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An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), epi-
centred in Hubei Province of the People’s Republic of China, quickly spread worldwide
and caused COVID-19 pandemic. It infected hundreds of millions of people and caused
millions of deaths. In this paper, we develop a compartmental ODE model of COVID-19
transmission. We consider a possibility of breakthrough infections after the vaccination
and account for both symptomatic and asymptomatic infections and transmissions. We
also incorporate game theory to study the optimal vaccination decisions from the indi-
viduals’ perspective. We show that vaccination alone is unlikely to eliminate COVID-19.
To achieve herd immunity, the individuals would have to receive a dose of a vaccine
more frequently than once every 3 months. It is therefore crucial to adhere to various
guidelines, such as quarantine, isolate and wear a mask if tested positive for COVID-19.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was discovered in

Wuhan, Hubei province, the People’s Republic of China in January 2020.1 The virus

epidemic eventually became a pandemic and was named COVID-19 (the coronavirus

disease 2019). By November 2022, there have been over 629 millions confirmed cases

of COVID-19 worldwide (or about 8% of the worldwide population), including over

6.5 millions deaths (0.08% of the population), reported to WHO.2 In Guam, by the

same period, there were over 49 thousands confirmed cases of COVID-19 with 404

deaths which amounts to 28.8% and 0.237% of the population of Guam.

Early in the pandemic, the USS Theodore Roosevelt, an aircraft carrier with

4779 crew, was sent to its base in Guam after three crew members tested positive

for SARS-CoV-2.3,4 During the outbreak on this ship, a total of 1271 (26.6%) crew

members tested positive and another 60 were suspected cases.5 Notably, 76.9% of

the positive cases had no symptoms at the time of testing and 45% never developed

any symptoms.4

SARS CoV-2 is airborne and transmitted through aerosols carrying infectious

viruses.6 COVID-19 can be prevented by vaccination, including boosters,7 and

by following an evolving set of guidelines which includes isolating, quarantining

and masking.8 By November 2022, a total of almost 13 billion vaccine doses had

been administered worldwide (1.66 doses per person on average) and just over 368

thousands vaccine doses were administered in Guam (2.16 doses per person on

average).

In exposed individuals, symptoms like fever, cough, shortness of breath, body

aches, new loss of taste or smell, sore throat, congestion, and many others may

appear 2–14 days after exposure to the virus.9 Different virus variants can present

with different symptoms and the symptoms can vary depending on vaccination

status.9

Mathematical modelling is crucial for understanding the control and possible

elimination of diseases.10,11 There are now thousands of different models of COVID-

19 epidemics.12–17 When the models incorporate human behavior, they can provide

even better predictions.18–20 It is thus not surprising that game theory has been

applied to modeling COVID-19.21–31 as well as many other diseases.32–43

There are several approaches to incorporate individual decisions into epidemi-

ological models. One approach is to consider the decision process as an active and

continuous process. The decisions depend on the present epidemic situation and the

outcomes of individual decisions in turn influence epidemiological evolution. The

game-theoretical foundations to these models have been laid out by Ref. 44. These

imitation dynamic models have been applied to understand the human behavior

element in a repeated behavior, such as social distancing during COVID-19 epi-

demics21 as well as to model the use of insecticide treated nets to prevent malaria45

or practice facial cleanliness to prevent trachoma.46 The analyses of these mod-

els can be quite complex because the decision dynamics and the epidemiological
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dynamics are coupled. It is often not clear what is the long-time behavior of the

system and whether or not the equilibria of the system are stable or exist.

The second and more static approach was popularized by Ref. 47 and applied

to situations where individuals typically decide just once whether to vaccinate or

not. However, it was also applied to influenza48 and COVID-1949 where the vac-

cination decisions are repeated. These models decouple the decision process from

the underlying epidemiology and consider a population game played in the endemic

equilibrium.

In this paper, we construct a model of COVID-19 transmission based on Refs. 21

and 22. We consider a possibility of breakthrough infections after the vaccination

and account for both symptomatic and asymptomatic infections and transmissions.

Our goal is to determine the vaccine coverage needed for herd immunity. We also

incorporate game theory to study the optimal vaccination decisions in the endemic

equilibrium from the individuals’ perspective.

2. Mathematical Model

We extend the basic susceptible–vaccinated–exposed–infected–recovered (SVEIR)

model by (a) allowing asymptomatic infections (A) and (b) separating breakthrough

infections of vaccinated individuals from the infections of individuals without any

current vaccine immunity. Thus, the population is split into the following; suscep-

tible (S), vaccinated (V ), exposed with or without vaccine protection (EV and

ES), asymptomatic infectious with or without vaccine (AV and AS), symptomatic

infectious with or without vaccine (IV and IS), and recovered (R).

Susceptible individuals vaccinate at rate ν, i.e., on average an individual will

get a dose of a vaccine every ν−1 days. The vaccine wanes at rate w, i.e., does

not offer any protection after w−1 days on average, and the vaccinated individuals

become susceptible again. In general, as common in compartmental models,50 we

will assume that the rate of progression from one compartment to another is the

inverse of the average observed duration of such a change.

Susceptible individuals become exposed upon contact with infectious individu-

als. The force of infection is given by

λ = β(IS + tAS
AS + tIV

IV + tAV
AV ), (2.1)

where β is the COVID-19 transmission rate and tAS
, tAV

, and tIV
are the modifi-

cation parameters representing reduced infectiousness of cases in AS , AV , and IV

compartments.

The vaccine is not 100% effective and even the vaccinated individuals can

become exposed. We assume that the force of infection for vaccinated individu-

als is simply expressed by (1 − e)λ where e is the efficiency of the vaccine.

The incubation period lasts σ−1 days after which the exposed individuals

become either asymptomatic (with probability qS) or symptomatic (with proba-

bility 1 − qS). Similarly, the individuals in EV , exposed after vaccination, stay in
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EV for σ−1 and they become asymptomatic with probability qV and symptomatic

with probability 1 − qV .

Asymptomatic and symptomatic individuals recover (i.e., stop being infectious)

at rate γS and γV , respectively. The recovered individuals are temporarily immune

against reinfections, but they lose their immunity and become susceptible again at

rate ϕ.

As in Ref. 21, we are more concerned with short term dynamics and thus ignore

birth and natural mortality. Additionally, as the treatment options progress, we

ignore the COVID-19 related mortality. As shown in Table 1, the duration of vaccine

protection is the longest time interval considered in our model and it is still under

a year. We therefore consider the population closed and treat compartment sizes

as proportions of the entire population. While this assumption is not completely

realistic, no model can be 100% accurate.61,62

Table 1. Model parameters. The times are in days, rates are per capita per day. The range show
is used in uncertainty and sensitivity analysis.

Symbol Meaning Value Range Reference

ν Vaccination rate Variable [0, 0.02]
ω−1 Duration of vaccine protection 180 [120, 360] Nordström et al.51

e Vaccine efficiency 0.85 [0.6, 0.95] Harder et al.52

λ Force of infection (2.1)
β Transmission rate 0.6 [0.4, 0.8] Estimated based on

Alimohamadi et al.53

tAS
Modification parameter,
reduction of infectiousness
in AS

0.2 [0.1, 0.3] Yanes–Lane54

tAV
Modification parameter,
reduction of infectiousness
in AV

0.2 [0.1, 0.3] Assumed

tIV
Modification parameter,
reduction of infectiousness
in IV

0.2 [0.1, 0.3] Assumed

σ−1 Incubation period 6 [2, 12] Elias et al.55 and Zaki
and Mohamed56

qS Probability of becoming
asymptomatic when not
vaccinated

0.25 [0.16, 0.38] Alene et al.57

qV Probability of becoming
asymptomatic after being
vaccinated

0.3 [0.2, 0.4] CDV et al.58

γ−1

S
Duration of infections period if
unvaccinated

7 [5, 11] Alvarado et al.59

γ−1

V
Duration of infections period if
vaccinated

7 [5, 11] Alvarado et al.59

ϕ−1 Duration of natural immunity 180 [150, 210] Ripperger et al.60

CV Cost of vaccination 1 — Assumed
CIS

Cost of symptomatic infection if
unvaccinated (relative to CV )

10 [1, 20] Assumed

CIV
Cost of symptomatic infection if
vaccinated (relative to CV )

1 [1, 2] Assumed
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Fig. 1. Scheme of the compartmental ODE model for COVID-19 transmission. The compart-
ments represent susceptible (S), vaccinated (V ), exposed with or without vaccine protection (EV

and ES), asymptomatic infectious with or without vaccine (AV and AS), symptomatic infectious
with or without vaccine (IV and IS), and recovered (R). Solid arrows represent the transitions
between compartments. The letters next to the arrows specify the per capita rates of the tran-
sitions. The force of infection λ is given by (2.1). The parameters are summarized in Table 1.

The model diagram is shown in Fig. 1. The parameters are summarized in

Table 1. The model yields the following system of ordinary differential equations.

dS

dt
= ϕR + ωV − νS − λS, (2.2)

dV

dt
= νS − ωV − (1 − e)λV, (2.3)

dES

dt
= λS − σES , (2.4)

dEV

dt
= (1 − e)λV − σEV , (2.5)

dAS

dt
= σqSES − γSAS , (2.6)

dIS

dt
= σ(1 − qS)ES − γSIS , (2.7)

dAV

dt
= σqV EV − γV AV , (2.8)

dIV

dt
= σ(1 − qV )EV − γV IV , (2.9)

dR

dt
= γS(AS + IS) + γV (AV + IV ) − ϕR. (2.10)
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3. Analysis of the ODE System

The detailed calculations accompanying this section are shown in Appendix A.

For any parameter values, there are at most two equilibria, i.e., two

steady states of the system (2.2)–(2.10). The disease-free equilibrium E0 =

(S0, V 0, E0
S , E0

V , A0
S , I0

S , A0
V , I0

V , R0) is given by

E0 =

(

ω

ω + ν
,

ν

ω + ν
, 0, 0, 0, 0, 0, 0, 0

)

. (3.1)

The endemic equilibrium E∗ = (S∗, V ∗, E∗

S , E∗

V , A∗

S , I∗S , A∗

V , I∗V , R∗) (with some

infected individuals in the population) exists only if the disease-free equilibrium

is unstable.

The local stability of the disease-free equilibrium is determined by the effective

reproduction number

R =

(

β

γSγV

) (

ωrSγV + ν(1 − e)rV γS

ω + ν

)

, (3.2)

where

rS = 1 − qS + qStAS
, (3.3)

rV = tIV
− qV tIV

+ qV tAV
. (3.4)

As in Ref. 63, the disease-free equilibrium is locally asymptotically stable if R < 1

and it is not stable if R > 1.

It follows that there is a unique vaccination rate νHI defined by

νHI =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if
β

γS

rS ≤ 1,

ω

β
γS

rS − 1

1 − (1 − e) β
γV

rV

if
β

γS

rS > 1 and (1 − e)
β

γV

rV < 1,

∞ if
β

γS

rS > 1 and
β

γV

(1 − e)rV ≥ 1,

(3.5)

such that the disease-free equilibrium is locally asymptotically stable if and only if

ν ≥ νHI.

We can interpret the formula (3.5) as follows. The auxiliary variable rS describes

the infectiousness of the infected population (symptomatic with probability 1 −

qS and asymptomatic with probability qS and reduced infectiousness tAS
). The

meaning of the auxiliary variable rV is analogous. The term βrS/γS is thus a

relatively standard formula for reproduction number;64 the term (1 − e)βrV /γV is

analogous as one can see the vaccination to reduce the transmission rate by a factor

(1− e). If, in the absence of vaccination, the reproduction number is below 1 (as in

the first option of (3.5)), then there is no need to vaccinate as the population should

reach disease-free equilibrium. On the other hand, if even at full vaccination, the
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reproduction number is larger than 1 (the last option in (3.5)), then the vaccination

cannot eliminate COVID-19. This would be possible if the vaccine was not very

effective (small e, large tIV
, and large aAV ). Only when the vaccine is effective

enough and, without the vaccine, the reproduction number is above 1 (the second

option of (3.5)), then there is a minimal vaccination rate, νHI, needed to reach

herd immunity. We can see that the rate νHI is increasing with vaccine waning

rate ω, the “reproduction number” in susceptible only population, βrS/γS, and the

“reproduction number” in fully vaccinated population, (1 − e)βrV /γV .

4. Game Theory — Optimal Individual Decisions

To study the optimal vaccination decisions from the individuals’ perspective, we

add the game-theoretic component on top of the epidemiological model.

The vaccination game is a population game that is played by susceptible individ-

uals who decide whether to (re-)vaccinate.48 As in Refs. 47 and 48, all individuals

are assumed to be rational, have complete information about the epidemic, and act

in their own interest. They evaluate costs of their own actions and select the action

that minimizes their own costs.

The risks of the infection depend on many factors, including the time and the

current COVID-19 levels. However, for simplicity, we adopt the Nash equilibrium

approach used by Ref. 47 as well as later by many others.48 We assume that all

individuals select their strategy — the frequency to vaccinate — once and inde-

pendently of each other. The optimal strategy, or the Nash equilibrium, is such a

strategy that, if adopted by everyone in the population, nobody has an incentive to

deviate from it.65 To evaluate the payoffs and eventually the potential incentive to

deviate from the common strategy, we assume, as in Refs. 47 and 48, that enough

time lapsed and the population reached the steady state of the disease dynamics.

This will allow us to properly quantify the risks of contracting COVID-19 in such

a situation.

To proceed with the Nash equilibrium analysis we assume that, with the excep-

tion of a single focal individual, all susceptible individuals vaccinate at rate ν. We

now focus on that one focal individual and try to determine whether or not the

vaccination is beneficial.

The population is large enough and so the vaccination decision of the focal

individual does not have an impact on the steady state of the dynamics. Moreover,

we assume that the population is at or near the steady state, i.e., the endemic

equilibrium. Hence force of infection is, as in (2.1), given by

λ∗(ν) =

⎧

⎨

⎩

0 if R ≤ 1,

β(I∗S + tAS
A∗

S + tAV
A∗

V + tIV
I∗V ) if R > 1,

(4.1)

where I∗S , A∗

S , A∗

V , and I∗V are endemic equilibrium proportions of infectious indi-

viduals. The proportions and the force of infection can be evaluated numerically.
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If, at time t, an individual decides to get vaccinated, they will pay the cost

CV for the vaccination. The vaccine provides only a partial immunity and only

for an expected time ω−1. When we are interested in the probability a vaccinated

individual becomes exposed, we consider dV
dt

= −(1 − e)λV with a solution (when

λ is constant) given by V (τ) = V (0)exp(−(1 − e)λτ). Similarly, the probability of

a breakthrough infection between time t and t + ω−1 is given by

πV →EV
= 1 − exp

(

−

∫ t+ω−1

t

(1 − e)λ∗(ν)dτ

)

= 1 − exp

(

−(1 − e)
λ∗(ν)

ω

)

. (4.2)

The symptomatic infection will result only in 1− qV cases. The remaining propor-

tion will be asymptomatic and will not incur any costs. The total cost of vaccination

is thus given by

CV + (1 − qV )πV →EV
CIV

. (4.3)

Similarly, the probability that a susceptible individual becomes exposed between

a time t and t + ω−1 is given by

πS→ES
= 1 − exp

(

−
λ∗(ν)

ω

)

(4.4)

and only the fraction (1− qS) of the individuals will experience symptomatic infec-

tion and pay the cost CIS
.

The incentive to vaccinate, i.e., the cost of not vaccinating minus the cost of

vaccinating, is given by

h(ν) = (1 − qS)

(

1 − exp

(

−
λ∗(ν)

ω

))

CIS

−CV − (1 − qV )

(

1 − exp

(

−(1 − e)
λ∗(ν)

ω

))

CIV
. (4.5)

The Nash equilibrium is generally obtained by solving h(ν) = 0 as for that rate the

payoffs for vaccinating or not vaccinating are the same. There is also a possibility

that it is not beneficial to vaccinate even if nobody vaccinates (if h(0) < 0) or that

it is always beneficial to vaccinate no matter what everybody else is doing (h(ν) > 0

for all ν). Hence, the Nash equilibrium νNE is given by

νNE =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if h(0) < 0,

ν for which h(ν) = 0,

does not exist if h(ν) > 0 for all ν.

(4.6)

The Nash equilibrium can be obtained numerically by solving (4.6).
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5. Model Calibration

In this section, we describe how the parameter values and ranges were chosen.

The protection from vaccines can last over seven months but can be lost as fast

as in as fast as four months for some vaccines.51 We will thus consider ω−1 = 6

months with a range of [4, 12] months.

Vaccine efficacy varies greatly based on the specific vaccine66 and based on the

most prevalent COVID-19 variant.67 The review in Ref. 52 shows that in most

cases the efficacy is about 80–90%; we will thus assume e = 0.85. At the same time,

the efficacy can vary depending on the vaccine and the virus variant. We will thus

assume the range [0.6, 0.95].

Reference 55 reviewed 99 studies about incubation period and gives the pooled

estimate of the mean across the studies as 6.38 days, with 95% CI (5.79; 6.97). Also,

Ref. 56 reviews the articles from early 2020 and gives the mean incubation period

as 7.8 days, which falls into the ranges proposed by the WHO (0–14 days) and the

ECDC (2–12 days). We will thus assume the incubation period is σ−1 = 6 days

with the range [2, 12]. We note, however, that other studies reported much shorter

periods, for example Ref. 12 considered periods that were about 50% less than what

we consider here. Moreover, new findings, such as those presented in Ref. 68 show

that viral shedding starts relatively soon and peaks 7 days after exposure, possibly

indicating that the incubation period is shorter.

After the infection, neutralizing and spike-specific antibody production persists

for at least 5–7 months.60 We will thus assume that the natural immunity acquired

after the infection lasts 6 months with the range [5, 7] months.

The proportion of asymptomatic infections varies greatly from study to study.54

The review of Ref. 57 for the unvaccinated cases shows the range from 1.4% to 78.3%

with the weighted pooled proportion of asymptomatic COVID-19 cases throughout

the course of infection was 25% (95%CI: 16–38). We will thus consider qS = 0.25

with the range [0.16, 0.38].

Reference 54 notes that among five transmission studies, 18 of 96 (18.8%) close

contacts exposed to asymptomatic index patients were COVID-19 positive. We will

thus assume tAS
≈ 0.2 with the range [0.1, 0.3]. We will assume that tAV

and tIV

are about the same and with the same range.

The proportion of asymptomatic infections is larger for vaccinated cases.69 On

the other hand, meta-analysis in Ref. 70 shows no significant differences between

vaccinated and unvaccinated infections. In a large study 10,262 SARS-CoV-2 vac-

cine breakthrough infections,58 2725 vaccine breakthrough infections were asymp-

tomatic and not hospitalized. Additionally, 289 were asymptomatic or hospitalized

for a reason unrelated to COVID-19. This gives qV ≈ 0.30. We will assume the

range to be [0.2, 0.4].

A median symptom duration is 7 days with range 5–11 days.59 This agrees

with the recommendation to isolate and/or to wear the mask for 10 days since the
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beginning of the symptoms.8 We will thus assume γ−1
S = γ−1

V = 7 days with the

range [5, 11].

To estimate the transmission rate β, we use the formula for the reproduc-

tion number without vaccination, R0 = β
γS

(1 − qS + qStAS
) which yields β =

R0
γS

1−qS+qStAS

. Since the pooled estimate for R0 for COVID-19 was estimated as

3.32 with 95% confidence interval between 2.81 and 3.82,53 we get that β ≈ 0.6.

We will assume the range between [0.4, 0.8].

For the case of COVID-19, we will assume that the cost associated with vac-

cination and actual disease is mostly perceived and stems from potential vaccine

side-effects as well as from the necessity to isolate during the infection. To keep

the costs relative to the cost of vaccination, we will keep CV = 1. We will also

assume CIS
= 10 and CIV

= 1. While we are strictly assuming those values, we

note that the performed uncertainty and sensitivity analysis demonstrates how the

model outcomes do not significantly depend on CIV
. The optimal vaccination rate

is quite sensitive to CIS
= 10. Should the true cost be higher, the optimal rate

would be higher as well; on the other hand, should the true cost be lower, the

rate would be lower too.

6. Results

For the parameters as described in Table 1, the basic reproduction number without

vaccination (ν = 0) is R ≈ 3.36. R is decreasing in ν as shown in Fig. 2(a); and

R = 1 for νHI ≈ 0.015. Figure 2(b) shows sensitivity of R on model parameters. It

is most sensitive to vaccination rate ν and the duration of vaccine protection ω−1

(any increase in these two will cause R to decrease). R is also quite sensitive on

transmission rate, β, and the duration of infectious period of unvaccinated cases,

γ−1
S (any increase in those will cause R to increase). Figure 2(c) shows the uncer-

tainty of R. For the majority of the parameter values, R is between 1 and 5 and it

is below 1 mostly only when ν > νHI.

As already demonstrated above, our model suggests that the vaccination rate

needed for herd immunity is ν = 0.015 per day. This means that the whole pop-

ulation needs to be vaccinated in ν−1
HI ≈ 66 days. Figure 3(a) shows uncertainty

analysis of νHI for the parameters with ranges as in Table 1. Note that for the

majority of parameter values, νHI > 0.01, i.e., the individuals need to be (re)-

vaccinated every 100 days (or more often). To better understand the vaccination

rates, Fig. 3(b) shows the times between vaccinations that are needed to achieve

the herd immunity. Again, we see that for the vast majority of the parameters, the

time has to be much less than 5 months. Figure 3(c) shows the sensitivity analysis

of νHI on various parameters. It is most sensitive on transmission rate, β, and the

duration of infectious period of unvaccinated individuals, γ−1
S ; increase of any of

these two will cause νHI to increase. It is also sensitive to the duration of vaccine
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(a) (b)

(c)

Fig. 2. (a) The dependence of the reproduction number R on the vaccination rate ν. Other
parameters as in Table 1. (b) Sensitivity analysis of the reproduction number. (c) Uncertainty
of the reproduction number. The uncertainty and sensitivity analysis was done using the Latin
hyper-cube sampling with partial rank correlation coefficient (LHS-PRCC) scheme.71–73 Param-
eter ranges as specified in Table 1.

protection, ω−1, and vaccine efficacy, e; an increase of any of these two parameters

will cause νHI to decrease.

The Nash equilibrium value of the vaccination rate is about νNE ≈ 0.0136, i.e.,

it is in the individual’s best interest to (re-)vaccinate every 73 days. Figure 4 shows

sensitivity and uncertainty analysis of νNE. It follows that it is most sensitive on

transmission rate, β, and the duration of infectious period of unvaccinated individ-

uals, γ−1
S and the cost of infection CIS

; increase of any of these three parameters

will cause νNE to increase. It is also sensitive to the duration of vaccine protection,

ω−1, and the probability of getting asymptomatic when vaccinated, qS ; an increase

of any of these two parameters will cause νNE to decrease.
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(a) (b)

(c)

Fig. 3. (a) Uncertainty of the vaccination rate needed to achieve herd immunity, νHI. (b) Uncer-
tainty analysis of the frequency at which the whole population needs to be vaccinated to achieve
herd immunity, ν−1

HI
. (c) The sensitivity analysis of νHI. Parameter ranges as specified in Table 1.

(a) (b)

Fig. 4. (a) Uncertainty of the optimal vaccination rate νNE. (b) The sensitivity analysis of νNE.
Parameter ranges as specified in Table 1.
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7. Conclusions and Discussion

We created a compartmental ODE model for COVID-19 transmission that consid-

ers asymptomatic infections. We added a game theory component on top of the

epidemiological model to account for an individual’s vaccination behavior at the

endemic equilibrium.

We have seen that vaccination alone is unlikely to eliminate COVID-19. To

achieve herd immunity, the individuals would have to receive a dose of a vaccine

every 66 days. From the individual’s perspective, the optimal frequency is to vac-

cinate every 73 days. If the vaccine was 100% effective, the frequency for herd

immunity could be a little lower at about once every 76 days and the optimal indi-

vidual frequency would be about once every 84 days. All of these frequencies are

unrealistically high since the current recommendations are to re-vaccinate about

once every 6 months.

Our model is similar in many aspects to the model of Ref. 49 who also considered

breakthrough infections. In our model, we can explicitly fine-tune parameters to

make the breakthrough cases less (or more) likely to be asymptomatic and less

(or more) infectious while Ref. 49 assumed all parameters to be the same. The

sensitivity analysis we performed shows that the difference between the infections

do not play any significant role in the outcomes, i.e., they do not significantly affect

the vaccination rates needed to achieve the herd immunity nor the optimal Nash

equilibrium vaccination rates. We also considered only a short term model and

ignored any natural births and deaths explicitly incorporated in Ref. 49 but these

modifications did not seem to play any crucial role in the outcomes either.

It has been shown in Ref. 74 that insufficient COVID-19 vaccine coverage can

make the pandemic worse. The re-vaccination rates could be lower if either (a) the

vaccine protection lasted longer or (b) the transmission rate was not so high. There

is not much individuals can do about vaccine waning. It is therefore crucial to

adhere to various guidelines, such as quarantine, isolate and wear a mask if tested

positive for COVID-19.8

As with any mathematical model, our model has a number of limitations. For

our game theoretical model, we assumed that all individuals are rational, have com-

plete information about the epidemic, and act in their own interest by selecting the

action that minimizes their own costs. Empirical studies75 as well as theoretical

studies34,40 demonstrate rational behavior and that the actual level of vaccination

depends on the perceived cost of the protection. However, individuals may have

incomplete76 or incorrect77 information. The evidence from a growing body of lit-

erature on disease transmission and misinformation suggests that misinformation

can prevent the suppression of epidemics.78–81

We performed the analysis as if COVID-19 already reached the endemic state.

While this is a likely outcome, we may not be there yet.82,83 The vaccination adop-

tion behaviour can allow for co-evolution84 and the coupling of game and epidemic

models can lead to oscillations in vaccine uptake over time.85 The vaccine-generated

protection can lower COVID-19 infection risk which would cause individuals to
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cease vaccinating which in turn causes uptick in disease incidence.86 To better

understand the coupled dynamics between vaccination behavior and disease trans-

mission, one can adopt the imitation dynamic approach for the vaccination game

theory44 as done, for example, in Ref. 31.
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cination of adults and adolescents can help eradicate hepatitis B in China, Games

12(4):82, 2021, doi:10.3390/g12040082.
37. Bankuru SV, Kossol S, Hou W, Mahmoudi P, Rychtář J, Taylor D, A game-theoretic
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Appendix A. Calculations

The equilibria of the dynamics (2.2)–(2.10) are obtained as solutions of the following

system of algebraic equations:

0 = ϕR + ωV − νS − λS, (A.1)

0 = νS − ωV − (1 − e)λV, (A.2)

0 = λS − σES , (A.3)

0 = (1 − e)λV − σEV , (A.4)

0 = σqSES − γSAS , (A.5)

0 = σ(1 − qS)ES − γSIS , (A.6)

0 = σqV EV − γV AV , (A.7)

0 = σ(1 − qV )EV − γV IV , (A.8)

0 = γS(AS + IS) + γV (AV + IV ) − ϕR, (A.9)

subject to the constraint

1 = S + V + ES + EV + AS + IS + AV + IV + R. (A.10)
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A.1. Disease-free equilibrium

The disease-free equilibrium (with no infections and thus with λ = 0) is given by

solution of

0 = ωV − νS, (A.11)

1 = S + V. (A.12)

Thus, S0 = ω
ω+ν

and V 0 = ν
ω+ν

.

A.2. Reproduction number

To assess the local stability of the disease-free equilibrium, we calculate the effective

reproduction number following the next-generation matrix method.63 We order

the compartments with infection as ES , AS , IS , EV , AV , IV . This gives the vector

corresponding to the rates of new infections as

F = (λS, 0, 0, (1 − e)λV, 0, 0)T (A.13)

and the vector corresponding to the transfers between compartments as

V =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

σES

−σqSES + γSAS

−σ(1 − qS)ES + γSIS

σEV

−σqV EV + γV AV

−σ(1 − qV )EV + γV IV

⎞

⎟

⎟

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎠

. (A.14)

Thus, the derivatives evaluated at the disease-free equilibrium are given by

F = DF =

⎛

⎜
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⎜

⎜

⎜
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⎜

⎜
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⎝

0 βtAS
S0 βS0 0 βtAV

S0 βtIV
S0

0 0 0 0 0 0
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0 (1 − e)βtAS
V 0 (1 − e)βV 0 0 (1 − e)βtAV

V 0 (1 − e)βtIV
V 0
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0 0 0 0 0 0
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,

(A.15)

V = DV =

⎛
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⎜
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This yields

V−1 =

⎛
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FV−1 = β
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where

rS = 1 − qS + qStAS
, (A.19)

rV = tIV
− qV tIV

+ qV tAV
. (A.20)

There is only one nonzero eigenvalue of FV−1 given by

R =

(

β

γSγV

) (

ωrSγV + ν(1 − e)rV γS

ω + ν

)

. (A.21)

As in Ref. 63, the disease-free equilibrium is locally asymptotically stable if

R < 1 and it is not stable if R > 1.
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A.3. Vaccination rate needed to achieve herd immunity

We have

∂R

∂ν
= −

(

βω

γSγV (ω + ν)2

)

(rSγV − (1 − e)rV γS). (A.22)

For realistic values of parameters qS < qV , rS > rV and γV ≥ γS . Consequently,

as a function of ν, R is decreasing; see Fig. 2(a). If R < 1 when ν = 0, then there

is a herd immunity even with no vaccination. If, on the other hand, R > 1 even

as ν → ∞, then the herd immunity can never be achieved. Thus, there is a unique

vaccination rate νHI defined by

νHI =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if
β

γS

rS ≤ 1,

ω

β
γS

rS − 1

1 − (1 − e) β
γV

rV

if
β

γS

rS > 1 and (1 − e)
β

γV

rV < 1,

∞ if
β

γS

rS > 1 and
β

γV

(1 − e)rV ≥ 1,

(A.23)

such that the disease-free equilibrium is locally asymptotically stable if and only if

ν ≥ νHI.

A.4. Endemic equilibrium and stability

The endemic equilibrium (with positive IS and thus positive force of infection λ) can

be obtained by numerically solving the system of equations (A.1)–(A.10). Numerical

experiments with different parameter values showed that there is always at most one

biologically relevant (with non-negative values) solution of the system that is not

disease-free equilibrium. We therefore conjecture that, for the parameter values as

in Table 1, the dynamics (2.2)–(2.10) has at most two steady states: (1) the disease-

free equilibrium which is globally asymptotically stable if and only if R ≤ 1, and (2)

the endemic equilibrium which exists and is globally asymptotically stable if and

only if R > 1. We believe this conjecture could be proved by Lyapunov approach

as done, for example, in the mpox case in Ref. 87; however, we have not succeeded

with the proof.


