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Abstract— Central pattern generators (CPG) generate rhythmic
gait patterns that can be tuned to exhibit various locomotion
behaviors like walking, trotting, etc. CPGs inspired by biology
have been implemented previously in robotics to generate periodic
motion patterns. This paper aims to take the inspiration even
further to present a novel methodology to control movement of a
four-legged robot using a non-linear bio-mimetic neuron model.
In contrast to using regular leaky integrate and fire (LIF) neurons
to create coupled neural networks, our design uses non-linear
neurons constituting a mixed-feedback (positive and negative)
control system operating at multiple timescales (fast, slow and
ultraslow ranging from sub-ms to seconds), to generate a variety
of spike patterns that control the robotic limbs and hence its gait.
The use of spikes as motor control signals allows for low memory
usage and low latency operation of the robot. Unlike LIF neurons,
the bio-mimetic neurons are also jitter tolerant making the CPG
network more resilient and robust to perturbations in the input
stimulus. As a proof of concept, we implemented our model on the
Petoi Bittle bot, a quadruped pet dog robot and were able to
reliably observe different modes of locomotion—-walk, trot and
jump. Four bio-mimetic neurons forming a CPG network to
control the four limbs were implemented on Arduino
microcontroller and compared to a similar CPG built using four
LIF neurons. The differential equations for both neurons were
solved real-time on Arduino and profiled for memory usage,
latency and jitter tolerance. The CPG using bio-mimetic non-
linear neurons used marginally higher memory (378 bytes, 18%
higher than LIF neurons), incurred insignificant latency of 3.54ms
compared to motor activation delay of 200ms, while providing
upto 5-10x higher jitter tolerance.

Keywords—central pattern generators, non-linear neurons,
spike-based control, neuromorphic computing, neuromodulation

I. INTRODUCTION

Central pattern generators (CPG) using biological neurons
are known to actuate movement in both invertebrates and
vertebrate animals [1]. There has been extensive research on

using CPGs as a method for controlling locomotion of robots [2].

Neuromodulation is considered intrinsic to CPG networks and
required for its proper activation. However, simple neuron
models such as the Rectified Linear Unit (ReLU) or the leaky
integrate and fire (LIF) neuron used in modern ANNs and SNN's
cannot exhibit neuromodulatory behavior at a nodal level [3].

Biological neurons exhibit rich non-linear dynamics both at
the single neuron level and at the network level, which is enabled
through neuromodulation, using multiple feedback paths (local
and global) operating at multiple timescales [4]. Complex
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neuron models inspired by neurophysiology have been proposed
before, like Hodgkin-Huxley model [5] and the Izhikevich
model [6]. These models capture the biophysics of the single
neuron accurately but are based on non-intuitive
computationally expensive differential equations that cannot be
tuned to modulate network level behavior. Neuromodulation of
a single neuron can be efficiently implemented using a non-
linear circuit model with mixed feedback paths (positive and
negative), operating at different timescales — fast (sub-ms), slow
(ms) and ultraslow (>100ms) [7].

Previous studies have demonstrated complex feedback-
based control [8] with simple LIF neurons. Our efforts are more
directed towards using the proposed non-linear bio-mimetic
neuron as a basis for controlling the locomotion of a robot which
has not been attempted before, to the best of our knowledge. Our
work bio-mimetic CPGs is more relevant to robotics once we
factor in the actual inspiration for using CPGs in the first place
was to mimic efficient multimodal motor control seen in animals.
CPGs found in biology invariably show rhythmic burst patterns
which are not possible to implement with a LIF neuron that
produces spikes only. The proposed non-linear neuron, on the
other hand, is capable of spiking and bursting, with excitability
tuning for neuromodulation at a network level.

In order to reap the benefits of having multiple intrinsic
modes on the neuron and network level one must first establish
that the non-linear neuron model is capable of generating basic
motor behavior such as walking, jumping and trotting
seamlessly. We believe that non-linear neurons are the way
forward for complex motor control in advanced robotics and this
work provides an initial proof-of-concept as shown in Figure 1.

This paper is organized as follows. Section II provides a brief
background of the non-linear neuron model and spiking CPGs.
Section 111 describes the implementation of the spiking CPGs on
Arduino integrated with the Petoi bot. Section IV provides the
benchmarking results of the CPG network using the non-linear
neurons compared with that using LIF neurons, for different
modes of locomotion. Section V summarizes our contributions.

II. BACKGROUND

A. Non-linear Bio-mimetic Neuron Model

We base our neuron modelling on the circuit architecture
proposed in [7]. This architecture makes use of several voltage
controlled current sources inspired by the Na+/K+ ion channels
commonly found in neurophysiology [4]. They are connected in
parallel with a capacitor and a resistor. These voltage-controlled
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current sources are modelled with IV characteristics shown in
equations (1)-(3). These voltage-gated conductance channels
channels provide positive and negative feedback in addition to
the applied external stimulus current, /,,, and passive leakage
currents, thereby forming a mixed-feedback system. Moreover,

Different modes of locomotion

Petoi Bittle Robot

CPG network using Bio-mimetic Non-Linear Neurons

Fig. 1. Overview of system level working of robot locomotion control using a
CPG conceived with non-linear neurons. Four of these non-linear neurons are
fully connected to form a network where each neuron is responsible for
locomotion of a limb. Here, FL is Front Left, FR is Front Right, RR is Rear
Right and RL is Rear Left. The different modes of locomotion are achieved
using different weight matrices to monitor synaptic connections and by
carefully tuning the input stimulus L.

Tapp
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Fig. 2. Neuron cell circuit. Adopted from [7]. Passive RC network in parallel
with four conductance elements operating at three timescales. The non-linear
feedback currents are fast negative, slow positive, slow negative and ultra-slow
positive. A current source I,,, is added to provide external input stimulus.
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Fig. 3. Variation of neuron behavior, from spiking to bursting to burst excitable
modes with respect to changes in /,,,. This paper uses the first spiking mode to
generate patterns used to control a quadruped robot.

each conductance element is tuned to operate at multiple distinct
timescales in order to achieve modular control of the excitability
properties of the entire neuron circuit.

Our work implements a neuron model with 4 conductance
elements, forming 2 positive, 2 negative feedback loops and
operates at 3 different timescales — fast, slow and ultraslow, as
shown in Fig. 2. The fast negative conductance (i) operates in
sub-ms range, the slow positive (i) and slow negative (i)
conductances operate in ms and ultra-slow positive conductance
(its) operates in the range of seconds. Each conductance
element incorporates a hyperbolic tangent (fanh) transfer
function, which combined together enables a complex non-
linear activation function for the neuron. The non-linearity is
particularly important at the fast and slow timescales, which can
be seen as ‘N shaped” IV curve for the corresponding
conductance channel. This 4th order system can be viewed as a
superposition of 2 second order systems with fast-slow and
slow-ultra slow timescales. By ensuring that the timescales are
separate enough it is guaranteed that the circuit has a stable
spiking behavior when the applied current is between a defined
range. This behavior is explained by limit cycle oscillations
between high and low voltage ranges. The amplitude range of
the spikes generated from the system is controlled by two
parameters 87 and ar . The spiking frequency is controlled
mainly by aJbut at the same time it can be modulated using the
applied current. Non-linear differential equation describing the
neuron model,
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where, I} = tai tanh(V, — 63) and L, ;) =V, (2)
Differential equation to set delay of different timescales,
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Fig. 3 shows the software simulation of the neuron model
provided by the equations (1)-(3), where the neuron output can

be tuned using the input /,,, to exhibit spiking, bursting and
burst excitable modes.

Vin — Ve where 7p K 75 K Ty 3

B. Spiking CPGs for Locomotion Control

Periodic activities like breathing and walking require some
level of co-ordination not controlled by the brain. This temporal
co-ordination occurs at the lower end of the nervous system
hierarchy in biology, since it is highly time critical. Spiking
Neural Networks (SNN) fit this bill perfectly by offering
extremely high levels of energy efficiency on devices with
limited compute and memory.

In [8] the method proposed consists of controlling a hexapod
with a spiking central pattern generator with feedback from
cameras and gyroscopes and uses a reinforcement learning
scheme to train the weights. A fully connected spiking central
pattern generator based on leaky integrate and fire neurons are
used to learn timings for ‘walking’. When the neuron fires, it
sets off a series of events which includes lifting, rotating and
landing the leg. The fully trained SCPG will integrate the
neurons with external stimulus till they fire and send post
synaptic currents to all the neurons which have an excitatory
synapse with the firing neuron. This sets off a chain reaction
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causing all the neurons to have an increase in their respective
membrane voltages. The synaptic weights between these
neurons are trained to ensure that the other neurons fire only in
the order that they are meant to.

Reference [8] also talks about preserving balance by taking
snapshots of the gyroscope output while moving the legs as a
part of the training process in order to avoid moving more than3
legs at a particular time. Another, important problem that needs
to be addressed is that the system might realize that not moving
the limbs at all is also a stable point as per the system restrictions,
but this is not intended and moving less than 1 limb for a given
time stamp is also met with a penalty in the cost function. This
entire setup ensures that the system does not go off balance by
moving more than 3 limbs at any time whilst also moving
forward.

III. IMPLEMENTATION

Our first task was to faithfully reproduce the spiking mode
of the neuron presented in [7] on a software testbench. This was
done using Euler’s method to approximate the solution of the
differential equation (1). We have used a parameterized sparse
firing neuron model for this work since the physical movement
of the robot leg i.e. motor activation takes a significantly longer
time (~200ms). The weight matrices for different modes of
operation were derived from Linear Programming as shown in

[9].

Once we had the neuron spiking as expected, next task was
to tune the different parameters namely a;, a, as, ajjs, 67,
8F, 67 and 8;F; to obtain the optimal value for sparse spiking
since we will eventually connect multiple neurons with one
another and having a sparse spike pattern allows for more
synaptic currents to be added without making the system spike
too many times. This was done by sweeping through a range of
values for all eight of these parameters and looking at the
corresponding spike patterns. The optimal values which ensured
that the neuron remained in the spiking mode whilst also giving
sparse activity are summarized in Table I.

TABLE 1. OPTIMAL VALUES OF PARAMETERS FOR NONLINEAR NEURON TO
PRODUCE SPARSE SPIKING ACTIVITY

Parameter Value Parameter Value
as -2 3 0
af 2 5 0
as -1.5 [ -0.88
ate 2 & 0

Now, the next step was to use this sparse firing neuron and

create synaptic connections between four of these neurons, one
for each leg of the robot. These synaptic weights for these
connections should be tunable to increase the connectivity as per
our requirement as well as be able to completely cut off
connectivity to make the neurons behave as if it were never
connected in the first place.

To achieve this, we introduced a NxN weight matrix (here N
is the total number of neurons with all possible connections
made between any two neurons), a scale factor to tune the
effectiveness of the synapses as a whole and synaptic currents
as per the membrane voltages of the other neurons. This new
synaptic current from all neighboring neurons was added to the
primary neuron alongside the preexisting currents as shown in

(2) {L., I, and 1,,,} this was then integrated to calculate the new
membrane voltage.

In order to get different modes of locomotion the weight
matrix was tuned with the help of Linear Programming [9] and
by calibrating the physical motion required by the leg to actually
perform a given mode of locomotion (jump,walk or trot) we
were able to come up with different weight matrices. Fig. 4
shows the raster plot of the spikes generated by the CPG network
with 4 neurons which act as motor activation events to enable
different modes of locomotion.

The next challenging task was to detect the spiking of a non-
linear neuron and convert it into event frames where motor
commands are to be sent to the bot. This was done by solving
the differential equations for each time step real-time on the
Arduino microcontroller (NY Board V1 0). The spikes
generated by the 4 non-linear neurons produced a rhythmic
pattern over an interval of time which were used as the motor
activation events for actuating each individual limb of the robot.
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Fig. 4. Raster plot of motor event triggers for different modes of operation.

A. Tuning the Network

To tune the model to be in the spike mode of operation we
first gradually increase the applied current in the first neuron
whilst keeping the other parameters like alpha and delta same.
This gradual increase in I, causes the first neuron to cause
spikes periodically.We consider this as our base /,,,this ensures
that any isolated neuron/the primary neuron in any network is
always causing spikes. Now, to tune the neurons with strong
synaptic connections to the primary neuron we start with base
Lopp/2 and tune further to produce desired frequency of spikes on
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Fig. 5. Different modes of locomotion working on a Petoi Bittle robot with yellow arrows indicating the motion of limbs with respect to the previous(left)
picture. These different modes were generated using different weight matrices and input stimulus whilst keeping the neuron parameters constant. Demo
video with all three modes can be found at: https://youtu.be/_QFXf07VSEM/

all neurons. After this initial set of adjustment each neuron in the
network is expected to fire in a particular order determined by
the weight matrix. If any neuron does not fire, then we gradually
increase the weight of that specific neuron till it exhibits
expected spiking pattern.

IV. RESULTS

The CPG system implemented on the Petoi bot does real-
time emulation of a 4-neuron network with fully connected pre-
trained synaptic weights between them. This rhythmic spiking
due to external stimulus is then discretized from spike timings
to events and these events are used to drive the motors in a fixed
pattern determined by the weight matrix. Changing the weight
matrix causes the robot to change the locomotion pattern. Fig. 5
shows the stop motion frames of the different modes of
locomotion — walk, trot and jump, with the arrows showing
which limb moved between consecutive frames. Demo video
with  all  three modes can be found at:
https://youtu.be/ QFXf07VSEM/

A. Benchmarking

For the evaluation of our proposed work, it is essential to
compare the best available existing method to our method. We
have compared our work with the widely used and accepted
Leaky Integrate and Fire (LIF) Neuron running a similar
network configuration to control robot locomotion and

compared three parameters: memory used, average latency per
time step and jitter tolerance to perturbations in input stimulus.

TABLE II. COMPARITIVE BENCHMARKING OF CENTRAL PATTERN
GENERATORS USING PROPOSED BIO-MIMETIC NEURONS AND LIF NEURONS

Method / Memory Used | Latency per Jitter
(in bytes time step (in Tolerance
Motion Type and % total ms) — to Input
memory on Average over Stimulus
Arduino) 500 steps Variation
Proposed Jump 1133 (55.3%) 3.58 5%
Non-linear
Bio- Walk | 1137 (55.5%) 3.54 5%
mimetic
Neuron
Trot 1137 (55.5%) 3.54 5%
Leaky Jump 759 (37%) 0.98 <1%
Integrate
and Fire | -y, e 759 (37%) 0.98 <1%
Neuron
Trot 759 (37%) 0.98 <1%

Benchmarking results are summarized in Table 2. As
expected because of its simpler dynamics, the LIF neuron takes
18% less memory and on average is 72% faster albeit this delay
is in milliseconds which gives a net advantage of just over 2.5ms,
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is insignificant in the pipeline where the slowest task is the
motor activation that takes around 200ms. Also this memory
efficiency and speed gain for LIF neurons does not translate to
jitter tolerance in the input which means that when this network
is connected to a bigger network and has to work based on output
of other similar networks, the LIF neuron will fail when the
exact input is not matched whereas the proposed model can
tolerate an input stimulus (/) jitter of 5% whilst still producing
the expected output.

V. CONCLUSION

We have presented a novel method for controlling robotic
locomotion with a Central Pattern Generator built using spiking
behavior of non-linear bio-mimetic neurons, that can exhibit
neuromodulatory behavior at nodal and network scales. The
method involves the use of the non-linear neuron model
presented in [7] to conceive a tightly coupled 4 neuron network
which acts as the CPG for controlling the motor behavior of
Petoi, a quadruped robot.

We have tuned the CPG network design for multiple modes
of operation (Walk, Trot, Jump) which can be adjusted and
observed real-time on-line by simply swapping a pre-trained
weight matrix. The on-chip resources required to build this
system have been highly optimized to realize real-time
execution of the CPG network which requires the pre-trained
weight matrices, and delay between action events to be stored in
local memory on board for implementing the different modes.

The CPG using bio-mimetic non-linear neurons used
marginally higher memory (378 bytes, 18% higher than LIF
neurons), incurred insignificant latency of 3.54ms compared to
motor activation delay of 200ms, while providing upto 5-10x
higher jitter tolerance.

Our plan for future work is to use the proposed neuron
models to operate in the bursting mode and generate a bursting

CPG network that control the robot motion. Bursts in CPGs is
highly common in biology leading to more granular control and
robust loss-resilient operation, when compared to single spikes
which can be lost or removed affecting the overall rhythm.
Bursting CPGs will potentially enable the use of bio-mimetic
control in advanced robots and for seamless human-machine
interaction.
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