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Training Diverse High-Dimensional Controllers by
Scaling Covariance Matrix Adaptation

MAP-Annealing
Bryon Tjanaka , Matthew C. Fontaine , David H. Lee , Aniruddha Kalkar, and Stefanos Nikolaidis

Abstract—Pre-training a diverse set of neural network con-
trollers in simulation has enabled robots to adapt online to dam-
age in robot locomotion tasks. However, finding diverse, high-
performing controllers requires expensive network training and
extensive tuning of a large number of hyperparameters. On
the other hand, Covariance Matrix Adaptation MAP-Annealing
(CMA-MAE), an evolution strategies (ES)-based quality diversity
algorithm, does not have these limitations and has achieved state-
of-the-art performance on standard QD benchmarks. However,
CMA-MAE cannot scale to modern neural network controllers due
to its quadratic complexity. We leverage efficient approximation
methods in ES to propose three new CMA-MAE variants that
scale to high dimensions. Our experiments show that the vari-
ants outperform ES-based baselines in benchmark robotic loco-
motion tasks, while being comparable with or exceeding state-
of-the-art deep reinforcement learning-based quality diversity
algorithms.

Index Terms—Evolutionary robotics, reinforcement learning.

I. INTRODUCTION

BY GENERATING a diverse collection of controllers, we
can endow a robot with a variety of useful behaviors. For

example, one popular approach in robotic locomotion has been
to train a collection of neural network controllers to enable a
walking robot to adapt to damage [1], [2], [3], [4]. The controllers
differ by how often each foot contacts the ground, such that if a
foot is damaged, the robot can select a controller that does not
rely on that foot.

Searching for diverse controllers may be viewed as a quality
diversity (QD) optimization problem [5]. In QD, the goal is to
find solutions φ that are diverse with respect to one or more
measure functions mi(φ) while maximizing an objective func-
tion f(φ). In the locomotion example presented, we search for
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Fig. 1. We propose variants of the CMA-MAE algorithm that scale to high-
dimensional controllers. The variants maintain a Gaussian search distribution
with mean φ∗ and approximate covariance matrix Σ̃. Solutions φi sampled
from the Gaussian are evaluated and inserted into an archive, where they generate
improvement feedback Δi based on their objective value f(φi) and a threshold
te that each archive cell maintains. Finally, the Gaussian is updated with an
evolution strategy (ES). Our variants differ from CMA-MAE by incorporating
scalable ESs, as the CMA-ES used in CMA-MAE has Θ(n2) time complexity
per sampled solution.

neural network controller policies πφ parameterized by φ. Each
controller should satisfy a unique output of the measure function
by using its feet in a different manner from the other controllers,
while optimizing the objective by walking forward quickly.

A QD algorithm must balance two aspects given a limited
compute budget: exploring measure space and optimizing the
objective. In our locomotion example, exploration finds new
controllers that use the robot’s feet a different amount, and
optimization makes existing controllers walk faster.

Prior algorithms [3], [4] seem to strike a balance between
these two aspects of QD, leading to state-of-the-art results.
However, these algorithms have practical limitations due to
their dependence on deep reinforcement learning (RL) methods.
Namely, they must perform time-consuming training of a neural
network and have many hyperparameters.

Recent work [6] suggests evolution strategies (ES) as a com-
pelling alternative to deep RL methods when optimizing a single
controller. Compared with deep RL, ESs do not require network
training, and ESs such as the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [7] are designed to have almost
no hyperparameters. Given these benefits, prior work [2], [3]
has developed QD algorithms based on ESs, but these methods
have not yet matched the performance of deep RL-based QD
methods.

On the other hand, the recently proposed ES-based Covari-
ance Matrix Adaptation MAP-Annealing (CMA-MAE) algo-
rithm [8] has proven adept at trading off the exploration and
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objective optimization aspects of QD. Tuning a single hyperpa-
rameterα ∈ [0, 1] in CMA-MAE enables blending these two as-
pects, yielding state-of-the-art performance on QD benchmarks.
We hypothesize that CMA-MAE’s ability to balance this tradeoff
would enable it to excel in training neural network controllers
for robotic locomotion tasks.

While CMA-MAE excels at moderate-dimensional domains,
it is intractable for modern neural network controllers because
such controllers are high-dimensional, i.e., they have thousands
or even millions of parameters. Internally, CMA-MAE guides
the QD search with one or more CMA-ES instances [7]. Since
CMA-ES’s time complexity is quadratic in the number of pa-
rameters, it cannot scale to such controllers.

CMA-ES’s complexity arises from how it models the search
distribution with a Gaussian that has a full rank n× n covari-
ance matrix. However, by replacing this full matrix with sparse
approximations, prior work [9] creates variants of CMA-ES that
scale to high-dimensional problems.

Our key insight is that we can scale CMA-MAE to high-
dimensional controllers by adopting such approximations in its
CMA-ES components. Following this insight, we propose three
scalable CMA-MAE variants (Section III). To understand their
performance and runtime properties, we study these variants
on optimization benchmarks (Section IV). Next, we evaluate
the variants on robotic locomotion tasks (Section V). We show
that our variants are the highest-performing QD methods based
solely on ES. Furthermore, they are comparable to or exceed
the state-of-the-art deep RL-based QD method PGA-ME [4] on
three of four tasks, while inheriting the aforementioned practical
benefits of ES. We are excited about future applications in
other domains, such as robotic manipulation [10] and scenario
generation [11], and we have open-sourced our variants in the
pyribs library [12].

II. BACKGROUND

A. Formulation

Quality diversity (QD): Drawing from the definition in prior
work [13], QD considers an objective function f(φ) and k-
dimensional measure function m(φ),1 where φ ∈ Rn is an
n-dimensional solution. The outputs ofm form a k-dimensional
measure spaceX . The QD objective is to find, for everyx ∈ X , a
solutionφ such thatm(φ) = x and f(φ) is maximized. Solving
this QD objective would require infinite memory since X is
a continuous space, so algorithms based on MAP-Elites [14]
relax the QD objective by discretizing X into a tesselation Y
of M cells. Then, the QD objective is to maximize the (sum
of) objective values of an archiveA containing solutions φ1..M ,
i.e.,maxφ1..M

∑M
i=1 f(φi). Furthermore,φ1..M are constrained

such that eachφi has measuresm(φi) corresponding to a unique
cell in Y .

Quality diversity reinforcement learning (QD-RL): As defined
in prior work [3], QD-RL is a special instance of QD where φ

1It is common to definem(φ) via k separate measure functionsmi(φ). Prior
work also refers to measure function outputs as behavior descriptors or behavior
characteristics.

parameterizes a reinforcement learning (RL) agent’s policy πφ,
and the objective is the agent’s expected discounted return in a
Markov Decision Process (MDP) [15]. QD-RL also includes ak-
dimensional measure function m(φ) that describes the agent’s
behavior during an episode.

B. Large-Scale Evolution Strategies

An evolution strategy (ES) [16] optimizes continuous param-
eters by adapting a population of solutions such that the popu-
lation is more likely to attain high performance. A large-scale
ES scales to high-dimensional search spaces.

OpenAI-ES [6] is one large-scale ES notable for performing
well in RL domains. It represents a population with an isotropic
Gaussian and updates only the Gaussian’s mean by passing
approximated gradients to Adam [17].

Several large-scale ESs build on Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) [7], an approximate second-
order method that achieves state-of-the-art results in black-box
optimization [18]. CMA-ES models a distribution of search
directions with a GaussianN (μ,Σ). Every iteration, CMA-ES
samples λ solutions from this Gaussian and updates it based on
rankings of the solutions’ performance.

CMA-ES itself does not scale to high dimensions, as it re-
quires Θ(n2) space and Θ(n2) runtime per sampled solution.
The space is due to the n× n covariance matrix Σ, while
runtime stems from two operations. First, updating Σ requires
matrix-vector multiplications. Second, since it is easy to sample
from the standard Gaussian N (0, I) on a computer, sampling
from N (μ,Σ) is implemented as:

N (μ,Σ) ∼ μ+N (0,Σ) ∼ μ+Σ
1
2N (0, I) (1)

The transformation matrix Σ
1
2 requires an O(n3) eigende-

composition, which CMA-ES amortizes to O(n2) per sampled
solution by only recomputing Σ

1
2 every n

λ
iterations.

Multiple variants [9] of CMA-ES scale to high dimensions
by replacing the full covariance matrix with an efficient approx-
imation. We incorporate OpenAI-ES and two such variants to
scale CMA-MAE to high dimensions.

C. MAP-Elites

Many QD algorithms, including those in this work, build
on Multi-dimensional Archive of Phenotypic Elites (MAP-
Elites) [14]. The vanilla version of MAP-Elites divides the
measure space into an archive of evenly-sized grid cells. Then,
it generates solutions by sampling existing solutions from the
archive and applying a genetic operator. These new solutions
are inserted into archive cells based on their measures. If they
land in the same cell as a previous solution, they replace the
solution only if they have a higher objective.

One recent line of work integrates CMA-ES into MAP-Elites
to optimize for the QD objective (Section II-A). In Covari-
ance Matrix Adaptation MAP-Elites (CMA-ME) [19], CMA-ES
directly samples solutions, adapting the search distribution to
find solutions that create the greatest archive improvement.
CMA-ME runs multiple CMA-ES instances in parallel, each
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encapsulated in an emitter — emitters are QD algorithm com-
ponents that generate solutions for evaluation [12], [19]. Mean-
while, Covariance Matrix Adaptation MAP-Elites via a Gradient
Arborescence (CMA-MEGA) [13] operates in the differentiable
quality diversity (DQD) setting, where exact objective and mea-
sure gradients are available. Here, instead of sampling solution
parameters, CMA-ES branches from a solution point by sam-
pling coefficients that form linear combinations of the objective
and measure gradients.

Multiple methods extend MAP-Elites to train neural network
controllers, as vanilla MAP-Elites performs poorly in such prob-
lems [2], [3], [4]. For instance, CMA-MEGA cannot be applied
to QD-RL since it assumes gradients are provided, and such
gradients are often unavailable in RL due to non-differentiable
environments. Hence, recent work [3] introduces CMA-MEGA
variants that instead approximate the gradients. Meanwhile,
MAP-Elites with Evolution Strategies (ME-ES) [2] integrates
OpenAI-ES to improve the objective value of a solution point
or move the point to a new area of the archive. Finally, Policy
Gradient Assisted MAP-Elites (PGA-ME) [4] replaces the ge-
netic operator with two operations: 1) gradient ascent, performed
with TD3 [20], and 2) crossover, performed with a genetic algo-
rithm [21]. We include these methods as experimental baselines.

D. CMA-MAE

We extend Covariance Matrix Adaptation MAP-Annealing
(CMA-MAE) [8], a method that builds on CMA-ME and
achieves state-of-the-art performance on QD benchmarks.

The key difference between CMA-MAE and CMA-ME is
a soft archive that enables balancing between optimizing the
objective and searching for solutions with new measure values.
This soft archive records a threshold te for each cell e. te is
initialized to a minimum objective minf . When a solution φ
is inserted into the archive, it is placed into its correspond-
ing cell e if its objective value f(φ) exceeds te. Then, te is
updated via polyak averaging te ← (1− α)te + αf(φ), where
α ∈ [0, 1] is the archive learning rate. Finally, the insertion
returns an improvement value Δi ← f(φ)− te, where higher
values indicate greater archive improvement. Note that during
insertion, the solution’s objective value only needs to cross
the threshold, rather than the objective value of the solution
previously in the cell. Thus, implementations must track the
best solutions separately, as the archive does not always store
them like MAP-Elites does.

Like CMA-ME, CMA-MAE maintains one or more emitters.
Each emitter contains a CMA-ES instance that directly samples
solutions from a Gaussian. By updating the Gaussian based on
rankings of the solutions’ improvement values, CMA-ES moves
the Gaussian towards solutions more likely to generate high
improvement.

The archive learning rate α is a key parameter in CMA-MAE.
When α = 0, the threshold remains at minf , so the improve-
ment Δi always equals the objective f(φ) (minus a constant
minf ). This makes CMA-MAE equivalent to CMA-ES, as it
optimizes solely for the objective. When α = 1, the threshold
is equal to the objective value of the solution currently in the

cell, which means there is minimal improvement for inserting
a solution into a cell with an existing solution. In this case,
CMA-MAE is equivalent to CMA-ME, which always prioritizes
discovering new solutions in measure space over improving
existing solutions. Varying α from 0 to 1 smoothly trades off
between these two extremes.

III. SCALING CMA-MAE

Algorithm 1: CMA-MAE Variants. Highlighted Lines
Show Differences From CMA-MAE [8].

In CMA-MAE, each emitter uses CMA-ES to update its
Gaussian search distribution. Since CMA-ES requires Θ(n2)
space and Θ(n2) runtime per solution (with n the solution
dimension), CMA-MAE cannot train high-dimensional neural
network controllers. To scale CMA-MAE, we propose three
variants that replace CMA-ES with large-scale ESs. These
variants differ primarily in the complexity of their covariance
matrix approximation, and each variant is named by taking its
large-scale ES’s name and replacing “ES” with “MAE”:
� LM-MA-MAE substitutes Limited-Memory Matrix

Adaptation ES (LM-MA-ES) [22], a large-scale CMA-ES
variant that approximates the transformation matrix Σ

1
2

with k � n n-dimensional vectors, each representing a
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TABLE I
OPTIMIZATION BENCHMARK RESULTS

TABLE II
ONE-WAY AND WELCH’S ONE-WAY ANOVA RESULTS FOR EACH DEPENDENT

VARIABLE ON EACH BENCHMARK

different direction of the search distribution. This rank-k
approximation leads to Θ(kn) complexity.

� sep-CMA-MAE substitutes Separable CMA-ES (sep-
CMA-ES) [23], a large-scale CMA-ES variant that con-
strains the covariance matrix Σ to be diagonal, yielding
Θ(n) complexity.

� OpenAI-MAE substitutes OpenAI-ES [6]. As OpenAI-ES
is not a CMA-ES variant, it differs from CMA-ES in sev-
eral mechanisms, but it nevertheless represents the search
distribution with a Gaussian, specifically an isotropic Gaus-
sian with constant covarianceσI . Though the covariance is
constant, vector operations on the solutions still necessitate
Θ(n) complexity.

The listed complexities refer to 1) the space required per
emitter, as each emitter maintains its own ES instance, and 2)
the runtime required per sampled solution, which is the same
regardless of the number of emitters.

Algorithm 1 and Fig. 1 show an overview of the variants.
Each variant begins by initializing the archive along with each
emitter’s ES parameters (lines 2–3). This step includes initial-
izing the covariance matrix approximation Σ̃ in lieu of the full
covariance matrix Σ used in CMA-MAE. Next, each variant
repeatedly queries the emitters for solutions (line 4). Each emit-
ter (line 5) samples λ solutions from the distributionN (φ∗, Σ̃)
(lines 6–7). Note that the sampling procedure depends on the
approximation employed by the variant. Once sampled, the
solutions are evaluated and inserted into the archive if they cross
their cell’s threshold te (lines 9–13). Then, φ∗, Σ̃, and the ES’s
parameters are updated based on the solutions’ improvement
ranking (lines 14–15), such that the emitter is more likely to
sample solutions with high improvement on the next iteration.
Finally, the emitter restarts if the ES converges (lines 16–17).
We adopt default update and convergence rules from each ES.

IV. OPTIMIZATION BENCHMARKS

Replacing CMA-ES with large-scale ESs in our CMA-MAE
variants raises two questions: 1) Since our variants model

the search distribution with an approximate Gaussian rather
than a full Gaussian, how do they perform relative to each
other and relative to CMA-MAE? 2) In practice, are the
variants faster than CMA-MAE? While our goal is to train
neural network controllers for robotic locomotion, it is
impractical to answer these questions in that domain, since
CMA-MAE’s quadratic complexity prevents it from training
high-dimensional controllers. Thus, we first study the variants
on lower-dimensional benchmarks.

A. Experimental Setup

Domains: We consider three QD benchmarks: 1) In sphere
linear projection [19], the objective is the sphere function
f(x) =

∑n
i=1 x

2
i , and the measure function linearly projects

solutions into a 2D space. 2) Arm repertoire [21] considers a
planar robotic arm with n equally-sized links. The objective is
to find configurations of the n joint angles where the angles
have low variance, giving the arm a smooth appearance. The
measures indicate the x-y position of the end of the arm. 3)
Hard maze [24] considers a robot that navigates a maze for 250
timesteps. We use the Kheperax [25] implementation, where the
objective is the robot’s energy consumption, and the measures
are the final x-y position. The robot is controlled by a neural
network with two hidden layers of size 8 and 138 parameters
total. In all domains, we linearly transform the objective to the
range [0, 100]. We consider 100- and 1000-dimensional versions
of sphere and arm, yielding five domains: Sphere 100, Sphere
1000, Arm 100, Arm 1000, Maze.

We select these benchmarks since they are well-studied in
the QD literature and exhibit different properties. For instance,
Sphere has a separable objective, and its measure space is inten-
tionally distorted to make it difficult to find new archive solu-
tions. In contrast, the variance objective in Arm is non-separable,
but its measure space tends to be easier to explore, with prior
work [8] showing that even vanilla MAP-Elites fills most of
the archive. Finally, as a small-scale QD-RL benchmark, Maze
has a less intuitive mapping from neural network parameters to
objectives and measures.

Metrics: Our primary metric is QD score [5], which
holistically measures algorithm performance by summing
the objectives of all archive solutions. To ensure no solution
subtracts from the score (this happens if objectives are negative),
we subtract the minimum objective (i.e., CMA-MAE’s minf )
from all solutions’ objectives before computing the score. Note
that minf = 0 in all domains in this section, but minf < 0
in all environments in Section V. We also record archive
coverage (fraction of archive cells containing a solution), best
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TABLE III
RESULTS FROM TRAINING HIGH-DIMENSIONAL CONTROLLERS

TABLE IV
QDGYM LOCOMOTION ENVIRONMENTS [26]

performance (highest objective in the archive), and execution
time (wall-clock time of the experiment). In our tables, we
abbreviate these metrics as “QD”, “Cov”, “Best”, and “Time.”

Procedure: In each domain (Sphere 100, Sphere 1000, Arm
100, Arm 1000, Maze), we conduct a between-groups study with
the algorithm (CMA-MAE, LM-MA-MAE, sep-CMA-MAE,
OpenAI-MAE) as independent variable and the QD score and
execution time as dependent variables. We repeat experiments
for 10 trials, where each trial executes an algorithm in a domain
for 2 million solution evaluations. All experiments run on a
single CPU core, except in Maze, where we run evaluations
on an NVIDIA RTX A6000.

Hyperparameters: CMA-MAE and its variants run with
archive learning rate α = 0.001 (except α = 0.01 in Maze) and
ψ = 5 emitters. Each emitter has batch size λ = 40 and initial
step size σ = 0.02. LM-MA-MAE sets k = λ = 40. The Adam
optimizer for OpenAI-ES in OpenAI-MAE uses learning rate
0.01 and L2 regularization coefficient 0.005.

Hypotheses: All methods considered model their search distri-
bution with a Gaussian or approximate Gaussian. We predict that
methods with a more complex distribution will perform better
but take longer to execute. To elaborate, the first and simplest
algorithm in this ranking is OpenAI-MAE, which models a fixed
isotropic Gaussian. Since this Gaussian has a constant shape
that cannot adapt to the search space, we predict OpenAI-MAE
will have the lowest performance. However, since OpenAI-MAE
only updates the mean of the Gaussian, it should be the fastest
algorithm.

Second, sep-CMA-MAE models a diagonal Gaussian. Since
this distribution can change shape and adapt over time, we
predict it will lead to higher performance when guiding the QD
search. While the diagonal Gaussian gives sep-CMA-MAE the
same linear complexity as OpenAI-MAE, sep-CMA-MAE will
likely be slower, as it requires additional operations to update
the diagonal covariance matrix.

Third, LM-MA-MAE uses a rank-k approximation. While
the Gaussian in sep-CMA-MAE is limited to being axis-aligned
since it is diagonal, the rank-k approximation can represent a
more complex Gaussian that is not necessarily axis-aligned. This
property should give LM-MA-MAE greater flexibility to adapt
to the search space, leading to higher performance. However,
the Θ(kn) complexity will likely make LM-MA-MAE slower
than sep-CMA-MAE.

Finally, CMA-MAE maintains a full Gaussian, which should
be highly flexible and able to adeptly guide the QD search. The
Θ(n2) complexity will likely make it the slowest algorithm. Our
hypotheses may be summarized as:

H1: The QD score will be ranked OpenAI-MAE< sep-CMA-
MAE < LM-MA-MAE < CMA-MAE.

H2: The execution time will be ranked OpenAI-MAE < sep-
CMA-MAE < LM-MA-MAE < CMA-MAE.

B. Results

Table I summarizes our results. To analyze the results, we
ran an ANOVA for each dependent variable in each domain.
Before running the ANOVAs, we verified the data were normally
distributed through visual inspection and the Shapiro-Wilk test.
Next, we checked homoscedasticity with Levene’s test. In ho-
moscedastic settings, we ran a one-way ANOVA, and in non-
homoscedastic settings, we ran Welch’s one-way ANOVA. In
almost all domains, we found significant differences across the
algorithms for both dependent variables (Table II). To analyze
the rankings in H1 and H2, we performed pairwise comparisons
with Tukey’s HSD test or a Games-Howell test, depending on
whether the data were homoscedastic or not, respectively.

H1: In all Sphere and Arm domains, OpenAI-MAE underper-
formed all other methods. There were no significant differences
among the other methods, except that sep-CMA-MAE outper-
formed CMA-MAE in Sphere 100. In Maze, while there was
a trend towards OpenAI-MAE being the best-performing, large
variances meant that there were no significant differences among
any methods.

Overall, our results fail to support H1. Namely, we find
that more complex search distributions do not necessarily yield
better QD score. On one hand, as predicted, the most basic dis-
tribution (OpenAI-MAE’s isotropic Gaussian) underperforms
CMA-MAE in Sphere and Arm. However, there is no significant
difference between OpenAI-MAE and CMA-MAE in Maze.
Furthermore, we found no significant differences in any domain
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TABLE V
PAIRWISE COMPARISONS FOR QD SCORE AMONG THE VARIANTS (FOR H3) AND BETWEEN THE VARIANTS AND THE BASELINES (FOR H4) IN THE LOCOMOTION

ENVIRONMENTS

TABLE VI
WELCH’S ONE-WAY ANOVA RESULTS IN EACH LOCOMOTION ENVIRONMENT

between a simple diagonal Gaussian (sep-CMA-MAE) and a
full Gaussian (CMA-MAE).

The only case where increasing search distribution com-
plexity increases performance is with sep-CMA-MAE outper-
forming OpenAI-MAE in Sphere and Arm. Yet, increasing the
complexity further (i.e., LM-MA-MAE’s rank-k approximation
and CMA-MAE’s full Gaussian) fails to garner further improve-
ment.

H2: Pairwise comparisons found that the execution time of the
algorithms matched the rankings in H2. The difference between
CMA-MAE and the variants was particularly pronounced in
the higher-dimensional Sphere 1000 and Arm 1000, where,
on average, CMA-MAE took 14.5 times longer than LM-MA-
MAE, the slowest variant. These results validate H2, showing
that the variants are empirically faster to run than CMA-MAE,
and that the variants become faster as their search distribution
becomes simpler.

V. TRAINING HIGH-DIMENSIONAL CONTROLLERS

We evaluate our CMA-MAE variants’ abilities to train di-
verse, high-performing neural network controllers for robotic
locomotion tasks in the QDGym benchmark [26].

A. Experimental Setup

Environments: Table IV shows the QDGym environments
considered in this work. These environments are unidirectional,
i.e., the objective is to walk forward quickly, and the measures
track the proportion of time that each of the robot’s feet touches
the ground, e.g., if a robot has four legs, it has four measures.
As prior work [3] notes, the challenge in these environments
arises from performing objective optimization across the entire
archive. Namely, it is easy to find a single high-performing
controller and fill the rest of the archive with controllers that
stand in place and lift their legs to achieve different measures.

However, it is difficult to make the robot walk quickly at all
points in the measure space.

As in prior work [3], [4], each domain uses an archive with
grid cells. The robot controller is a neural network mapping
states to actions. The network has two hidden layers of size 128
and tanh activations and is initialized with Xavier initialization.
For the minimum objective minf , QDGym does not have pre-
defined minimum objectives, but we adopt values from prior
work [3] that recorded the minimum objective inserted into an
archive during their experiments. Table IV includes the archive
dimensions, number of parameters, and minimum objective in
each domain.

Baselines: We compare our variants with five baselines:
PGA-ME [4], two CMA-MEGA variants [3] that approximate
gradients (CMA-MEGA (ES) and CMA-MEGA (TD3, ES)),
ME-ES [2], and MAP-Elites. We adopt hyperparameters from
the original papers for PGA-ME, the CMA-MEGA variants,
and ME-ES, except ME-ES uses a population size of 200. Our
MAP-Elites baseline uses isotropic Gaussian noise mutations
with standard deviation σ = 0.02 and batch size 100. The CMA-
MAE variants themselves use the same parameters as in the
optimization benchmarks (Section IV-A).

Procedure: We conduct a between-groups study in each envi-
ronment (QD Ant, QD Half-Cheetah, QD Hopper, QD Walker)
with the algorithm (LM-MA-MAE, sep-CMA-MAE, OpenAI-
MAE, PGA-ME, CMA-MEGA (ES), CMA-MEGA (TD3, ES),
ME-ES, MAP-Elites) as independent variable and QD score and
execution time as dependent variables. We repeat experiments
for 10 trials, where each trial executes an algorithm for 1 million
solution evaluations. Each algorithm runs single-threaded and
has 100 CPUs allocated for solution evaluations on a high-
performance cluster. In addition to these 100 CPUs, PGA-ME
and CMA-MEGA (TD3, ES) are allocated one NVIDIA Tesla
P100 GPU to train TD3.

Corrected Metrics: To save computation, we evaluate each
solution for only one episode. However, unlike the optimization
benchmarks, the locomotion environments are stochastic since
each episode’s initial state is randomly sampled. Thus, solutions
may be inserted into archives due to inaccurate evaluations, e.g.,
a solution may obtain a high objective by chance. Hence, we
report corrected metrics [27], [28], where we first re-evaluate all
solutions in each final archive for 10 episodes, inserting them
into a new, corrected archive based on their mean scores. We
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TABLE VII
RESULTS FROM VARYING THE ARCHIVE LEARNING RATE α IN SEP-CMA-MAE IN THE LOCOMOTION ENVIRONMENTS

then compute the metrics from Section IV-A over this corrected
archive.

Hypotheses: Among the variants, our performance (QD
score) prediction remains the same as on the optimization
benchmarks (Section IV-A), i.e., the variant with the simplest
search distribution (OpenAI-MAE) will perform worst, and
more powerful search distributions (sep-CMA-MAE followed
by LM-MA-MAE) will improve performance. While the
optimization benchmark results (Section IV-B) did not support
this prediction, higher dimensionality in the locomotion
environments may highlight differences between the variants.

Compared to the baselines, we believe the smooth improve-
ment ranking in the variants will enable balancing objective
optimization and measure space exploration, yielding better per-
formance. To elaborate, CMA-MEGA (ES) and CMA-MEGA
(TD3, ES) use a standard MAP-Elites archive (equivalent to
settingα = 1 in CMA-MAE’s soft archive), so we think they will
focus too much on exploration. PGA-ME and ME-ES separate
measure space exploration from objective optimization with
distinct operations; this separation may be less effective than
blending the two aspects.

We predict that execution time differences among the variants
will be the same as on the optimization benchmarks; i.e., variants
with simpler search distributions will have faster runtimes. Com-
pared to the baselines, we believe a key factor will be whether a
method includes deep RL components. Unlike the CMA-MAE
variants, PGA-ME and CMA-MEGA (TD3, ES) include com-
ponents of TD3 [20] to train actor and critic networks, and these
training steps are often time-consuming. Our hypotheses may
be summarized as follows:

H3: The performances of the CMA-MAE variants will be
ordered as OpenAI-MAE< sep-CMA-MAE< LM-MA-MAE.

H4: All CMA-MAE variants will outperform all baselines.
H5: The execution times of the CMA-MAE variants will be

ordered as OpenAI-MAE< sep-CMA-MAE< LM-MA-MAE.
H6: All CMA-MAE variants will be faster than deep RL-

based baselines, i.e., PGA-ME and CMA-MEGA (TD3, ES).

B. Results

Table III summarizes our results. Following our analysis pro-
cedure in Section IV-B, we first verified normality through visual
inspection and the Shapiro-Wilk test. Next, Levene’s test showed
homoscedasticity was violated in all environments. Thus, we ran
Welch’s one-way ANOVA (Table VI), finding significant differ-
ences in all cases. Finally, we performed pairwise comparisons
with the Games-Howell test.

H3: Table V shows pairwise comparisons of corrected QD
scores for H3 and H4. We find H3 unsupported, as there tends
to be no significant difference among the variants. While these
results do not align with Section IV-B’s findings that OpenAI-
MAE often underperforms the other variants, both experiments
show that more complex search distributions do not necessarily
yield higher performance.

H4: Table V shows that the CMA-MAE variants outperform
or are not significantly different from prior ES-based methods
(CMA-MEGA (ES) and ME-ES), making them the highest-
performing ES-based methods in QD-RL. Compared to deep
RL-based methods PGA-ME and CMA-MEGA (TD3, ES), the
variants also tend to perform better or have no significant dif-
ference. In particular, both sep-CMA-MAE and LM-MA-MAE
outperform PGA-ME on QD Ant and QD Hopper while having
no significant difference in QD Half-Cheetah. While the variants
underperform the deep RL-based methods on QD Walker, prior
work [3] highlights the importance of deep RL in this task, as
only algorithms with TD3 have performed well here. In short,
these results partially support H4, showing that the variants often
but not always outperform the baselines.

H5: H5 was not supported. We found no significant differ-
ences between the variants’ runtimes, except sep-CMA-MAE
was significantly faster than the other variants in QD Walker.
This outcome may arise from the more complex hardware setup
of this experiment. Compared to the single CPU used to run the
optimization benchmarks, the evaluations here run on 100 CPUs
across multiple nodes. Slight differences among the nodes may
create runtime variance that obscures differences caused by the
search distribution complexity.

H6: All CMA-MAE variants were significantly faster than
PGA-ME and CMA-MEGA (TD3, ES) in all domains. The
two deep RL-based algorithms took more than twice as long
to run as the variants. While variance in compute nodes may
have contributed to this difference as we believe it did in H5,
we believe the majority of the difference stems from the inter-
nal algorithm runtime, specifically the aforementioned network
training performed in the deep RL-based methods.

Memory Usage: To better understand resource requirements,
we report the memory usage of each algorithm’s internal com-
ponents in Table III. Many algorithms have similar usage due
to creating similarly sized components. For instance, in the
CMA-MAE variants, CMA-MEGA (ES), ME-ES, and MAP-
Elites, memory is dominated by the archive, with negligible
space for components like emitters. Meanwhile, PGA-ME and
CMA-MEGA (TD3, ES) require more memory to store their
TD3 replay buffers.
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C. Ablation of Archive Learning Rate

We believe the soft archive and improvement ranking play a
key role in the CMA-MAE variants’ performance. Thus, we
ablate this mechanism by varying the archive learning rate
α in sep-CMA-MAE. Table VII shows the result of varying
α ∈ [0, 1]; note that all experiments thus far used α = 0.001.
These results show that, similar to CMA-MAE in benchmark
QD domains [8], performance (QD score) falls at the extreme
valuesα = 0 andα = 1, when sep-CMA-MAE focuses entirely
on objective optimization or archive exploration, respectively. In
contrast, intermediate values blend both aspects to achieve high
performance.

VI. DISCUSSION AND CONCLUSION

We create variants of CMA-MAE that scale to neural network
controllers for robotic locomotion by replacing CMA-MAE’s
CMA-ES component with efficient approximations. Our results
on optimization benchmarks (Section IV) help distinguish the
variants’ properties, while our results on locomotion tasks (Sec-
tion V) showcase the effectiveness of the variants compared
to existing methods. Furthermore, compared to state-of-the-art
deep RL-based methods, our variants bring attractive practical
benefits:

1) The CMA-MAE variants are light on computation. PGA-
ME and CMA-MEGA (TD3, ES) both train deep RL compo-
nents with TD3, a lengthy process that significantly increases
runtime as shown in the results of H6.

2) The CMA-MAE variants have very few hyperparameters
since they depend on CMA-ES and its variants, which are
designed to be parameterized by only an initial step size σ and
batch size λ. Hence, the CMA-MAE variants only require 5 hy-
perparameters (ψ, λ, σ, α,minf , see Algorithm 1). In contrast,
deep RL-based methods require many more parameters: 18 for
PGA-ME, 15 for CMA-MEGA (TD3, ES). Methods without
deep RL require fewer hyperparameters: 5 for CMA-MEGA
(ES), 6 for ME-ES, 2 for MAP-Elites.2 However, our experi-
ments show that such methods do not perform as well as the
CMA-MAE variants.

We emphasize that our CMA-MAE variants are black-box
methods that do not leverage the MDP structure of the QD-
RL problem, making them suitable for settings beyond QD-RL.
Hence, we envision future applications of our variants in areas
such as manipulation [10] and scenario generation [11].
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