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Abstract

Rhythmic tasks that biological beings perform such as breath-
ing, walking, and swimming, use specialized neural networks
called central pattern generators (CPG). Spiking CPGs have
already been implemented to control robot locomotion. This
paper aims to take this concept further by designing and im-
plementing a tunable bursting central pattern generator to
control quadruped robots for the first time, to the best of our
knowledge. Bursting CPGs allow for more granular control
over the motion and speed of operation while retaining the
low memory usage and latency capabilities of spiking CPGs.
A bio-mimetic neuron model is chosen for this implementa-
tion which is highly optimized to run real-time on standard
(Arduino microcontroller) and specialized (Intel Loihi) hard-
ware. The Petoi bittle is chosen as the model hardware setup
to showcase the efficiency of the proposed CPGs even in
serial processing architectures. The CPG network is also re-
alized in a completely asynchronous Loihi architecture to
illustrate its versatility. The fully connected network run-
ning on CPG takes around 10 kilo bytes of memory (33% of
Arduino capacity) to execute different modes of locomotion
- walk, jump, trot, gallop, and crawl. Benchmarking results
show that the bio-mimetic neurons take around 600 bytes
(around 2%) more memory than Izhikevich neurons while
being 0.02ms (around 14%) faster in isolated neuron testing.
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1 Introduction

Agile robots that can traverse unknown and dangerous ter-
rains have the potential to enhance disaster response during
floods and earthquakes or to access remote and unsafe ar-
eas like malfunctioning nuclear plants or space exploration.
Mobile robots that rely on self-stabilizing and emergent be-
haviors can demonstrate decreased reliance on heavy com-
putation and simple but effective ways to exhibit different
types of motion using a single underlying framework [4].
Such a framework removes the need for elaborate program-
ming through precise control algorithms demanding larger
compute and memory resources. Moreover, there is a signifi-
cant need to change locomotion behaviors on the fly, such as
changing speeds or switching to a different mode, e.g. walk-
ing to crawling or trotting. A flexible and tunable control
system using the hardware resources efficiently can make
robots more versatile [5].

In biology, a key property of animals is the ability to effi-
ciently move in complex environments [3]. Efficient locomo-
tion in both vertebrate and invertebrate mammals is enabled
through neural circuits forming Central Pattern Generator
(CPG) networks. CPGs produce rhythmic patterns of neural
activity without receiving rhythmic inputs or sensory feed-
back from the peripheral nervous system [6]. CPGs present
several interesting properties such as distributed control,
robustness and tolerance to perturbations, control loops in
action at multiple timescales, and network modulation of
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Figure 1. Overview of the proposed CPG network architecture to produce rhythmic bursting patterns for robotic locomotion
control using non-linear bio-mimetic neurons. Each neuron is mapped to one limb which generates gait patterns according to
the weights assigned (i.e. to synapses between the neurons). These neurons are configured to burst by setting the correct Ipx;.
Here, FL is Front Left, FR is Front Right, BR is Back Right and BL is Back Left.

locomotion using simple control signals. When transferred
to mathematical models that can be implemented on elec-
tronic hardware, these properties can be realized for efficient
locomotion control in robots.

Spiking CPGs have already been implemented to control
robot locomotion [7, 12]. This paper aims to take this concept
further by designing and implementing a bursting central
pattern generator to control quadruped robots for the first
time, to the best of our knowledge. Bursting CPGs allow
for more granular control over the motion and speed of
operation while retaining the ultra-low power and latency
capabilities of spiking CPGs. The neuron chosen for this
implementation is inspired by the model presented in [10]
but highly optimized to run real-time on standard or special-
ized hardware with minimum resources while still retaining
its bio-mimetic properties. The Petoi Bittle is chosen as the
model robot with the Arduino hardware platform to show-
case the efficiency of the model even in synchronous serial
processing architecture. The CPG network is also realized in
the neuromorphic asynchronous Loihi architecture, from In-
tel, to establish a proof-of-concept event-based system with
extreme parallelism.

This paper is organized as follows. Section 2 provides a
background of the Bio-Mimetic neuron model and robots
using spiking CPG for locomtion. Sections 3 and 4 describe
the implementation of bursting CPG networks on Arduino
and Loihi platforms with the necessary optimizations. Sec-
tion 5 provides the benchmarking results of the bursting
network for the bio-mimetic neuron compared with the per-
formance of Izhikevich neurons. Section 6 summarizes our
contributions and possible future work.

2 Background
2.1 Bio-Mimetic Neuron Model

The basis for the neuron is derived from the circuit archi-
tecture in [10]. A capacitor and a resistor are connected in
parallel with several current sources working at different
timescales. These current sources are essentially expected to

Izm
= 20,0, OO,

Figure 2. Circuit schematic of the bio-mimetic neuron model.
The current sources shown are across multiple timescales
with either a positive or negative feedback. Here, F,, stands
for fast negative, S, stands for slow positive, S, stands for
slow negative, US,, stands for ultra-slow positive.
Bio-Mimetic Neuron Simulation on Loihi
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Figure 3. Loihi simulation result showcasing the effect of
I+ on intrinsic neuron behavior, transition from spiking

to bursting modes. This work uses the burst mode of the
neuron predominantly.
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mimic the ion channels found in the biological neuron. These
current sources are controlled through control voltages with
IV characteristics given by:

deem

CmemT = lext — Ip(Vmem) - Z I; (1)

where, I = a5 tanh(Vipen, — 85 )andl,(Vinem) = Viem (2)
To set delay of different timescales,

dvy

T

The four time scales chosen here are fast (negative feed-
back), slow (positive and negative feedback) and ultra-slow
(positive feedback). This setup is more than enough to ensure
spiking and bursting behavior for a range for applied exter-
nal current. The only constraint here is to ensure that the
time-scales are spaced at least 50 counts apart. This neuro-
mimetic behavior is explained by the fourth order mixed
feedback oscillation between the minimum and maximum
voltage ranges. For the use case of bursting mode of oper-
ation, the important parameters are I,,; to set the neuron
up for bursting and ag to determine network convergence

= Vinem — Vxwhere, 7y << 7, << 1y 3)

speed. af;, P are used to control both the inter-burst and
intra-burst frequency of the network. Increasing these pa-
rameters results in higher inter-burst frequency and lower
intra-burst frequency.

2.2 Robot Locomotion using Spiking CPG

Previous work [12] shows a non-linear bio-mimetic neuron
being used to control robot locomotion based on spike inputs.
This work maps a tightly coupled 4 neuron network onto
a physical quadruped and generates different gait patterns
by simply swapping out a weight matrix. Different gaits are
generated to map different patterns generated by the CPG
network. This work [12] shows that even though the applied
external current is required to be in the appropriate range for
smooth operation it is not mandatory to have these currents
fixed to one value which allows for a considerable amount
of jitter tolerance without critical failure. Another important
feature of this work was the evolution of event-based control
input to the motors, i.e. whenever a spike was detected in
any one of the neurons, it would cause motor actuation on
the limb corresponding to that neuron.

Even though spiking CPGs are easier to tune, simulate
and control; one major flaw of using a spiking CPG for robot
locomotion is the lack of intermediate states of motion. For
instance, when a robot is being controlled though a spik-
ing CPG it essentially gets one input from the controller to
execute a large set of commands. Due to any unforeseen
circumstance if the sensors detect an anomaly and want to
reset to the mean position or handle the exception in some
other way, a wait period would ensue till the limb finishes
the assigned motion and returns to the mean position. This
behavior is undesirable and takes a toll on the responsiveness
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Figure 4. I-V characteristic curve showing the difference
between the hyperbolic tangent and piece-wise linear hyper-
bolic tangent activation functions over a normalized scale.

and agility of the robot. However, if we design a bursting
CPG based robot controller, then this would introduce inter-
mediate states which act as checkpoints for quick changes
in response to sensory inputs.

3 Implementation
3.1 Piece-wise Linear Hyperbolic Tangent Activation

The math library available with Arduino (cmath) though
highly efficient in terms of access times to the hyperbolic
tangent function, takes up significant memory usage. Hence,
we define a piece-wise linear function to replace the tanh
function as closely as possible [9]. Here is the equation show-
casing the difference between the two functions pictured in
Figure 4:

I, = a tanh(Vyyem — 9) (4)
(4) can be written as
—a if Vipem < —(a/B) + 68
L={a if Viem > (a/B) +6
BVinem —96) if — (a/B) +8 < Vipem < (a/f) + 0

®)

Here, f is the slope of the piece-wise linear hyperbolic

tangent function which is an extra parameter as a result of

linearization of the hyperbolic tangent function. The values
for f are kept close to a to faithfully mimic tanh behavior.

3.2 Hardware-friendly Differential Equation Solver

Euler’s method helps to solve the fourth order differential
equation real time by numerical approximation of the state
variables. This is way more efficient than trying to solve
the differential equation directly or using other complex
numerical evaluation methods such as Runge-Kutta. Note
that this method does provide less accurate results when
compared to other higher order methods but this loss in
precision is inconsequential to the outcome of the system,
and hence can be safely ignored. Another major advantage
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Figure 5. a) Network diagram showing the four neurons and the synaptic connections between them. b) Tuned voltage plots
for all the different modes of locomotion with paws representing the achieved gait pattern for each mode.

of using Euler’s method over the other evaluation methods
is the low compute time per timestep, which results in more
fluid and responsive robot locomotion.

3.3 Neuron Parameter Tuning

The primary requirement for the implementation was to
choose the right region of operation for the neuron. The
neuron has three regions of operation namely spiking, burst-
ing and burst excitable. The process to set the neuron in the
correct region is done by tuning «, §,  and I.;. The major
parameter in determining the mode of operation is I, and
by setting an appropriate value, we can configure the neuron
to be in the bursting region.

Iy should be set correctly to determine the mode of op-
eration of the neuron. Once that is fixed, one can tune the
other parameters to pace up or slow down the given system.
For instance, to increase the inter-burst frequency and to
decrease the intra-burst frequency, one can tune a,s and By
to high values. This ensures better pattern repeatability and
faster convergence. Separation of timescales of operation is
another important mode of controlling individual neuron
dynamics. This separation between timescales should be cho-
sen very carefully because if it is insufficient then the neuron
spike and burst dynamics are not realized properly. Similarly,

if its set too high then the neuron dynamics take a long time
to take effect, which results in performance loss for a real
time system like this one.

3.4 Network Modulation

Our network begins with four neurons, with each neuron
mapped to a distinct limb (e.g. neuron one controls front left
leg). We could also have assigned one neuron to each motor
(one leg has a knee and shoulder motor each). However, that
would have resulted in eight neurons to control four limbs,
and we avoided this in order to keep the number of micro-
controller instructions per cycle (IPC) on the lower end. The
neurons are fully connected with plastic synapses and all
the weight values are initially assigned to zero to ensure all
the individual neurons are in the correct region of operation
and are exhibiting expected behavior.

Next, in order to get anti-phase bursts between two neu-
rons, start by initializing them with different external applied
current[8]. This causes one neuron to converge faster and
start its burst cycle earlier than the other ones. Looking at
the gait patterns that are to be generated, [1] it can be seen
that some patterns have two distinct phases while others
have four distinct phases. The gaits with just two distinct
phases essentially mimic a half oscillator, i.e. the weights
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Figure 6. a) Gantt chart showing time allocation for all
the tasks when two of the four motors have pending steps.
These sequences will be skipped automatically if there are no
motor actuations in queue. b) Shows the CPU time allocation
division between the tasks for one cycle.

connecting neurons bursting in opposite phase are set as
small inhibitory weights which cause the bursts to have a
shift in phase. There is a little bit of overlap towards the
end of a burst cycle but this is retained to get repeatability
and pattern coherence. To expand the two-phase bursting
to a four-neuron network, two neurons are initialized to
burst early and the other two neurons get a small inhibitory
connection from the early neurons in a set order. These late
neurons are in turn connected with even smaller synaptic
weights (about 80-90% of the original weight) back to the
early neurons to make sure that the phase difference gener-
ated is locked. For gaits with 4 distinct phases, there is one
early neuron which bursts first and has a small inhibitory
connection to only the next neuron, which is expected to
fire in the set pattern, and this neuron in turn inhibits the
third neuron and so on. This sequence is continued till the
final neuron inhibits the first neuron back, but the weight
is slightly lower (about 80-90% of original weight) this time
around. The synaptic weight matrix is modeled as shown in
equation 6.

0w wi wiy
wor o 0 wa woy
Wij = (6)
W1 w2 W4
Wi Wio Wy 0

This kind of a weight matrix setup causes the neurons to
fire slightly out of phase from one another in a fixed order,
resulting in a rear-ended overlap between the gait patterns
as shown in Figure 5.
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3.5 Round Robin Scheduling

Scheduling algorithms are used for multitasking, so that
one can parallelize the tasks in a program. These algorithms
minimize resource starvation, and make sure all the tasks
receive a fair amount of CPU time. The scheduling algorithm
that we have utilized here is the round-robin scheduling
algorithm [11]. In this algorithm, all the tasks receive a fixed
amount of CPU time, and we cycle through them. Once a
task has been completed within a certain time segment, we
terminate it, and give the remaining time to the other tasks.

For the purpose of this paper, this is highly useful. Since
Arduino Uno (NyBoard micro-controller on Petoi Bittle is a
modified version of Arduino Uno) does not support multi-
threading, it hampers the performance of the robot. Each
task has to wait until the previous task is terminated or
completed, which is not ideal for the speed of the robot.

Hence, the use of the round robin scheduling algorithm
gives the impression of multi-tasking, since doing portions of
tasks extremely quickly (around 0.2 ms or so) gives enough
time for other tasks as shown in Figure 6. Evolving the Vy,ep,
of the neurons is a relatively longer process, and it is manda-
tory to allocate a fair amount of CPU time to the motor com-
mands as well as the evolution of V.., for the 4-neuron net-
work. This allows the robot to be paced appropriately, while
being able to check for incoming bursts from the bursting
CPG. Advantages of this algorithm is good average response
time, since the waiting time is dependent on the number of
tasks, as well as balanced throughput and fair allocation of
the CPU.

4 Asynchronous CPG on Loihi

The biggest motivation behind proposing neuromorphic algo-
rithms is to achieve bio-realistic behavior and solely showcas-
ing this system on traditional sequential hardware severely
limits the capability of the model. Hence, to demonstrate the
actual advantage of using a neuromorphic algorithm over
a traditional algorithm, we have used one of the most ad-
vanced tools available for neuromorphic computing, Intel’s
Loihi 2.0 platform [2]. This truly parallel asynchronous plat-
form helped evaluate the model’s capability and use case in
a more realistic scenario rather than just molding the tradi-
tional systems to process neuromorphic data. The CPG was
faithfully reproduced and run on an actual Loihi simulation
platform, LAVA software framework.

Getting the CPG to run on Lava is essentially a two step
process. The first step is to implement and simulate the iso-
lated non-linear neuron as a Lava Loihi process to reproduce
the expected behavior. This includes showcasing the different
modes of operation of the neuron as shown in Figure 3 (spik-
ing and bursting). The second step is to modulate a network
by initializing multiple neurons and connecting them with
plastic synapses to simulate a CPG. This is shown in Figure
8. Note that obtaining a phase difference and phase locking
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Figure 7. Different modes of locomotion working on the Petoi Bittle quadruped. The arrows indicate the motion of the limbs
with respect to the previous frame. These photos are snapshots of the robot actually executing the gait patterns. Demo video

can be found at https://youtu.be/9AKoM28ix68

CPG Simulation on Loihi Platform

Normalized Time Steps - Jump Gait

Normalized Membrane Voltage

Figure 8. Tuned CPG network showing Jump gait pattern
running on Loihi-Oheogulch. The neuron is defined as a
custom process and the connections are set up exactly like
the network shown in Figure 5.

between the bursts is critical to modulate the network of
neurons to produce different patterns for long periods of
time.

5 Results

The bursting CPG network is emulated real time on the Petoi
Bittle’s NyBoard and is shown in Figure 7. This was done
using optimization techniques such as Round-Robin Sched-
uling, Euler’s Approximation of a Differential Equation and
piece-wise linearized hyperbolic tangent function. The num-
ber of spikes per burst, inter-burst frequency, intra-burst
frequency was all tuned using I.; and hyperparameters a,
p and § as discussed in [10]. The network architecture used
is described with linearly programmed weight matrices for
5 different modes of locomotion in Figure 5. Video demon-
stration of the robot showing all the different patterns is
available at https://youtu.be/9AKoM28ix68

5.1 Benchmarking

In order to evaluate the proposed work, it is important to
compare it to the state of the art. The first step in this process
is to benchmark the proposed non-linear bio-mimetic neuron
against the widely applauded Izhikevich neuron operating in
the chattering mode (similar to bursting mode in our neuron).
One stark difference between these two models is the method
to set the mode of operation of the neuron. In the proposed
neuron, the mode of operation of the neuron is set by I,
whereas the mode of operation in the Izhikevich neuron is
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Memory Latency per
Method/ Used % time-step
Motion Type total memory .
on Arduino) (in ms)

Jump 33% 2.92
Proposed | Walk 33% 2.92
Optimized | Trot 33% 2.92
Biomimetic | Gallop | 33% 2.92
Neuron Crawl | 37% 2.92
Isolated | 22% 0.12
Izhikevich | Isolated | 20% 0.14

Table 1. Memory and Latency Comparison between the
Piece-wise linear Bio-mimetic neuron and Izhikevich neuron.

set by the parameters a, b, c and d and Ly, just acts like an
on/off switch. The way to achieve modulation on the network
level would be different in case of the Izhikevich neuron for
this same reason. Izhikevich neurons would require a time
controlled I to lock in phase and provide bursting rhythms.
A time controlled I.,; makes it difficult to swap modes of
locomotion i.e. one set of time-series I,,; would cause the
robot to be locked to one gait pattern.

Moreover, when testing an isolated Izhikevich neuron and
the bio-mimetic neuron on Arduino it was found that there
is a latency versus memory trade-off between the two. The
bio-mimetic neuron consumed marginally higher memory
(around 2% of on-board Arduino memory) while being rea-
sonably faster (around 14%) in terms of latency in membrane
voltage evolution as shown in Table 1. The latency was com-
puted as an average over 1000 time-steps.

6 Conclusion

We have created a tightly coupled bio-mimetic neural net-
work which generates fixed rhythmic burst patterns over a
sustained period, that can be used to control the locomotion
of a quadruped. These patterns are used to model different
animal gaits accurately whilst trying to keep the memory
and compute used to an absolute bare minimum. We believe
this is the first time a bursting central pattern generator net-
work is implemented as a locomotion control mechanism in
any robot.

The underlying neuron chosen is highly non-linear and
has been customized to help with performance on standard
hardware. It uses approximations of non-linear functions
wherever possible while still exhibiting neuro-modulatory
behavior. This makes it both practical and an accurate artifi-
cial model mimicking biological neurons. We have attempted
to showcase several locomotory gait implementations with
minimal changes to the synaptic weights between the neu-
rons to ensure rigidity at the network architecture level but
still providing headroom for innovative applications. While
comparing the bio-mimetic neuron against the Izhikevich
neuron, it was found that even though the Izhikevich neuron
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is 2% more memory efficient, the bio-mimetic neuron does
a lot better in terms of latency (around 14% faster). Lower
latency is considerably more beneficial for a real-time appli-
cation like robot locomotion in this case.

Our plan for the future is to use learning algorithms like
Spike-Timing Dependent Plasticity (STDP) to achieve per-
fected gaits not only on quadrupeds but even on other differ-
ent types of robots. The use of these training methods will
potentially enable the use of bio-mimetic neurons to make a
robot learn to walk, trot and jump by itself, paving the way
for bio-mimetic robots with seamless sensorimotor control.
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