1,θR ). We can apply the

MLE to learn the parameters of the mixture of binomial distributions (MB), which naturally gen-
eralizes the EM procedure (for details, see Appendix H) used in the work of Jin et al. [20], where
each user has the same n samples:

ϕ (Ruk ) = P (Ru = k |ru ;πold ), πnew
k

=

1

M

M∑

u=1

ϕ (Ruk ).

When the process converges, we obtainΠΠΠ∗ and use it to estimate PPP (i.e., P̂ (R) = π ∗R ). Then, we can

use P̂ (R) in Equation (26) to estimate the desired metric T . The overall time complexity is linear
with respect to the sample size O (t

∑
nu ), where t is the iteration number.

6.3 Sampling Size Upper Bound

Now, we consider how to determine the terminal size nmax . We take the post-analysis over the
different terminal sizes and investigate the average sampling cost, which introduces the concept
sampling efficiency (Figure 9). Formally, we first select a large number nmax ≈ N and repeat the
aforementioned adaptive sampling process. For each user, his/her sampling set size could be one
of {n0,n1 = 2n0,n2 = 4n0, . . . ,nt = nmax }. And there are mj users whose sample set size is nj
(j = 0, 1, . . . , t ). The average sampling cost for each size nj can be defined heuristically:

Cj =

(M −∑j−1
p=0mp ) × (nj − nj−1)

mj
j � 0, t C0 =

M × n0
m0

. (44)

The intuition behind Equation (44) is this: at j-th iteration, we independently samplenj−nj−1 items

for totalM−∑j−1
p=0mp users, and there aremj users whose rank ru > 1.Cj is the average items to be

sampled to get a user whose ru > 1, which reflects sampling efficiency. In Figure 9, we can see that
when the sample reaches 12.4% (of total items, around 3,200 for the yelp dataset), the sampling
efficiency will reduce quickly (the average cost Cj increases fast). Such post-analysis provides
insights on how to balance the sample size and sampling efficiency. In this case, we observe that
12.4% can be a reasonable choice. Even though different datasets can pick up different thresholds,
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we found in practice that 10% ∼ 15% can serve as a default choice to start and achieve pretty good
performance for the estimation accuracy.

7 USER SAMPLING

In real scenarios, the number of users is usually much larger than that of items. For example, there
are millions of items in an online shopping portal while the user can be as many as billions. This
section examines the sampling effect for the user side. Although sampling users appears to be a
natural strategy to speed up evaluation, there has been a lack of study from statistical analysis.
Gunawardana and Shani [14] briefly reviewed the approach to compare two modelsA and B using
the sign test [8] and the potentially more sophisticated Wilcoxon signed rank test. However, they
do not discuss the statistical nature of the commonly used top-K evaluation metrics based on user
sampling and how to use these user-sampling-based metrics to draw a right (statistically rigorous)
decision. This work assumes the test dataset can be used for evaluating the performance of recom-
mendation models (where problems like data leakage have been solved [35]). Finally, we underline
that this section does not introduce new techniques. Instead, we focus on applying available sta-
tistical tools to help quantify user-sampling-based evaluation metrics. Our analysis aims to offer
principled guidelines for practitioners in adopting sampling-based approaches to speed up offline
evaluation.

7.1 Statistical Analysis for One Model

First, we would like to point out that the top-K evaluation metrics on testing data itself are often
considered as a special case of user sampling (e.g., the common practice will split the data into
80%-20%). Thus, we hope to use testing user sampling to approximate the overall population:

TF@K =

K∑

R=1

P̃ (R) · F (R) ≈
K∑

R=1

P (R) · F (R) = ER [F (R)],

where P̃ (R) and P (R) are the empirical rank distributions on the testing user population and entire
user population, respectively.F is anymetric function (like Recall), andTF@K is the corresponding
metric result.
Let us consider the top-K Recall metric from Equation (2), and it can be written as follows:

1

M

M∑

u=1

δ (Ru ≤ K ) �
1

M
·Q, (45)

where the summation is denoted as a symbolQ . We assume the Ru for any user u follows the i.i.d.
distribution, and thus δ (Ru ≤ K ) can be treat as a random variable of the Bernoulli distribution
with some specific probability pK such that δ (Ru ≤ K ) = 1. Consequently Q ∼ Binomial (M,pK ).
This is the widely known point estimation for binomial distributions [2]. WhenM (number of user)

is sufficiently large enough, we assume that the top-K recall metric (a.k.a.
Q
M
) is a good estimator

of the underlying probability pK . Clearly, we could estimate the underlying probability with much
smaller samples (m � M), and we can also infer the sampling m with respect to the margin of
error e:

m = pK (1 − pK ) ·
(z α

2

e

)2

, (46)

where z α
2
is the critical value for the corresponding confidence level. One may wonder how to

determine the sample size in practice. Recall@K (a.k.a.pK ) is between 0 and 1, saying Recall@30 =
0.3 for instance. We could also take pK = 0.5 to get the largest sample size. If we set the margin of
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error to be 3% and 1% in the 95% confidence level,

m = 1.962 · 0.5
2

0.032
≈ 1067 m = 1.962 · 0.5

2

0.012
≈ 9604. (47)

Note that since most of the recommendation models with Recall@K (say K = 50) is often higher
than say 0.4, this can also effectively give us an estimation on the relative error estimation. In fact,
this suggests that 10K users can be a good rule-of-thumb for user sampling for Recall metrics. In
experiment Section 8, we empirically investigate the effect of different user sample sizes.
For the top-K metrics, like AP and NDCG, the individual user metric is always bounded (actually

between 0 and 1), thenwemay adopt Hoeffding’s inequality (we can also alternatively use a central
limit theorem):

Pr

(���� 1m
m∑

u

(

δ (Ru ≤ K ) · F (Ru ) − E[F (R)]
) ���� ≥ t

)

≤ 2 exp(−2mt2). (48)

Given this, we can also infer the sample with a targeted bound of error (t ). For instance, when
t = 0.02 (absolute error), and sample size 10K , the confidence bound is higher than 99.9%.

7.2 Statistical Analysis of Multiple Models

First, since there are typically multiple models, the preceding analysis on the sample size and
confidence interval analysis should be revised to support that the statistical results for all models
hold true. In this case, the Bonferroni correction (or Bonferroni inequality) can be leveraged to
remedy this situation. Thiswill lead the sample size to bemultiplied. Second, aswe need to compare
any twomodels or pick the winners from a list of models, the statistical toolbox would require us to
reply on hypothesis testing. For instance, a two-sample z-test is used to test the difference between
the Recall metrics between two models, which are population proportions p1 and p2,

z =
(p̂1 − p̂2)
√

2p̄q̄
m

, (49)

for the two hypotheses,

H0 : p1 − p2 = 0

Ha : p1 − p2 < 0.
(50)

Alternatively, we can even derive the sample size based on the confidence interval for p̂1 − p̂2:

(p̂1 − p̂2) ± z α
2
·

√

p̂1 (1 − p̂1)
m1

+

p̂2 (1 − p̂2)
m2

, (51)

where z α
2
is the critical value for the standard normal curve with area C between −z α

2
and z α

2
.

Setting the sample sizem1 = m2 = m and the upper bound proportions p̂1 = p̂2 � pm = 0.5, we
are able to derive the sample size for a given error range e at specific C confidence:

e = z α
2
·
√

2pm (1 − pm )

m
, m = 2pm (1 − pm ) ·

(z α
2

e

)2
. (52)

Compared to the single model described in Section 7.1, the value in Equation (52) is double that of
Equation (46).

For the general metrics, like AP and NDCG, which cannot be represented as population pro-
portion, we can resort to the two-sample t-test to decide if one model is better than the other.
Furthermore, if we consider multiple comparisons at the same time, Bonferroni inequality again
has to be used.
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Table 2. Dataset Statistics

Dataset Interactions Users Items Sparsity

pinterest-20 1,463,581 55,187 9,916 99.73%
yelp 696,865 25,677 25,815 99.89%
ml-20m 9,990,682 136,677 20,720 99.65%

8 EXPERIMENTS

In this section, we investigate the experimental results of mapping function proposed in Section 3,
top-K metric estimators proposed in Sections 4 and 5, and also the adaptive estimator in Section 6
and user-based sampling in Section 7. Specifically, we aim to answer the following questions:

• Q1: How do various mapping functions f (Section 3.4) help align T S
Recall@K

with respect to

TRecall@f (K )?
• Q2: How do these estimators (Sections 4 and 5) perform compared to baseline BV [24] on
estimating the top-K metrics based on sampling?
• Q3: How effective and efficient is the adaptive item-sampling evaluation method (adaptive
MLE (Section 6)) compared with the basic (non-adaptive) item-sampling methods?
• Q4: How accurately can these estimators (Sections 4 through 6) find the best model (in terms
of the global top-K metric) among a list of recommendation models?
• Q5: How effective is the user-sampling-based evaluation method (Section 7)?

8.1 Experimental Setting

8.1.1 Datasets. We conduct experiments on three widely used relatively large datasets
(pinterest-20, yelp, ml-20m) for recommendation system research. Table 2 shows the information
of these three datasets.

8.1.2 Recommendation Models. We use five widely used recommendation algorithms, includ-
ing three non-deep learning methods (itemKNN [9], ALS [18], and EASE [33]) and two deep learn-
ing ones (NeuMF [16] and MultiVAE [29]). The selection of models tries to enable varied perfor-
mance and advantage in different datasets [24].

8.1.3 Evaluation Metrics. The three most popular top-K metrics (Equation (2)): Recall , NDCG,
and AP are utilized for evaluating the recommendation models.

8.1.4 Evaluating and Estimating Procedure. There are M users and N items. Each user u is as-
sociated with a target item iu (leave-one-out). The learned recommendation algorithm/model A
would compute the ranks {Ru }Mu=1 among all items called global ranks and the ranks {ru }Mu=1 among

the sampled item set called sampled ranks. Without the knowledge of {Ru }Mu=1, the estimator tries
to estimate the global metric T defined in Equations (1) through (3) based on sampled set test
results {ru }Mu=1. We repeat experiments 100 times, deriving 100 distinct {ru }Mu=1 results. The follow-
ing reported experimental results are displayed with mean and standard deviation over these 100
repeats.

8.1.5 Item-Sampling-Based Estimators. BV (Bias-Variance Estimator) [24]; MLE (Maximal Like-
lihood Estimation) from Section 4.1 [20]; MES (Maximal Entropy with Squared distribution dis-
tance) from Section 4.1 [20]; BV_MLE, BV_MES (Equation (9) with P (R) obtained from MLE and
MES, basically, we consider combining the two approaches from BV [24] and MLE/MES [20]); the
new multinomial distribution based estimator with different prior, short as MN_MLE, MN_MES,
Equation (42) with prior P (R) obtained from MLE and MES estimators.
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Fig. 10. T S
Recall@k

curves alignment with TRecall@K by different mapping function. Left: Results K from

1 to 2,000. Right: Zoom-out showing the details from 1 to 200. All mapping functions exhibit promising

approximations, especially bound and beta@0.5. An example of the model EASE conducted on the pinterest-

20 dataset, with sample set size n = 500.

Fig. 11. T S
Recall@k

curves alignment with TRecall@K by different mapping function. Left: Results K from

1 to 2,000. Right: Zoom-out showing the details from 1 to 500. All mapping functions exhibit promising

approximations, especially bound and beta@0.5. An example of model itemKNN conducted on the ml-20m

dataset, wi8th sample set size n = 500.

8.1.6 Reproducibility. The source code is available at https://github.com/dli12/Item-Sampling-
Recommendation-Evaluation/.

8.2 Aligning Sampling and the Global Top-K Recall Metric (Q1)

This section provides a holistic view of the alignment between sampling and global top-K Recall
(curves). As we discussed in Section 3.4, there exists a mapping function f such that T S

Recall@K
≈

TRecall@f (K ) . Thus, for each point (K ,T S
Recall@K

) in the sampled Recall curve, it can be treated

as a point ( f (K ),T S
Recall@K

) in a global scale. We then plot these global scale curves (generated

by different mapping functions) together with the original global Recall curve in Figure 10 and
Figure 11. Here, we report two examples with four different approximating mapping functions
from Section 3.4, the linear, bound, beta@1, and beta@0.5, for the curve alignment. We observe
from the figures that both bound and beta@0.5 achieve superior results, where they are closest to
the ground truth curve, which further validates our claim of mapping functions.
We can evaluate the effectiveness of function mapping by measuring winner prediction. For

instance, suppose we consider the first row of Table 3 and use the Beta (a = 0.5) mapping function
to map K = 1 to f (K ) = 9. This implies that the value of the actual global Recall metric at top-9
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Table 3. Winner Prediction Ability of Different Mapping Functions

Sampled Top-K Dataset
Mapping Function

Linear Bound Beta (a = 0.5) Beta (a = 1)

K = 1

pinterest-20
f (K ) = 1 f (K ) = 5 f (K ) = 9 f (K ) = 11

11 89 89 89

yelp
f (K ) = 1 f (K ) = 13 f (K ) = 21 f (K ) = 27

0 100 100 100

ml-20m
f (K ) = 1 f (K ) = 10 f (K ) = 17 f (K ) = 22

100 100 100 100

K = 2

pinterest-20
f (K ) = 11 f (K ) = 15 f (K ) = 19 f (K ) = 21

90 90 90 90

yelp
f (K ) = 27 f (K ) = 39 f (K ) = 47 f (K ) = 53

100 100 100 100

ml-20m
f (K ) = 22 f (K ) = 31 f (K ) = 38 f (K ) = 42

100 100 100 100

Sample set size n = 1,000.

(TRecall@9) is similar to the value of the sampled metric at top-1 (T S
Recall@1

). By comparing the

recommendation models (e.g., itemKNN, ALS, NeuMF, MultiVAE, EASE), we determine the best
model in terms of bothT S

Recall@1
andTRecall@9. We perform 100 repeated experiments on different

sampled sets and record the number of times the sampled Recall metric is consistent with the
global Recall metric, with 89 successful trials observed in this example. As shown in Table 3 and
Figures 10 and 11, the mapping functions typically assign the sampled Recall metric to moderate
positions that accurately reflect the relative order of the models. It is worth noting that given our
primary interest in the top positions (approximately K N

n
after mapping) of a metric, we set the

sample size n to a moderately large value of 1,000 and keep K relatively small (K = 1, 2).

8.3 Estimation Accuracy of Estimators (Q2)

Here, we aim to answer Question 2: how do these estimators proposed in this article perform
compared to baseline BV [24] on estimating the top-K metrics based on sampling? Here, we would
try to quantify the accuracy of each estimator in terms of relative error, leading to a more rigorous
and reliable comparison. Specifically, we compute the true globalTmetr ic@K (K from 1 to 50), then

we average the absolute relative error between the estimated T̂metr ic@k from each estimator and
the true one.
Similar to Krichene and Rendle [24], for γ in the BV estimator, we tune from {1, 0.1, 0.01, 0.001}

and γ = 0.01 is presented as the best ones for overall datasets. For η in MES, we tune in the same
way and the result of η = 0.01 is presented. Table 4 presents the average relative error of the
estimators in terms of TRecall@K (k from 1 to 50). We highlight the most and the second-most
accurate estimator. For instance, for model EASE in dataset pinterest-20 (line 1 of Table 4), the
estimator MN_MES is the most accurate one with 5.00% average relative error compared to its
global TRecall@K (K from 1 to 50).

Overall, we observe fromTable 4 thatMN_MES andMN_MLE are among themost or the second-
most accurate estimators. And in most cases, they outperform the others significantly. Meanwhile,
they have a smaller deviation compared to their prior estimators MES and MLE. In addition, we
notice that the estimators with the knowledge of some reasonable prior distribution (BV_MES,
MN_MES, BV_MLE, MN_MLE) could achieve more accurate results than the others. This indicates
that these estimators could better help the distribution converge.

8.4 Efficiency and Effectiveness of the Adaptive Estimator (Q3)

Here, we aim to answer Question 3. Table 5 presents the average relative error of the estimators in
terms of TRecall@K (k from 1 to 50). We highlight the most accurate estimator. For the basic item
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Table 4. Average Relative Errors between Estimated T̂Recall@K (K from 1 to 50)

and the True Ones TRecall@K

Dataset Model
Sample Set Size 100

MES MLE BV BV_MES BV_MLE MN_MES MN_MLE

pinterest-20

EASE 5.86±2.26 5.54±1.85 8.11±2.00 5.05±1.46 5.14±1.46 5.00±1.39 5.10±1.34
MultiVAE 4.17±2.91 3.34±2.07 2.75±1.61 2.89±1.74 2.88±1.74 2.75±1.66 2.75±1.68
NeuMF 5.17±2.74 4.28±1.95 4.23±1.79 3.83±1.59 3.84±1.72 3.60±1.50 3.76±1.44
itemKNN 5.90±2.20 5.80±1.60 8.93±1.70 5.11±1.22 5.31±1.25 5.09±1.15 5.26±1.14

ALS 4.19±2.37 3.44±1.68 3.17±1.34 3.05±1.39 3.07±1.42 2.86±1.27 2.90±1.28

yelp

EASE 8.08±4.94 7.89±4.70 18.60±2.78 6.10±3.74 6.56±3.90 4.84±2.17 5.61±2.30
MultiVAE 9.33±6.61 7.67±4.94 9.70±3.22 6.84±4.10 6.80±4.04 4.30±1.27 4.35±1.31
NeuMF 15.09±6.24 15.47±5.55 22.40±3.17 13.14±4.55 13.92±4.70 13.46±2.43 14.50±2.45
itemKNN 9.25±4.87 9.62±4.88 23.24±2.16 7.69±4.09 8.15±4.17 7.74±2.08 8.75±2.08

ALS 14.31±3.96 13.68±3.51 15.14±1.86 13.43±3.16 13.26±3.08 11.68±0.88 11.57±0.83

ml-20m

EASE 10.45±1.03 11.52±1.03 36.59±0.31 8.99±0.74 9.86±0.77 9.07±0.61 10.09±0.69
MultiVAE 9.93±0.38 9.48±0.22 22.24±0.37 9.85±0.36 9.50±0.22 9.82±0.28 9.53±0.14
NeuMF 4.35±1.50 6.05±1.35 28.27±0.42 3.67±1.14 4.81±1.14 3.64±1.05 4.79±1.08
itemKNN 15.31±1.18 17.19±1.15 36.63±0.42 14.02±0.75 15.24±0.83 14.16±0.68 15.41±0.77

ALS 36.17±0.83 35.21±0.64 36.39±0.21 36.50±0.74 35.75±0.62 36.32±0.56 35.60±0.48

Unit is percentage (%). In each row, the smallest two results are highlighted in bold, indicating the most

accurate results. Sample set size n = 100.

Table 5. Comparison of Adaptive Estimators with Basic Ones in Terms of Recall

Dataset Models
Fix Sample Adaptive Sample

BV_MES BV_MLE MN_MES MN_MLE average size adaptive MLE

sample set size n = 500

pinterest-20

EASE 2.54±0.85 2.68±0.87 2.78±1.05 2.83±1.06 307.74±1.41 1.69±0.60
MultiVAE 2.17±1.08 2.13±1.09 2.60±1.30 2.55±1.35 286.46±1.48 1.95±0.65
NeuMF 2.45±1.15 2.44±1.15 2.76±1.37 2.80±1.38 259.77±1.28 2.00±0.81
itemKNN 2.49±0.97 2.59±0.94 2.79±1.12 2.79±1.20 309.56±1.31 1.63±0.51

ALS 2.65±1.04 2.63±1.06 3.02±1.32 2.98±1.33 270.75±1.22 2.00±0.73
sample set size n = 500

yelp

EASE 4.68±2.43 4.56±2.35 3.47±1.79 3.49±1.78 340.79±2.03 3.48±1.40
MultiVAE 6.14±3.48 6.07±3.46 4.68±2.27 4.67±2.28 288.70±2.24 5.08±2.14
NeuMF 6.59±2.38 6.73±2.35 5.48±1.43 5.68±1.42 290.62±2.11 4.01±1.51
itemKNN 3.94±1.94 3.95±1.92 2.92±1.60 2.96±1.57 369.16±2.51 3.25±1.59

ALS 10.00±3.47 10.31±3.65 9.29±2.03 9.80±2.23 297.07±2.29 5.25±2.38
sample set size n = 1000

ml-20m

EASE 1.39±0.21 1.69±0.28 1.81±0.46 1.73±0.46 899.89±1.90 1.07±0.24
MultiVAE 2.23±0.58 2.91±0.72 3.55±1.23 2.98±1.50 771.26±1.84 1.10±0.39
NeuMF 0.82±0.30 0.85±0.28 1.51±0.66 1.69±0.70 758.45±1.61 0.78±0.27
itemKNN 1.84±0.24 2.13±0.27 1.97±0.42 2.17±0.49 725.72±1.49 1.17±0.28

ALS 9.41±0.97 12.83±1.27 10.63±2.53 10.57±3.18 705.76±1.56 4.29±1.05

The average relative errors between estimated T̂Recall@K (K from 1 to 50) and the true ones. Unit is

percentage (%). In each row, the smallest relative error is highlighted, indicating the most accurate result.

sampling, we choose 500 sample size for the datasets pinterest-20 and yelp, and 1,000 sample size
for the dataset ml-20m. The upper bound threshold nmax is set at 3,200.

We observe that adaptive sampling uses much less sample size (typically 200 ∼ 300 vs 500 on
the first two datasets and 700 ∼ 800 vs 1,000 on the last dataset). In particular, the relative error
of the adaptive sampling is significantly less than that of the basic sampling methods. On the first
(pinterest-20) and third (ml-20m) datasets, the relative errors have reduced to less than 2%. In other
words, the adaptive method has been much more effective (in terms of accuracy) and efficient (in
terms of sample size). This also confirms the benefits in addressing the “blind spot” issue, which
provides higher resolution to recover global K metrics for small K (K ≤ 50 here).
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Table 6. Accuracy of Estimating the Winner (of the Recommendation Models)

Dataset Top-K Metric
Fix Sample Adaptive Sample

MES MLE BV BV_MES BV_MLE MN_MES MN_MLE adaptive MLE

sample set size n = 500 size 260∼310

pinterest-20

5
RECALL 53 56 61 54 57 53 53 69

NDCG 51 54 60 52 54 51 52 71

AP 51 53 58 51 53 51 51 60

10
RECALL 66 66 69 69 73 67 69 78

NDCG 55 58 65 58 59 58 60 84

AP 53 55 61 54 57 52 52 68

20
RECALL 69 69 75 69 73 70 74 81

NDCG 69 69 78 69 73 68 73 79

AP 55 58 62 57 60 54 56 69

sample set size n = 500 size 280∼370

yelp

5
RECALL 75 94 97 95 94 100 100 96
NDCG 73 89 97 95 94 100 100 84
AP 71 87 97 94 94 100 100 80

10
RECALL 88 95 100 98 97 100 100 100

NDCG 82 94 98 96 96 100 100 100

AP 76 94 97 95 95 100 100 94

20
RECALL 100 100 100 100 100 100 100 100

NDCG 94 98 100 100 100 100 100 100

AP 82 94 99 97 96 100 100 98

sample set size n = 1,000 size 700∼900

ml-20m

5
RECALL 100 100 100 100 100 100 100 100

NDCG 96 100 100 100 100 98 98 100

AP 91 100 100 100 100 96 96 100

10
RECALL 100 100 100 100 100 100 100 100

NDCG 100 100 100 100 100 100 100 100

AP 98 100 100 100 100 100 100 100

20
RECALL 100 100 100 100 100 100 100 100

NDCG 100 100 100 100 100 100 100 100

AP 100 100 100 100 100 100 100 100

Values in the table are the number of corrects that predict the winner out of 100 repeat tests. We highlight

the adaptive estimator if it achieves the best performance w.r.t. each metric (each row).

8.5 Estimating Winner of Recommender Models (Q4)

Besides the estimation accuracy, we also care about whether the estimator can correctly find the
best recommendation model. Initially, the reason we compare the performance of various recom-
mendation models (among EASE, ALS, itemKNN, NeuMF, MultiVAE in our work) is to try to find
the best model(s) to deploy. The best model is determined by the global top-K metric in Equa-

tion (3) ({Ru }). Thus, it is also meaningful to validate whether our estimated metric T̂ could find
the correct “winner” (best model) as the original metric T .
Table 6 indicates the results of among the 100 repeats, how many times an estimator could

find the best recommendation algorithm for a given metric (Recall, NDCG, AP). We have the fol-
lowing observations. First, the adaptive estimator could achieve the best accuracy in most cases
while costing less on average, which enhances its validity. Second, we notice all estimators obtain
good results in the ml-20m dataset due to its large sample size of n = 1,000. Third, as for the yelp
dataset with the sample size n = 500, we notice that new proposed expected estimators MN_MES
and MN_MLE achieve perfect results while the baseline BV estimator can also obtain compara-
ble results. BV_MES, BV_MLE, MN_MES, MN_MLE all have better results than their prior MES,
MLE, further indicating that estimators with reasonable prior could better help the distribution
(of the prior) to converge. Fourth, the majority of the estimators did not exhibit good performance
in the pinterest-20 dataset. Upon closer examination, as illustrated in Figure 12, we observed that
the performances of the top two models, itemKNN and EASE, are remarkably similar, with differ-
ences less than 1e-3 for all top-50 metrics. Such a marginal difference is too subtle for estimators
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Fig. 12. Global Recall@K for all models.

Table 7. Accuracy of Estimating the Top-2 Models in the pinterest-20 Dataset

Top-K Metric
sample size n = 100 sample size n = 500

MES MLE BV BV_MES BV_MLE MN_MES MN_MLE MES MLE BV BV_MES BV_MLE MN_MES MN_MLE

5
RECALL 76 89 93 98 95 99 99 97 100 100 100 100 100 100
NDCG 75 89 93 98 95 99 98 90 100 100 100 100 100 99
AP 74 89 93 98 95 99 98 83 100 100 100 100 99 99

10
RECALL 81 89 93 98 98 99 99 100 100 100 100 100 100 100
NDCG 79 89 93 98 96 99 99 100 100 100 100 100 100 100
AP 76 89 93 98 95 99 99 93 100 100 100 100 100 100

20
RECALL 89 92 96 99 99 99 99 99 100 100 100 100 100 100
NDCG 83 90 94 99 98 99 99 100 100 100 100 100 100 100
AP 79 89 93 98 98 99 99 99 100 100 100 100 100 100

to effectively discern. In addition, if two models yield almost identical performance, there is little
rationale for distinguishing between them (when the model computational cost is not considered).
Considering this case, we examine whether estimators can successfully predict the top-2 models
(Table 7). In general, as the sample size increased from 100 to 500, the performance of all estima-
tors improved. Notably, with a smaller sample size of n = 100, the estimators (BV_MES, BV_MLE,
MN_MES, MN_MLE) performed well, with BV also demonstrating comparable results.

8.6 Effectiveness of User Sampling (Q5)

In this subsection, we empirically show the results of user sampling. Tables 8 and 9 compare
the user sampling method with the estimator MN_MES and the adaptive estimator in terms of
TRecall@K and TNDCG@K (K from 1 to 50). In general, we could conclude that even with a small
portion of users (e.g.„ 1,000 (0.7%) sampled users compared to its total 137,000 users for the ml-

20m dataset), the user-sampling-based method could achieve pretty accurate results (4% ∼ 8%
relative errors for top-K from 1 to 50). In addition, as the size of sampled user increase, it could
be significantly close to the true results. For instance, with 10,000 (7%) users sampled for the ml-

20m dataset, it can achieve as small as 1% relative errors. This consistent empirical results to-
gether with the demo example in Equation (47) indicate the effectiveness of user sampling. Noting
that, according to Equation (46), the accuracy is not quite related to user size M , which suggests
that for some very huge dataset (e.g., M >> 1 million and M >> N , which is quite common in
e-commerce), user-sampling based estimation can be more practical and fundamentally efficient
than item-sampling-based estimation.
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Table 8. Average Relative Errors between Estimated T̂Recall@K

(K from 1 to 50) and the Ground Truth

Dataset Model
RECALL

item 100 item 500 adaptive size adaptive MLE user 1K user 5K user 10K

pinterest-20

EASE 5.00±1.39 2.78±1.05 307.74±1.41 1.69±0.60 9.04±4.32 3.85±1.76 2.65±1.33
MultiVAE 2.75±1.66 2.60±1.30 286.46±1.48 1.95±0.65 9.54±4.41 4.34±1.94 3.18±1.35
NeuMF 3.60±1.50 2.76±1.37 259.77±1.28 2.00±0.81 10.43±4.56 4.66±2.17 3.11±1.39
itemKNN 5.09±1.15 2.79±1.12 309.56±1.31 1.63±0.51 8.91±4.27 3.64±1.52 2.65±1.22

ALS 2.86±1.27 3.02±1.32 270.75±1.22 2.00±0.73 10.24±4.96 4.19±2.05 3.25±1.39

yelp

EASE 4.84±2.17 3.47±1.79 340.79±2.03 3.48±1.40 12.21±5.98 4.97±2.16 3.62±1.84
MultiVAE 4.30±1.27 4.68±2.27 288.70±2.24 5.08±2.14 15.70±6.78 6.58±2.51 4.45±1.83
NeuMF 13.46±2.43 5.48±1.43 290.62±2.11 4.01±1.51 12.45±6.75 5.69±2.96 4.23±2.00
itemKNN 7.74±2.08 2.92±1.60 369.16±2.51 3.25±1.59 11.62±6.01 4.59±1.77 3.33±1.63

ALS 11.68±0.88 9.29±2.03 297.07±2.29 5.25±2.38 15.36±6.79 6.54±2.18 4.46±1.71

ml-20m

EASE 9.07±0.61 2.31±0.44 899.89±1.90 1.07±0.24 4.48±2.07 1.92±0.91 1.33±0.68
MultiVAE 9.82±0.28 4.60±0.99 771.26±1.84 1.10±0.39 5.97±2.57 2.49±1.04 1.80±0.73
NeuMF 3.64±1.05 1.63±0.82 758.45±1.61 0.78±0.27 5.58±2.35 2.35±1.10 1.67±0.80
itemKNN 14.16±0.68 3.61±0.61 725.72±1.49 1.17±0.28 5.27±2.73 2.21±1.11 1.54±0.76

ALS 36.32±0.56 19.33±1.93 705.76±1.56 4.29±1.05 7.70±2.92 3.13±1.13 2.22±0.85

Unit is percentage (%). item100 and item500 are the results of item-sampling-based estimator MN_MES

with sample set size n = 100 and n = 500. user1K and so forth are the results of user-sampling-based

unbiased average estimation (from Section 7) with 1K users sampled.

Table 9. Average Relative Errors between Estimated T̂NDCG@K

(K from 1 to 50) and the Ground Truth

Dataset Model
NDCG

item 100 item 500 adaptive size adaptive MLE user 1K user 5K user 10K

pinterest-20

EASE 9.35±3.09 4.17±2.45 307.74±1.41 1.46±0.63 11.02±6.81 4.21±2.72 3.05±1.99
MultiVAE 3.13±2.08 3.26±2.14 286.46±1.48 1.67±0.70 10.48±6.52 4.88±2.90 3.68±2.06
NeuMF 4.27±2.44 3.24±2.30 259.77±1.28 1.73±0.83 11.99±6.56 5.13±3.11 3.55±2.04
itemKNN 9.69±2.74 4.23±2.47 309.56±1.31 1.42±0.67 10.46±6.72 3.92±2.42 2.96±1.68

ALS 3.70±2.00 3.90±2.24 270.75±1.22 1.84±1.07 11.29±7.46 4.54±3.06 3.57±1.98

yelp

EASE 5.36±2.40 4.03±2.53 340.79±2.03 3.55±2.00 12.83±8.00 5.56±3.32 4.02±2.74
MultiVAE 4.31±1.90 5.77±3.87 288.70±2.24 5.09±2.60 16.69±9.69 7.37±4.14 4.77±2.62
NeuMF 22.50±2.33 8.43±4.07 290.62±2.11 4.43±2.55 14.24±9.33 6.78±4.86 5.08±3.35
itemKNN 10.53±2.14 3.65±2.28 369.16±2.51 3.67±2.73 12.79±7.81 4.83±2.66 3.56±2.54

ALS 16.91±3.33 12.57±5.46 297.07±2.29 5.48±3.34 16.10±9.03 6.91±3.06 4.60±2.37

ml-20m

EASE 18.98±0.89 5.59±1.49 899.89±1.90 2.01±0.56 4.94±3.27 2.24±1.40 1.57±1.04
MultiVAE 16.28±1.56 7.01±2.18 771.26±1.84 1.21±0.60 6.31±3.64 2.77±1.55 1.90±1.09
NeuMF 5.67±1.24 2.10±1.31 758.45±1.61 0.92±0.51 5.74±3.26 2.68±1.80 1.91±1.27
itemKNN 28.66±1.00 7.40±1.60 725.72±1.49 2.02±0.63 6.04±4.00 2.43±1.60 1.70±1.17

ALS 52.19±2.50 26.31±3.81 705.76±1.56 5.27±1.39 7.99±3.90 3.26±1.59 2.33±1.20

Unit is percentage (%). item100 and item500 are the results of item-samplingbased estimator MN_MES

with sample set size n = 100 and n = 500. user1K and so forth are the results of user-sampling-based

unbiased average estimation (from Section 7) with 1K users sampled.

9 CONCLUSION

In this article, we holistically discussed the story of sampling-based top-K recommendation evalu-
ation. Starting from the “inconsistent” phenomenon that was first discovered in the work of Krich-
ene and Rendle [24] and Rendle [32], we [26] observed and proposed the alignment theory in terms
of the Recall metric in Section 3. Then we proposed two estimators, MES and MLE, in Section 4,
which not only estimate the global user rank distribution P (R) but also help estimate the global true
metric [27]. Consequently, we proposed item-sampling estimators in Section 5, which explicitly op-
timize its MSE with respect to the ground truth. We highlighted the subtle difference between the
estimators from Krichene and Rendle [24] and ours, and pointed out the potential issue of
the former—failing to link the user size with the variance [27]. Furthermore, we addressed the
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limitations of the current item-sampling approaches, which typically do not have sufficient granu-
larity to recover the top-K global metrics when K is small. We then proposed an effective adaptive
item-sampling method in Section 6. We also discussed another sampling evaluation strategy from
the perspective of user sampling evaluation in Section 7. The experimental results validated the ef-
fectiveness of the estimators. Our results provided a solid step toward making both item sampling
and user sampling available for recommendation research and practice.

APPENDICES

A PROOF OF SAMPLING THEOREM

Proof. Recall Equation (14): E[T S
Recall@K

] =
∑N

R=1 P̃ (R) ·P (R) =
∑M
u=1 Pr (ru ≤ K ). Let us assign

each user u the weight Pr (ru ≤ K ) for both curves, T
(1)
Recall@K

and T
(2)
Recall@K

. Now, let us build

a bipartite graph by connecting any u in the T
(1)
Recall@K

with user v in T
(2)
Recall@K

, if Ru ≤ Rv . We

can then apply Hall’s marriage theorem to claim there is a one-to-one matching between users

in T
(1)
Recall@K

to users in T
(2)
Recall@K

, such that Ru ≤ Rv , and Pr (ru ≤ K ) ≥ Pr (rv ≤ K ). (To see

that, use the fact that
∑K

R=1 P̃
(1) (R) ≥ ∑K

R=1 P̃
(2) (R), where P̃ (1) (R) and P̃ (2) (R) are the empirical

probability mass distributions of user ranks, or equivalently,
∑N

R=K P̃ (1) (R) ≤ ∑N
R=K P̃ (2) (R)). Thus,

any subset in T
(1)
Recall@K

is always smaller than its neighbor set N (T
(1)
Recall@K

) in T
(2)
Recall@K

. Given

this, we can observe that the theorem holds. �

B DERIVATION OF BETA DISTRIBUTION APPROXIMATION

The left term of Equation (23) is denoted as Lk :

Lk =
N∑

R=1

P̃ (R) · δ (R ≤ f (k )) =

f (k )
∑

R=1

P̃ (R) =
1

B (a, 1)

f (k )
∑

R=1

(
R − 1
N − 1

)a−1
· 1

N − 1

=

1

B (a, 1)

f (k )−1
N−1∑

x=0

xa−1 · ∆x where,x =
R − 1
N − 1 ,∆x =

1

N − 1 ,

≈ 1

B (a, 1)

∫ f (k )−1
N−1

0
xa−1dx =

1

aB (a, 1)

[
f (k ) − 1
N − 1

]a
.

Considering sampling with replacement, then the right term of Equation (23) is denoted as
follows:

Rk =
k−1∑

i=0

(

n − 1
i

) N∑

R=1

P̃ (R)

(
R − 1
N − 1

)i (

1 − R − 1
N − 1

)n−i−1
.

Calculate the difference:

Rk+1 − Rk =
(

n − 1
k

) N∑

R=1

P̃ (R)

(
R − 1
N − 1

)k (

1 − R − 1
N − 1

)n−1−k
≈
(

n − 1
k

)

1

B (a, 1)

∫ 1

x=0
xa+k−1 (1 − x )n−1−kdx

=

(

n − 1
k

)

1

B (a, 1)B (a + k,n − k ) =
1

B (a, 1)
Γ(n)

Γ(n + a)

Γ(k + a)

Γ(k + 1)
.

Based on the preceding equations, Lk+1 − Lk ≈ Rk+1 − Rk , we have (we denote the mapping
function as f (k ;a) for parameter a) the following:

[f (k + 1;a) − 1]a − [f (k ;a) − 1]a = a[N − 1]a
(

n − 1
k

)

B (a + k,n − k ). (53)
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Then we have the following recurrent formula:

f (k + 1;a) =
[
a[N − 1]a

(

n − 1
k

)

B (a + k,n − k )[f (k ;a) − 1]a
]1/a
+ 1. (54)

And f (1) is given by L1 = R1:

f (1;a) = (N − 1)[aB (a,n)]1/a + 1. (55)

C PROPERTIES OF RECURRENT FUNCTION f

In the following, we enumerate a list of interesting properties of this recurrent formula of f based
on Beta distribution.

Lemma C.1 (Location of Last Point). For any a, all f (n) converge to N : f (n) = N .

Proof. We note that

n−1∑

k=0

(

n − 1
k

)

B (a + k,n − k ) =
∫ 1

0

n−1∑

k=0

(

n − 1
k

)

ta+k−1 (1 − t )n−k−1dt

=

∫ 1

0
ta−1

⎡⎢⎢⎢⎢⎢⎣
n−1∑

k=0

(

n − 1
k

)

tk (1 − t )n−k−1
⎤⎥⎥⎥⎥⎥⎦ dt =

∫ 1

0
ta−1 =

1

a
.

Adding up Equation (53) from k = 1 to n − 1, we have.

[f (n) − 1]a − [f (1) − 1]a
a[N − 1]a =

n−1∑

k=1

(

n − 1
k

)

B (a + k,n − k ) = 1

a
−
(

n − 1
0

)

B (a,n), and then we have f (n) = N .

�

Uniform Distribution and Linear Map. When the parameter a = 1, the Beta distribution de-
generates to the uniform distribution. From Equations (25) and (24), we have another simple linear
map:

f (k ;a = 1) = k
N − 1
n
+ 1. (56)

Even though the user rank distribution is quite different from the uniform distribution, we found
that this formula provides a reasonable approximation for the mapping function and, generally,
better than the Naive formula Equation (18). More interestingly, we found that when a ranges
from 0 to 1 (as they express an exponential-like distribution), they actually are quite close to this
linear formula.
Approximately Linear. When we take a close look at the f (k ;a) sequences
(f (1;a), f (2;a), . . . f (k ;a) for different parameters a from 0 to 1,1 we find that when k is
large, f (k ;a) all gets very close to f (k ; 1) (the linear map function for the uniform distribution).
Figure 5 shows the relative difference of all f (k ;a) sequences for a = 0.2, 0.6, 0.8 with respect to
a = 1 (i.e., [f (k ;a) − f (k ;a = 1)]/f (k ;a = 1)). Basically, they all converge quickly to f (k ;a = 1)
as k increases.

1This also holds when a > 1, but since the Recall (a.k.a. the user rank distribution) is typically very different from these

settings, we do not discuss them here.
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To observe this, let us take a look at their f (K ) locations when k is getting large. To simplify
our discussion, let д(k ) = f (K ) − 1, and then we have

[д(k + 1)]a − [д(k )]a = a(N − 1)a Γ(n)

Γ(n + a)

Γ(k + a)

Γ(k + 1)[
д(k + 1)

д(k )

]a
= 1 +

[
(N − 1)k
д(k )n

]a
a

k
,

and when n and k are large, lim
n→∞

Γ(n)

Γ(n + a)
=

1

na[
д(k + 1)

д(k )

]
=

(

1 +

[
(N − 1)k
д(k )n

]a
a

k

)1/a

≈ 1 +

[
(N − 1)k
д(k )n

]a 1

k
.

When д(k ) = (N − 1) k
n
, the preceding equation holds

д (k+1)
д (k )

= 1 + 1
k
, and this suggests that they

are all quite similar to the linear map f (k ;a = 1) for the uniform distribution.
By looking at the difference f (k ;a)− f (k−1;a), we notice we will get very close to the constant

N−1
n
= f (k ; 1) − f (k − 1; 1) even when k is small. To verify this, let

yk+1 = [f (k + 1;a) − 1]a − [f (k ;a) − 1]a = a[N − 1]a Γ(n)

Γ(n + a)

Γ(k + a)

Γ(k + 1)
.

Then we immediately observe the following:

yk+1
yk
=

a[N − 1]a Γ(n)
Γ(n+a)

Γ(k+a)
Γ(k+1)

a[N − 1]a Γ(n)
Γ(n+a)

Γ(k−1+a)
Γ(k )

= 1 +
a − 1
k
.

Thus, after only a few iterations for f (k ;a), we have found that their (powered) difference will get
close to being a constant.

D FIX-SIZE-SAMPLING ESTIMATION: THE EM ALGORITHM

In this section, we give the details of the EM algorithm for the MLE estimator. Recalling Equa-
tion (32), the weighted log-likelihood function is as follows:

logL =
M∑

u=1

wu · log
N∑

k=1

p (xu , zuk |θk ).

E-step.

Q (πππ ,πππold ) =
M∑

u=1

wu

N∑

k=1

γ (zuk ) logp (xu , zuk |θk ),

where

γ (zuk ) = p (zuk |xu ,πππold ) =
πold
k

p (xu |θk )
N∑

j=1
πoldj p (xu |θ j )

.

M-step.

Q ′(πππ ,πππold ) = Q (πππ ,πππold ) + λ ���1 −
N∑

k=1

πk
��� (57)

λ =

N∑

k=1

M∑

u=1

wu · γ (zuk ) =
M∑

u=1

wu (58)

πnew
k

=

∑M
u=1wu · γ (zuk )
∑M
u=1wu
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E LINEAR COMBINATION OF COEFFICIENTS

Considering X = (X1, . . . ,Xn ) is the random variables of a sample M times multinomial distribu-

tion with n cells probabilities (θ1, . . . ,θn ). We have Xi

M
→ θi , whenM → ∞.

E[Xi ] = Mθi Var [Xi ] = Mθi (1 − θi )
Cov (Xi ,X j ) = −Mθiθ j

(59)

Considering the new random variable deriving from the linear combination: A = ∑n
i=1wiXi ,

where thewi are the constant coefficients.

E[A] = M ·
n∑

i=1

wiθi

Var [A] = E[A2] − (E[A])2 =

n∑

i

w2
i [Mθi −Mθ2i ] − 2

∑

i�j

wiw j [Mθiθ j ]

= M

n∑

i

w2
i θi −M ·

( n∑

i

w2
i θ

2
i + 2

∑

i�j

wiw jθiθ j

)

= M ·
( n∑

i

w2
i θi −

(
n∑

i

wiθi
)2
)

F REWRITING OF L2

L2=

N∑

R=1

P (R) ·E
[ n∑

r=1

P̃ (r |R)M̂ (r )−
n∑

r=1

P (r |R)M̂ (r )

]2
=

N∑

R=1

P (R) ·E
[ n∑

r=1

Xr

M · P (R) M̂ (r )−
n∑

r=1

E[Xr ]

M · P (R) M̂ (r )

]2

=

N∑

R=1

1

M2 · P (R)
· E

[ n∑

r=1

Xr M̂ (r ) −
n∑

r=1

E[Xr ]M̂ (r )

]2
=

N∑

R=1

1

M
·
( n∑

r

M̂2 (r )P (r |R) −
(
n∑

r

M̂ (r )P (r |R)
)2
)

=

N∑

R=1

1

M
Var (M̂ (r ) |R)

G REWRITE OF L

L1 =

N∑

R=1

P (R)

( n∑

r=1

P (r |R)F̂ (r ) − F (R)

)2
= | |
√
DAx −

√
Db| |2F

L2=

N∑

R=1

P (R) ·E
[ n∑

r=1

P̃ (r |R)F̂ (r ) −
n∑

r=1

P (r |R)F̂ (r )

]2
=

N∑

R=1

P (R) ·E
[ n∑

r=1

Xr

M · P (R) F̂ (r ) −
n∑

r=1

E[Xr ]

M · P (R) F̂ (r )

]2

=

N∑

R=1

1

M2 · P (R)
· E

[ n∑

r=1

Xr F̂ (r ) −
n∑

r=1

E[Xr ]F̂ (r )

]2
=

N∑

R=1

1

M
·
( n∑

r

F̂ 2 (r )P (r |R) −
(

n∑

r

F̂ (r )P (r |R)
)2
)

=

1

M
x
TΛ1x −

1

M
| |Ax| |2F =

1

M
| |
√

Λ1x| |2F −
1

M
| |Ax | |2F
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H ADAPTIVE EM STEPS

E-step.

logL =
M∑

u=1

log

N∑

k=1

P (ru ,Ruk ;π ) =

M∑

u=1

log

N∑

k=1

ϕ (Ruk ) ·
P (ru ,Ruk ;π )

ϕ (Ruk )

≥
M∑

u=1

N∑

k=1

ϕ (Ruk ) · log P (ru ,Ruk ;π ) + constant

�

M∑

u=1

Qu (π ,π
old ) = Q (π ,πold ),

(60)

where

ϕ (Ruk ) = P (Ru = k |ru ;πold ) =
πold
k
· P (ru |Ru = k ;nu )

∑N
j=1 π

old
j · P (ru |Ru = j;nu )

, (61)

where ϕ is the posterior, πold is the known probability distribution, and π is parameter.
M-step. Derived from the Lagrange maximization procedure:

πnew
k

=

1

M

M∑

u=1

ϕ (Ruk ). (62)
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