
074 0 -74 59 /21©2021I E E E JANUARY/FEBRUARY 2021 | IEEE SOFTWARE 97

FEATURE: SOFTWARE METRICSFEATURE: SUPPORT FOR RESEARCH SOFTWARE ENGINEERING

ALTHOUGH SOFTWARE HAS been
a part of research for many decades,
the people who write, maintain, and
manage this research software are in-
creasingly seen as critically important
members of research teams, rather
than just “the people who write code.”
The past few years have seen the emer-
gence and rapid growth of the con-
cept of research software engineering
(RSE). Beginning in the U.K. research
community, circa 2013 through dis-
cussions initiated by the Software Sus-
tainability Institute (https://software
.ac.uk), groups focusing on develop-
ing sustainable, maintainable, robust
research software have been set up at
many institutions.

A history of this process can be
found in the “2017 Research Soft-
ware Engineers: State of the Nation”
report.1 Since the report was writ-
ten, the number of research software
groups within the United Kingdom
and internationally has increased. Be-
hind this growth is the need for ever-
increasing amounts of high-quality
research software development. If you
are a software development practitio-
ner, addressing this ultimately relies
on people like you seeing research in-
stitutions as potential employers. For
researchers building software, it relies
on seeing software development as a
realistic focus for a research career.

Although the majority of RSEs
currently come from the research com-
munity and there is not yet a well-
established path for professional
developers moving into the field, a
small number of RSEs already come
from a professional development
background. RSE-specific roles and
job descriptions are making this a
realistic career option, and anecdotal
evidence suggests that the number of
professional developers moving into
RSE is growing. Although there can
be similarities between RSE roles and

The Four Pillars
of Research
Software
Engineering
Jeremy Cohen, Imperial College London

Daniel S. Katz, University of Illinois at Urbana-Champaign

Michelle Barker, Research Software Alliance

Neil Chue Hong, University of Edinburgh

Robert Haines and Caroline Jay, University of Manchester

// We present four elements we believe
are key to providing a comprehensive
and sustainable support for research
software engineering: software
development, community, training, and
policy. We also show how the wider
developer community can learn from,
and engage with, these activities. //

Digital Object Identifier 10.1109/MS.2020.2973362
Date of current version: 22 December 2020

Software
Development

Community
Training

Policy

Authorized licensed use limited to: University of Illinois. Downloaded on September 06,2024 at 13:29:27 UTC from IEEE Xplore. Restrictions apply.

98 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SUPPORT FOR RESEARCH SOFTWARE ENGINEERING

those in major tech companies or the
startup community, Cannam et al.’s
“Ten Reasons to Be a Research Soft-
ware Engineer”2 provides some great
examples of why a professional devel-
oper might choose an RSE career over
alternative options.

Ensuring a sustainable approach to
research software development is not
just about how you build the software
but also how you support the commu-
nity of people building it and how you
attract the most talented individuals,
both professional developers and re-
searchers, to join this community. In this
article, we introduce four pillars of RSE
that we see as providing the necessary

elements to offer comprehensive, on-
going support for the development of
quality research software. The structure
aims to demonstrate how professional
software development practices can be
brought together with approaches used
in the research community to provide a
more sustainable environment for de-
velopers of research software.

The basis for and structure of the
four pillars were initially set out in
our earlier short paper3 as a request
for comments and input from the
community. This article supports the
previously proposed structure and
provides a range of evidence to show
how the areas represented by the four
pillars are being realized. We show
that these areas include extensive
professional software development
practitioner knowledge that is now

more likely to be recognized as impor-
tant and necessary in the development
of robust research software. With the
adoption of elements of this struc-
ture, research is rapidly becoming a
viable environment for a professional
software engineering career, with the
benefits that come from working in a
flexible environment characterized by
interesting research challenges.

This article aims to provide insights
in three core areas:

• understanding the importance
of RSE to the research commu-
nity and to the wider developer
community and why the field has

grown so rapidly in recent years
• setting a structure that defines

the core elements of RSE and can
support an organization in ensur-
ing reliable, maintainable, and
sustainable research software out-
puts and reproducible research

• providing examples of existing
activities that demonstrate the
areas and approaches highlighted
by the four pillars.

The Importance of
Research Software
Software increasingly underpins al-
most all research and, indeed, industry
and much of the wider economy. Since
the earliest days of using software
to support and undertake research,
there have been links with industry.

However, with the emergence of the
data economy, enterprises increasingly
need to adopt advanced computational
processes and pipelines for managing
and understanding the vast quantities
of data available to them. The speed
of development in areas such as data
science, machine learning, and artifi-
cial intelligence creates a much more
direct link between research software
outputs, industry, and the wider world.

There are some excellent examples
of how open source software, devel-
oped to support the research commu-
nity, is being used to tackle challenges
in the global world: for example, the
use of Jupyter notebooks for large-scale
data analysis by Netflix.4 Research
funding has also been behind some
key developments in modern society,
such as a research project at Stanford
that lies behind the development of the
Google search engine.5 Indeed, research
projects and funding have helped sup-
port the development of what could
be considered some of the most funda-
mental and life-changing aspects of the
modern world, including the Internet
itself and the protocols that power it.6

Ultimately, good research software
can make the difference between valid,
sustainable, reproducible research out-
puts and short-lived, potentially un-
reliable or erroneous outputs. This is
succinctly highlighted by the tagline of
the U.K. Software Sustainability Insti-
tute: “Better software, better research.”
Good research software is difficult and
time consuming to build, but it matters.
However, as pointed out by Anna No-
wogrodzki in “How to Support Open-
Source Software and Stay Sane,”7

funding the development of research
software can be very challenging.

Four Pillars of
Research Software
Our observation is that organiza-
tions’ support for research software

Software increasingly underpins
almost all research and, indeed,

industry and much of the
wider economy.

Authorized licensed use limited to: University of Illinois. Downloaded on September 06,2024 at 13:29:27 UTC from IEEE Xplore. Restrictions apply.

 JANUARY/FEBRUARY 2021 | IEEE SOFTWARE 99

often develops in an ad hoc manner.
Our four-pillar structure, summarized
in this section, aims to highlight areas
that we see as most important in provid-
ing comprehensive support for research
software. Research software is built in
a wide range of different organizations,
from large universities to small inde-
pendent research laboratories. The scale
and variety of research-software-related
activities will differ between organi-
zation types. The four-pillar structure
aims to offer a complete picture; how-
ever, there will be some organizations
for which a subset of the activities de-
scribed is sufficient.

We are not suggesting that orga-
nizations that provide support only
for the software development pillar, for
example, are bad places to be a soft-
ware developer. The structure offers
organizations a straightforward ap-
proach to identifying where current ac-
tivities could be extended. For existing
research software practitioners looking
to move into this space, it provides a
way of gauging how advanced an or-
ganization is in this area. We hope it
begins the process of helping to for-
malize the space within which research
software is built.

When the Coding Gets Tough
When we talk about “better” software
or “good quality” software, what do
we actually mean in the research con-
text, and why is it important? Many
researchers who write software are,
to some extent, self-taught. They may
have had some basic software develop-
ment training as part of an undergradu-
ate or postgraduate course, but the first
time they actually write a tool, script, or
application to serve some real-world re-
quirement is when they hit a research
problem that can best be solved with
some code. At this stage, getting the end
result is often the most important as-
pect, and it is often needed quickly.

Best practices covering documenta-
tion, testing, software-design tech-
niques, and code management are
key activities. They help ensure that
software is reliable and easier to main-
tain and that the results it outputs
are reproducible. Although the RSE
movement can provide training
in these skills to researchers, they are
a natural part of everyday software
 development for professional soft-

ware practitioners, who can contrib-
ute significantly to this field.

Maintainability, sustainability, and
robustness are core aspects of building
quality software that form part of our
first pillar: software development.

No Developer Is an Island
Software is an incredibly fast-chang-
ing field. New frameworks and tools
can appear, gain huge traction in the
community with thousands or even
millions of users, and then, a couple of
years later, be almost forgotten and re-
placed with the “next big thing.” How
do developers find out about such
changes? More importantly, how do
they know which of these changes are
relevant, which should be learned/ad-
opted, and which should be avoided?
What common technical challenges
do they face?

In the modern world of software, it
is very difficult for developers to work
entirely alone. However, someone

building research software within
an academic research group can fre-
quently be the only developer on a
team or might be one of a small group
of such people. Life as a research de-
veloper can sometimes be lonely. RSEs
in central RSE teams may have peers
to communicate with, but interact-
ing with other developers from differ-
ent fields and technical backgrounds
can always be beneficial. Professional

software practitioners can also bring
much to this space in the form of tech-
nical advice and guidance.

The need for communication, learn-
ing from the experiences of others,
and keeping up with the latest devel-
opments provides the basis for our
second pillar: community.

New Code on the Block
As a developer, there is always some-
thing new to learn, partly because of
the speed of change in the developer
community (and computing in gen-
eral) and partly because it is such a
large area with so many different lan-
guages, techniques, and tools. In addi-
tion to keeping coding skills up to date,
developers also benefit from guidance
on tools and approaches for making
software open, citable, robust, read-
able, verifiable, and easier to reuse and
contribute to.

The concept of continuing profes-
sional development is now commonplace

When we talk about “better”
software or “good quality” software,

what do we actually mean in the
research context, and

why is it important?

Authorized licensed use limited to: University of Illinois. Downloaded on September 06,2024 at 13:29:27 UTC from IEEE Xplore. Restrictions apply.

100 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SUPPORT FOR RESEARCH SOFTWARE ENGINEERING

in many industries but is less common
in the research community, perhaps be-
cause the whole process of research is
based around learning/developing new
skills and techniques. In our experience,
research software developers are enthu-
siastic about training opportunities.

The importance of ensuring initial
and ongoing skills development for
people building research software un-
derpins our third pillar: training.

Change the World
Ensuring good software development
practices, community, and training for
developers is important, but in our
opinion, this does not cover the full
picture required by a comprehensive
supporting environment for research
software. The missing element is the
need to develop and provide strong in-
stitutional processes that recognize the
importance of developing quality soft-
ware as a key to strengthening research
outputs. These processes should also
include support for research software

careers and cover both researchers
with a focus on developing software
and software practitioners whose main
task is supporting researchers. There
is also a need for higher-level support
provided through government policy
and funding approaches.

Developing both institutional
and national policies that recognize
the importance of research software
provides the basis for the fourth pil-
lar: policy.

Although all four pillars contribute
to the cultural change required, changes
to policy frameworks can provide sig-
nificant top-down impact to support the
other three pillars. Positioning policy
within the framework, therefore, is
challenging because the other pillars
can be seen as relying on, and build-
ing on, policy. However, the organic
growth of research software activities
at institutions means that we observe
many cases where other activities are al-
ready in place before policy aspects are
considered or addressed. Therefore, we

include policy within our framework
as a pillar supporting the overall RSE
space, alongside the other pillars.

Figure 1 summarizes the four pil-
lars, which are similar to the elements
of social change models that focus on
the individual, organization, commu-
nity, and policy levels. One example is
Nosek’s strategy for cultural change8

(utilized by the Center for Open Sci-
ence), which identifies five levels: in-
frastructure, user interface/experience,
communities, incentives, and policy.

RSE in the Wild
We now look at some examples of how
aspects of our four-pillar structure are
being realized “in the wild” by differ-
ent organizations around the world.

Software Development
It is probably fair to say that software
development methodologies familiar
to the professional software develop-
ment community have traditionally
not been applied in an environment

FIGURE 1. The four pillars of RSE.

Policy

Build Institutional
Support for RSE

Recognize Value of
Research Software

Recognize
Software Outputs

Training

Teach Basic and
Advanced Skills

Upskill Existing
RSEs

Supporting New
RSEs

Community

Bringing RSEs
Together

Technical Seminars
Networking
Collaboration
Problem Solving

Software
Development

Building Research
Software

Sustainability
Reliability
Maintainability
Testing

Research Software Engineering

Authorized licensed use limited to: University of Illinois. Downloaded on September 06,2024 at 13:29:27 UTC from IEEE Xplore. Restrictions apply.

 JANUARY/FEBRUARY 2021 | IEEE SOFTWARE 101

where one or two self-taught research
developers are building some soft-
ware to solve a research challenge.
Having said that, the approaches
these developers often end up using
actually have similarities to modern
agile or rapid-application develop-
ment methodologies. The process of
building a quick prototype, getting
feedback, and then iteratively updat-
ing and reviewing the code is very
useful in a research environment.

This is similar to the “Release Early,
Release Often” principle described
by Eric S. Raymond9 in the context
of the development of the Linux ker-
nel. Although perhaps not intuitively
conducive to ensuring the release of
quality, reliable software, this is now
recognized as a valuable approach in
many scenarios. For open source soft-
ware, putting code where everyone
can see and comment on it can help
with gaining valuable feedback and
even developing new collaborations
that can lead to better-tested, better-
quality outputs.

Katz et al.10 looked at case stud-
ies of developing research software at
three institutions in the United States
and the United Kingdom, focusing on
how their staff are organized and the
models and processes that they use. In
some cases, research software groups
undertake activities that go beyond
the software development pillar, such
as training or running communities,
whereas in others, they focus purely
on software development.

Over the last couple of years, the
U.K.’s Software Sustainability Institute,
in collaboration with partners in sev-
eral other countries, has undertaken
an international survey of RSEs. The
most recent survey, from 2018,11 cov-
ers RSEs in eight countries and dem-
onstrates how the use of software best
practices in areas such as testing is im-
proving over time.

Community
Research software communities can
exist at four different levels: local, re-
gional, national, and international.

Local communities generally exist
within an institution and support re-
searchers and RSEs with the software
development aspects of their roles and
networking with peers within their in-
stitution. These communities aim to
raise the profile of software and of best
practices for developing it. Examples
of local communities include Imperial
College London’s research software
community12 and the software engi-
neering community at DLR, the Ger-
man Aerospace Center.13 The example
of DLR also highlights another general
class of RSE communities that are dis-
cipline specific. In addition to bringing
developers and researchers together,
community members can become aware
of and engage more effectively with
open source software being devel-
oped across a community, driven by
the release-early-and-often paradigm
highlighted previously in the “Soft-
ware Development” section.

National communities serve a more
strategic role in coordinating national
research software activities and advo-
cating for better recognition and sup-
port for research software professionals.
Communities, such as the DevLOG net-
work (http://devlog.cnrs.fr/) in France,
have existed for some time, providing
support and skills development oppor-
tunities to individuals undertaking soft-
ware-related work.

Following the coining of the RSE
name and the development of the
U.K. RSE community, national com-
munities were set up in other coun-
tries and regions. These include
Germany (deRSE: https://www.de
-rse.org), The Netherlands (NL-RSE:
https://nl-rse.org/), the Nordic re-
gion (Nordic-RSE: http://nordic-rse
.org/), the United States (US-RSE:

https://us-rse.org/), and Australia/
New Zealand (RSE-AUNZ: https://
rse-aunz.github.io/). Although we ac-
knowledge that this is a small num-
ber of countries, we see scope and
interest in other countries and believe
this is a movement that will continue
to expand. The most recent devel-
opment has been the creation of a
professional society for RSEs: the
Society of Research Software Engi-
neering (https://society-rse.org/) in
the United Kingdom.

We are beginning to see the emer-
gence of regional research software
communities that bridge the gap be-
tween local and national communities.
An example is the Research Software
London community (https://rslondon.
ac.uk) for London and the South East
of England. Regional communities
provide opportunities to learn from
the different approaches taken at geo-
graphically local institutions, share
the organization of community activi-
ties, and support and engage smaller
institutions that may not have a criti-
cal mass of people to set up and sus-
tain their own local community.

An international community level
is also emerging with the formation
of Research Software Engineers In-
ternational in 2018, after leaders of
national RSE associations, groups,
and related initiatives from around
the world came together in London
for the first International RSE Lead-
ers Workshop, and with the launch
of the Research Software Alliance
(https://www.researchsoft.org/). Other
inter national communities, such as
Working Towards Sustainable Software
for Science: Practice and Experiences
(http://wssspe.researchcomputing
.org.uk), bridge the core research soft-
ware community and more research-
focused aspects of software engineering
and computing, covering areas such as
empirical software engineering.

Authorized licensed use limited to: University of Illinois. Downloaded on September 06,2024 at 13:29:27 UTC from IEEE Xplore. Restrictions apply.

102 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SUPPORT FOR RESEARCH SOFTWARE ENGINEERING

Training
Research and technology are on a never-
ending progression of advancement
and change. Software is part of this.
Training, therefore, is vital to ensure
that the value of research software is
understood. It should focus not only on
the purely technical skills of writing code
but also on how to apply these skills in

a manner that results in sustainable,
reusable, and maintainable software.

There is a diverse range of materi-
als and approaches for training. The
Carpentries (https://carpentries.org/)
provide an important set of base-level
training material covering software,
data, library/information tools, and
high-performance computing. Code-
Refinery provide a series of carpen-
try-style lessons14 that include some
more advanced technical material but
also cover best practices regarding
how software can support research
through aspects such as reproduc-
ibility. Many institutions also provide
their own in-house training courses,
which are sometimes delivered by
members of a central RSE team. For
example, RSE groups in U.S., U.K.,
and German universities and research
organizations are increasingly becom-
ing the hub for digital training at their
institutions. Such groups are helping
to play a key role in enabling sus-
tainable and scalable delivery of the
Carpentries (https://carpentries.org/)
to the research community. There are

also now an increasingly large num-
ber of meetup-style groups that offer
a more informal approach to training,
through technical seminars, for exam-
ple. These groups are often not tied to
a specific organization, and their abil-
ity to attract people from a wide range
of academic institutions and industry
can provide a great opportunity to

encourage and support diversity. An
example is the international R-Ladies
community (https://rladies.org).

Policy
There are now many active groups
helping develop, support, and influence
policy to aid the research software com-
munity. An issue of particular impor-
tance and something that is frequently
raised at “grassroots” gatherings of
RSEs is careers. This is important not
only for supporting individuals already
in a research software role but also for
attracting software practitioners from
other fields into research.

Providing roles and career paths
tailored to individuals supporting re-
search is, of course, not new. The “re-
search engineer” role that is common in
the French research community is one
example; it encompasses individuals
undertaking a wide range of research-
related activities, of which software
development is one key area. In coun-
tries where there has not been a direct
counterpart to this role for individuals
focusing on research software, the RSE

movement has provided a way to rec-
ognize, support, and offer career paths
to developers of research software. As
their numbers have grown, the chal-
lenge RSEs face in finding a long-term,
sustainable career path has also become
more obvious.

A recent paper15 on RSEs in the
United Kingdom provides a good sum-
mary of some of the types of policy
change needed, detailing the role that
employers and funding bodies can play
in career progression. This paper also
points out the crucial role of measuring
the impact of RSE groups in improving
the efficiency of research projects and,
in turn, saving time and money and im-
proving the quality of research outputs.
These kinds of data can influence gov-
ernment policy makers to recognize the
importance of both software and those
who develop it. More of this evidence
is needed.

Research software teams greatly
benefit from having a combination
of software practitioners from both in-
dustry and research backgrounds. How-
ever, research credit is heavily biased
toward traditional research outputs,
such as published papers. This puts off
many researchers from considering a re-
search software career. Although it has
been possible to obtain unique digital
object identifiers (DOIs), for papers
for quite some time, obtaining DOIs
for software and data, and having ac-
cepted and agreed upon means for
citing these research assets is compara-
tively recent.

It is important that research soft-
ware be recognized as a first-order ele-
ment of research. Policy makers have a
very strong role to play here, and things
are now changing in this area. The
FORCE11 Software Citation Working
Group created a set of software cita-
tion principles.16 Set up in 2013, Ze-
nodo (https://zenodo.org) provides a
way to obtain DOIs for software and

Research and technology are on
a never-ending progression of

advancement and change. Software
is part of this.

Authorized licensed use limited to: University of Illinois. Downloaded on September 06,2024 at 13:29:27 UTC from IEEE Xplore. Restrictions apply.

 JANUARY/FEBRUARY 2021 | IEEE SOFTWARE 103

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JEREMY COHEN is a research fellow in
the Department of Computing at Imperial
College London, London, U.K., and holds an
Engineering and Physical Sciences Research
Council research software engineering
fellowship. Cohen received a Ph.D. in com-
puting from Imperial College London. His
research interests include high-performance
computing and cluster middleware, software
libraries and tools, and research software
communities. He leads the London and
South East of England regional research
software community (RSLondon) and is a
member of the Society of Research Soft-
ware Engineering. Further information about
him can be found at https://www.imperial
.ac.uk/people/jeremy.cohen. Contact him at
jeremy.cohen@imperial.ac.uk.

MICHELLE BARKER is the director of
the Research Software Alliance, Cairns,
Queensland, Australia, the international
body for research software that brings
communities together to collaborate on the
advancement of research software. She
is the former chair of the Organisation for
Economic Cooperation and Development
Global Science Forum Expert Group on
Building Digital Workforce Capacity and
Skills for Data Intensive Science, which
makes policy recommendations to member
states. Barker received her Ph.D. in sociol-
ogy on social change from the University
of Queensland and an M.B.A. in organiza-
tional change from James Cook University.
Contact her at michelle@researchsoft.org.

DANIEL S. KATZ is the assistant director
for scientific software and applications at
the National Center for Supercomputing
Applications, and a research associate
professor in computer science, electrical
and computer engineering, and the School
of Information Sciences at the University
of Illinois at Urbana-Champaign, Urbana,
Illinois, USA. Katz received a Ph.D. in
electrical engineering from Northwestern
University. His research interests include
software applications; algorithms; fault
tolerance; programming in parallel and
distributed computing; and policy issues,
including citation and credit mechanisms
and practices associated with software and
data, organization and community practices
for collaboration, and career paths for com-
puting researchers. He is a Senior Member
of IEEE. Further information about him can
be found at https://danielskatz.org/. Contact
him at d.katz@ieee.org.

NEIL CHUE HONG is the director of
the Software Sustainability Institute and
a senior research fellow at Edinburgh
Parallel Computing Centre, University of
Edinburgh, Edinburgh, U.K. Chue Hong
 received an M.Phys. in computational
physics from the University of Edinburgh.
His research interests include communi-
ties of practice and policy for research
software. He is the editor in chief of
Journal of Open Research Software,
coeditor of Software Engineering for Sci-
ence, and coauthor of Best Practices for
Scientific Computing. He is a fellow of the
British Computing Society and member of
the Association of Computing Machinery
and the Society of Research Software
Engineering. Further information about
him can be found at https://www.ed.ac
.uk/profile/neil-chue-hong. Contact him
at n.chuehong@epcc.ed.ac.uk.

Authorized licensed use limited to: University of Illinois. Downloaded on September 06,2024 at 13:29:27 UTC from IEEE Xplore. Restrictions apply.

104 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SUPPORT FOR RESEARCH SOFTWARE ENGINEERING

data assets. In collaboration with
GitHub, details are provided on how
to obtain a DOI to cite a GitHub re-
pository.17 It is not just the need to be
able to cite software that is important.
Di Cosmo and Zacchiroli, in their de-
scription of the Software Heritage ini-
tiative,18 provide a strong case for the
need to preserve the information rep-
resented by, and within, source code
and their work to address this.

I n this article, we have presented
four pillars representing a set of
areas and activities that we con-

sider to be vital in offering coordi-
nated and comprehensive support for
research software and the people who
build it. In turn, we hope this will dem-
onstrate to professional developers
and researchers alike that research is

a viable, and interesting, environment
for a software development career.

The wide-ranging need for large-
scale data processing and computa-
tion in industry means that many
companies now have technical roles
that are similar to RSE roles. These
can bring with them salaries and ben-
efits with which research institutions
may be unable to compete directly,
but there are still reasons to choose
an RSE career. The results of the
previously mentioned 2018 interna-
tional RSE survey11 include “Desire
to advance research” and “Freedom
to choose own working practices” as
some of the most highly ranked re-
sponses to a question about reasons
for choosing your current job. The
career choices that professional de-
velopers have, and the demand for
and value of their skills, makes it even

more important for organizations to
invest in the activities represented by
the four pillars.

Although we are currently unaware
of any research institution/organization
that comprehensively implements all of
the aspects of the four-pillar structure,
some institutions are close to achieving
this and are already realizing benefits
from their support of research software
activities. However, as highlighted in
the “Four Pillars of Research Software”
section, we recognize that full realiza-
tion of this structure within an orga-
nization, where some form of support
is provided for each of the four pillars,
may not always be practical, realistic,
or even necessary.

We have tried to present examples
of existing activities under the differ-
ent pillars to give an idea of how the
various elements of our structure may

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ROBERT HAINES is the head of research
information technology and an honorary
lecturer at the University of Manchester,
Manchester, U.K. A computer scientist by
training, Haines received a B.Sc. from the
University of Manchester. His research
interests include software engineering,
software sustainability, software use in
open and reproducible research, software
citation and credit, and career paths for
software engineers and data scientists. He
is a fellow of the Software Sustainability
Institute and was a founding trustee of the
Society of Research Software Engineering.
He is also a member of the Association
for Computing Machinery and the British
Computer Society. Further information
about him can be found at https://www.
research.manchester.ac.uk/portal/robert
.haines.html. Contact him at robert
.haines@manchester.ac.uk.

CAROLINE JAY is a reader in computer
science at the University of Manchester,
Manchester, U.K. Her research interests
cross the domains of psychology and com-
puter science, exploring the relationship
between human behavior, data science,
and software engineering. Jay received her
C.Psychol. in psychology and her Ph.D. in
computer science from the University of
Manchester. She is the research director of
the UK Research and Innovation Software
Sustainability Institute and a fellow of the
Alan Turing Institute. Further information
about her can be found at https://www
.research.manchester.ac.uk/portal/
caroline.jay.html. Contact her at caroline
.jay@manchester.ac.uk.

Authorized licensed use limited to: University of Illinois. Downloaded on September 06,2024 at 13:29:27 UTC from IEEE Xplore. Restrictions apply.

 JANUARY/FEBRUARY 2021 | IEEE SOFTWARE 105

be realized and to demonstrate how
they might be able to help support the
development of more effective, sus-
tainable, reliable research software.
Providing this support is important
to ensure the quality and longevity of
research outputs and attract profes-
sional software practitioners to the re-
search community.

Acknowledgments
We would like to thank the large num-
ber of individuals who have initiated
and supported the development of RSE
over several years, leading to the activi-
ties used as examples in this article. Al-
though it is impractical to name specific
people, we would particularly like to
acknowledge the individuals who have
been at the forefront of developing RSE
groups, communities, and supporting
infrastructure in the United Kingdom
and beyond. Jeremy Cohen acknowl-
edges the UK Research and Innova-
tion’s Engineering and Physical Sciences
Research Council (EPSRC) for support
from grant EP/R025460/1. Daniel S.
Katz acknowledges support from NSF
1743188. Caroline Jay and Neil Chue
Hong acknowledge support from EP-
SRC EP/S021779/1, and Neil Chue
Hong acknowledges EP/N006410/1.

References
1. A. Brett et al., “Research software engi-

neers: state of the nation report 2017,”
Apr 2017. [Online]. Available: https://
zenodo.org/record/495360#
.XkR28W5Fx5A

2. C. Cannam, D. Gorissen, J. Heth-
erington, C. Johnston, S. Hettrick,
and M. Woodbridge, “Ten reasons
to be a research software engineer,”
Aug. 23, 2013. [Online]. Avail-
able: https://www.software.ac.uk/
blog/2013-08-23-ten-reasons-be
-research-software-engineer

3. J. Cohen, D. S. Katz, M. Barker, R.
Haines, and N. C Hong, “Building a

sustainable structure for research soft-
ware engineering activities,” in Proc.
2018 IEEE 14th Int. Conf. e-Science,
Oct. 2018, pp. 31–32. doi: 10.1109/
eScience.2018.00015.

4. M. Ufford, M. Pacer, M. Seal, and K.
Kelley, “Beyond interactive: Note-
book innovation at Netflix,” Aug.
16, 2018. [Online]. Available: https://
medium.com/netflix-techblog/
notebook-innovation-591ee3221233

5. D. Hart, “On the origins of Google,”
Aug. 17, 2004. [Online]. Available:
https://www.nsf.gov/discoveries/disc
_summ.jsp?cntn_id=100660

6. V. Cerf, “A brief history of the Inter-
net and related networks.” Accessed
on: Jan. 7, 2020. [Online]. Available:
https://www.internetsociety
.org/internet/history-internet/
brief-history-internet-related-networks

7. A. Nowogrodzki, “How to sup-
port open-source software and stay
sane,” Nature, vol. 571, no. 7763, pp.
133–134, July 2019. doi: 10.1038/
d41586-019-02046-0.

8. B. Nosek, “Strategy for culture
change,” June 11, 2019. [On-
line]. Available: https://cos.io/blog/
strategy-culture-change/

9. E. S. Raymond, “Release early, release
often.” Accessed on: Oct. 29, 2019.
[Online]. Available: http://www.catb
.org/esr/writings/cathedral
-bazaar/cathedral-bazaar/ar01s04
.html

10. D. S. Katz, K. McHenry, C. Reinking,
and R. Haines, “Research software
development and management in uni-
versities: Case studies from Manches-
ter’s RSDS Group, Illinois’ NCSA, and
Notre Dame’s CRC,” in Proc. IEEE/
ACM 14th Intl. Workshop Software
Engineering for Science (SE4Science),
pp. 17–24, 2019. doi: 10.1109/
SE4Science.2019.00009.

11. O. Philippe et al., “Softwaresaved/inter-
national-survey: Public release for 2018
results (version 2018-v.1.0.2),” March

6, 2019. [Online]. Available: https://
zenodo.org/record/2585783#
.XkR7I25Fx5A

12. Imperial College London, “Research
software community.” Accessed
on: July 5, 2019. [Online]. Avail-
able: http://www.imperial.ac.uk/
computational-methods/rse/

13. C. Haupt and T. Schlauch, “Track
1 Paper: The Software Engineering
Community at DLR—How we got
where we are,” April 9, 2017. [Online].
Available: https://figshare.com/articles/
The_Software_Engineering_Commu-
nity_at_DLR_How_we_got_where_
we_are/5331703/2

14. Nordic e-Infrastructure Collabora-
tion (NeIC), “CodeRefinery: Lessons”
Accessed on: July 8, 2019. [Online].
Available: https://coderefinery
.org/lessons/

15. J. Switters and D. Osimo, “Recognising
the importance of software in research–
Research software engineers (RSEs), a
U.K. example. Open science monitor
case study,” Jan. 2019. [Online].
Available: https://ec.europa.eu/info/
sites/info/files/research_and_
innovation/importance_of_software
_in_research.pdf

16. A. M. Smith, D. S. Katz, K. E. Nie-
meyer, and The FORCE11 Software
Citation Working Group, “Software
citation principles,” PeerJ Comput.
Sci., vol. 2, no. e86, Sept. 2016. doi:
10.7717/peerj-cs.86.

17. GitHub Guides, “Making your code
citable.” Accessed on: Oct. 29, 2019.
[Online]. Available: https://guides
.github.com/activities/citable
-code/

18. R. Di Cosmo and S. Zacchiroli,
“Software heritage: Why and how
to preserve software source code,” in
Proc. 14th Int. Conf. Digital Preser-
vation (iPRES2017), Kyoto, Japan,
Sept. 2017, pp. 1–10. [Online]. Avail-
able: https://hal.archives-ouvertes.fr/
hal-01590958

Authorized licensed use limited to: University of Illinois. Downloaded on September 06,2024 at 13:29:27 UTC from IEEE Xplore. Restrictions apply.

