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Abstract

The cerebral cortex is populated by specialized regions that are organized into
networks. Here we estimated networks from functional MRI (fMRI) data in intensively
sampled participants. The procedure was developed in two participants (scanned 31
times) and then prospectively applied to 15 participants (scanned 8-11 times). Analysis of
the networks revealed a global organization. Locally organized first-order sensory and
motor networks were surrounded by spatially adjacent second-order networks that linked
to distant regions. Third-order networks possessed regions distributed widely throughout
association cortex. Regions of distinct third-order networks displayed side-by-side
juxtapositions with a pattern that repeated across multiple cortical zones. We refer to these
as Supra-Areal Association Megaclusters (SAAMs). Within each SAAM, two candidate
control regions were adjacent to three separate domain-specialized regions. Response
properties were explored with task data. The somatomotor and visual networks responded
to body movements and visual stimulation, respectively. Second-order networks
responded to transients in an oddball detection task, consistent with a role in orienting to
salient events. The third-order networks, including distinct regions within each SAAM,
showed two levels of functional specialization. Regions linked to candidate control
networks responded to working memory load across multiple stimulus domains. The
remaining regions dissociated across language, social, and spatial / episodic processing
domains. These results suggest progressively higher-order networks nest outwards from
primary sensory and motor cortices. Within the apex zones of association cortex, there is
specialization that repeatedly divides domain-flexible from domain-specialized regions. We
discuss implications of these findings including how repeating organizational motifs may

emerge during development.



New and Noteworthy

The organization of cerebral networks was estimated within individuals using
intensive, repeat sampling of fMRI data. A hierarchical organization emerged in each individual
that delineated first, second-, and third-order cortical networks. Regions of distinct third-order
association networks consistently exhibited side-by-side juxtapositions that repeated across
multiple cortical zones, with clear and robust functional specialization among the embedded

regions.



Introduction

The primate cerebral cortex is populated by specialized networks that support
sensory, motor and higher-order cognitive and affective functions. Characterizing how the
networks and their interconnected regions are organized on the cortical surface began
more than a century ago with landmark studies of myelogenetic and architectonic patterns
(e.g., Refs. 1-5) and continued with modern systems neuroscience integration of anatomical
projection data and insights from study of brain lesions (e.g., Refs. 6-13). Over the past
decades our laboratory, and the field more broadly, has undertaken data collection efforts
and analyses of neuroimaging data with the goal to improve understanding of human
network organization and provide non-invasive approaches to measure brain organization
for clinical use.

It is beyond the present scope to cover the extensive literature that has evolved, but
it is important to interpret the current effort with awareness that new details and revisions
emerge incrementally as the methods and data quality progress. Our efforts presented here
reflect another step in that progression. The specific challenge in examining the details of
network organization in humans is that the methods are indirect and limited, and often
noisy within individuals. Despite limitations, advances in structural, diffusion, and
functional MRI (fMRI) provide valuable information about human cortical organization,
albeit with ambiguities consistent with the complexity of cortical architecture and the low
resolution of the techniques.

Resting-state functional connectivity MRI (fcMRI), based on measuring spontaneous
correlated fluctuations between brain regions, has been especially useful for estimating
networks (14; see also Refs. 15-20). Explorations in group-averaged fcMRI data, with
sample sizes that range from ten to thousands of participants, reveal network estimates
that are consistent across analytical approaches and datasets (e.g., Refs. 21-27). Moreover,
estimated networks show similarities to directly observed anatomical projection patterns
from tracer injections in the monkey, providing support that they reflect, to a first
approximation, anatomically connected networks (28-36). Correspondence is far from
perfect and there are unresolved aspects to how indirect human network estimates link to

anatomy, a theme that we will return to in the discussion.



A recent advance in the field is to use within-individual estimates of networks
without recourse to averaging across participants. Architectonic fields tile the cortical
mantle with variability in their exact locations, sizes, and borders between individuals (37-
45). Spatial blurring - inherent in group-averaging - impedes the ability to estimate details
of network organization. Precision neuroimaging, involving intensive sampling and
analysis of data within the individual, preserves idiosyncratic anatomical features.

Within-individual approaches have been the mainstay in human neuroimaging
studies of sensory and motor systems (e.g. Refs. 46-51) and emerged later as a viable
method to estimate task-based responses in higher-order association cortex (e.g. Refs. 52-
57). Within-individual precision mapping using fcMRI only became emphasized recently,
even though the first report was within individuals (14). Following a landmark
demonstration that intensive repeat scanning is possible (58, 59), multiple groups have
pursued within-individual characterization of network organization (e.g. Refs. 60-68; for
further discussion see Refs. 69, 70).

Here we continue the investigation of the detailed organization of the cerebral
cortex using within-individual approaches. There are multiple goals and methodological
innovations that steer this work. First, we employ deep, intensive imaging to boost the
signal-to-noise ratio (SNR) within individual participants. Each new participant was
scanned on at least 8 separate occasions and often more. Second, we applied a novel Multi-
Session Hierarchical Bayesian Model (MS-HBM; see Ref. 71) to automatically estimate
networks in the intensively sampled participants. Specifically, the number of networks
estimated was set at 15 to capture established networks sometimes missed in simpler
network parcellations, as will be detailed within the methods. Third, to enable clinical
translational research, we developed an empirical method and projected all network
estimates from the surface back into the native-space volume of individual participants, as
is needed for presurgical planning and neuromodulation. Fourth, inspired by the possibility
to chart global spatial relations between networks (e.g., Ref. 72), we also plotted the
resulting network estimates on the fully flattened cortical surface (73, 74). As the results
will reveal, there are repeating patterns of spatial juxtapositions among networks that
provide insight into their evolutionary and developmental origins. Finally, we collected and

examined task data within the same intensively sampled participants to test whether



within-individual network estimates predict functional response patterns and also to
explore between-network functional dissociations.
The raw data and our network parcellations generated through this research effort

are provided to the community as an open resource.

Methods

Overview

We sought to estimate networks within individuals with high precision. The
analyses proceeded in three stages: (1) a refinement stage established the methods for
estimating networks, (2) an implementation stage applied the methods prospectively to 15
new participants, and (3) a functional testing stage explored functional response properties
and dissociations between networks.

In the refinement stage, previously reported datasets (N = 2; see Refs. 62, 75) were
analyzed to establish novel MS-HBM network estimates that incorporated priors for 15
distinct networks (as contrast to 10 networks used in earlier work). Each of the
participants performed 31 independent MRI sessions allowing considerable data to test for
within-individual reliability.

In the implementation stage, the 15-network MS-HBM was prospectively applied to
15 new participants that were each scanned over 8-11 sessions. The model was estimated
for each participant in a fully automated fashion, and the networks were confirmed using
model-free seed-region based functional connectivity. Following network estimation, the
overlap and variability of each network across individuals were examined, and atlases
constructed for open use.

In the final functional testing stage, an extensive battery of tasks was administered
to the same individuals and analyzed to explore whether the estimated networks predicted

functional responses.

Participants
Seventeen native English-speaking volunteers participated for payment. History of a

neurologic or psychiatric illness was an exclusion criterion. Participants provided informed



consent using protocols approved by the Institutional Review Board of Harvard University.
For the refinement stage data, 2 right-handed adult women ages 22 - 23 yr participated
[data previously reported in Braga et al. (62) and Xue et al. (75)]. The refinement stage data
participants are labeled S1 and S2 to match Xue et al. (75). For the implementation stage
data, 15 right-handed adults ages 18 - 34 yr participated (mean = 22.1 yr, SD =3.9 yr, 9
women). Participants came from diverse racial and ethnic backgrounds (9 of the 17
individuals self-reported as non-white and / or Hispanic). A subset of the participants
contributing implementation stage data also enrolled in a study of motor movement

mapping (76). The implementation stage participants are labeled P1 to P15.

MRI Data Acquisition

Data were acquired at the Harvard Center for Brain Science using a 3T Prismafit MRI
scanner (Siemens Healthineers, Erlangen, Germany). A 64-channel phased-array head-neck
coil (Siemens Healthineers, Erlangen, Germany) was used in the refinement stage and for a
subset of motor task sessions in the implementation stage. A 32-channel phased-array head
coil (Siemens Healthineers, Erlangen, Germany) was used to acquire all other data in the
implementation stage. For functional neuroimaging, the differences between these two
coils are minimal and the data were treated as comparable. Foam and inflated padding
mitigated head motion. Participants were instructed to remain still and alert and to look at
arear-projected display through a mirror attached to the head coil. The display had a
resolution of 1280 x 1024 pixels and screen width of 43 cm, with an effective viewing
distance of 104 cm (54 pixels per visual degree). Eyes were video recorded using an
Eyelink 1000 Plus with Long-Range Mount (SR Research, Ottawa, Ontario, Canada), and
alertness was scored during each functional run. MRI data quality was monitored during
the scan using Framewise Integrated Real-time MRI Monitoring (FIRMM; see Ref. 77).

Refinement Stage Data. Each participant (S1 and S2) was scanned across 31 MRI
sessions over 28-40 wks with no sessions on consecutive days. Each session involved
multiple resting-state fixation runs that were reanalyzed here for functional connectivity
analysis, for a total of 63 functional MRI (fMRI) runs obtained for each individual. fMRI data
were acquired using blood oxygenation level-dependent (BOLD) contrast (78, 79). A

custom multiband gradient-echo echo-planar pulse sequence provided by the Center for



Magnetic Resonance Research (CMRR) at the University of Minnesota was used (80, 81; see
also Ref. 82) voxel size = 2.4 mm, repetition time (TR) = 1,000 ms, echo time (TE) = 32.6
ms, flip-angle = 64°, matrix 88 x 88 x 65, anterior-to-posterior (AP) phase encoding,
multislice 5x acceleration, fully covering the cerebrum and cerebellum. Signal dropout was
minimized by automatically (83) selecting a slice 25° from the anterior-posterior
commissural plane toward the coronal plane (84, 85). Each run lasted 7 min 2 sec (422
frames with the first 12 frames removed for T1 equilibration). A dual-gradient-echo B0
fieldmap was acquired to correct for spatial distortions: TE = 4.45 and 6.91 ms with slice
prescription / spatial resolution matched to the BOLD sequence. During BOLD scanning,
participants fixated a centrally presented plus sign (black on a gray background). The
scanner room was illuminated.

A rapid T1w structural scan was obtained using a multi-echo magnetization
prepared rapid acquisition gradient echo (ME-MPRAGE) three-dimensional sequence (86):
voxel size = 1.2 mm, TR = 2,200 ms, TE = 1.57, 3.39, 5.21, 7.03 ms, TI = 1,100 ms, flip-angle
= 7°, matrix 192 x 192 x 176, in-plane generalized auto-calibrating partial parallel
acquisition (GRAPPA) acceleration = 4.

Implementation Stage Data. Each participant (P1 to P15) was scanned across 8-11
sessions most often over 6 to 10 wks. A few participants had longer gaps between the first
and last MRI sessions up to one year. Each session involved multiple fMRI runs to be used
for functional connectivity analysis, for a total of 17 to 24 resting-state fixation runs
obtained for each individual. BOLD acquisition parameters were similar to the refinement
stage data: voxel size = 2.4 mm, TR = 1,000 ms, TE = 33.0 ms, flip-angle = 64°, matrix
92 x92 x 65 (FOV =221 x 221), 65 slices covering the full cerebrum and cerebellum. Each
resting-state fixation run again lasted 7 min 2 sec (422 frames with the first 12 frames
removed for T1 equilibration). Dual-gradient-echo B0 fieldmaps were also acquired with
parameters matched to the refinement stage. The first two sessions of P12 were acquired
in a different FOV (211 x 211); therefore, the matrix for both BOLD runs and field maps
was: 88 x 88 x 65 and BOLD TE = 32.6 ms, matching S1 and S2. The change in FOV did not
affect the quality of registration or impact the analyses in any way we could detect.

High-resolution T1w and T2w scans were acquired for the implementation stage

data based on the Human Connectome Project (HCP; Ref. 87). T1w MPRAGE parameters:



voxel size = 0.8 mm, TR = 2,500 ms, TE = 1.81, 3.60, 5.39, and 7.18 ms, TI = 1,000 ms, flip-
angle = 8°, matrix 320 x 320 x 208, 144, in-plane GRAPPA acceleration = 2. T2w sampling
perfection with application-optimized contrasts using different flip angle evolution
sequence (SPACE) parameters: voxel size = 0.8 mm, TR=3,200 ms, TE=564 ms, 208 slices,
matrix=320 x 300 x 208, in-plane GRAPPA acceleration = 2. Rapid T1w structural scans
were also obtained as backup using the refinement stage sequence but with matrix 192 x
192 x 144.

Functional Testing Stage Data. To explore functional response properties, extensive
task-based BOLD fMRI data were collected on participants P1 to P15. Task runs used the
same sequence as the resting-state fixation runs, ensuring the estimated networks would
be spatially aligned to the task-based data. Details of the task designs, stimuli and run

structure are described below under Task Paradigms.

Exclusion Criteria and Quality Control

Each BOLD fMRI run was examined for quality. Exclusion criteria generally
consisted of the parameters reported in Xue et al. (75) including: 1) maximum absolute
motion > 1.8 mm and 2) slice-based SNR < 130. Runs with SNR > 100 but also SNR < 130
were retained if motion and visual inspection indicated adequate quality. For the functional
testing stage data, the maximum absolute motion for the Episodic Projection task was > 2.5
mm given the long duration. One borderline motor run (P2) was included with motion of
1.9 mm as the motion was largely due to a linear drift. For the refinement stage, usable
resting-state runs were 62 (S1) and 61 (S2) runs. For the implementation stage, usable
resting-state runs ranged from 15 (P11) to 24 (P12) runs. For the functional testing stage,
usable task runs ranged from 18 (P5) to 70 (P12) runs (see Table 1). All data exclusions

were finalized prior to functional connectivity and task response analyses.

Data Processing and Registration that Minimizes Spatial Blurring



Data were processed using an in-house preprocessing pipeline (“iProc”) that
preserved spatial details by minimizing blurring and multiple interpolations [described in
detail in Braga et al. (62)]. For the refinement stage data (S1 and S2), the processed data
were taken directly from Xue et al. (75) with relevant method description repeated here.
For the implementation stage data (P1 to P15), the changes in processing included the use
of the high resolution T1w and T2w structural images. For one participant (P12), the
registration failed with the 0.8 mm T1w structural image and their 1.2 mm image was used
as a back-up. For another participant (P1), only the 0.8 mm T1w structural image was used
without a paired T2w image.

Data were interpolated to a 1-mm isotropic T1w native-space atlas (with all
processing steps composed into a single interpolation) that was then projected using
FreeSurfer v6.0.0 to the fsaverage6 cortical surface (40,962 vertices per hemisphere; see
Ref. 74). Four transformation matrices were calculated: 1) a motion correction matrix for
each volume to the run’s middle volume [linear registration, 6 degrees of freedom (DOF);
MCFLIRT, FSL], 2) a matrix for field-map-unwarping the run’s middle volume, correcting
for field inhomogeneities caused by susceptibility gradients (FUGUE, FSL), 3) a matrix for
registering the field-map-unwarped middle BOLD volume to the within-individual mean
BOLD template (12 DOF; FLIRT, FSL), and 4) a matrix for registering the mean BOLD
template to the participant’s T1w native-space image which was resampled to 1.0 mm
isotropic resolution (6 DOF; using boundary-based registration, FreeSurfer). The
individual-specific mean BOLD template was created by averaging all field-map-unwarped
middle volumes after being registered to an upsampled 1.2 mm and unwarped mid-volume
template (an interim target, selected from a low motion run, typically acquired close to a
field map).

For resting-state fixation runs, confounding variables including 6 head motion
parameters, whole-brain signal, ventricular signal, deep cerebral white matter signal, and
their temporal derivatives were calculated from the BOLD data in the T1w native-space
volume. The signals were regressed out from the BOLD data using 3dTproject (AFNI; Refs.
88, 89). The residual BOLD data were then bandpass filtered at 0.01-0.1-Hz using
3dBandpass (AFNI; Refs. 88, 89). For task data runs, only whole-brain signal was regressed

out (see Ref. 90). Data registered to the T1w native-space atlas were resampled to the
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fsaverage6 standardized cortical surface mesh using trilinear interpolation (featuring
40,962 vertices per hemisphere; Ref. 74) and then surface-smoothed using a 2-mm full-
width-at-half-maximum (FWHM) Gaussian kernel. The iProc pipeline thus allowed for high-
resolution and robustly aligned BOLD data, with minimal interpolation and signal loss,
output to two relevant spaces: the native-space volume and the fsaverage6 cortical surface.
Analyses were performed on the fsaverage6 cortical surface, but the network estimates
(parcellations) were projected back into the individual participant’s native-space volume

allowing both surface-based and volume visualization.

Individualized Network Estimates of the Cerebral Cortex Using a Multi-Session
Hierarchical Bayesian Model

The MS-HBM was implemented to estimate cortical networks (71). The MS-HBM
was independently implemented for the refinement stage data (S1 and S2) and then
subsequently for the implementation stage data (in three separate groups P1-P5, P6-P10,
and P11-P15). Estimating the model separately for multiple small groups allowed for
prospective replication. As the results will reveal, the procedure was robust.

First, the connectivity profile of each vertex on the fsaverage6 cortical surface was
estimated as its functional connectivity to 1,175 regions of interest (ROIs) that uniformly
distributed across the fsaverage surface (23). For each run of data, the Pearson'’s
correlation coefficients between the fMRI time series at each vertex (40,962 vertices /
hemisphere) and the 1,175 ROIs were computed. The resulting 40,962 x 1,175 correlation
matrix was then binarized by keeping the top 10% of the correlations to obtain the
functional connectivity profiles (23).

Next, the expectation-maximization (EM) algorithm for estimating parameters in the
MS-HBM was initialized with a group-level parcellation from a subset of the HCP S900 data
release (that itself used the clustering algorithm from our previous study; Ref. 23). It is
important to note that the goal of applying the model in this study was to obtain the best
estimate of networks within each individual participant’s dataset, not to train parameters
and apply them to unseen data from new participants (see Ref. 71). In this analysis, as with
our other studies using this approach (68, 75), we did not include the validation step

described in Kong et al. (71), so no spatial smoothness prior was applied. Only the training
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step described in Kong et al. (71) was conducted here. A network label assignment for each
vertex was obtained for each participant within the training step.

Refinement Stage Data. Data from the two participants (S1 and S2) were analyzed
together using the same MS-HBM. The data were used to estimate and compare the 15-
network MS-HBM and the 10-network MS-HBM, as well as to explore the reliability of
model estimates when subsets of data were analyzed. The results from these initial two
participants guided the subsequent processing of the implementation stage data.

The specific impetus for exploring a 15-network model was that networks at or near
to the insula did not distinguish multiple networks that had been reported in the literature,
variably labeled the Cingulo-Opercular Network and Salience Network (Ref. 91; see also
Ref. 92), as well as established distinctions at or around primary visual and somatomotor?!
cortex. The 15 candidate networks explored here are labeled?: Somatomotor-A (SMOT-A),
Somatomotor-B (SMOT-B), Premotor-Posterior Parietal Rostral (PM-PPr), Cingulo-
Opercular (CG-OP), Salience / Parietal Memory Network (SAL / PMN), Dorsal Attention-A
(dATN-A), Dorsal Attention-B (dATN-B), Frontoparietal Network-A (FPN-A)3,
Frontoparietal Network-B (FPN-B), Default Network-A (DN-A), Default Network-B (DN-B),
Language (LANG), Visual-Central (VIS-C), Visual-Peripheral (VIS-P), and Auditory (AUD).

Implementation Stage Data: Discovery, Replication and Triplication Datasets. A key

aspect of our methods is generalization and replication. The 15 participants in the

! We term these networks somatomotor (SMOT) networks because each comprises both
somatosensory cortex and motor cortex.

% Network labels use conventions that often reflect historical origins and diverge from current
understanding. For example, the canonical Default Network, originally identified in group-based
positron emission tomography (PET) data, is now postulated to comprise multiple, distinct
networks [see Buckner and DiNicola (135) for review]. The names, DN-A and DN-B, reflect the
historical naming convention modified to the current understanding of multiple networks. As
another example, the network labeled here as SAL / PMN has two distinct origins. Seeley et al.
(91) referred to the network as the Salience Network and Gilmore et al. (119) as the Parietal
Memory Network. Ideas about network organization and function are continuously evolving,
while the labels often reflect historical (not contemporary) understanding.

3 The Frontoparietal Network (FPN) has been fractionated into distinct, parallel networks in
multiple prior studies, but has not been consistently named. Here we label FPN-A and FPN-B to
be consistent with the order (A/B naming convention) of Kong et al. (71) and Xue et al. (75) who
also applied an MS-HBM to estimate networks. Other studies have used the reverse convention,
which could lead to confusion [e.g., Braga et al. (63); DiNicola et al. (114)].

12



implementation stage data were divided into discovery, replication and triplication
datasets of 5 participants each*. The MS-HBM, initialized with a 15-network group-level
parcellation obtained from a subset of the HCP S900 data (see Ref. 75), was applied

independently to the three separate datasets.

Model-Free Seed-Region Based Confirmation of the Networks

When employing the MS-HBM, there are assumptions about the organization of the
brain from the group prior, how many networks should be estimated, and assignment of
vertices to only a single network. The idiosyncratic patterns of estimated networks thus
could be distorted or fail to capture features of the underlying correlation matrix. To
confirm that the individual network estimates were not obligated by the assumptions, a
model-free seed-region based analysis was conducted using the same data as the MS-HBM,
mirroring the procedures outlined by Braga and Buckner (60). The results were expected
to converge if the model did not overly bias network assignments and diverge if the
assignments mismatched the underlying data patterns. Model-free seed-region based
confirmation thus served as a check to ensure network estimates properly captured
individual correlation patterns.

For this control check, the pair-wise Pearson correlation coefficients between the
fMRI time courses at each surface vertex were calculated for each resting-state fixation run,
yielding an 81,924 x 81,924 matrix (40,962 vertices / hemisphere). The matrix was then
Fisher r-to-z transformed and averaged across all runs to yield a single best estimate of the
within-individual correlation matrix. This averaged matrix was used to explore network
organization. The mean correlation maps were assigned to a cortical template combining
left and right hemispheres of the fsaverage6 surface into the CIFTI format to interactively
explore correlation maps using the Connectome Workbench’s wb_view software (93, 94).

Seed regions with robust functional connectivity correlation maps were manually selected

4 Pilot analyses were conducted to test whether an individual’s network estimate was influenced
by the group in which the participant was analyzed. In our explorations, the individual’s
parcellation was nearly identical whether the participant was grouped with one set of other
individuals or another set. We do not assume this will always be the case, as our analyses were
conducted for a group of healthy young adult participants with large amounts of data.
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within MS-HBM network boundaries. Anterior and posterior seed regions were recorded
and visualized for each network in all the participants. Thresholds were set at z(r) > 0.2 for
all seed regions. The color scales of correlation maps were set to range between 0.2 and

0.6, using the Jet look-up table (colorbar) for visualization.

Visualization Within the Individual Native-Space Volume

Networks were first estimated and analyzed for each individual on the normalized
fsaverage6 surface of FreeSurfer. Surface-based analyses allowed comparisons across
individuals and utilization of the group-based priors for initialization of the MS-HBM.
However, many applications require network assignments to be utilized within the native-
space anatomy of the individual’s own volume (e.g., for presurgical planning and
neuromodulation targeting). Given these needs, we devised a robust empirical procedure
to project the network estimates back into each individual’s native-space T1w anatomical
volume, as well as a procedure to verify the transformation was valid.

We constructed three separate images within the native-space volume that each
varied from 0-255 in one of the three Cartesian x, y, and z coordinate axes (e.g., the X-
coordinate image possessed a volume that linearly varied in the X-dimension going from 0
to 255 with no other variation across the image volume). Each separate axis-volume was
then projected to the fsaverage6 surface using mri_vol2surf and mri_surf2surf (FreeSurfer
v6.0.0) with the same spatial transformation used for the projection of the participant’s
BOLD fMRI data onto the fsaverage6 surface. Nearest neighbor interpolation was used. The
matrices for this projection were taken from each participant’s processing pipeline (iProc).

In this manner, x, y, and z volume coordinates were obtained on the surface using
the exact same spatial transformation matrix as originally applied to the BOLD data. We
assigned each surface network label to its corresponding x, y, and z coordinates in the
native-space volume. This resulted in a sparse 256 x 256 x 256 matrix in the volume, which
was filled in using nearest neighbor interpolation (Matlab knnsearch). We then masked this
with the individual’s FSL-reoriented and binarized cortical ribbon generated by FreeSurfer
during preprocessing. As a validity check, the final native-space network estimates were
projected back to the surface and compared to the original MS-HBM surface estimates for

each participant to ensure no spatial distortions.
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The parcellation results from MS-HBM were overlaid onto each individual’s T1w
structural image. Sagittal, axial, and coronal slices were chosen to show common
landmarks in each individual (midline, left and right insula, anterior commissure, primary

sensory and motor cortices).

Signal-to-Noise Ratio (SNR) Maps

Data acquired using BOLD-contrast (T2* images) and echo-planar imaging possess
variable distortion and signal dropout due to magnetic susceptibility artifacts, especially
near the sinus and ear canals (e.g., Ref. 95). Vertex-based SNR maps were computed by
taking the preprocessed time series from each resting-state fixation run (prior to
regressing out confounding variables) and dividing the mean signal at each vertex by its
standard deviation over time. The SNR maps were then averaged across the runs, resulting
in an aggregate within-individual SNR map on the fsaverage6 surface. To visualize these
effects in the native anatomy, surface maps were projected to the native-space volume
using the procedure described above. The only difference is that linear interpolation

(Matlab scatteredInterpolant) was used to fill in the sparsely filled 256 x 256 x 256 matrix.

Variability in Network Estimates Between Individuals

To measure spatial variability across individuals, overlap maps of network
assignments were computed. For each individual, the spatial extent of their estimated
network was plotted simultaneously with all other participants and the percentage of
overlap computed. In addition, the individual networks were plotted next to one another to
appreciate the commonalities across individuals as well as the idiosyncratic features of
each individual’s estimate (available in the Supplemental Materials).

Overlap maps were also computed for the model-free seed-region correlation maps.
These maps make no assumption of a winner-take-all network assignment so provide a
different view of network consistency or inconsistency across participants. For this final
analysis, each individual’s seed-region correlation map for each network was thresholded
at z(r) > 0.2 and the overlap across participants plotted. The analysis was performed

separately for both the anterior and posterior seed regions for each network.
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Finally, the estimates were used to construct consensus and agreement atlases
intended to provide the community resources to integrate the present observations into

their own processing pipelines.

Visualization on the Flattened Cortical Surface

The human cerebral cortex is a complex structure with numerous sulci and gyri that
can make it difficult to appreciate topographic patterns, including patterns that evolve over
medial to lateral views and through complex structures like the insula. To appreciate global
topographic relations, a flattened surface was created by editing the inflated surface file
using the “TKSurfer” tool of FreeSurfer v6.0.0. The flattened surface was constructed to
especially focus on the anatomy at and around the central sulcus extending into the insula.
Five linear cuts were made on the midline of the inflated cortical surface, including one
along the calcarine sulcus and four roughly equally spaced cuts radiating out from the
medial wall. Next, a circular cut was made on the midline to allow the surface to unravel.
Finally, the “mris_flatten” tool of FreeSurfer v6.0.0 was employed to create the flattened

surface. This procedure was performed separately for the left and right hemispheres.

Task Paradigms

Following estimation of within-individual networks, functional response properties
were explored in independent task-based data collected on the same individuals. The task
paradigms were chosen based on literature review and our prior studies because of their
ability to differentially activate distinct networks, and to do so robustly. A second feature of
the selected task paradigms is that they were amenable to repeat testing either because
extensive novel stimuli could be constructed (e.g., sentences, question probes) or, by their
nature, were resilient to habituation even after many repetitions (e.g., flickering visual
stimuli). Task details are described below.

Somatomotor Topography. The motor task extended from Buckner et al. (96) to
examine the organization of the foot, glute, hand and tongue representations. Novel
targeting of the glute representation allowed an intermediate body position to be mapped

between the hand and foot [as reported earlier in Saadon-Grosman et al. (76)]. The goal of
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this task paradigm was to activate somatotopic portions of SMOT-A and SMOT-B while
minimizing non-specific shared responses.

Following extensive pre-scan training, participants performed six types of active
movements in the scanner: 1,2) left and right finger taps (thumb to index and thumb to
middle), 3,4) left and right toes plantar flexion and dorsiflexion, 5) tongue movements from
right to left (touching the premolar upper teeth), and 6) contraction and relaxation of their
gluteal muscles. Each movement type was performed repeatedly across 10-sec movement
blocks. Prior to each movement block, a 2-sec visual cue of a drawn body part with a text
label informed the participant to initiate one of the six movement types. The fixation
crosshair then changed to a slow flickering black circle to pace the movements. The onset
of the black circle cued movement of thumb to index finger, toes plantarflexion, tongue to
the right and glutes contraction. The offset of the black circle cued movement of thumb to
middle finger, toes dorsiflexion, tongue to the left and glutes relaxation. After five cycles,
the word ‘END’ instructed movement cessation. Twenty-four movement blocks (4 per
movement type) occurred within each run, with 16-sec blocks of passive fixation following
each set of six movement blocks. Runs began and ended with fixation yielding 5 fixation
blocks per run.

Each run lasted 7 min 8 sec (428 frames with the first 12 frames removed for T1
equilibration). Six motor runs were collected with full counterbalanced orders of
movement conditions on each day. Runs were excluded from analysis if participants missed
or failed to respond to cues, as confirmed by operators observing their alertness and
movements from the control room.

Visual Topography. A visual retinotopic stimulation task was used to map visual
cortex (similar to Refs. 49, 97). Our design had three levels of eccentricity stimuli (to map
eccentricity gradients that span the V1, V2, V3 cluster) and separate vertical versus
horizontal meridian stimuli (to map polar angle reversals that separate the borders of V1,
V2, and V3; Ref. 98; see also Ref. 99). The goal of this task was to activate retinotopic
portions of VIS-C and VIS-P.

The basic stimulus consisted of a circular checkerboard that expanded outwards
from the central fixation point to approximate cortical expansion in visual cortex. Moving

from center, the radius ring of the checkerboard became larger by a log step of 0.29. The
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resulting checkerboard was rendered out to 36 even rings cropped to a resolution of 1024
x 1024 pixels. To localize the meridians, two wedges masked the checkerboard each
covering 0.5° to 16.2° of eccentricity and 11.2° of polar angle. Horizontal wedges were
centered at polar angles 360° and 180°; vertical wedges at 0° and 90°. To localize polar
angle, the checkerboard was masked with a circular ring, which increased in size with
increasing eccentricity. The center ring covered 0.5° to 1.6°, the middle ring 1.6° to 5.1°,
and the peripheral ring 5.1° to 16.2°.

Each run consisted of 10 10-sec blocks of visual stimulation (2 blocks of each of the
5 conditions). The beginning, middle, and end of each run included a 20-sec block of
extended fixation. During stimulation the checkerboard changed 6 times per sec in the
order: white/black, color, black/white, color, white/black, black/white. The black center
fixation dot unpredictably changed to gray (every 1 to 5 sec). To ensure continuous
fixation, participants pressed a button every time the fixation dot changed to gray. The
primary contrasts of interest were horizontal versus vertical meridian blocks, and
separately the three eccentricity blocks versus each other.

Each run lasted 4 min 30 sec (270 frames with the first 6 frames removed for T1
equilibration). Five runs were collected for each participant. Runs were excluded from
analysis if participants missed trials and the eye video recordings indicated drowsiness.
Lights within the scanner room were off during visual topography mapping, and a black
occluding board was inserted into the scanner to prevent any light reflections.

Oddball Task. The oddball task explored detection of transient responses to salient,
visual oddball targets that were uncommon relative to irrelevant non-targets and
distracting non-targets [similar to Wynn et al. (100)]. The goal of the task was to activate
the SAL / PMN and CG-OP networks. Both networks have regions at or near the anterior
insula and have been variably associated with response to task-relevant transients (see
Refs. 91,92, 101 for discussion).

Participants viewed a sequence of uppercase letters O and K in either black or red.
Participants pressed a button using their right index finger when a red K appeared and
withheld their responses to all the other letter-color combinations. The random trial
ordering was set using Optseq (102). In each run, 10% of the trials were target red Ks, 10%

were lure red Os, 40% were distractor black Ks, and 40% were distractor black Os. The
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contrast of interest was the target red Ks versus all other trials coded as the implicit
baseline.

Each run lasted 5 min 50 sec (350 frames with the first 6 frames removed for T1
equilibration). Following 6 sec of fixation overlapping the initial stabilization frames, an
initial 20-sec block of fixation was followed by a continuous extended block of 300 1-sec
trials (0.15 sec presentation of the letter followed by 0.85 sec of fixation), and then a final
20-sec block of extended fixation. Before the first trial, a 2-sec start cue (1 sec “Begin”, 1 sec
fixation) was presented, as well as a similar “End” cue after the final trial. Thus, the design
was a rapid, event-related paradigm sandwiched between blocks of extended fixation. Five
runs were collected for each participant. Runs were excluded from the analysis if
participants missed more than six targets within a task run, which accounted for 20% of
the total targets.

Working Memory (N-Back) Task. The working memory (N-Back) task was extended
from Cohen et al. (103) and Braver et al. (104) to explore demands on cognitive control
under varied levels of memory load. Specifically, the N-Back task utilized a 2-back versus 0-
back comparison to target FPN-A and FPN-B. In addition, following the design of the HCP N-
Back task paradigm, multiple stimulus types / matching rules were included to explore
whether the load effect was domain-flexible or domain-specialized (68, 105).

Stimuli were presented sequentially in the center of the computer screen.
Participants decided whether the current stimulus matched a consistent template target
(the 0-Back or low load condition) or whether the current stimulus matched the stimulus
presented two stimuli back in the sequence (the 2-Back or high load condition).
Participants maintained fixation on a central crosshair throughout the run.

The stimuli varied across four conditions (Face, Word, Scene, and Letter) that were
each presented in separate blocks. Faces and scenes were color images, with scenes
showing both indoor and outdoor spaces and chosen not to feature people (faces from HCP;
Ref. 105; scenes generously provided by the Konkle laboratory; Refs. 106, 107). Letters
included subsets of consonants, and words featured 1-syllable words from 10-word sets
matched for length and frequency using the Corpus of Contemporary English (Ref. 108;
vDecember 2015). In all but the Word condition, participants matched the stimuli to an

exact stimulus referent, or the exact stimulus presented two trials before. For the Word
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condition, the participants decided if the current word rhymed with the target (e.g.,
“dream” would be a positive match with “steam”).

Each N-Back run featured 8 blocks (a 0-Back and a 2-Back for each of the four
stimulus categories). Each block included a cue and 9 trials. During the first cue stimulus,
participants also saw the block type, either 2-Back or 0-Back. During 2-Back blocks,
participants looked for matches (identical images or rhyming words) with the stimulus 2
trials back, and during 0-Back blocks, participants looked for matches to the cue. The
background was black (matching the HCP format). All blocks included 2 target and 2 lure
(repeated non-target) trials. Targets and lures were equally likely to appear in each viable
trial position within and across runs. Participants pressed a button for every trial,
indicating match (right index finger) or no-match (left index finger).

Each run lasted 4 min 44 sec (284 frames with the first 12 frames removed for T1
equilibration). Following 12 sec of fixation overlapping the initial stabilization frames, an
additional block of 12 sec of fixation was followed by blocks of the N-Back task
interspersed with 15-sec fixation blocks (the fixation blocks came after two 25-sec N-Back
task blocks). Across runs, 0-Back and 2-Back blocks, categories, and their interactions were
counterbalanced. Each trial was 2.5 sec in duration (2 sec of stimulus presentation followed
by 0.5 sec of fixation). The fixation crosshair was white for the extended fixation blocks and
green during the N-Back task blocks. Within a run, all categories were seen before a
category repeated. Eight runs were collected for each participant. Runs where participants
missed responses in more than two trials were excluded from analysis.

Sentence Processing Task. The Sentence Processing task was adapted from
Fedorenko et al. (52, 53) to examine domain-specialized processing related to accessing
word meaning and phrase-level meaning. The target task involved sentences presented one
word at a time. The reference control task was presentation of nonword strings that were
matched in length and visually similar. The goal of this task was to activate the LANG
network [see Braga et al. (63)].

Participants passively read real sentences (“IN THE MORNING THE TAILOR WAS
SHOWING DIFFERENT FABRICS TO THE CUSTOMER") or pronounceable nonword strings
(“SMOLE MUFRISONA VEDER SMOP FO BON FE PAME OMOSTREME GURY U FO”). The

centered stimuli were presented one word (or nonword) at a time (0.45 sec per word).
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After each word or nonword string, a cue appeared for 0.50 sec, prompting the participants
to make a right index finger button press. Stimuli, generously provided by the Fedorenko
laboratory, never repeated. Word or nonword strings (6 sec each) were presented in 18-
sec blocks of 3 strings. Extended fixation blocks (18 sec each) appeared at the start of each
run and after every fourth string block. The primary comparison of interest was the
contrast between sentence and nonword blocks.

Each run lasted 5 min 0 sec (300 frames with the first 12 frames removed for T1
equilibration). Six runs were collected for each participant. Runs were excluded if the
participant did not read the stimuli (observed through eye monitoring) or missed
responses.

Theory-of-Mind Task. The Theory-of-Mind tasks were adopted from Saxe and
colleagues to explore domain-specialized processing associated with representation of
another person’s mental states (109-112). In the False Belief paradigm, participants
viewed a brief story and then, on a separate screen, a question about that story. In the False
Belief condition, the target stories described events surrounding a person’s perspective,
followed by a question about the thoughts and beliefs of that person. In the control False
Photo condition, stories described similar situations involving objects (e.g., in photos, on
maps, and in descriptions). In the Emotional / Physical Pain Stories paradigm
(subsequently abbreviated ‘Pain’), the target stories described a situation that evoked
personal emotional pain (Emo Pain condition) and were contrasted with control stories of
similar length and complexity involving physical pain (Phys Pain condition). Participants
rated the level of pain from “None” to “A Lot” during the question period. These two
paradigms yield similar task activation maps (112). Here the task contrasts of False Belief
versus False Photo and Emo Pain versus Phys Pain were combined with the goal to activate
DN-B (extending from Ref. 90).

Each run consisted of a series of stories and questions (15 sec per individual story /
question pairing). For both paradigms, each run included 5 target trials (False Belief or
Emo Pain) and 5 control trials (False Photo or Phys Pain). 15-sec fixation periods occurred
between trials. Stimuli never repeated.

Each run lasted 5 min 18 sec (318 frames with the first 12 frames removed for T1

equilibration). Eight runs were collected for each participant - 4 of the False Belief
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paradigm and 4 of the Pain paradigm. We implemented an exclusion criterion to exclude
any run with more than one missed trial. No runs met this criterion.

Episodic Projection Task. The Episodic Projection task was adapted from Andrews-
Hanna et al. (113) and DiNicola et al. (90) to encourage processes related to remembering
the past and imagining the future (prospection). In the target task conditions, participants
viewed a brief scenario that oriented to a situation in the past (Past Self) or future (Future
Self) simultaneously with a question about the event that encouraged participants to
imagine the specific scenario described. The similarly structured control condition asked
the participants about a present situation (Present Self). The task contrasts of Past Self
versus Present Self and Future Self versus Present Self were combined with the goal to
activate DN-A [extending from DiNicola et al. (90)]. Of relevance, detailed behavioral
analyses of these contrasts have suggested the main component process tracking increased
response in DN-A is the process of mentally constructing scenes (68, 114; see also Ref.
115). Thus, the task contrast used here taps into domain-specialized processing related to
spatial / scene processing (see Ref. 116 for discussion).

Each run contained a series of scenarios with questions (10 sec of scenario /
question presentation, followed by 10 sec of fixation). 30 questions appeared per run, with
3 per each condition of relevance (Past Self, Future Self, Present Self). Additional conditions
were included towards goals distinct from those targeted here. For our analyses, we focus
on the condition contrasts that have previously dissociated DN-A from DN-B in DiNicola et
al. (90). All scenarios were unique.

Each run lasted 10 min 17 sec (617 frames with the first 12 frames removed for T1
equilibration). Ten runs were collected for each participant that included 90 relevant trials
across runs (30 of each of the 3 conditions). Runs with more than two missed trials were

excluded.

Within-individual Task Activation Analysis

Functional task data were analyzed using the general linear model (GLM) as
implemented by FSL's first-level FEAT (FSL version 5.0.4; Ref. 117). All conditions were
included in each model design, even those not relevant to the contrasts of interest, except

for the Oddball Effect task contrast which coded the targets against the implicit baseline.
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The data were high-pass filtered using a cutoff of 100 sec (0.01-Hz) to remove low-
frequency noise within each run. GLM outputs included, for each contrast, 3-values for each
vertex that were converted, within FEAT, to z-values. Within each participant, z-value maps
from all runs were averaged together using fsimaths (118) to create a single cross-session
map for each contrast of interest. For the N-Back task, we ran both block-level and
condition-level GLMs. Block-level GLM outputs included z-value maps for each trial block,
which were averaged by condition across runs. Condition-level GLM outputs included z-
value maps for 2-Back and 0-Back conditions, which were averaged across runs. In both
cases, a single cross-session contrast map was then created by taking the difference
between condition mean maps.

Task contrasts were designed to functionally target specific networks and dissociate
response properties between networks. Two convergent methods were used for
visualization and quantification. First, z-value maps were compared visually by overlaying
the borders of networks onto the task contrast maps on the same cortical surface
(fsaverage6 cortical surface). This form of visualization allowed comprehensive assessment
of task response patterns. Contrast z-value maps were manually thresholded to best
demonstrate the task activation patterns for each participant. The PSYCH-FIXED look-up
table within Connectome Workbench was used for the color scale.

Second, a priori networks within-individuals were used to formally quantify
differences in response levels between networks, including direct tests for significant
differences between networks and between task contrasts. For each task contrast, the
average z-value was calculated for all vertices within each selected network, combining
across hemispheres. Mean z-values were computed for each task run, and the cross-run
mean z-values for each network was then plotted in a bar graph, along with the standard
error of the mean across participants. This analysis has the advantage of quantifying the
magnitude and variance of the response in each a priori defined network for each
participant, without any subjective decisions.

For both approaches to task response analysis, the networks were defined within

the individuals prior to examination of the task maps, to avoid the possibility of bias.

Software and Statistical Analysis
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Functional connectivity between brain regions was calculated in MATLAB (version
2019a; http://www.mathworks.com; MathWorks, Natick, MA) using Pearson’s product
moment correlations. FreeSurfer v6.0.0, FSL, and AFNI were used during data processing.
The estimates of networks in volume space were visualized in FreeView v6.0.0. The
estimates of networks on the cortical space were visualized in Connectome Workbench
v1.3.2. Statistical analyses were performed using R v3.6.2. Model-free seed-region
confirmations were performed in Connectome Workbench v1.3.2. Network parcellation
was performed using code from Kong et al. (71) on Github
(https://github.com/ThomasYeoLab/CBIG/tree/master/stable projects/brain parcellatio
n/Kong2019 MSHBM).

Results

Networks Can Be Estimated Robustly Within Individuals

Networks were estimated for the refinement stage data using a 15-network MS-
HBM model. Fig. 1 and Appendix Figs. A1-A5 display the main results for S1 and S2 on the
surface, and the Supplemental Materials display the comprehensive results and quality

control visualizations on the surface and in the native-space volume.

The first results pertain to data quality. The SNR maps are displayed on the cortical
surface (Fig. 1 and Appendix Fig. A3). Most of the cortical mantle possessed high SNR. As
expected, given signal dropout near the sinuses and the inner ear (95), there was
variability in SNR across the cortical surface with orbitofrontal cortex (OFC) and adjacent
ventrolateral prefrontal cortex (VLPFC), rostral inferior temporal cortex, and the temporal
pole showing low SNR (see Supplemental Materials for additional visualizations). Network

assignments in low SNR regions should be interpreted cautiously.
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The primary result of our procedures was an estimated parcellation into distinct
candidate networks. Appendix Figs. A1 and A4 display the 15-network estimates for S1 and
S2. All networks, including local sensory and motor networks, as well as distributed
association networks, were identified in both participants. While the general organization
was shared between the two participants, the spatial boundaries were idiosyncratic. These
patterns will be elaborated upon in detail in the upcoming results of the novel 15

participants. For these first two individuals we focused on validating the methods.

Model-Free Seed-Region Based Correlation Confirms the 15-Network Parcellation

The network estimates were based on a 15-network MS-HBM. In addition to
assuming a specific number of networks, the method also employed group priors to
constrain the estimates (see Supplemental Fig. 1). As such, it is possible that the resultant
networks do not accurately reflect the underlying within-individual correlation patterns as
one might expect. To explore this possibility and intuitively visualize the degree to which
the model captures underlying correlation patterns, a model-free seed-region based
correlation analysis was performed. A seed region was placed in an anterior position and
separately a posterior position within each network within each individual. The resulting
correlation maps are displayed in Appendix Figs. A2 and A5 in relation to the MS-HBM
network boundaries.

The estimated networks captured features of the correlation patterns remarkably
well including across small, distributed regions that might otherwise be overlooked. The
alignments were not perfect. Specifically, the correlation patterns included most of the
distributed regions in the MS-HBM solutions, and the patterns were largely selective to the
estimated networks. Small deviations, in the form of extensions of the patterns beyond the
network boundaries were common, likely in part because the network estimates forced a
winner-take-all assignment, but also possibly because additional network details may be

missed®. The consistency between the general correlational structure and the network

> Gordon et al. (67) recently described a set of inter-effector regions along the central sulcus,
which was not explicitly incorporated into our group prior or model. Examining the details of
Appendix Figs. A2 and A5 shows that the correlation patterns from the seed regions placed
within the CG-OP extend farther into the pre-central gyrus than the MS-HBM defined CG-OP
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estimates in one sense is unsurprising because the underlying correlation matrix was
employed by the network model. However, it is not obligated, and deviations could be seen

if the model forced assignments, or the model failed to capture the structure of the data.

The 15-Network Parcellation Captures Features that Are Not Captured by a 10-
Network Parcellation

We next sought to explore what is gained by adopting the 15-network parcellation
rather than the simpler 10-network parcellation. Appendix Figs. A6 and A9 display the MS-
HBM parcellation estimate for the 10-network and 15-network solutions for each
participant. The first notable result is that, for most networks, there was little difference
between the two models’ estimates. For example, the separation of DN-A and DN-B was
well captured by both model solutions with the distributed spatial patterns and
idiosyncratic features quite similar between models. That is, if the goal were to study DN-A
and DN-B, there is little gained by utilizing the more complex 15-network model. In both S1
and S2, many of the other major networks were also similar between the two parcellations,
including FPN-A, FPN-B, SMOT-A and SMOT-B. Thus, for networks well captured by the 10-
network model, they appear to be roughly unchanged in the 15-network model. For other
networks though, there were substantive differences.

One motivation for investigating a 15-network model was that certain networks did
not differentiate established distinctions at or around somatomotor cortex and visual
cortex, as well as between multiple networks within or adjacent to the insula including
separation of a Cingulo-Opercular Network from a Salience Network (Ref. 91; see also Ref.
92 for discussion). These features were captured in the 15-network MS-HBM. Specifically,
the single visual network in the 10-network estimate was differentiated among dATN-B,
VIS-C and VIS-P in the 15-network solution (Appendix Fig. A7). The SAL network in the 10-
network estimate was differentiated into two separate networks here labeled SAL / PMN
and CG-OP (Appendix Fig. A11). The dATN in the 10-network estimate was differentiated
into dATN-A and PM-PPr in the 15-network solution (Appendix Fig. A8), and a distinct AUD

network regions themselves. As will be revealed in upcoming analyses, placing seed regions
where the CG-OP extends into the pre-central sulcus yields the inter-effector correlation pattern,
confirming discontinuities in the body map as discovered by Gordon et al. (67).
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network emerged near to LANG and SMOT-B (Appendix Fig. A10). Critically, seed-region
based correlation patterns suggested that this expansion of networks from 10 to 15
captured clear features of the underlying correlation patterns (Appendix Figs. A7, A8, A10,
and A11).

One unexpected result was that our 15-network parcellation included a single
network that has been variably described in the literature. What has been called the
“Parietal Memory Network” (119), with focus on the posterior midline, has often been
discussed separately from the network referred to by Seeley and colleagues as the
“Salience Network” (92). Here a single distributed network was identified that possessed
the canonical features of both networks. The seed-region based correlation maps
supported that the two networks discussed historically as distinct are likely a single
network (Appendix Figs. A2, A5, and A11), a result that will be further examined in the

prospectively acquired and analyzed data.

Network Estimates Are Reliable Within Individuals

We next sought to address two related questions. First, are the network estimates
described above reliable within individuals? Second, can they be obtained with a lesser
amount of data? The resting-state fixation runs of S1 and S2 were divided into three
datasets with roughly equal amounts of runs contributing to each data subset (20/20/22
runs of data for S1 and 20/20/21 runs of data for S2). The 15-network MS-HBM was

estimated independently for each data subset. Results are displayed in Fig. 2.

In S1, 84.2% on average of cortical vertices were assigned to the same networks
across the independent datasets from within the individual. In S2, 88.0% of cortical
vertices were assigned to the same networks. By contrast, overlap between the separate
parcellations of S1 and S2 were 58.3%, 58.9% and 59.2%, indicating that between-

individual variability was substantially larger than within-individual variability (59, 71).
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The reliability of network estimates derived from varying the amount of data,
ranging from 2 to 20 runs of resting-state fixation data, is visually illustrated in Figs. 3 and
4. In each dataset, we independently applied the 15-network MS-HBM model. As shown in
the figures, a few runs of data can capture the overall correlational patterns but fall short of
revealing the idiosyncratic details of networks within the individual. As the quantity of data
integrated into the model increased, both S1 and S2 demonstrated network estimates that
displayed a noticeable trend towards greater consistency between independent datasets.
This improvement is quantified in Supplemental Materials. In general, robust networks
emerged when we leveraged approximately 20 runs of data for both S1 and S2. These
findings suggest that cortical parcellations of the resolution and within-individual detail
targeted here are replicable for models based on ~20 runs of data. Notably, this is the
amount of data collected for the 15 new participants in the implementation stage dataset

analyzed throughout the rest of this paper.

Network Estimates in 15 New Participants Reveal Organizational Features

Discovery, Replication and Triplication in the Implementation Stage Data. 15 cerebral
networks were estimated for all new participants. The 15 individuals were analyzed within
subsamples (each n = 5) intended to replicate the MS-HBM'’s network estimates in
prospective participants including novel discovery (P1-P5), replication (P6-P10) and
triplication (P11-P15) datasets. Results were similar across all three subsamples, and the
full parcellation for each individual is available in the Supplemental Materials on the
surface and within the individual’s own native-space volume. Despite idiosyncratic spatial
details of network organization, the broad properties were largely consistent. Three

representative participants, one from each subsample, are displayed in Figs. 5 to 7.



Insert Figures 5-7 About Here

Network Estimates Reveal Predominantly Local Sensory and Motor Networks. VIS-C
and VIS-P were identified in each participant extending from the calcarine sulcus on the
midline to the lateral surface. The extent of the two networks across the occipital lobe did
not align them with individual visual areas, but rather the expanded regions of the
V1/V2/V3 retinotopic cluster, and likely adjacent retinotopic clusters (120, 121). The
multiple networks appeared to divide along the eccentricity gradient (122). The VIS-C
network overlapped regions likely aligned to the central portions of the V1/V2/V3
retinotopic representations, while VIS-P overlapped the peripheral retinotopic
representations (see Ref. 23). The relation of VIS-C and VIS-P to task-elicited responses is
directly explored in a later section.

While the VIS-C and VIS-P networks contained vertices that were mostly contiguous,
there were exceptions. Discontinuous islands were sometimes found in occipital-temporal
cortex, possibly a reflection of separate extrastriate retinotopic clusters (e.g., at or near the
MT/V5 hemifield representation). VIS-P also occasionally contained small, punctate
representations near to dorsolateral prefrontal cortex (DLPFC). These were the exceptions:
the majority of the VIS-C and VIS-P networks’ included vertices were continuous and
adjacent to one another, overlapping the expected location of early retinotopic visual
cortex.

Similarly, SMOT-A and SMOT-B were identified reliably as spatially continuous
networks along the central sulcus, extending onto the midline and into the posterior insula.
These two somatomotor networks also do not likely align to individual architectonic areas,
but rather extend across the pre- and post-central gyrus including primary motor as well as
somatosensory areas. The extent along the midline and into the posterior insula further
suggests the networks span multiple body maps, not simply the dominant inverted body
map along the central sulcus.

A final predominantly local sensory network, AUD, was consistently identified near
to the superior temporal sulcus. This network extended across the full supratemporal

plane including Heschl’s gyrus, and into adjacent regions.
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Multiple Distributed Networks Lie Adjacent to the Local Sensory and Motor Networks.
Multiple distributed networks were identified in each participant that were immediately
adjacent to the local sensory and motor networks, with each network containing
distributed regions that spanned multiple zones of cortex. dAATN-A and dATN-B were
adjacent to VIS-C and VIS-P but also with distant regions in the frontal cortex, likely at or
near the frontal eye field (FEF; Refs. 32, 123). Similarly, CG-OP and PM-PPr radiated
outwards from the early somatomotor networks SMOT-A and SMOT-B. CG-OP and PM-PPr
sometimes contained small islands indenting or even within the SMOT network boundaries
that may relate to interspersed inter-effector regions along the central sulcus (67). CG-OP
and PM-PPr also included regions abutting and within the Sylvian fissure. The relations
among the networks will become even clearer in the upcoming flat map visualizations.

A final network, SAL / PMN, displayed a spatial pattern that was adjacent to CG-OP
in many locations but also with differences. While SAL / PMN contained a prominent region
in the anterior insula, the network’s positioning did not juxtapose the somatosensory
networks. Rather, SAL / PMN was adjacent to a posterior midline cluster of association
networks near to regions of the canonical “Default Network” (e.g., Refs. 23, 24, 29, 124).
SAL / PMN consistently included a region within ACC anterior to CG-OP and a prominent
set of regions along the mid-cingulate and the posterior midline. As noted for S1 and S2, the
SAL / PMN network’s spatial pattern combined features described in prior work on the
Salience Network [91; see Seeley (92) for discussion and Dosenbach et al. (101) for related
work] and the Parietal Memory Network (119).

Much of Association Cortex is Populated by Multiple Parallel Juxtaposed Networks.
The remaining regions of association cortex -- that contain the majority of PFC, a large
region of PPC extending into the temporoparietal junction (TPJ) and lateral temporal cortex
(LTC) -- were populated by five distinct networks. With some exceptions, each of these five
networks tended to possess regions in each of the distributed zones. The five networks
were interwoven with local patterns of adjacencies that repeated across the cortex.

Specifically, FPN-A and FPN-B were adjacent to one another throughout the cortical
mantle. FPN-A and FPN-B displayed a distributed pattern consistent with the well-studied
group-estimated Frontoparietal Control Network, also referred to as the Multiple-Demand

System (23, 24, 125). These two juxtaposed networks (FPN-A and FPN-B) consistently
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neighbored an additional clustered set of three networks - LANG, DN-B, and DN-A. These
three additional networks were tightly juxtaposed among themselves on the lateral cortical
surface including zones within PPC, LTC, and both DLPFC and VLPFC. DN-A and DN-B were
interdigitated as well along the anterior and posterior midline, consistent with previous
studies (60-62).

Despite being adjacent in many locations, clear features distinguished the three
networks. The LANG network surrounded the Sylvian fissure and included regions near to
the AUD network and in VLPFC at or near historically defined “Broca’s area”. The LANG
network was generally larger in the left compared to the right hemisphere [see Braga et al.
(63)]. DN-A showed a strong correlation with the posterior parahippocampal cortex (PHC)
[see also Reznik et al. (126) for further details]. Additionally, DN-A occupied regions at or
adjacent to the retrosplenial cortex (RSC) and ventral posterior cingulate cortex (PCC). DN-
B prominently included anterior regions of the inferior parietal lobule extending into the
TPJ] [a region of particular focus, e.g., Saxe and Kanwisher (109); Jacoby et al. (112)]. The
posterior midline region of DN-B fell between regions of DN-A and specifically did not
extend into RSC. DN-B also included a larger region of the LTC than DN-A; DN-A tended to
include a small region or a few discontinuous regions in anterior LTC.

Of importance, the spatial arrangements of the five networks (FPN-A, FPN-B, LANG,
DN-B, and DN-A) repeated multiple times across the cortical mantle, a discovery that will

be expanded upon in the analyses of spatial juxtapositions on the flattened cortical surface.

Network Estimates Projected to the Native-Space Volumes Enable Clinical Applications
To enable clinical applications, particularly for presurgical planning and

neuromodulation, an empirical method was developed to project the networks estimated
on the surface into the native-space volume of individual participants. Figs. 8 to 10 display
examples for three representative participants from the discovery (P1), replication (P6)
and triplication (P11) datasets. The network estimates in the native-space volume were
overlaid onto each individual’s T1w structural image and displayed in sagittal, coronal, and
axial views. Similar maps for all available participants can be found in the Supplemental

Materials.
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Several details become apparent that were lost in the surface visualizations,
including that, within the native-space volume, regions that appear distant on the surface
are often quite close in the volume. Furthermore, network assignments in one cortical
gyrus were often similar to those in an adjacent gyrus, even those in separate lobes (and
thus presumably quite distant from one another on the surface). For example, temporal
pole regions, visualized particularly well in the sagittal plane, were often assigned to
networks also present in the ventral prefrontal regions abutting the Sylvian fissure (e.g.,
regions linked to the DN-B and LANG networks). It remains an open question whether
these between-gyri juxtapositions are a residual artifact of spatial blurring or an
interesting feature of anatomy that minimizes absolute distances between functionally

similar cortical regions.

A Cautionary Note About Potential Artifacts

Certain aspects of the network estimates were impacted by signal loss. Low SNR
regions were observed in the OFC, ventral regions of VLPFC, and anterior regions of the
temporal lobe (see Fig. 1 and Appendix Fig. A3, and Supplemental Materials). When
interpreting the network assignments, it is important to keep these spatially variable
effects in mind. For example, a localized AUD network was observed across the
supratemporal plane including Heschl’s gyrus. Inconsistent, discontinuous vertices were
also labeled as part of the AUD network in the inferior temporal cortex and OFC, in the
regions of the greatest signal dropout due to magnetic susceptibility differences. The

network assignments in low SNR regions should not be trusted.

Model-Free Seed-Region Based Correlations Again Confirm Network Estimates
To demonstrate that the correlation properties of the within-individual data were
captured in the network assignments, seed-region based correlation maps were visualized.

While there were minor differences between the MS-HBM network estimates and the seed-
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region based correlation maps®, networks could be identified in all participants using both
methods. Furthermore, the maps defined by anterior and posterior seed regions were
similar, indicating that the seed-region based method was not dependent on a single vertex
or one general region of cortex. Seed-region based confirmation for DN-A, DN-B, LANG,
FPN-A, FPN-B, CG-OP, and SAL / PMN are displayed for three representative participants in
Figs. 11 to 13, and for all participants and additional networks in the Supplemental

Materials.

Variability in Network Estimates Across Individuals

An overlap map of assignments for each network from the MS-HBM for the 15
participants is displayed in Fig. 14. Results revealed that the general organization of the
networks was highly conserved across individuals, but with differences in the idiosyncratic

spatial positioning and extents of the networks.

A challenge in examining spatial overlap is that there is circularity in network
definition since the process initiates with the same 15-network group prior, which could
bias the networks to show more overlap than is truly in the data. To mitigate this concern,
we also examined overlap using the network estimates derived from the seed-region
correlation maps. These maps are not constrained by the group prior and do not enforce a
winner-take-all assumption, allowing deviations to emerge. Overlap maps of correlation
patterns were obtained using anterior and posterior seed regions within each network for

all 15 participants (Appendix Fig. A12).
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As another exploration of variability, the individual networks were plotted next to
one another for all 15 participants, allowing another means to identify shared and
idiosyncratic features of each participant’s estimate. The results are available in the

Supplemental Materials.

Consensus and Thresholded Agreement Atlases

To provide atlases as open resources to the community for future use, the overlap of
network estimates across the 15 participants was used to create (1) a network consensus
atlas and (2) a series of thresholded network agreement atlases. These atlases can be used
prospectively by researchers to construct regions that have high likelihood of being in one
network or another without prior individual-level data.

In the network “consensus” atlas, each vertex was assigned to the network that was
most probable. For example, if a vertex was labeled DN-A in 7 participants, DN-B in 5
participants, and LANG in 3 participants, it would be assigned to DN-A in the consensus
atlas. Every vertex was assigned the label of its most likely network including uncertain
vertices. Supplemental Fig. 18 displays the consensus atlas.

In the network “agreement” atlases, each vertex was assigned to its most common
network but only if a certain number of participants showed agreement. For example, in
the n 2 8 (53%) agreement atlas, displayed in Fig. 15, only vertices where 8 or more
participants agreed on the same network assignment were labeled. Higher-order networks
exhibit a lower level of agreement among participants in the prefrontal, parietal and
temporal association cortices. Supplemental Fig. 12 displays agreement atlases for various
count thresholds ranging from n = 6 (40%) ton = 12 (80%). These agreement atlases
highlight cortical locations where many or most individuals would likely be assigned to the

same network (127).

Higher-Order Networks Nest Outwards from Primary Cortices
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To better reveal spatial relations among networks, a flattened cortical surface was
constructed (Fig. 16). The 15 networks are displayed in representative participants in Figs.
17 to 19, and for all participants in the Supplemental Materials. A broad observation was

that higher-order networks nest outwards from sensory and motor cortices.

Specifically, the networks could be heuristically grouped into three levels beginning
with first-order sensory and motor networks®. The first-order networks were primarily
locally organized, spatially arranged along the central sulcus (for SMOT-A and SMOT-B)
and near to the calcarine sulcus (for VIS-C and VIS-P). Surrounding these first-order
networks were adjacent networks that radiated outwards. We refer to these as second-
order networks. CG-OP and PM-PPr surrounded SMOT-A and SMOT-B, and dATN-A and
dATN-B were adjacent to VIS-C and VIS-P. In between these second-order networks were
third-order networks (FPN-A, FPN-B, LANG, DN-B, and DN-A) that populated the large,
expanded zones of higher-order association cortex. The flattened representation allowed
further features to be appreciated.

CG-OP and PM-PPr nearly fully surrounded both the anterior and posterior extents
of the somatomotor networks, including the insular regions that are buried within the
Sylvian fissure. While CG-OP and PM-PPr were generally interdigitated around the first-
order somatomotor networks, in several locations CG-OP fell distal to PM-PPr (meaning
PM-PPr directly juxtaposed SMOT-A and SMOT-B and CG-OP juxtaposed PM-PPr).

Furthermore, while the PM-PPr network was adjacent to the somatomotor networks across

® Any heuristic framework will necessarily emphasize certain features of organization and
deemphasize others. A three-level hierarchy, while not capturing local features of organization,
is a useful framework to emphasize aspects of global organization that are the focus of this paper
and, as will be discussed, converges with similar frameworks that have arisen from direct
anatomical description (e.g., Refs. 169, 170). Alternative organizational schemes are possible,
and the three-level hierarchy proposed should be viewed as an orienting framework.
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its extent, CG-OP also involved distant regions in PFC and posterior association zones that
were not adjacent to somatomotor networks. Thus, CG-OP possessed a partially distributed
motif. Additional details of dATN-A and dATN-B were also evident. Of the two networks,
dATN-B fell more proximal to the early visual networks and dATN-A more distal. dATN-A
included distributed regions in frontal cortex at or near FEF, while dATN-B was more
locally organized but not exclusively so.

Comparing dATN-A and dATN-B with CG-OP and PM-PPr, as highlighted in panels A
and B of Figs. 17 to 19, revealed parallel features. The second-order networks were all
spatially anchored near to the early (first-order) sensory and motor networks, appearing
as if they grew out or formed from the earlier networks. CG-OP in several individuals
extended into the pre-central gyus®. And, despite being far apart in their major extents,
both sets of networks had distributed components throughout association cortex including
adjacencies in frontal cortex. Thus, from the standpoint of a potential hierarchy among
networks, these second-order networks possess a motif that anchors them to the early
sensory and motor networks and simultaneously connects them to distributed zones of
association cortex.

We provisionally label SAL / PMN as a second-order network, but it has
juxtapositions that differentiate it from the other second-order networks®. Across much of
its extent, SAL / PMN paralleled CG-OP with multiple juxtapositions. SAL / PMN differed in
that it was not adjacent to early sensory and motor networks. Rather, SAL / PMN contained
regions that were near to the network labeled DN-A, especially along the posterior midline,
where its regions could easily be confused with the large DN-A and DN-B regions that
occupied much of the posterior midline.

The zones farthest away from the sensory and motor regions were populated by five
third-order association networks (FPN-A, FPN-B, LANG, DN-B, and DN-A). Each third-order
network possessed regions distributed widely throughout association cortex. Moreover,
regions of distinct third-order networks displayed side-by-side juxtapositions with a
pattern that repeated similarly across multiple zones of cortex. We will focus on these

repeating clusters of five networks extensively in later sections.
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Somatomotor and Visual Networks Respond to Body Movements and Visual
Stimulation in a Topographic Manner

The spatial extent of task-elicited responses to body movements and visual
stimulation were mapped in direct relation to the network boundaries. The goal of these
analyses was to explore whether within-individual network estimates predict task
responses. We start here with descriptions of sensory and motor responses, and in later
sections explore responses to varied cognitive task demands. In all cases, the network
boundaries were established before examination of the task responses. Appendix Fig. A13
illustrates the body movement and visual stimulation mapping strategy, and Fig. 20
displays the detailed maps for one representative participant on the inflated and flattened
surfaces. Additional participants are displayed in Fig. 21, and all participants with available

task data are shown in the Supplemental Materials.

Task activation maps revealed that body movement and visual stimulation task
contrasts elicited responses that were aligned to, and generally filled in, the first-order
network estimates (SMOT-A, SMOT-B, VIS-C, and VIS-P). That is, the idiosyncratic network
estimates in each individual predicted the localization of the movement and visual
stimulation responses. The visual responses often extended beyond the anterior
boundaries of VIS-C and VIS-P, including portions of dATN-B, but generally followed the
network boundaries. Several additional results are notable.

First, the main body map along the central sulcus extended across networks (SMOT-
A and SMOT-B) as did the retinotopic eccentricity gradient (VIS-C and VIS-P). Within the
visual system, there was a clear correspondence between the two visual networks and
eccentricity. VIS-C, as anticipated given its anatomical position, tracked the central
representation. VIS-P covered the peripheral representation. A gap emerged for the most
peripheral regions of the dorsal and ventral eccentricity portions of VIS-P, possibly because

the visual stimulation did not extend fully to the periphery [see Park et al. (128)]. Within
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the somatosensory and motor systems, there was a distinct gap between the
representations of the hand and glutes, which may be an inter-effector region (67), as will
be discussed more below.

Second, the response patterns did not align to expected boundaries of individual
brain areas (i.e., V1, S1). The body movements activated regions pre- and post-central
gyrus, spanning multiple motor and somatosensory areas. Examined in detail, the body
movement responses suggest at least three distinct maps of the main body axis, labeled I, II,
and IIl in Fig. 20. The largest distinct body map was found aligned to primary somatomotor
cortex, exhibiting a medial-to-lateral progression from foot to hand to tongue (Fig. 20,
labeled I). In the posterior insula, the body map was buried with a posterior to anterior
orientation (Fig. 20, labeled II). On the medial wall, the body map progressed from anterior
to posterior (Fig. 20, labeled III). Similarly, the visual responses spanned the extent of at
least the V1/V2/V3 retinotopic cluster, with networks cutting across areas (verified
through polar mapping as illustrated in Appendix Fig. A13E). Thus, the response patterns
confirm that early somatomotor and visual networks group multiple areas together and
split areas along topographic gradients (e.g., VIS-C versus VIS-P; see Ref. 122).

Third, the gap in the body map between the representations of the hand and glutes
was associated with a distinct distributed correlation pattern that created discontinuities
within the primary motor body map (including breaks between effector regions along the
pre-central gyrus). Replicating Gordon et al. (67), Fig. 22 illustrates the “inter-effector”
pattern. In almost every individual, placing a seed region within the gap revealed a robust
distributed correlation pattern that typically contained at least two additional zones along
the pre-central gyrus: a region ventral to the face representation and a dorsomedial region
near to the foot representation. The pattern substantially overlapped the CG-OP network
including regions surrounding the primary somatomotor networks and extending into the
CG-OP regions distributed throughout the cortex. The inter-effector seed region pattern
also included prominent regions at and around the primary visual retinotopic cluster most
typically at the edges of the peripheral representation, consistent with the integration of

the visual domain in addition to the motor domains noted by Gordon et al. (67).



Insert Figures 20-22 About Here

CG-OP and SAL / PMN Respond to Salient Transients

The oddball task was designed to measure the transient response to uncommon
visually salient targets that require participant response. The mapping strategy is
illustrated in Appendix Fig. A14. On the flattened cortical surface, the within-individual a
priori-defined networks CG-OP and SAL / PMN are displayed in relation to the Oddball
Effect task contrast. The details of the Oddball Effect task contrast are shown for one
representative participant in Fig. 23. Fig. 24 illustrates that the features can be observed in

additional participants, and in all participants as shown in the Supplemental Materials.

The Oddball Effect task contrast response was widely distributed across the cortex.
The response prominently involved the distributed regions of the CG-OP and SAL / PMN
networks, including regions in the anterior insula as well as along the posterior midline.
These collective regions have been the emphasis of prior studies separately focused on the
Salience Network and Parietal Memory Network. Thus, as predicted by the hypothesis that
SAL / PMN is a single network, the response pattern observed here extended across the full
distributed extent of the network.

In addition to the consistent responses across the distributed regions of CG-OP and
SAL / PMN, additional responses were reliably observed - a response along the central
sulcus in the left hemisphere near the estimated location of the hand representation and
along the calcarine sulcus near the central representation of the visual field (contrast Fig.
23 with Fig. 20). The response in the hand region of the central sulcus was exclusively in
the left hemisphere consistent with the right-handed response.

To quantify the selectivity of the task response, the mean z-values for the Oddball

Effect task contrast were calculated separately for each association network. The estimates
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were obtained within the bounds of each individual’s a priori defined networks and then
averaged across participants (N = 14). Results plotted in Fig. 25 revealed a strong,
significant positive response to oddball targets in both the CG-OP (¢(13) =7.97,p < 0.001)
and SAL / PMN networks (t(13) = 6.21, p < 0.001). By contrast, for many of the third-order
association networks, the response was significantly negative (DN-A: ¢(13) =-11.76,p <
0.001, DN-B: ¢(13) =-8.81, p < 0.001, LANG: ¢(13) =-3.82,p < 0.01, FPN-B: ¢{(13) =-3.02,p <
0.01), with FPN-A being the exception. FPN-A showed a weak, non-significant positive
response (£(13) = 1.82, p = 0.09). These observations suggest that the CG-OP and SAL /

PMN networks are recruited during the Oddball Effect task contrast.

Given the historical focus on the Salience Network and Parietal Memory Network as
separate networks, and their proximity along the posterior midline to the historically
defined Default Network, we replotted the Oddball Effect task contrast on the inflated
surface (Fig. 26). For this visualization, the task map threshold was reduced to zero. Much
of the full extent of the CG-OP and SAL / PMN networks was strongly activated. The
positive response included the posterior midline regions that have been the focus of the
Parietal Memory Network (119) as well as the anterior insula region that has been a focus
of the Salience Network (91, 92). An interesting feature is that islands of the CG-OP
network that fell within the frontal midline showed positive responses in the within-
individual maps (Fig. 26). These small responses, which were adjacent to large regions with
an opposite response pattern, were absent in the group-averaged response (Fig. 26,
bottom). The positive response was not selective to these two specific networks, with
motor and visual responses as noted earlier. The positive response also extended into the
region of the visual second-order networks (e.g., dATN-B).

Critically, the networks at or near the historical Default Network, here estimated
within-individuals as encompassing at least DN-A and DN-B, were all strongly ‘deactivated’

meaning more active during the implicitly coded baseline reference than during the salient
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targets. That is, the contrast replicated the task deactivation pattern that originally
generated interest in the Default Network (124, 129, 130) in the presence of a robust
positive response across the distributed extent of the SAL / PMN network. Thus, the
separation of the effects along the posterior midline revealed a spatial dissociation
between the second-order network SAL / PMN and the third-order networks DN-A and DN-
B.

Higher-Order Zones of Association Cortex Possess a Repeating Motif

Distributed throughout association cortex, in the zones roughly” between the
second-order networks, were the five association networks FPN-A, FPN-B, LANG, DN-B,
and DN-A (Fig. 27). Among these networks, side-by-side juxtapositions repeated across
multiple cortical zones (refer to I, II, Il and IV in Fig. 27). FPN-A and FPN-B were reliably
positioned adjacent to one another and, as a pair, were adjacent to a repeating group of the
three other networks: LANG, DN-B and DN-A. We call these repeating clusters of five
networks Supra-Areal Association Megaclusters or SAAMs. The reproducibility of the
SAAMs across participants was striking and is illustrated for the posterior association
zones in all 15 participants in Fig. 28. While the idiosyncratic spatial details varied, multiple
SAAMs were consistently observed. The remaining task analyses explored functional

response properties of the association networks embedded within the SAAMs.

7 While the higher-order association networks were generally positioned between the second-
order networks, an exception to that pattern is that the LANG network juxtaposes the AUD
network, without second-order networks interdigitated. It is unclear whether this is a true
exception, or there are local organizational details that are not resolved by our current methods.
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FPN-A Responds to Domain-Flexible Working Memory Demands

The functional properties of the association networks comprising the SAAMs (FPN-
A, FPN-B, LANG, DN-B, DN-A) were explored first in relation to domain-flexible demands on
working memory and, in the next section, in relation to domain-specialized processing
functions. The hypothesis was that FPN-A and possibly FPN-B would modulate their
response in relation to increasing working memory load across multiple verbal and non-
verbal stimulus conditions (see Ref. 68). The mapping strategy is illustrated in Appendix
Fig. A15. On the flattened cortical surface, the within-individual a priori-defined networks
FPN-A and FPN-B are displayed in relation to the N-Back Load Effect task contrast
(collapsed across stimulus conditions). The N-Back Load Effect task contrast is shown in
detail in Fig. 29 for one representative participant. Fig. 30 illustrates that the features can
be observed in additional participants, and in all participants with available task data in the
Supplemental Materials.

As hypothesized, the N-Back Load Effect task contrast increased activation within
and near the boundaries of the FPN-A network and, to a lesser extent, the FPN-B network
(Fig. 29 and Appendix Fig. A15). The widely distributed response included extensive
regions of PFC, as well as regions of PPC and the dorsal ACC - all canonical regions
associated with domain-flexible cognitive control (e.g., Refs. 53, 131-133). As predicted by
the network estimates, there was also a response in LTC and a small subregion of the
anterior insula that is spatially distinct from that of other networks. Of equal importance
was the consistent absence of response in the distributed association regions linked to the
LANG, DN-B, and DN-A networks, including within the PPC and LTC. In essence, the N-Back
Load Effect task contrast split the SAAMs and activated the portions linked to the FPN-A
network with minimal or no response in the juxtaposed portions associated with the LANG,

DN-B, and DN-A networks.
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To quantify the selectivity of the task response, the mean z-values output from the
condition-level GLM for the N-Back Load Effect task contrast were calculated separately for
each association network. The estimates were obtained within the bounds of each
individual’s independent a priori defined networks and then averaged (N = 15). Results
plotted in Fig. 31 reveal a positive N-Back Load Effect response that was strongest in FPN-A
(t(14) = 21.67,p < 0.001) and also present in FPN-B (¢(14) = 6.45, p < 0.001). SAL / PMN
unexpectedly showed a significant positive response (t(14) = 7.91, p < 0.001) that was
significantly weaker than either FPN-A (¢(14) =-15.09, p < 0.001) or FPN-B (¢(14) =-2.91,p
< 0.01). Thus, while SAL / PMN showed a response, the functional response was less
relative to FPN-A and FPN-B, opposite to the pattern found earlier (contrast Fig. 31 with
Fig. 25). The remaining networks, including the three additional networks that were
adjacent within the SAAMs, showed a negative N-Back Load Effect. The effect was
significantly negative for DN-A (t(14) = -4.85, p < 0.001) and DN-B (¢(14) =-7.14, p < 0.001)
but not LANG (¢(14) = -0.81, p = 0.43). These results provide evidence that the FPN-A
network and possibly the FPN-B network are involved in processes enhanced by increasing
working memory demands, while other juxtaposed networks - LANG, DN-B and DN-A - are
functionally dissociated, consistent with the qualitative patterns visualized in the activation
maps.

To further investigate the domain flexibility of FPN-A and FPN-B, the mean z-values
output from the block-level GLM for each of the four stimulus conditions of the N-Back
Load Effect (Face, Letter, Word, and Scene) were separately plotted (Fig. 31). FPN-A (Face:
t(14) = 11.74; Letter: t(14) = 16.03; Word: t(14) = 11.30; Scene: t(14) = 12.05, all p < 0.001)
and to a lesser degree FPN-B (Face: t(14) = 5.13; Letter: t(14) = 5.60; Word: ¢t(14) = 5.15;
Scene: t(14) = 5.54, all p < 0.001) exhibited a significant response across all conditions of
the N-Back Load Effect task contrast, supporting that their processing role generalizes
across both verbal and non-verbal domains. That is, FPN-A and FPN-B responded to
working memory demands, more so than adjacent networks and did so in a domain-flexible

manner.

Insert Figure 31 About Here
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LANG, DN-B, and DN-A Respond Differentially to Distinct Cognitive Domains

Among the networks that populate the distributed zones of higher-order association
cortex, FPN-A and possibly FPN-B responded in a domain-flexible manner to increasing
working memory load. The adjacent trio of networks - LANG, DN-B, and DN-A - did not. In
our final planned analyses, we explored the functional specialization of these additional
three networks by examining Episodic Projection, Theory-of-Mind and Sentence Processing
task contrasts designed to emphasize distinct specialized domains of higher-order
cognitive processing. This analysis framework and set of tests were envisioned
prospectively [see Figure 2 in DiNicola and Buckner (134)].

The mapping strategy is illustrated in Appendix Fig. A16. On the flattened cortical
surface, the within-individual a priori-defined networks LANG, DN-B, and DN-A are
displayed in relation to the three separate task contrasts simultaneously, to illustrate the
adjacency of the responses in relation to each other and to the network boundaries. The
details of one composite task contrast map are displayed for a representative participant in
Fig. 32. Fig. 33 illustrates additional participants, and all participants with available data

are shown in the Supplemental Materials. Several results are notable.

First, the composite activation patterns across the three task contrasts filled in the
remaining zones of association cortex. Strikingly, the domain-specialized task responses
are situated adjacent to, but separate from, the regions activated by domain-flexible
working memory demands (contrast Fig. 32 with Fig. 29). This separation can be seen in
many locations, with a particularly clear example visualized within the PPC where the N-
Back Load Effect task contrast showed a posterodorsal response relative to the three
current task contrasts. The side-by-side juxtaposition of domain-specialized and domain-

flexible regions was also observed within LTC and multiple locations throughout PFC.
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Second, within each juxtaposed cluster of domain-specialized regions, the region
preferentially responding to the Sentence Processing task contrast abutted the region
preferentially responding to the Theory-of-Mind task contrast, and these abutted the
region preferentially responding to the Episodic Project task contrast. While overlap and
exceptions were found, the differential response patterns generally tracked the network
separations between LANG, DN-B, and DN-A. The idiosyncratic positions and boundaries of
the three networks in any given individual - LANG, DN-B, and DN-A - predicted the
positions of the domain-specialized activation responses (Fig. 33).

Thus, within each local zone the regions associated with the separate networks
responded to their distinct specialized cognitive domains. Moreover, the spatially
differentiated response patterns repeated across the multiple SAAMs (refer to [, II, IIl and
IV in Fig. 32). There were exceptions. For example, regions of task activation in VLPFC did
not overlap well with the estimated networks in P12. The discrepancies tended to fall
within anterior temporal regions and PFC regions where SNR is low, raising the possibility
that technical variance played a role. To reveal the details of the task maps more fully, the
Supplemental Materials include task maps for each task contrast separately in addition to
the composite maps for all available participants.

The response was quantified for each of the three task contrasts for each network to
formally test for the hypothesized interaction. For each domain-specialized task contrast,
the z-values within the bounds of each individual’s three independent a priori defined
networks (LANG, DN-B and DN-A) were obtained and then averaged (N = 13). The resulting
mean z-values are plotted in Fig. 34. A repeated measures ANOVA on network-level task
response revealed a significant 3 x 3 interaction between the effect of task contrast and
network (F(4, 48) = 77.82, p < 0.001). Paired t-tests then tested the individual contrasts,
with the hypothesis that each network’s within-domain response would be significantly
greater than either of the other two networks. All six of these planned comparisons were
significant. The Episodic Projection task contrast recruited DN-A regions over those of DN-
B (¢(12) =16.38, p < 0.001) and LANG (¢(12) = 14.49, p < 0.001). The Theory-of-Mind task
recruited DN-B regions over those of DN-A (¢(12) = 5.27, p < 0.001) and LANG (¢(12) =
10.09, p < 0.001), and the Sentence Processing task contrast recruited the LANG regions
over those of DN-A (¢(12) = 6.55, p < 0.001) and DN-B (¢(12) =5.42, p < 0.001).
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Thus, in addition to the qualitative impressions (Figs. 32 and 33, and Appendix Fig.
A16), statistical tests revealed the full interaction was significant with all pairwise tests
also significant in support of a triple functional dissociation across the three networks.
These observations suggest that the parallel networks LANG, DN-B, and DN-A, with
adjacent regions across multiple cortical zones, are specialized to support distinct higher-

order cognitive domains.

The FPN-B Response is Elusive

Our final post-hoc analysis, as a reminder that our results and data patterns leave
gaps, explored the possibility that we have not yet isolated the task demands that elicit an
FPN-B network response. As depicted in Fig. 31, the response observed in FPN-B is notably
weaker in comparison to that in FPN-A. Considering that FPN-B is adjacent to FPN-A, this
raises the question of whether the observed response is located within the bounds of the
FPN-B network or is due to spatial blur from the adjacent FPN-A network response? To
weigh in on this question, we replotted the N-Back Load Effect, Episodic Projection,
Theory-of-Mind, and Sentence Processing task contrasts simultaneously on a common
surface in a representative participant P6. The FPN-B network is outlined with a black
border. As illustrated in Fig. 35, the regions of the FPN-B network do not display a distinct
response in multiple zones including a clear gap in the large parietal association region
despite adjacent responses in all of the other network regions. The response to the N-Back
Load Effect within the FPN-B network might originate from signal blur from the adjacent
FPN-A network. Our final result is thus the unmasking of an ambiguity. The present work
does not disambiguate FPN-B from adjacent networks or provide clear evidence that we

have found task demands that elicit a response.

Insert Figure 35 About Here
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Discussion

Detailed network estimates reveal a global organization that can be conceptualized
as three levels of cortical hierarchy®: locally organized first-order sensory and motor
networks, spatially adjacent second-order networks that link to distant regions, and third-
order networks that populate and connect widely distributed zones of higher-order
association cortex. Repeating side-by-side spatial juxtapositions among the third-order
association networks form organized motifs that we call Supra-Areal Association
Megaclusters or SAAMs. Within each SAAM, the regions linked to distinct association
networks demonstrate differential task response properties. Certain networks contribute
to domain-flexible cognitive control and others to domain-specialized processes involved
in language, social, and spatial / episodic functions. We discuss the practical and conceptual
implications of these findings including how repeating organizational motifs might arise

during development.

Within-Individual Network Estimates

In the present work, we explored the utility of a 15-network MS-HBM estimate of
cerebral cortical organization that allowed the idiosyncratic details of each individual’s
own anatomy to guide the solutions (e.g., Appendix Figs. A1 and A4). The method yielded
robust, stable network estimates that were confirmed using analyses of seed-region based
correlation (e.g., Appendix Figs. A2 and A5). All quantitative analyses and visual inspections
of the data reinforced that the present 15-network estimate captured a great deal of the
structured correlations present in the underlying data. From a methodological standpoint,
the present results indicate that a MS-HBM can be used to estimate networks automatically
and robustly within individuals (71, 75). Several features of our network estimates revise
or expand earlier ideas.

First, the current network parcellation falls into a class of within-individual network
estimates that refine group-based estimates. In group-based estimates, including multiple

estimates from our laboratory, large monolithic networks have been identified that
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encompass extensive regions of association cortex (e.g., Refs. 18, 22-25). The present
network estimates are broadly similar but separate the large group-based networks into
multiple distinct parallel networks. For example, the network historically known as the
Default Network overlaps four separate networks in the present parcellation including
networks LANG, DN-B, DN-A, and SAL / PMN. Each of these four distinct networks can be
identified in every individual in the present study. The multiple networks are not estimated
to be “sub-networks” with shared regions or anatomical convergence, but rather are
distinct networks that are near to one another and often blurred in group-averaged data
(see also Refs. 52, 53, 56, 59-61, 64, 135). Thus, an advance of within-individual network
estimates, including the present contribution, is to fully resolve adjacent networks that are
difficult to separate through approaches that average over people.

Second, among within-individual parcellation estimates, we settled on a 15-network
solution because of our goal to separate nearby networks within the anterior insula (see
Ref. 92), as well as to better separate early sensory and adjacent networks. Our analyses
confirmed that the newly proposed 15-network parcellation could capture correlational
features absent in simpler network solutions, including our own 10-network solution
previously estimated in Xue et al. (75); see current Appendix Figs. A7, A8, A10,and A11. In
addition to detecting distinctions among networks that have close juxtapositions in the
anterior insula, the present 15-network parcellation also revealed clear separation of the
estimated AUD network from the nearby LANG network. Multiple networks identified in
the simpler network solutions remained in the 15-network estimates, indicating the
refinements did not come at the expense of the established networks.

Third, the present parcellation identified a single distributed network, labeled SAL /
PMN, that includes regions that have historically been studied separately as components of
the Salience Network (91) and the Parietal Memory Network (119). Note that we do not
say “joins” two previously described networks, as we suspect there have never been two
separate networks. Rather, different research lineages may have focused on distinct
regional components of what is ultimately the same network. This hypothesis will require
further testing, but several lines of evidence lead to the present proposal that SAL / PMN is
a single, coherent network. In every individual, the estimated SAL / PMN network included

regions along the posterior midline and within the anterior insula (Fig. 14). Seed-region
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based correlation patterns recapitulated the automated network estimates: seed regions
placed in PFC and posterior cortex revealed clear regional correlation in the anterior insula
as well as multiple distinct posterior midline regions (Appendix Fig. A12).

A recent study by Kwon et al. (136) is consistent with the hypothesis of SAL /PMN
as a single distributed network. Using both seed-based and clustering approaches on
within-individual data, their study revealed a network consistent with the SAL / PMN as
delineated in our investigation including anterior insula, the inferior parietal lobule, and
the posteromedial regions canonical of the Parietal Memory Network. Additionally, in
another study by Lynch et al. (137), a network exhibiting similar correlational structure as
the SAL / PMN in our study was identified [see Extended Data Fig. 5 of Lynch et al. (137)].
Furthermore, our independent task data focused on salience processing, via the Oddball
task, elicited robust responses in the distributed regions of the SAL / PMN network
including the posterior midline and anterior insula (Figs. 23, 24, and 26). Meta-analyses of
task-relevant oddball effects have previously noted responses in the anterior insula and
portions of posterior midline (138). Thus, multiple studies and analyses raise the
possibility that the SAL / PMN is a single coherent network.

Despite these findings, it is important to acknowledge the results that have caused a
distinction to be drawn between the Parietal Memory Network and Salience network,
including evidence from both anatomical and functional perspectives. The Salience
network has been emphasized to show strong connectivity to the ventral striatum (139),
while the Parietal Memory Network to the posterior hippocampus (140). Functionally, the
Salience network has been implicated in detecting important environmental stimuli and
orchestrating task switching (92, 141), while the Parietal Memory Network emphasized in
paradigms involving stimulus repetitions (119, 142-145). Given these complexities, further
in-depth investigations are required. For example, given Zheng et al.’s findings, the present
hypothesis that SAL / PMN is a single coherent network predicts that the posterior
hippocampus might respond to low-level oddball events and task transitions. We are
presently exploring this possibility (see Ref. 146).

Finally, it is important to note that the present estimates assume (and are optimized
to detect) large-scale distributed networks. For this reason, our resultant parcellation is

different from parcellations that are optimized to detect local gradients of change and / or
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directly estimate “area” boundaries [e.g., Refs. 27, 147, 148; for discussion see Refs. 122,
149]. While there is some convergence between approaches, and it is possible to apply
mutual constraints (150), our present parcellation is weighted to estimate networks based

on long-range correlational properties, without weighting local gradients.

Supra-Areal Association Megaclusters (SAAMs)

A striking observation that is apparent in the flat map visualizations is the recurrent
spatial grouping of the same five higher-order networks throughout association cortex
(FPN-A, FPN-B, LANG, DN-B, DN-A). The clearest examples are found in PPC and LTC (Fig.
28), but the adjacencies are also present in multiple PFC zones (Fig. 27), as if a shared
organizing force plays out repeatedly across different cortical territories. Each grouping of
regions possesses similar spatial relations among the five networks: networks FPN-A and
FPN-B are next to one another, and that pair of networks is adjacent to the trio of networks
LANG, DN-B, and DN-A. These juxtaposed networks form SAAMs within not only the
cerebral cortex, but also within the cerebellum (75, 151) and the caudate (152).

SAAMs possess several additional features. While their global patterning - meaning
spatial adjacencies between networks - is identifiable for multiple SAAMs within and
across individuals, the orientations shift, and the exact spatial positions vary. For example,
within the PPC the axis that begins with the FPN-A / FPN-B pairing and ends with the LANG
/ DN-B / DN-A triad is oriented dorsal-to-ventral. Within the LTC, the axis is oriented
ventral-to-dorsal (Fig. 27). Moreover, while the SAAMs are readily identified in every
person in the PPC and LTC, usually with a discontinuity between the two SAAMs, the
idiosyncratic spatial details vary from one person to the next. In some individuals the two
zones appear fused (Fig. 28). It is thus unsurprising that group-averaged data, while
revealing certain spatial features apparent in the SAAMs, blurs over the fine spatial details
that are robust and consistently apparent in the within-individual maps.

The spatial juxtapositions that define the SAAMs in PPC and LTC are also present in
multiple zones of the PFC. However, there is not always spatial separation. The boundaries
of individual SAAMs in PFC are thus ambiguous. In Fig. 27 we note candidate SAAMs in
VLPFC (labeled III) and DLPFC (labeled IV), recognizing these are hypotheses. A future

endeavor might explore how a repeating pattern could parsimoniously explain the
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juxtapositions in PFC with the assumption that multiple SAAMs are present like those
observed in PPC and LTC, but with the additional complication that there are multiple
adjacent SAAMs that collide into one another, perhaps as a consequence of their formation
during development.

A final detail regarding the SAAMs is subtle but potentially informative. While the
presence of five regions linked to the distinct networks is a consistent feature of PPC, LTC,
VLPFC, and DLPFC, there are also partial sets of the network juxtapositions in other cortical
zones. For example, along the midline there is clear representation of networks DN-A and
DN-B in PMC and MPFC, but not consistently the other networks (Fig. 27). The partial
SAAMs may provide an insight into the origins of the patterning. DN-A is a putative
hippocampal-cortical network that has been extensively studied in humans (e.g., Refs. 28,
60, 62,126, 140, 153) and monkeys (e.g., Refs. 29-31, 35, 135). The hippocampal formation,
via polysynaptic projections through entorhinal cortex and PHC, projects heavily to RSC
and ventral PCC along the posterior midline, and also to MPFC (154-156). The exclusive
assignment of PHC to DN-A and the predominance of DN-A along the midline may thus
reflect connectivity to the hippocampal formation. The interdigitation of DN-A with other
higher-order networks might emerge as the hippocampal-predominant projections
intermix with other anatomical projection gradients in the apex association zones where

the fully formed SAAMs are present.

The Relation of the Present Network Estimates with the Historical Default Network
The Default Network, or Default Mode Network, has received considerable attention
among investigations of cerebral networks (29, 157, 158). In relation to estimating
networks using resting-state functional connectivity, after the seminal description of the
method (14), the Default Network was the first distributed association network to be
characterized in humans (153, 159) and in monkeys (28). All group-based network
estimates, even low-dimensional solutions that identify as few as seven networks, find a
large, distributed network that has the spatial pattern of the Default Network (e.g., Refs. 21-
25). Thus, a critical issue to address, given the historical emphasis on the Default Network,

is how the present network estimates relate to these earlier descriptions.
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Our current hypothesis is that the large monolithic (or core-subnetwork)
descriptions of the Default Network based on group-averaged data, including our own
contributions (e.g., Refs. 29, 113), are inaccurate and reflect an artifact of spatial blurring.
As noted above, the canonical group-averaged Default Network overlaps fully or partially
four distinct networks: LANG, DN-B, DN-A, and SAL / PMN. The separation of these
networks is anticipated in some prior group-based analyses. For example, Andrews-Hanna
and colleagues (160) noted that regions within PPC responding to social inference (theory-
of-mind) tasks tended to activate an anterior region relative to tasks targeting
remembering. This distinction likely captures the separation of DN-B and DN-A in PPC.
Similarly, in a thorough analysis of functional connectivity in group data, the network
identified here as LANG was separated from the canonical Default Network (Ref. 161; for
discussion see Ref. 63). However, the blurring induced by between-subject averaging, to
date, has negated the ability to resolve the spatial details that fully distinguish the four
nearby networks that are described here.

A further observation emerges from our task-based results. In addition to the
challenge of identifying the multiple, juxtaposed networks due to spatial blurring, there is a
separate functional property that has anchored study of the Default Network. The Default
Network was originally described based on task-induced deactivations, referring to the
observation that the distributed association regions that comprise the Default Network are
more active in passive tasks and fixation than active, externally-orientated tasks [124, 129,
157; see Buckner and DiNicola (135) for review]. When a contrast is made between active
and passive tasks, a distributed pattern of “deactivations” emerges that is robust and
overlaps with group-based estimates of the Default Network (29, 124, 158). What is
surprising and interesting is that, even with the present high-resolution within-individual
estimates, the task-induced pattern of deactivation remains broad and spans multiple
networks.

Specifically, the Oddball Effect task contrast reveals a broad task-induced
deactivation pattern within individual participants (Fig. 26). That is, the regions
deactivated by attending and responding to external stimuli span multiple association
networks even when group averaging is not a factor. Fig. 25 quantifies this effect: DN-A,

DN-B, and LANG all show significant “deactivation,” with DN-A and DN-B being almost
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indistinguishable from one another, despite clear functional double dissociation during
domain-relevant active tasks [e.g., Fig. 34; see also DiNicola et al. (90)]. One possibility is
that, while DN-A and DN-B are anatomically and functionally distinct networks, they may
collectively be suppressed during certain externally oriented task events, perhaps as a
result of a broad antagonistic process between externally versus internally oriented
processing modes (135; see also Refs. 162-166). Thus, the phenomenon of task-induced
deactivation, which is not selective to specific networks, may have reinforced an
impression that there is a coherent monolithic function across large swaths of association
cortex, a possibility refuted by a growing number of robust functional dissociations (e.g.,
Refs. 55,90, 114, 167, 168).

Another relevant observation surrounds the relation between the Default Network
and the present estimate of network SAL / PMN. The SAL / PMN network possesses regions
distributed across the cortex, including multiple distinct regions along the posterior
midline side-by-side with DN-A and DN-B network regions. The adjacencies make the
regions easy to confuse. Despite their spatial proximity, Zheng et al. (Ref. 140; see their Fig.
6) noted that “deactivations” are restricted to the Default Network and separate from their
estimate of SAL / PMN (labeled as the Parietal Memory Network in their paper). The
transient positive response in SAL / PMN observed here to salient oddballs is robust
including the regions along the posterior midline, separate from the juxtaposed DN-A and
DN-B regions showing deactivation (Fig. 26). Moreover, SAL / PMN has small, focal regions
of response in MPFC, which are also surrounded by DN-A and DN-B network regions. In the
group-averaged map displayed in the bottom of Fig. 26, there is no detectable positive
response in MPFC. Each individual shows a response but in slightly different spatial
positions from one person to the next. The positive task response in MPFC is likely lost in
the process of spatial averaging.

Our results thus converge with Zheng et al. (140) to suggest that SAL / PMN is
spatially and functionally distinct from the network historically described as the Default
Network. The SAL / PMN network does not exhibit task-induced deactivation; rather, it
displays an opposite functional response pattern - transiently activating to salient external

task events, including in both posterior and anterior regions along the midline.
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Hierarchical Organization of the Cerebral Cortex

Paul Flechsig (1, 169, 170) contributed the powerful but simple idea that the
cerebral cortex develops sequentially radiating outwards from motor and sensory cortex
(see Refs. 171-174 for translations and discussion; see Ref. 175 for further context). The
basis of Flechsig’s hierarchy was the developmental timing of myelination of the fibers
reaching the cortex. By his account “in the cerebral convolutions, as in all other parts of the
central nervous system, the nerve-fibers do not develop everywhere simultaneously, but
step by step in a definitive succession” [translated in Clarke and O’Malley (173), p. 548].
The cortical motor and sensory (and certain limbic) zones myelinate first. Next are the
intermediate zones that surround the motor and sensory zones. The terminal zones
myelinate in the final stage, beginning approximately four months after birth, and
encompass prefrontal, temporal, and parietal regions thought of today as higher-order
association cortex. The prescient lens of hierarchical cortical organization provides a
framework to understand our findings.

Specifically, the candidate assignments of first-, second-, and third-order networks®
are motivated by (and agree well with) Flechsig’s reference maps of sequential myelination
(Fig. 36). In particular, the distributed regions late to myelinate (the terminal zones) are
positionally similar to our estimated association zones containing the five higher-order
networks that make up the SAAMs. These same general zones were emphasized more than
a century ago as the regions distinguishing human and ape brains from the those of smaller
monkeys (174) and have been supported, based on modern comparative anatomical
approaches, to be disproportionately expanded in humans relative to monkeys (134, 176-
178). Taken together, the global spatial relations among networks (Figs. 17 to 19) and the
repeating fractionation of the higher-order associations zones into five networks (Figs. 27
and 28) are consistent with processes that organize the cortex through distinct

developmental stages.
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In a hypothesized first stage, cortical networks might progressively organize
outwards from the early sensory and motor areas that themselves are patterned through
structured inputs. For example, retinotopic organization is imparted on early visual cortex
via spontaneous retinal activity waves that are present before birth and carried to the
cortex through the thalamic nuclei (179, 180). These early organizing events may anchor
the formation of the retinotopic clusters (121, 181) captured by our estimates of the VIS-C
and VIS-P networks. The second-order networks may then organize tethered to these first-
order networks, but with progressively more distributed regions, corresponding to
Flechsig’s intermediate (or border) zones. Averbeck and colleagues have also proposed a
similar nesting of networks outwards from the primary motor and somatosensory areas
(S1-M1) based on extensive analyses on anatomical connectivity patterns (13, 182; see also
Refs. 36, 183). The zones that generally fall between the regions of the second-order
networks include large swaths of prefrontal, temporal, and posterior parietal association
cortex that correspond to Flechsig’s terminal (or central) zones and are hypothesized to be
the last to develop, forming our hypothesized third-order networks (Fig. 36). Thus, much of
the cortical mantle may be patterned by a series of networks that nest outwards from the
primary cortical areas (72, 158, 184).

In a second developmental stage, we hypothesize that, as the networks sequentially
form, they may undergo a second process of fractionation and specialization (134). Our
proposal of a distinct second process is specifically put forth to explain how juxtapositions
might arise similarly across widely distributed (non-contiguous) zones of cortex, such as
observed for the distinct SAAMs in LTC and PPC (Fig. 28). A specific prediction of this
hypothesis is that, as development progresses, activity-dependent processes may eliminate
and / or stabilize synapses that support specialization evident in the adult (for discussion
see Refs. 185-188). In the cortical mantle of humans, the expanded associations zones may
fractionate and specialize into the multiple juxtaposed networks that support higher-order

cognition.

Functional Specialization of Higher-Order Association Networks
By combining network estimation and task-based fMRI within the same individuals,

the present results provide insight into the functional specialization of the networks. A
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broad observation was that the second-order distributed networks SAL / PMN and CG-OP
were dissociated from the third-order association networks via their robust, transient
response to oddballs (Fig. 25) consistent with prior studies (91, 92, 101). None of the third-
order networks that populate the SAAMs displayed a robust transient positive response. In
fact, four of the five networks within the SAAMs (FPN-B, LANG, DN-B, and DN-A) showed a
significant negative response (network FPN-A was equivocal). By contrast, all of the third-
order association networks responded robustly to ongoing task demands with distinct
forms of functional specialization as described below.

A first robust dissociation among the third-order networks came in their differential
response to working memory demands. FPN-A in particular responded to high memory
load in the N-Back Load Effect task contrast and did so similarly across verbal and non-
verbal materials (Fig. 31). FPN-B’s response was quantitatively lower and may reflect
spatial blur from FPN-A (Fig. 358). Further, FPN-A displays the same general spatial pattern
as the previously described multiple-demand network (125, 189-193). Our data are thus
convergent with the existing literature to suggest there is a distributed frontal-parietal
network (or networks) that responds when tasks become more effortful, perhaps related to
processing functions associated with cognitive control (e.g., Refs. 192, 194). The within-
individual precision mapping allowed spatially precise network estimates to be made of
FPN-A that predicted the idiosyncratic response patterns across participants.

A few further details are of interest. First, across most individuals, FPN-A included a
small region in the anterior insula (labeled in Fig. 29). This small region showed a N-Back
Load Effect response surrounded by spatially distinct components of the CG-OP and SAL /
PMN networks. Although separations are shown in some group-averaging parcellations
(24, 59, 71), it can be easy to blur over or miss this buried insular region in group analyses.

Our current estimates suggest that the anterior insula is a particularly challenging region of

8 We do not yet interpret the differential response between FPN-A and FPN-B as there was no
condition where FPN-B responded more than FPN-A, and the maps suggest FPN-B may not
directly show a response (Fig. 35). Main effects in BOLD response magnitude between regions
can come from any number of technical reasons including the regional vasculature sampled, the
inclusion of voxels with susceptibility artifact, and spatial blur. We thus conservatively interpret
differential responses when there is direct evidence for a double dissociation within or across
task contrasts (following the logic of Refs. 208, 209).
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the cortex to study because multiple, distinct networks are spatially juxtaposed near to
where the cortex folds onto itself in the volume. Examinations of group data, especially
data that averages across participants within the volume, may be particularly vulnerable to
distorting functional properties of this region.

Second, the spatially circumscribed regions of each SAAM that aligned to FPN-A,
with some exceptions in low SNR regions, tended to show a robust N-Back Load Effect
(Figs. 29 and 30). The adjacent regions of LANG, DN-B, and DN-A did not. Thus, the N-Back
Load Effect functionally dissociated FPN-A from the LANG, DN-B, DN-A cluster multiple
times across the distributed association zones including PPC, LTC, VLPFC and DLPFC.

Fedorenko and colleagues have previously noted that regions of the multiple-
demand network lay side-by-side with functionally distinct domain-selective regions
(specifically in the language domain). Our present results are consistent with their
observations and reinforce that the functional dissociation is a general property of the
association cortex including close spatial juxtapositions in temporal and parietal cortical
association zones, not only within PFC. We interpret the repeating pattern across the
cortical mantle to reflect that functional specialization is a property of the networks,
including all their distributed regions (see also Ref. 54). Furthermore, robust functional
dissociations were present for higher-order cognitive domains beyond language (see also
Ref. 68). That is, while networks LANG, DN-B, and DN-A did not modulate in a domain-
flexible manner to working memory demands, each network responded robustly and
selectively to a distinct specialized domain of higher-order cognition.

The most striking functional observation of the present study was the robust triple
dissociation across networks LANG, DN-B, and DN-A, as predicted by DiNicola and Buckner
(134). The LANG network responded when participants processed meaningful sentences;
the DN-B network when participants engaged theory-of-mind tasks; and the DN-A network
when participants remembered from their past or contemplated a personal future scenario.
The triple dissociation was carried by a formal statistical interaction (Fig. 34) and could be
visualized qualitatively on the flat maps of individual participants (Figs. 32 and 33; see also
Refs. 63, 90). Considering that until recently, we and others conceptualized these zones of
association cortex as being deployed flexibly across a range of higher-order cognitive

domains (e.g., Refs. 29, 195, 196), this is a major revision to our understanding.

57



Our composite results suggest higher-order association cortex possesses at least
three domain-specialized parallel networks supporting language, social behaviors and
remembering the past and imagining the future. These domain-specialized networks are
themselves separate from domain-flexible networks that participate in cognitive control.
We do not know how these networks interact or whether they remain functionally separate
across multiple task classes, but the robust dissociations among juxtaposed regions
demonstrated here suggest that there is more modularity in association cortex, including

PFC, than has typically been considered.

Limitations and Future Directions

A key limitation of the present work is the reliance on correlational, indirect
methods to infer network organization. The caveats surrounding interpreting such
network estimates, and the empirical tests of their utility despite known limitations, are
discussed elsewhere (15-20, 75). Specific to the present work, it is notable that the
boundaries in networks generally predicted task response patterns, bolstering confidence
that valid organizational features are being described. However, there were exceptions and
regions of mismatch, consistent with poor signal quality around the sinuses and inner ear
(see Fig. 1 and Appendix Fig. A3). Network estimates in these poorly sampled regions of
cortex may be distorted.

There are also limitations to our modeling approach. In choosing the present
parameters of the MS-HBM used to estimate networks, decisions were made that influence
the estimates. Specifically, we choose to model 15 networks and initiated the model with a
prior that arose from a group-averaged data set. As the seed-region analyses verified, the
model captured within-individual correlational properties well, but not perfectly. Thus, a
limitation in our current model is knowing whether one could do better and whether our
specific decisions imparted bias. We assume the answer is yes to both questions. As our
own work has evolved from a relatively crude 7-network estimate in average participant
groups (23) to a 10-network estimate within individuals (75), we expect the current
network estimates will be refined further and eventually replaced. As a specific example, it
is unclear that the present model fully captures the details of the recently described inter-

effector connectivity pattern (67). The structured correlations they observed, and we also
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find, are partially incorporated in our estimate of the CG-OP network (Fig. 22) but not
entirely (e.g., see diamond in Fig. 20). Placing seed regions within the body map gap in the
SMOT-B network reproduces the inter-effector regions as well as the distributed pattern of
the CG-OP network (Fig. 22), indicating that the spatial prior of the CG-OP network® might
benefit from revision in a future iteration. With the expectation of further improvements in
mind, we are struck by how the present network parcellation captures multiple functional
dissociations prospectively in task data, including idiosyncratic and small regions of
response.

Another limitation is that, while the task contrasts allowed for robust functional
dissociations, the tasks were designed and implemented to differentiate networks, which is
a different goal than interrogating in detail a hypothesized cognitive operation. That is, the
limited task data we collected falls far short of systematically manipulating variables to
clarify the component computations performed by each of the networks. As an example of a
task domain needing further exploration, the Oddball Effect task contrast maps were fairly
broad spanning both the CG-OP and SAL / PMN networks and extending beyond them. One
possibility is that we have not yet found the right task demands to dissociate the two
networks. Another possibility is that the two networks do not respond differentially. The
CG-OP and SAL / PMN networks may respond together to common task events linked to
surprise and novelty. Within this possibility, rather than being distinguished by what they
respond to, they may be distinguished by their anatomical interactions with other
networks. CG-OP and SAL / PMN are both distributed networks that are near to one
another in many zones of cortex, but they are also adjacent to distinct networks in other
portions of cortex. That is, CG-OP and SAL / PMN may both be networks that respond to
transient orienting events but ultimately functionally distinguished by interactions with
their extended partner regions. The present work did not explore or test such possibilities.

Another future direction pertains to the need to better understand the relation of
traditional area estimates with the present network estimates. By “area” we mean the
demarcation of regions of cortex as separate, defined zones using functional, architectonic,
connectivity, and topography constraints (197, 198). We previously noted discrepancies
between functional connectivity patterns and areal boundaries (e.g., Refs. 23, 122, 135) as

have others (e.g., Ref. 199). There are two topics to be considered.
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First, for regions of cortex that have well recognized areas, our network borders do
not align with the areal borders (e.g., Appendix Fig. A13E). For example, networks VIS-C
and VIS-P group together V1, V2, and V3 and split them roughly along the 5° eccentricity
line. The estimated networks likely reflect the dominant anatomical connectivity gradient
that, within early visual areas, progresses along eccentricity (200-202). The V1/V2/V3
areal boundaries are distinguished by a local reversal in polar angle along the horizontal
meridian. Thus, connectivity transitions between early visual areas are relatively subtle
[for further discussion of this issue see Buckner and Yeo (122)]. The somatomotor
networks similarly group M1 / S1 and multiple body maps that span architectonically
distinct areas (203). One future direction is to understand the relation of the networks
estimated here and the finer-scale anatomical differences that demarcate adjacent areas.

The second related topic is the relation between the present network estimates and
architectonic features in higher-order association cortex. This is a trickier topic. Varied
perspectives have been put forth on whether association cortex possesses sharp areal
boundaries that parallel those found in sensory systems (for discussion see Refs. 135, 171,
181, 204). There is also an open question of whether, in practice, there are known stable
features that can define areal borders in association cortex, especially when architectonics
are considered in isolation (e.g., Refs. 171, 205). We will not resolve the debate here, but
some of our observations are relevant to the discussion.

Most critically, the extent and complexity of the network juxtapositions
encompassed within the SAAMs are of such a spatial scale that they seem unlikely to align
to traditional architectonic borders, at least those reflected in any of the commonly used
atlases. In the spirit of supra-areal clusters reported in the visual system (see Refs. 122,
206; see also Refs. 121, 181), we refer to the repeated groupings of multiple association
networks as Supra-Areal Association Megaclusters specifically to reinforce the possibility
that they might span and split traditional architectonic patterns. One possibility is that
future advances will find architectonic features that align to the transitions between SAAMs
as well as between the multiple network regions within the SAAMs (perhaps via spatial
transcriptomics; Ref. 207). Alternatively, there may be broad patterning forces during
development, such as captured in Flechsig’s maps of sequential myelination, that reflect

processes that guide where SAAMs develop, but that do not specify the details of the
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borders and regional specializations within the SAAMs. The local spatial arrangements
might be carried by extrinsic anatomical connectivity differences that refine relatively late
in development through activity-dependent processes, without rigid alignment to
architectonic features (134, 135).

Data to inform these and other possibilities will emerge as the field charts
development of association networks in non-human primates with direct anatomical

techniques and in human infants using non-invasive approaches.

Conclusions

The present study examined the organization of cerebral networks within
intensively sampled individual participants. We provide the resulting network estimates
and the raw data used to derive them as open resources for the community. Our initial
explorations on the data uncovered a hierarchical organization which distinguishes three
levels of cortical hierarchy: first-, second-, and third-order networks. Notably, regions of
distinct third-order association networks consistently displayed side-by-side
juxtapositions that repeated across multiple cortical zones, with clear and robust functional

specialization among the embedded regions.

Appendix

Appendix Figs. A1-A16 appear below. The appendix figures provide detailed views of the
validation checks that establish the MS-HBM (A1-A12) as well as figures illustrating how
the task maps were constructed (A13-A16).
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Table 1. Functional data analyzed for each participant.

Theory-of- Sentence Episodic
Participant Fixation Motor Visual Oddball N-Back Mind Processing | Projection
S1 62(63)
S2 61(63)
P1 17(17) 0(0) 5(5) 5(5) 8(8) 8(8) 6(6) 10(10)
P2 16(17) 11(12) 5(5) 5(5) 8(8) 8(8) 6(6) 10(10)
P3 19(22) 10(12) 5(5) 4(5) 8(8) 7(8) 6(6) 8(10)
P4 20(22) 10(12) 5(5) 5(5) 8(8) 8(8) 5(6) 9(10)
P5 22(22) 8(12) 0(5) 4(5) 6(7) 8(8) 3(6) 7(10)
P6 21(22) 12(12) 5(5) 5(5) 8(8) 8(8) 6(6) 10(10)
P7 22(22) 12(12) 5(5) 5(5) 8(8) 8(8) 6(6) 10(10)
P8 21(22) 12(12) 5(5) 5(5) 8(8) 8(8) 6(6) 10(10)
P9 20(22) 12(12) 5(5) 5(5) 8(8) 7(8) 6(6) 8(10)
P10 23(23) 24(24) 0(5) 2(5) 7(8) 8(8) 12(12) 10(10)
P11 15(20) 3(12) 3(5) 3(5) 8(8) 8(8) 6(6) 7(10)
P12 24(24) 24(24) 5(5) 4(5) 8(8) 8(8) 11(12) 10(10)
P13 22(22) 12(12) 5(5) 5(5) 8(8) 8(8) 6(6) 10(10)
P14 19(19) 9(11) 5(5) 5(5) 8(8) 8(8) 6(6) 10(10)
P15 20(22) 12(12) 5(5) 3(5) 8(8) 8(8) 6(6) 10(10)

Notes: Numbers show fMRI runs available for analysis after exclusions; numbers in
brackets are the total scanned runs. Bold indicates data were included in final analyses;
italics indicates that the task was excluded for that participant. The Theory-of-Mind
numbers combine the Pain and False Belief task runs. P10 and P12 had 24 Motor runs and

up to 12 Sentence Processing runs due to their participation in Saadon-Grosman et al. (76).
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Figure Legends

Figure 1. Temporal signal-to-noise ratio (SNR) map for S1. The mean estimate of
temporal SNR for the fMRI data is illustrated for multiple views of the left hemisphere on
the inflated cortical surface (from 62 runs collected over 31 days). Note the low SNR within
the orbitofrontal cortex and the temporal pole. This pattern is typical of the data across all
participants in the present work and should be considered when evaluating network
organization. A, anterior; P, posterior; D, dorsal; V, ventral. SNR maps for all participants

are provided in the Supplemental Materials.

Figure 2. Cerebral cortical network estimates are reliable across independent
datasets within individuals. Network estimates from the multi-session hierarchical
Bayesian model (MS-HBM) are displayed across two views for multiple independent
datasets. Each color represents a distinct network estimated by the model. For each panel,
the left lateral surface is on top and the medial surface below. Some networks possess
primarily local organization (e.g., Somatomotor, Visual), while other networks possess
widely distributed organization (e.g., those involving prefrontal, temporal, and parietal
association zones). Independently analyzed subsets of data from S1 (Top) and S2 (Bottom)
illustrate the reliability of the network estimates. The resting-state fixation data of S1 and
S2 were split into three datasets to estimate networks using the MS-HBM applied
independently to each dataset. The individual-specific cortical parcellations are replicable
within participants, critically for models based on ~20 runs of resting-state fixation data as
will be employed for the 15 new participants analyzed throughout the remainder of this
paper. The network labels are shown at the bottom and used similarly throughout the
figures. SMOT-A, Somatomotor-A; SMOT-B, Somatomotor-B; PM-PPr, Premotor-Posterior
Parietal Rostral; CG-OP, Cingulo-Opercular; SAL / PMN, Salience / Parietal Memory
Network; dATN-A, Dorsal Attention-A; dATN-B, Dorsal Attention-B; FPN-A, Frontoparietal
Network-A; FPN-B, Frontoparietal Network-B; DN-A, Default Network-A; DN-B, Default
Network-B; LANG, Language; VIS-C, Visual Central; VIS-P, Visual Peripheral; AUD, Auditory.
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Figures 3. Network estimates obtained using various amounts of resting-state
fixation data from S1. Networks estimated using varying amounts of resting-state fixation
data from S1 illustrate increasing reliability of the network estimates as the number of runs
increases. The 15-network MS-HBM model was applied independently to each dataset.
Each color represents a distinct network with the network labels shown at the bottom. As
can be visualized the network estimates are reliable in their broad details with as few as
two runs of data, but the spatial details change and stabilize with increasing amounts of

contributing data. See the Supplemental Materials for quantification.

Figures 4. Network estimates obtained using various amounts of resting-state
fixation data from S2. Networks estimated using varying amounts of resting-state fixation
data from S2 illustrate increasing reliability of the network estimates as the number of runs
increases. The 15-network MS-HBM model was applied independently to each dataset.
Each color represents a distinct network with the network labels shown at the bottom. As
can be visualized the network estimates are reliable in their broad details with as few as
two runs of data, but the spatial details change and stabilize with increasing amounts of

contributing data. See the Supplemental Materials for quantification.

Figures 5. Network estimates for participant P1. Network estimates from the MS-HBM
are comprehensively displayed across four views for a representative participant (P1) from
the novel discovery dataset. The left hemisphere is on top and right hemisphere below.
Each color represents a distinct network with the network labels shown at the bottom.
Some networks possess primarily local organization (e.g., Somatomotor, Visual), while
other networks possess widely distributed organization (e.g., those involving prefrontal,
temporal, and parietal association zones). Similar maps for all available participants are
provided in the Supplemental Materials. The network labels are used similarly throughout
the figures. SMOT-A, Somatomotor-A; SMOT-B, Somatomotor-B; PM-PPr, Premotor-
Posterior Parietal Rostral; CG-OP, Cingulo-Opercular; SAL / PMN, Salience / Parietal
Memory Network; dATN-A, Dorsal Attention-A; dATN-B, Dorsal Attention-B; FPN-A,
Frontoparietal Network-A; FPN-B, Frontoparietal Network-B; DN-A, Default Network-A;
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DN-B, Default Network-B; LANG, Language; VIS-C, Visual Central; VIS-P, Visual Peripheral;
AUD, Auditory.

Figures 6. Network estimates for participant P6. Networks estimated for another
representative participant (P6) from the novel replication dataset are comprehensively
displayed. The network estimates are from the 15-network MS-HBM. Four views for each
hemisphere show details of cortical network organization, with lateral and medial views as
well as rotated frontal and posterior views. The left hemisphere is on top and right
hemisphere below. Each color represents a distinct network with the network labels

shown at the bottom.

Figures 7. Network estimates for participant P11. Networks estimated for a final
representative participant from the novel triplication (P11) dataset are comprehensively
displayed. The network estimates are from the 15-network MS-HBM. Four views for each
hemisphere show details of cortical network organization, with lateral and medial views as
well as rotated frontal and posterior views. The left hemisphere is on top and right
hemisphere below. Each color represents a distinct network with the network labels

shown at the bottom.

Figures 8. Network estimates in native-space volume of participant P1. Networks
estimates were projected from the surface back into the native-space volume of individual
participants, as is needed for presurgical planning and neuromodulation. A representative
participant (P1) from the novel discovery dataset is displayed. The network estimates are
from the 15-network MS-HBM. The three sections display sagittal (left), coronal (middle),
and axial (right) views. Each color represents a distinct network with the network labels
shown at the bottom. Similar maps for all available participants are provided in the
Supplemental Materials. LH, left hemisphere; RH, right hemisphere; Ant, anterior; Pos,

posterior; Dor, dorsal; and Ven, ventral.

Figures 9. Network estimates in native-space volume of participant P6. Networks

estimates were projected from the surface back into the native-space volume of individual
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participants. A representative participant (P6) from the novel replication dataset is
displayed. The network estimates are from the 15-network MS-HBM. The three sections
display sagittal (left), coronal (middle), and axial (right) views. Each color represents a
distinct network with the network labels shown at the bottom. LH, left hemisphere; RH,

right hemisphere; Ant, anterior; Pos, posterior; Dor, dorsal; and Ven, ventral.

Figures 10. Network estimates in native-space volume of participant P11. Networks
estimates were projected from the surface back into the native-space volume of individual
participants. A representative participant (P11) from the novel triplication dataset is
displayed. The network estimates are from the 15-network MS-HBM. The three sections
display sagittal (left), coronal (middle), and axial (right) views. Each color represents a
distinct network with the network labels shown at the bottom. LH, left hemisphere; RH,

right hemisphere; Ant, anterior; Pos, posterior; Dor, dorsal; and Ven, ventral.

Figures 11. Model-free confirmation of networks using seed-region based
correlation for participant P1. The correlation patterns from individual seed regions
placed within networks are displayed for a representative participant (P1) from the novel
discovery dataset. The two left columns display correlation maps using an anterior seed
region for each network, while the two right columns display correlation maps using a
posterior seed region. Lateral and medial views are displayed for each seed region. Black
outlines indicate the boundaries of corresponding individual-specific parcellation-defined
networks estimated from the MS-HBM as shown in Fig. 5. The correlation maps are plotted
as z(r) with the color scale at the bottom. Strong agreement is evident between the seed-
region based correlation maps and the estimated network boundaries. Similar maps for all

available participants are provided in the Supplemental Materials.

Figures 12. Model-free confirmation of networks using seed-region based
correlation for participant P6. The correlation patterns from individual seed regions
placed within networks are displayed for a representative participant (P6) from the novel
replication dataset. The two left columns display correlation maps using an anterior seed

region for each network, while the two right columns display correlation maps using a
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posterior seed region. Lateral and medial views are displayed for each seed region. Black
outlines indicate the boundaries of corresponding individual-specific parcellation-defined
networks estimated from the MS-HBM as shown in Fig. 6. The correlation maps are plotted
as z(r) with the color scale at the bottom. Strong agreement is evident between the seed-

region based correlation maps and the estimated network boundaries.

Figures 13. Model-free confirmation of networks using seed-region based
correlation for participant P11. The correlation patterns from individual seed regions
placed within networks are displayed for a representative participant (P11) from the novel
triplication dataset. The two left columns display correlation maps using an anterior seed
region for each network, while the two right columns display correlation maps using a
posterior seed region. Lateral and medial views are displayed for each seed region. Black
outlines indicate the boundaries of corresponding individual-specific parcellation-defined
networks estimated from the MS-HBM as shown in Fig. 7. The correlation maps are plotted
as z(r) with the color scale at the bottom. Strong agreement is evident between the seed-

region based correlation maps and the estimated network boundaries.

Figure 14. Overlap of network estimates derived from the MS-HBM model. Each row
displays the overlap map from one target network for the full set of 15 novel participants
using the estimates from the 15-network MS-HBM. The network targets are labeled to the
left. DN-A, DN-B, LANG, FPN-A, FPN-B, CG-OP, and SAL / PMN networks are examined
separately. The purpose of these maps is to illustrate the overlap of network organization
across participants as well as illustrate how the separate networks are distinct from one

another.

Figure 15. Consensus map of network assignments across 15 participants. The
consensus map represents brain regions where network consensus is observed in a
majority of the participants, specifically illustrated here for consensus n>8 of the 15
participants. For a more comprehensive overview, consensus maps for various participant

counts ranging from n=7 to n=12 can be found in the Supplemental Fig. 12. Note that
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higher-order networks in the prefrontal, parietal and temporal cortex exhibit less

consensus among participants. The network labels are shown at the bottom.

Figure 16. Visualization on the flattened cortical surface. A fully flattened cortical
surface was constructed to better reveal topographic relations among networks. By
applying five cuts along the colorful lines on the midline, the inflated cortical surface (A)
was flattened (B). The five cuts included one cut along the calcarine sulcus (blue dotted
line) and four additional cuts radiating outwards from the medial wall. The surface
enclosed by the circular cut was removed. Reference lines illustrate the inner and outer
boundaries of the insula (Ins) as well as along the central sulcus (CS). Additional landmarks
are dorsolateral PFC (DLPFC), posterior parietal cortex (PPC), rostral lateral temporal
cortex (rLTC), posteromedial cortex (PMC), parahippocampal cortex (PHC), and medial PFC
(MPFC). The procedure was applied separately to the two hemispheres.

Figures 17. Higher-order networks nest outwards from sensory and motor cortices
in participant P2. Networks displayed on the flattened cortical surface reveal orderly
spatial relations in a representative participant (P2) from the novel discovery dataset. The
top map displays all networks estimated using the MS-HBM. The maps below show subsets
of networks to highlight spatial relations. (A) Somatomotor networks SMOT-A and SMOT-B,
in dark gray, are surrounded by spatially adjacent second-order networks CG-OP and PM-
PPr. The second-order networks are more distributed than the first-order SMOT-A and
SMOT-B networks, which are primarily locally organized. (B) Visual networks VIS-C and
VIS-P, in dark gray, are surrounded by spatially adjacent second-order networks dATN-A
and dATN-B, that possess distributed organization. (C) The SAL / PMN network has a
widely distributed organization, that includes adjacency to DN-A, shown in gray, especially
along the posterior midline. (D) The distributed association zones that fall outside of the
first- and second-order networks are illustrated. These zones are populated by five distinct
networks (DN-A, DN-B, LANG, FPN-A and FPN-B) that possess repeating spatial adjacencies
across the cortex, most clearly visible in posterior parietal association cortex and temporal
association cortex. FPN-A and FPN-B are adjacent to one another, and together adjacent to

the three other juxtaposed networks LANG, DN-B and DN-A. We call these repeating
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clusters of networks Supra-Areal Association Megaclusters (SAAMs) and explore them
further in later analyses. The network labels in (D) are positioned around the SAAM in

posterior parietal cortex. The network labels are defined in Fig. 2.

Figures 18. Higher-order networks nest outwards from sensory and motor cortices
in participant P6. Networks displayed on the flattened cortical surface reveal orderly
spatial relations in another representative participant (P6) from the novel replication
dataset. The top map displays all networks estimated using the MS-HBM. The maps below
show subsets of networks to highlight spatial relations. (A) Somatomotor networks SMOT-
A and SMOT-B, in dark gray, are surrounded by spatially adjacent second-order networks
CG-OP and PM-PPr. The second-order networks are more distributed than the first-order
SMOT-A and SMOT-B networks, which are primarily locally organized. (B) Visual networks
VIS-C and VIS-P, in dark gray, are surrounded by spatially adjacent second-order networks
dATN-A and dATN-B, that possess distributed organization. (C) The SAL / PMN network
has a widely distributed organization, that includes adjacency to DN-A, shown in gray,
especially along the posterior midline. (D) The distributed association zones that fall
outside of the first- and second-order networks are illustrated. These zones are populated
by five distinct networks (DN-A, DN-B, LANG, FPN-A and FPN-B) that possess repeating
spatial adjacencies across the cortex, most clearly visible in posterior parietal association
cortex and temporal association cortex. FPN-A and FPN-B are adjacent to one another, and
together adjacent to the three other juxtaposed networks LANG, DN-B and DN-A. We call
these repeating clusters of networks Supra-Areal Association Megaclusters (SAAMs) and
explore them further in later analyses. The network labels in (D) are positioned around the

SAAM in posterior parietal cortex. The network labels are defined in Fig. 2.

Figures 19. Higher-order networks nest outwards from sensory and motor cortices
in participant P12. Networks displayed on the flattened cortical surface reveal orderly
spatial relations in a final representative participant (P12) from the novel triplication
dataset. The top map displays all networks estimated using the MS-HBM. The maps below
show subsets of networks to highlight spatial relations. (A) Somatomotor networks SMOT-

A and SMOT-B, in dark gray, are surrounded by spatially adjacent second-order networks
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CG-OP and PM-PPr. The second-order networks are more distributed than the first-order
SMOT-A and SMOT-B networks, which are primarily locally organized. (B) Visual networks
VIS-C and VIS-P, in dark gray, are surrounded by spatially adjacent second-order networks
dATN-A and dATN-B, that possess distributed organization. (C) The SAL / PMN network
has a widely distributed organization, that includes adjacency to DN-A, shown in gray,
especially along the posterior midline. (D) The distributed association zones that fall
outside of the first- and second-order networks are illustrated. These zones are populated
by five distinct networks (DN-A, DN-B, LANG, FPN-A and FPN-B) that possess repeating
spatial adjacencies across the cortex, most clearly visible in posterior parietal association
cortex and temporal association cortex. FPN-A and FPN-B are adjacent to one another, and
together adjacent to the three other juxtaposed networks LANG, DN-B and DN-A. We call
these repeating clusters of networks Supra-Areal Association Megaclusters (SAAMs) and
explore them further in later analyses. The network labels in (D) are positioned around the

SAAM in posterior parietal cortex. The network labels are defined in Fig. 2.

Figure 20. First-order somatomotor and visual networks respond to task stimulation
in a topographically specific manner. A detailed view of the inflated (A) and flattened
(B) surfaces display the somatomotor body axis and visual eccentricity maps for P6. The
visualization combines panels D and F of Appendix Fig. A13, including binarized contrast
maps targeting foot (red), hand (blue), tongue (yellow) and glute (green) movements, as
well as central (red), middle (green), and peripheral (blue) visual stimulation. The black
labeled outlines highlight networks SMOT-A, SMOT-B, VIS-C, and VIS-P. Thin colored
outlines mark the boundaries of all other networks. At least three representations of body
topography can be observed within the somatomotor networks SMOT-A and SMOT-B
(labeled I, II, and III). The orientation of the main body map (I) along the central sulcus is
shown by a stick figure. The second body map (II) is partially buried in the Sylvian fissure,
and the third map (III) falls along the frontal midline. The visual gradient from central to
peripheral eccentricity is mapped expanding from VIS-C to VIS-P subsuming the V1/V2/V3
cluster (as verified from the task contrast of meridian visual stimulation; see Appendix Fig.
A13E). One exception is that the eccentricity map spares portions of VIS-P (marked by

asterisks) likely due to the limited extent of peripheral stimulation (see methods). A second
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exception is the gap in the body topography (marked by a diamond) that may be an inter-

effector region.

Figure 21. Somatomotor and visual topographic maps are aligned to first-order
networks across multiple participants. Flattened surfaces display the somatomotor
body axis and visual eccentricity maps in representative participants from the discovery
(P2, P3), replication (P6, P7) and triplication (P12, P13) datasets. A body axis topography is
evident in each individual by the ordering of tongue-hand-glute-foot along the central
sulcus. A visual eccentricity gradient is evident along the calcarine sulcus. While the
idiosyncratic spatial details vary between individuals, the somatomotor and visual maps
show substantial overlap in each instance with the first-order networks SMOT-A, SMOT-B,
VIS-C, and VIS-P. Similar maps from all available participants are included in the
Supplemental Materials. White-filled circles indicate the seed region locations, which are

further explored in Fig. 22 to reveal inter-effector regions.

Figure 22. Inter-effector regions situate in between the regions responsible for
specific body movements along the central sulcus. Flattened surfaces display the inter-
effector regions in representative participants from the discovery (P2, P3), replication (P6,
P7) and triplication (P12, P13) datasets. By placing a seed region within the gap separating
hand and the foot movement representations, we observe three inter-effector regions
demonstrating robust functional connectivity to the seed region. Furthermore, multiple
distant regions of the second-order network CG-OP exhibit strong functional connectivity
to the seed region located between the effector regions in the pre-central gyrus in nearly all
participants. Additionally, the inter-effector regions are interconnected not only with the
CG-OP network but also consistently with regions in the visual cortex (see the location

marked by the black arrowheads for P6).

Figure 23. Second-order networks CG-OP and SAL / PMN respond to transients
associated with oddball detection. A detailed view of the inflated (A) and flattened (B)
surfaces display the Oddball Effect task contrast map for P6. The black labeled outlines
highlight networks CG-OP and SAL / PMN. Thin colored outlines mark the boundaries of all
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other networks. The Oddball Effect is a distributed with prominent response in the frontal
insula, as well as along the posterior and anterior midline. The full response pattern
involves many distributed regions of the CG-OP and SAL / PMN networks including
posterior midline zones. The effect is not selective to these two networks with a robust
response in the hand region of left somatomotor cortex along the central sulcus (marked by
asterisk) and the foveal region of visual cortex along the calcarine sulcus (marked by a
double asterisk), presumably due to the oddball target response demanding a key press
and enhanced attention to the visual cue. The response in the motor region is strongly

lateralized (not shown) as expected given the right-handed response.

Figure 24. The Oddball Effect is aligned to CG-OP and SAL / PMN across multiple
participants. Flattened surfaces display maps of the binarized Oddball Effect in
representative participants from the discovery (P2, P3), replication (P6, P7) and
triplication (P12, P13) datasets. While the spatial details vary between individuals, the
Oddball Effect is broadly localized to the CG-OP and SAL / PMN networks and less so in
regions of adjacent association networks, a qualitative impression that is formally
quantified in the next figure. Similar maps from all available participants are included in

the Supplemental Materials.

Figure 25. CG-OP and SAL / PMN respond preferentially to transients associated with
oddball detection. Bar graphs quantify the Oddball Effect as mean z-values (N = 14) across
the multiple a priori-defined networks. A strong positive response was observed in the CG-
OP and SAL / PMN networks, while adjacent networks displayed lesser (and most often
significantly negative) response. Asterisks indicate a value is significantly different from
zero (*=p < 0.05,* =p < 0.001). Error bars are the standard error of the mean. Note that
the CG-OP and SAL / PMN networks are each more active than the other five networks (10

of 10 tests significant p < 0.05).

Figure 26. The Oddball Effect robustly dissociates CG-OP and SAL / PMN from regions
traditionally associated with the default network. Inflated surfaces display maps of the

increases (red/yellow) and decreases (blue) in response for the Oddball Effect task
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contrast. No threshold is applied to allow full visualization of the effect in both directions.
Images in the first three rows are from representative participants from the discovery (P2),
replication (P7) and triplication (P12) datasets; the bottom row displays the group average
(N = 14). The white outlines for the individual participants are the outline for the a priori-
defined CG-OP and SAL / PMN networks. Notice that the Oddball Effect task contrast
increases response broadly across the CG-OP and SAL / PMN networks, while there are
simultaneously distributed decreases that span multiple networks including DN-A and DN-
B. In the top and bottom images, arrowheads highlight the increases in response along the
posterior midline (black arrowheads) that surround the canonical Default Network
regional decreases (noted by a white asterisk), as well as increases in the anterior insula
(white arrowhead). Similar maps from all available participants are included in the

Supplemental Materials.

Figure 27. Supra-Areal Association Megaclusters (SAAMs). A detailed view of the
inflated (A) and flattened (B) surfaces display the full set of networks for P4 to visualize an
interesting topographic feature of association cortex: a cluster of networks repeats across
multiple zones, including within posterior parietal cortex (PPC, I), lateral temporal cortex
(LTC, IT), and multiple times throughout PFC (III, IV). We refer to these repeating clusters
as Supra-Areal Association Megaclusters or SAAMs. Within each SAAM, FPN-A and FPN-B
are adjacent to one another, and together are adjacent to DN-A, DN-B, and LANG. Thick red
outlines mark four SAAMs. The repeating motif is most clear for PPC (I) where the cluster
has a “north-to-south” orientation and LTC (II) where a similar set of juxtapositions display
an “east-to-west” orientation. Within PFC, the pattern is present but more ambiguous. Two
candidate SAAMs in ventrolateral PFC (VLPFC, III) and dorsolateral PFC (DLPFC, IV) are
highlighted. Reference landmarks include the insula (Ins), central sulcus (CS),
posteromedial cortex (PMC), parahippocampal cortex (PHC), and medial PFC (MPFC).
Regions of poor SNR that do not allow for confident network assignment are noted by a
double asterisk. The rectangle in B indicates the portion of the surface that is extracted and

displayed for all participants in Fig. 28.
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Figure 28. Supra-Areal Association Megaclusters (SAAMs) are reliably observed
across all participants. Panels display a rotated portion of the flattened surface for 15
individuals (P1 to P15). The displayed portion includes the two SAAMS within PPC (I) and
LTC (II) as illustrated in Fig. 27B. Black outlines illustrate the boundaries of the five
networks in each SAAM, including FPN-A, FPN-B, DN-A, DN-B, and LANG. While the
idiosyncratic spatial details vary, in most individuals, the separate SAAMs are clear and
distinct. Within each SAAM, FPN-A falls at one end juxtaposed with FPN-B. The three side-
by-side networks DN-A, DN-B, and LANG fall at the other end of the SAAM with the LANG

network most closely juxtaposed to DN-B.

Figure 29. Network FPN-A responds to high working memory load. A detailed view of
the inflated (A) and flattened (B) surfaces display the N-Back Load Effect task contrast map
for P14. The black labeled outlines highlight the FPN-A network and the light grey labeled
outlines highlight the FPN-B network. Thin colored outlines mark the boundaries of all
other networks. The N-Back Load Effect shows prominent response across the multiple,
distributed association zones preferentially within the FPN-A network and to a lesser
degree FPN-B, including the relevant portions of the SAAMs. The zones are labeled I to IV to
orient to the corresponding labels of the SAAMs as displayed in Fig. 27. The response also
consistently includes a small subregion of the anterior insula that is associated with FPN-A

(labeled with an asterisk).

Figure 30. The N-Back Load Effect is aligned to FPN-A across multiple participants.
Flattened surfaces display the binarized N-Back Load Effect maps for multiple participants
from the discovery (P2, P3), replication (P6, P7) and triplication (P12, P13) datasets. While
individuals vary in anatomical details, the N-Back Load Effect is generally localized to the
FPN-A network. Similar maps from all available participants are included in the

Supplemental Materials.

Figure 31. FPN-A responds to high working memory load in a domain-flexible
manner. Bar graphs quantify the N-Back Load Effect as mean z-values (N = 15) across the

multiple a priori-defined networks. (Top) A strong positive response was observed in the
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FPN-A, and a modest positive response was observed in the FPN-B network. Other
association networks displayed minimal or no response, with the exception of the SAL /
PMN network which also displayed a significant, positive response. Error bars are the
standard error of the mean. Note that FPN-A and FPN-B are each more active than all five of
the other networks (10 of 10 tests were significant p < 0.05). (Bottom Left) The N-Back
Load Effect is quantified separately for each stimulus domain (Face, Letter, Word, and
Scene) within FPN-A. Note that the effect is robust and significant across domains. (Bottom
Right) The N-Back Load Effect is quantified separately for each stimulus domain within
FPN-B. Note again that the effect is positive and significant across domains. Asterisks

indicate a value is significantly different from zero (* = p < 0.05, ** = p < 0.001).

Figure 32. DN-A, DN-B, and LANG respond in a domain-selective manner. A detailed
view of the inflated (A) and flattened (B) surfaces display the Episodic Projection (dark
red), Theory-of-Mind (light red), and Sentence Processing (blue) task contrast maps for P6.
The black labeled outlines highlight the DN-A, DN-B, and LANG networks. Thin colored
outlines mark the boundaries of all other networks. The task contrasts reveal clear spatial
separation across the multiple, distributed association zones preferentially within the DN-
A, DN-B, and LANG networks, including the relevant portions of the SAAMs. The zones are
labeled I to IV to orient to the corresponding labels of the SAAMs as displayed in Figs. 27
and 29. The parahippocampal cortex (labeled with an asterisk) responds preferentially to
the Episodic Projection task contrast without juxtaposed responses from other domains,
unlike the SAAMs which each have representation of all three domains, separate from (but
adjacent to) zones responding in a domain-flexible manner to working memory load (see

Fig. 30).

Figure 33. Domain-selective responses are aligned to DN-A, DN-B, and LANG across
multiple participants. Flattened surfaces display maps of the binarized Episodic
Projection, Theory-of-Mind, and Sentence Processing task contrast maps for multiple
participants from the discovery (P2, P3), replication (P6, P7) and triplication (P12, P13)
datasets. The domain-preferential effects are generally localized to corresponding DN-A,

DN-B, and LANG networks and separate from the adjacent zones that respond to working
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memory load (contrast the present maps with those of Fig. 30). Similar maps from all

available participants are included in the Supplemental Materials.

Figure 34. DN-A, DN-B, and LANG respond in a domain-selective manner. Bar graphs
quantify the Episodic Projection, Theory-of-Mind, and Sentence Processing task contrasts
as mean z-values (N = 13) across the multiple a priori-defined networks. Each plot displays
data from a distinct task contrast; each bar represents a distinct network. The full 3x3
interaction (network by task contrast) is significant (p < 0.001). DN-A is robustly and
preferentially activated for the Episodic Projection task contrast; DN-B is robustly and
preferentially activated for the Theory-of-Mind task contrast; and LANG is robustly and
preferentially activated for the Sentence Processing task contrast. All planned pairwise
comparisons are significant confirming the full triple dissociation. Asterisks indicate a

value is significantly different from zero (** = p < 0.001).

Figure 35. FPN-B displays minimal response to high working memory load. A detailed
view of the inflated (A) and flattened (B) surfaces display the N-Back Load Effect (Yellow),
Episodic Projection (dark red), Theory-of-Mind (light red), and Sentence Processing (blue)
task contrast maps for P6. The black labeled outlines highlight the FPN-B network. Thin
colored outlines mark the boundaries of all other networks. The task contrast maps
collectively reveal a pattern: the regions within the FPN-B network do not display a
preferential response and tend to fill the gaps between the borders of adjacent networks,
which is particularly evident in the parietal cortex, as shown by the FPN-B label in the
bottom panel. Given this response pattern we suspect our task contrasts have not isolated
processing demands that are supported by the FPN-B network, in contrast to the FPN-A
network, which is clearly activated across its distributed regions by the N-Back Load Effect

task contrast.

Figure 36. Hierarchical development might give rise to network patterning. (Top)
The panel displays an illustration of Paul Flechsig’s maps of sequential myelination. This
map is based on Refs. 1, 170, and also the composite in Bailey and von Bonin (171). The

numbers reflect Flechsig’s estimates of the temporal ordering of myelination. Blue stippled
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areas receive projections that myelinate first (before birth), green striped areas next
(during the first months of after birth), and the reddish-brown areas last (starting several
months after birth). (Bottom) The present network estimates from a representative
participant (P1) are recolored and grouped into first-, second-, and third-order networks to
align to Flechsig’s maps. Note the similarity between the global spatial patterns and the
locations of the distributed association third-order network zones and Flechsig’s zones of

late myelinating, terminal fibers.

Figure Al. 15-network cerebral cortical parcellation estimated for S1. Network
estimates from the multi-session hierarchical Bayesian model (MS-HBM) are displayed
across four views for S1. The left hemisphere is on top and right hemisphere below. Each
color represents a distinct network estimated by the model. Some networks possess
primarily local organization (e.g., Somatomotor, Visual), while other networks possess
widely distributed organization (e.g., those involving prefrontal, temporal, and parietal
association zones). The network labels are used similarly throughout the figures. SMOT-A,
Somatomotor-A; SMOT-B, Somatomotor-B; PM-PPr, Premotor-Posterior Parietal Rostral;
CG-OP, Cingulo-Opercular; SAL / PMN, Salience / Parietal Memory Network; dATN-A,
Dorsal Attention-A; dATN-B, Dorsal Attention-B; FPN-A, Frontoparietal Network-A; FPN-B,
Frontoparietal Network-B; DN-A, Default Network-A; DN-B, Default Network-B; LANG,
Language; VIS-C, Visual Central; VIS-P, Visual Peripheral; AUD, Auditory.

Figure A2. Model-free confirmation of networks using seed-region correlation for S1.
The correlation patterns from individual seed regions placed within networks are
displayed. In each row, a distinct network is targeted, labeled to the left. The two left
columns display correlation maps using an anterior seed region of each network, while the
two right columns display correlation maps using a posterior seed region. Lateral and
medial views are displayed. White-filled circles display the seed region locations. Black
outlines show the boundaries of individual-specific networks estimated from the MS-HBM
as shown in Appendix Fig. A1. The correlation maps are plotted as z(r) with the color scale

at the bottom. The correlation maps are not constrained to fall within the estimated
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network boundaries. Nonetheless, the network boundaries capture a great deal of the

spatial correlational properties of the underlying data.

Figure A3. Temporal signal-to-noise ratio (SNR) map for S2. Paralleling Fig. 1, the mean
estimate of temporal SNR for the fMRI data is illustrated for multiple views of the left
hemisphere on the inflated cortical surface (from 61 runs collected over 31 days). A,

anterior; P, posterior; D, dorsal; V, ventral.

Figure A4. 15-network cerebral cortical parcellation estimated for S2. Paralleling
Appendix Fig. A1, network estimates from the MS-HBM are displayed across four views for
S2. The left hemisphere is on top and right hemisphere below. Each color represents a
distinct network estimated by the model. The names of cortical networks are shown at the

bottom.

Figure A5. Model-free confirmation of networks using seed-region correlation for S2.
Paralleling Appendix Fig. A2, the correlation patterns from individual seed regions placed
within networks are displayed for S2. The two left columns display correlation maps using
an anterior seed region for each network, while the two right columns display correlation
maps using a posterior seed region. Lateral and medial views are displayed for each seed
region. White-filled circles display the seed region locations. Black outlines indicate the
boundaries of corresponding individual-specific parcellation-defined networks estimated
from the MS-HBM as shown in Appendix Fig. A4. The correlation maps are plotted as z(r)

with the color scale at the bottom.

Figure A6. Direct comparison of 10-network and 15-network cerebral cortical
parcellations for S1. The left displays the 10-network estimate and the right the 15-
network estimate. Many of the major networks are similar between the two parcellations,
including LANG, DN-A, DN-B, FPN-A, FPN-B, SMOT-A, SMOT-B. VIS in the 10-network
estimate is differentiated into dATN-B, VIS-C and VIS-P in the 15-network estimate. A
monolithic large network in the 10-network estimate is differentiated into SAL / PMN and

CG-OP in the 15-network estimate. dATN in the 10-network estimate is differentiated into

80



dATN-A and PM-PPr in the 15-network estimate, and a distinct AUD network emerges near
to LANG and SMOT-B. The network labels are shown at the bottom.

Figure A7. Model-free estimates illustrate the utility of the 15-network cerebral
parcellation for visual networks for S1. Seed region correlation maps illustrate features
captured by the 15-network estimate as contrast to the 10-network estimate. VIS in the 10-
network estimate (A) is differentiated into dATN-B, VIS-C and VIS-P in the 15-network
estimate (E). White-filled circles display the seed region locations. Black outlines indicate
the boundaries of the networks above. The network labels are shown below. Correlation
maps for three distinct seed regions in and around the vicinity of visual cortex are
illustrated within the boundaries of the 10-network estimate (B, C, D) and the 15-network
estimate (F, G, H). Note that the correlation patterns are well captured by the 15-network
estimate. Black and gray outlines illustrate the networks from each parcellation estimate.

The correlation maps are plotted as z(r) with the color scale at the bottom.

Figure A8. Model-free estimates illustrate the utility of the 15-network cerebral
parcellation for networks surrounding somatomotor cortex for S1. Paralleling
Appendix Fig. A7, seed region correlation maps illustrate features captured by the 15-
network estimate as contrast to the 10-network estimate. dATN in the 10-network
estimate (A) is differentiated into dATN-A and PM-PPr in the 15-network estimate (E).
White-filled circles display the seed region locations. Black outlines indicate the boundaries
of the networks above. The network labels are shown below. Correlation maps for three
distinct seed regions surrounding somatomotor cortex are illustrated within the
boundaries of the 10-network estimate (B, C, D) and the 15-network estimate (F, G, H).
Black and gray outlines illustrate the networks from each parcellation estimate. The

correlation maps are plotted as z(r) with the color scale at the bottom.

Figure A9. Direct comparison of 10-network and 15-network cerebral cortical
parcellations for S2. Paralleling Appendix Fig. A6, the left displays the 10-network
estimate and the right the 15-network estimate. The network labels are shown at the

bottom.

81



Figure A10. Model-free estimates illustrate the utility of the 15-network cerebral
parcellation for auditory and language networks for S2. Seed region correlation maps
illustrate features captured by the 15-network estimate as contrast to the 10-network
estimate. LANG in the 10-network estimate (A) is differentiated into AUD and LANG in the
15-network estimate (E). White-filled circles display the seed region locations. Black
outlines indicate the boundaries of the networks above. The network labels are shown
below. Correlation maps for three distinct seed regions in and around the vicinity of
auditory cortex are illustrated within the boundaries of the 10-network estimate (B, C, D)
and the 15-network estimate (F, G, H). Black and gray outlines illustrate the networks from
each parcellation estimate. The correlation maps are plotted as z(r) with the color scale at

the bottom.

Figure A11. Model-free estimates illustrate the utility of the 15-network cerebral
parcellation for networks at and around cingulate cortex for S2. Paralleling Appendix
Fig. A10, seed region maps illustrate features captured by the present 15-network estimate
as contrast to the 10-network estimate. SAL in the 10-network estimate (A) is
differentiated into the SAL / PMN and the CG-OP networks in the 15-network estimate (E).
White-filled circles display the seed region locations. Black outlines indicate the boundaries
of the networks above. The network labels are shown below. Correlation maps for three
seed regions around the cingulate are illustrated within the boundaries of the 10-network
estimate (B, C, D) and the 15-network estimate (F, G, H). Black and gray outlines illustrate
the networks from each parcellation estimate. The correlation maps are plotted as z(r)

with the color scale at the bottom.

Figure A12. Overlap of network estimates derived from model-free seed-region
correlation maps. Each row displays the overlap map from one target network for the full
set of 15 novel participants using only seed-region based correlation estimates of the
networks. In the left two columns, each row displays the overlap map of correlation
patterns based on an anterior seed region. In the right two columns, each row displays the

overlap map based on a posterior seed region. The network targets are labeled to the left.
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DN-A, DN-B, LANG, FPN-A, FPN-B, CG-OP, and SAL / PMN networks are examined
separately. The purpose of these maps is to illustrate the overlap of network organization

without strong model assumptions (priors) that might bias the degree of overlap.

Figure A13. Strategy for exploring somatomotor and visual task responses in
relation to networks. Steps employed to generate a combined motor movement and
visual stimulation map for a representative participant (P6) are illustrated. (A) The within-
individual a priori-defined somatomotor networks SMOT-A and SMOT-B (blue colors) and
visual networks VIS-C and VIS-P (purple colors) are displayed on the flattened cortical
surface. Thin colored outlines mark the boundaries of all other networks. (B) The borders
of SMOT-A, SMOT-B, VIS-C and VIS-P are isolated as black outlines. (C) The task contrasts of
right versus left foot movements (red) and right versus left hand movements (blue) are
mapped in relation to the network boundaries. Presentation of the hand and foot
representations in isolation allows visualization of three separate candidate body maps
(labeled I, I1, and III). The thresholds are z > 2.13 in all cases. (D) Binarized motor task
contrast maps combine the foot (red), hand (blue), tongue (yellow) and glute (green)
movements. Note how adding body parts fills in much of the remaining cortical regions
within the somatomotor networks. The thresholds are z > 2.13 in all cases. (E) The task
contrast of horizontal versus vertical meridian visual stimulation is mapped in relation to
the network boundaries to illustrate that multiple areas fall within the VIS-C and VIS-P
networks. The thresholds are z <-2.86 and z > 3.16. (F) Binarized visual task contrast maps
combine the center versus the other apertures (red), middle versus other apertures
(green), and peripheral versus other apertures (blue). The threshold is z > 4.15. For display
purposes, the binarized maps from D and F were combined to yield a combined map of
somatomotor topography along the body axis and visual topography along the eccentricity

gradient.

Figure A14. Strategy for exploring responses to oddball detection in relation to
networks. Steps employed to generate a map of the Oddball Effect for a representative
participant (P6) are illustrated. (A) The within-individual a priori-defined networks CG-OP

and SAL / PMN are displayed on the flattened cortical surface. Thin colored outlines mark
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the boundaries of all other networks. (B) The borders of CG-OP and SAL / PMN are isolated
as black outlines. (C) The task contrast of oddball event detection versus non-targets,
labeled the Oddball Effect, is mapped in relation to the network boundaries. (D) The

binarized Oddball Effect task contrast map is shown in pink. The threshold is z > 1.70.

Figure A15. Strategy for exploring responses to high working memory load in
relation to networks. Steps employed to generate a map of the N-Back Load Effect for a
representative participant (P14) are illustrated. (A) The within-individual a priori-defined
networks FPN-A and FPN-B (orange and yellow colors) are displayed on the flattened
cortical surface. Thin colored outlines mark the boundaries of all other networks. (B) The
borders of FPN-A and FPN-B are isolated as black outlines. (C) The task contrast of 2-Back
(High Load) versus 0-Back (0-Back), labeled the N-Back Load Effect (red/yellow), is
mapped in relation to the network boundaries. (D) The binarized N-Back Load Effect task

contrast map is shown in yellow. The threshold is z > 3.00.

Figure A16. Strategy for exploring domain-preferential higher-order responses in
relation to networks. Steps employed to generate a combined map revealing domain-
selective responses for a representative participant (P6) are illustrated. (A) The within-
individual a priori-defined networks DN-A (dark red), DN-B (light red) and LANG (blue) are
displayed on the flattened cortical surface. Thin colored outlines mark the boundaries of all
other networks. (B) The borders of DN-A, BN-B and LANG are isolated as black outlines. (C)
The Episodic Projection task contrast (red/yellow) is mapped on its own in relation to the
DN-A network boundary. (D) The Theory-of-Mind task contrast (red/yellow) is mapped on
its own in relation to the DN-B network boundary. (E) The Sentence Processing task
contrast (red/yellow) is mapped on its own in relation to the LANG network boundary. (F)
Binarized task contrast maps are shown together (dark red, Episodic Projection; light red,
Theory-of-Mind; blue, Sentence Processing). The threshold is z > 1.80. The combined,

binarized map allows visualization of the multiple functional domains in the same view.
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Organization of the Human Cerebral Cortex Estimated Within Individuals:
Networks, Global Topography, and Function
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The cerebral cortex is populated by multiple networks
that are consistently present across individuals.

Primary sensory and motor networks are locally
organized; second-order networks surround them; third-
order networks implicated in higher-order cognition
populate the in-between distributed association zones.

Networks show robust functional dissociation.

Reference atlases, individual parcellations, and
raw data are provided as open resources.
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