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Abstract— Central pattern generators (CPG) generate rhythmic 

gait patterns that can be tuned to exhibit various locomotion 

behaviors like walking, trotting, etc. CPGs inspired by biology 

have been implemented previously in robotics to generate periodic 

motion patterns. This paper aims to take the inspiration even 

further to present a novel methodology to control movement of a 

four-legged robot using a non-linear bio-mimetic neuron model. 

In contrast to using regular leaky integrate and fire (LIF) neurons 

to create coupled neural networks, our design uses non-linear 

neurons constituting a mixed-feedback (positive and negative) 

control system operating at multiple timescales (fast, slow and 

ultraslow ranging from sub-ms to seconds), to generate a variety 

of spike patterns that control the robotic limbs and hence its gait. 

The use of spikes as motor control signals allows for low memory 

usage and  low latency operation of the robot. Unlike LIF neurons, 

the bio-mimetic neurons are also jitter tolerant making the CPG 

network more resilient and robust to perturbations in the input 

stimulus. As a proof of concept, we implemented our model on the 

Petoi Bittle bot, a quadruped pet dog robot and were able to 

reliably observe different modes of locomotion–walk, trot and 

jump. Four bio-mimetic neurons  forming a CPG network to 

control the four limbs were implemented on Arduino 

microcontroller and compared to a similar CPG built using four 

LIF neurons. The differential equations for both neurons were 

solved real-time on Arduino and profiled for memory usage, 

latency and jitter tolerance. The CPG using bio-mimetic non-

linear neurons used marginally higher memory (378 bytes, 18% 

higher than LIF neurons), incurred insignificant latency of 3.54ms 

compared to motor activation delay of 200ms, while providing 

upto 5-10x higher jitter tolerance.  

Keywords—central pattern generators, non-linear neurons, 

spike-based control, neuromorphic computing, neuromodulation 

I. INTRODUCTION  

 Central pattern generators (CPG) using biological neurons 
are known to actuate movement in both invertebrates and 
vertebrate animals [1]. There has been extensive research on 
using CPGs as a method for controlling locomotion of robots [2]. 
Neuromodulation is considered intrinsic to CPG networks and 
required for its proper activation. However, simple neuron 
models such as the Rectified Linear Unit (ReLU) or the leaky 
integrate and fire (LIF) neuron used in modern ANNs and SNNs 
cannot exhibit neuromodulatory behavior at a nodal level [3]. 

Biological neurons exhibit rich non-linear dynamics both at 
the single neuron level and at the network level, which is enabled 
through neuromodulation, using multiple feedback paths (local 
and global) operating at multiple timescales [4]. Complex 

neuron models inspired by neurophysiology have been proposed 
before, like Hodgkin-Huxley model [5] and the Izhikevich 
model [6]. These models capture the biophysics of the single 
neuron accurately but are based on non-intuitive 
computationally expensive differential equations that cannot be 
tuned to modulate network level behavior. Neuromodulation of 
a single neuron can be efficiently implemented using a non-
linear circuit model with mixed feedback paths (positive and 
negative), operating at different timescales – fast (sub-ms), slow 
(ms) and ultraslow (>100ms) [7].  

Previous studies have demonstrated complex feedback-
based control [8] with simple LIF neurons. Our efforts are more 
directed towards using the proposed non-linear bio-mimetic 
neuron as a basis for controlling the locomotion of a robot which 
has not been attempted before, to the best of our knowledge. Our 
work bio-mimetic CPGs is more relevant to robotics once we 
factor in the actual inspiration for using CPGs in the first place 
was to mimic efficient multimodal motor control seen in animals. 
CPGs found in biology invariably show rhythmic burst patterns 
which are not possible to implement with a LIF neuron that 
produces spikes only. The proposed non-linear neuron, on the 
other hand, is capable of spiking and bursting, with excitability 
tuning for neuromodulation at a network level. 

In order to reap the benefits of having multiple intrinsic 
modes on the neuron and network level one must first establish 
that the non-linear neuron model is capable of generating basic 
motor behavior such as walking, jumping and trotting 
seamlessly. We believe that non-linear neurons are the way 
forward for complex motor control in advanced robotics and this 
work provides an initial proof-of-concept as shown in Figure 1.   

This paper is organized as follows. Section II provides a brief 
background of the non-linear neuron model and spiking CPGs. 
Section III describes the implementation of the spiking CPGs on 
Arduino integrated with the Petoi bot. Section IV provides the 
benchmarking results of the CPG network using the non-linear 
neurons compared with that using LIF neurons, for different 
modes of locomotion. Section V summarizes our contributions. 

II. BACKGROUND 

A. Non-linear Bio-mimetic Neuron Model 

We base our neuron modelling on the circuit architecture 
proposed in [7]. This architecture makes use of several voltage 
controlled current sources inspired by the Na+/K+ ion channels 
commonly found in neurophysiology [4]. They are connected in 
parallel with a capacitor and a resistor. These voltage-controlled 
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current sources are modelled with IV characteristics shown in 
equations (1)-(3). These voltage-gated conductance channels  
channels provide positive and negative feedback in addition to 
the applied external stimulus current, Iapp and passive leakage 
currents, thereby forming a mixed-feedback system. Moreover, 

 

Fig. 1. Overview of system level working of robot locomotion control using a 
CPG conceived with non-linear neurons. Four of these non-linear neurons are 

fully connected to form a network where each neuron is responsible for 

locomotion of a limb. Here, FL is Front Left, FR is Front Right, RR is Rear 
Right and RL is Rear Left. The different modes of locomotion are achieved 

using different weight matrices to monitor synaptic connections and by 

carefully tuning the input stimulus Iapp. 

 

Fig. 3. Variation of neuron behavior, from spiking to bursting to burst excitable 

modes with respect to changes in Iapp. This paper uses the first spiking mode to 

generate patterns used to control a quadruped robot. 

each conductance element is tuned to operate at multiple distinct 
timescales in order to achieve modular control of the excitability 
properties of the entire neuron circuit.  

Our work implements a neuron model with 4 conductance 
elements, forming 2 positive, 2 negative feedback loops and 
operates at 3 different timescales – fast, slow and ultraslow, as 
shown in Fig. 2. The fast negative conductance (𝑖𝑓

−) operates in 

sub-ms range, the slow positive (𝑖𝑠
+) and slow negative (𝑖𝑠

−) 
conductances operate in ms and ultra-slow positive conductance 
( 𝑖𝑢𝑠

+ ) operates in the range of seconds. Each conductance 
element incorporates a hyperbolic tangent (tanh) transfer 
function, which combined together enables a complex non-
linear activation function for the neuron. The non-linearity is 
particularly important at the fast and slow timescales, which can 
be seen as ‘N shaped’ IV curve for the corresponding 
conductance channel. This 4th order system can be viewed as a 
superposition of 2 second order systems with fast-slow and 
slow-ultra slow timescales. By ensuring that the timescales are 
separate enough it is guaranteed that the circuit has a stable 
spiking behavior when the applied current is between a defined 
range. This behavior is explained by limit cycle oscillations 
between high and low voltage ranges. The amplitude range of 
the spikes generated from the system is controlled by two 
parameters 𝛿𝑓

−
 and 𝛼𝑓

− . The spiking frequency is controlled 

mainly by 𝛼𝑠
+but at the same time it can be modulated using the 

applied current. Non-linear differential equation describing the 
neuron model, 

𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
= 𝐼𝑎𝑝𝑝 − 𝐼𝑝(𝑉𝑚) − ∑𝐼𝑥

±                     (1) 

𝑤ℎ𝑒𝑟𝑒,  𝐼𝑥
± = ±𝛼𝑥

± 𝑡𝑎𝑛ℎ(𝑉𝑥 − 𝛿𝑥
±) 𝑎𝑛𝑑 𝐼𝑝(𝑉𝑚) = 𝑉𝑚       (2) 

Differential equation to set delay of different timescales, 

𝜏𝑥

𝑑𝑉𝑥

𝑑𝑡
= 𝑉𝑚 − 𝑉𝑥  𝑤ℎ𝑒𝑟𝑒 𝜏𝑓 ≪ 𝜏𝑠 ≪ 𝜏𝑢𝑠              (3) 

Fig. 3 shows the software simulation of the neuron model 
provided by the equations (1)-(3), where the neuron output can 
be tuned using the input Iapp, to exhibit spiking, bursting and 
burst excitable modes. 

B. Spiking CPGs for Locomotion Control 

Periodic activities like breathing and walking require some 
level of co-ordination not controlled by the brain. This temporal 
co-ordination occurs at the lower end of the nervous system 
hierarchy in biology, since it is highly time critical. Spiking 
Neural Networks (SNN) fit this bill perfectly by offering 
extremely high levels of energy efficiency on devices with 
limited compute and memory. 

In [8] the method proposed consists of controlling a hexapod 
with a spiking central pattern generator with feedback from 
cameras and gyroscopes and uses a reinforcement learning 
scheme to train the weights. A fully connected spiking central 
pattern generator based on leaky integrate and fire neurons are 
used to learn timings for ‘walking’. When the neuron fires, it 
sets off a series of events which includes lifting, rotating and 
landing the leg. The fully trained SCPG will integrate the 
neurons with external stimulus till they fire and send post 
synaptic currents to all the neurons which have an excitatory 
synapse with the firing neuron. This sets off a chain reaction  

Fig. 2. Neuron cell circuit. Adopted from [7]. Passive RC network in parallel 

with four conductance elements operating at three timescales. The non-linear 

feedback currents are fast negative, slow positive, slow negative and ultra-slow 

positive. A current source Iapp is added to provide external input stimulus. 
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causing all the neurons to have an increase in their respective 
membrane voltages. The synaptic weights between these 
neurons are trained to ensure that the other neurons fire only in 
the order that they are meant to. 

Reference [8] also talks about preserving balance by taking 
snapshots of the gyroscope output while moving the legs as a 
part of the training process in order to avoid moving more than3 
legs at a particular time. Another, important problem that needs 
to be addressed is that the system might realize that not moving 
the limbs at all is also a stable point as per the system restrictions, 
but this is not intended and moving less than 1 limb for a given 
time stamp is also met with a penalty in the cost function. This 
entire setup ensures that the system does not go off balance by 
moving more than 3 limbs at any time whilst also moving 
forward. 

III. IMPLEMENTATION 

Our first task was to faithfully reproduce the spiking mode 
of the neuron presented in [7] on a software testbench. This was 
done using Euler’s method to approximate the solution of the 
differential equation (1). We have used a parameterized sparse 
firing neuron model for this work since the physical movement 
of the robot leg i.e. motor activation takes a significantly longer 
time (~200ms). The weight matrices for different modes of 
operation were derived from Linear Programming as shown in 
[9]. 

Once we had the neuron spiking as expected, next task was 
to tune the different parameters namely 𝛼𝑓

−,  𝛼𝑠
+, 𝛼𝑠

−, 𝛼𝑢𝑠
+

 , 𝛿𝑓
−, 

𝛿𝑠
+, 𝛿𝑠

− and 𝛿𝑢𝑠
+  to obtain the optimal value for sparse spiking 

since we will eventually connect multiple neurons with one 
another and having a sparse spike pattern allows for more 
synaptic currents to be added without making the system spike 
too many times. This was done by sweeping through a range of 
values for all eight of these parameters and looking at the 
corresponding spike patterns. The optimal values which ensured 
that the neuron remained in the spiking mode whilst also giving 
sparse activity are summarized in Table I. 

TABLE I. OPTIMAL VALUES OF PARAMETERS FOR NONLINEAR NEURON TO 

PRODUCE SPARSE SPIKING ACTIVITY 

Parameter Value Parameter Value 

𝛼𝑓
− -2 𝛿𝑓

− 0 

𝛼𝑠
+ 2 𝛿𝑠

+ 0 

𝛼𝑠
− -1.5 𝛿𝑠

− -0.88 

𝛼𝑢𝑠
+  2 𝛿𝑢𝑠

+  0 

Now, the next step was to use this sparse firing neuron and 
create synaptic connections between four of these neurons, one 
for each leg of the robot. These synaptic weights for these 
connections should be tunable to increase the connectivity as per 
our requirement as well as be able to completely cut off 
connectivity to make the neurons behave as if it were never 
connected in the first place. 

To achieve this, we introduced a NxN weight matrix (here N 
is the total number of neurons with all possible connections 
made between any two neurons), a scale factor to tune the 
effectiveness of the synapses as a whole and synaptic currents 
as per the membrane voltages of the other neurons. This new 
synaptic current from all neighboring neurons was added to the 
primary neuron alongside the preexisting currents as shown in 

(2) {Ix, Ip and Iapp} this was then integrated to calculate the new 
membrane voltage. 

In order to get different modes of locomotion the weight 
matrix was tuned with the help of Linear Programming [9] and 
by calibrating the physical motion required by the leg to actually 
perform a given mode of locomotion (jump,walk or trot) we 
were able to come up with different weight matrices. Fig. 4 
shows the raster plot of the spikes generated by the CPG network 
with 4 neurons which act as motor activation events to enable 
different modes of locomotion. 

The next challenging task was to detect the spiking of a non-
linear neuron and convert it into event frames where motor 
commands are to be sent to the bot. This was done by solving 
the differential equations for each time step real-time on the 
Arduino microcontroller (NY Board V1_0). The spikes 
generated by the 4 non-linear neurons produced a rhythmic 
pattern over an interval of time which were used as the motor 
activation events for actuating each individual limb of the robot.  

 

 

 

Fig. 4. Raster plot of motor event triggers for different modes of operation. 

A. Tuning the Network 

To tune the model to be in the spike mode of operation we 
first gradually increase the applied current in the first neuron 
whilst keeping the other parameters like alpha and delta same. 
This gradual increase in Iapp causes the first neuron to cause 
spikes periodically.We consider this as our base Iapp,this ensures 
that any isolated neuron/the primary neuron in any network is 
always causing spikes. Now, to tune the neurons with strong 
synaptic connections to the primary neuron we start with base 
Iapp/2 and tune further to produce desired frequency of spikes on 
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all neurons. After this initial set of adjustment each neuron in the 
network is expected to fire in a particular order determined by 
the weight matrix. If any neuron does not fire, then we gradually 
increase the weight of that specific neuron till it exhibits 
expected spiking pattern. 

IV. RESULTS 

The CPG system implemented on the Petoi bot does real-
time emulation of a 4-neuron network with fully connected pre-
trained synaptic weights between them. This rhythmic spiking 
due to external stimulus is then discretized from spike timings 
to events and these events are used to drive the motors in a fixed 
pattern determined by the weight matrix. Changing the weight 
matrix causes the robot to change the locomotion pattern. Fig. 5 
shows the stop motion frames of the different modes of 
locomotion – walk, trot and jump, with the arrows showing 
which limb moved between consecutive frames. Demo video 
with all three modes can be found at: 
https://youtu.be/_QFXf07VsEM/ 

A. Benchmarking 

For the evaluation of our proposed work, it is essential to 
compare the best available existing method to our method. We 
have compared our work with the widely used and accepted 
Leaky Integrate and Fire (LIF) Neuron running a similar 
network configuration to control robot locomotion and 

compared three parameters: memory used, average latency per 
time step and jitter tolerance to perturbations in input stimulus. 

TABLE II. COMPARITIVE BENCHMARKING OF CENTRAL PATTERN 

GENERATORS USING PROPOSED BIO-MIMETIC NEURONS AND LIF NEURONS 

Method /  

Motion Type 

Memory Used 

(in bytes 

and % total 

memory on 

Arduino) 

Latency per 

time step (in 

ms) – 

Average over 

500 steps 

Jitter 

Tolerance 

to Input 

Stimulus 

Variation 

Proposed 

Non-linear 

Bio-

mimetic 

Neuron 

Jump 1133 (55.3%) 3.58 5% 

Walk 1137 (55.5%) 3.54 5% 

Trot 1137 (55.5%) 3.54 5% 

Leaky 

Integrate 
and Fire 

Neuron 

Jump 759 (37%) 0.98 <1% 

Walk 759 (37%) 0.98 <1% 

Trot 759 (37%) 0.98 <1% 

Benchmarking results are summarized in Table 2. As 
expected because of its simpler dynamics, the LIF neuron takes 
18% less memory and on average is 72% faster albeit this delay 
is in milliseconds which gives a net advantage of just over 2.5ms, 

Fig. 5. Different modes of locomotion working on a Petoi Bittle robot with yellow arrows indicating the motion of limbs with respect to the previous(left) 
picture. These different modes were generated using different weight matrices and input stimulus whilst keeping the neuron parameters constant. Demo 

video with all three modes can be found at: https://youtu.be/_QFXf07VsEM/ 
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is insignificant in the pipeline where the slowest task is the 
motor activation that takes around 200ms. Also this memory 
efficiency and speed gain for LIF neurons does not translate to 
jitter tolerance in the input which means that when this network 
is connected to a bigger network and has to work based on output 
of other similar networks, the LIF neuron will fail when the 
exact input is not matched whereas the proposed model can 
tolerate an input stimulus (Iapp) jitter of 5% whilst still producing 
the expected output. 

V. CONCLUSION 

We have presented a novel method for controlling robotic 
locomotion with a Central Pattern Generator built using spiking 
behavior of non-linear bio-mimetic neurons, that can exhibit 
neuromodulatory behavior at nodal and network scales. The 
method involves the use of the non-linear neuron model 
presented in [7] to conceive a tightly coupled 4 neuron network 
which acts as the CPG for controlling the motor behavior of 
Petoi, a quadruped robot. 

We have tuned the CPG network design for multiple modes 
of operation (Walk, Trot, Jump) which can be adjusted and 
observed real-time on-line by simply swapping a pre-trained 
weight matrix. The on-chip resources required to build this 
system have been highly optimized to realize real-time 
execution of the CPG network which requires the pre-trained 
weight matrices, and delay between action events to be stored in 
local memory on board for implementing the different modes. 

The CPG using bio-mimetic non-linear neurons used 
marginally higher memory (378 bytes, 18% higher than LIF 
neurons), incurred insignificant latency of 3.54ms compared to 
motor activation delay of 200ms, while providing upto 5-10x 
higher jitter tolerance. 

Our plan for future work is to use the proposed neuron 
models to operate in the bursting mode and generate a bursting 

CPG network that control the robot motion. Bursts in CPGs is 
highly common in biology leading to more granular control and 
robust loss-resilient operation, when compared to single spikes 
which can be lost or removed affecting the overall rhythm. 
Bursting CPGs will potentially enable the use of bio-mimetic 
control in advanced robots and for seamless human-machine 
interaction. 
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