

ICS ’24, June 04–07, 2024, Kyoto, Japan Jiajun Huang et al.

data processing and exchange [1, 2, 4, 5, 15]. For example, the classic

LSTM [11] model used in the language modeling task can contain

more than 66 million parameters and the communication overhead

can be as high as 94% [2], increasing the need for optimizing GPU-

aware collective communication for large messages [6, 7].

For GPU-aware collective communication, numerous researchers

are actively working on mitigating network congestion in large-

message collectives. Network saturation is often the major bottle-

neck because of limited network bandwidth. For example, even

with advanced networks, such as HPE Slingshot 10, the network

bandwidth is only about 100 Gbps [22]. A straightforward solution

is designing large-message collective communication algorithms

that can minimize the transferred data volume instead of latency [3,

20, 26]. Another promising solution is shrinking the message size by

error-bounded lossy compression techniques [9, 13, 18, 19, 25, 27],

as it can significantly reduce the data volume and maintain the data

quality.

Previous lossy-compression-integrated approaches can be di-

vided into two categories. The first is compression-enabled point-to-

point communication (namely CPRP2P) [30], which directly uses

the 1D fixed-rate ZFP [18] to compress the data before it is sent and

decompresses the received data after it is received. This method

may cause significant overheads and unbounded errors in the col-

lective communications as shown in [12, 31]. The other category is

to particularly optimize the compression-enabled collectives. Zhou et

al. [31] integrated the 1D fixed-rate ZFP [18] into MPI_Alltoall on

GPUs; however, this approach is limited to the Alltoall operation

and CPU-centric staging algorithm and also results in the issue of

unbounded error. Huang et al. [12] designed an optimized general

framework for compression-enabled collectives that can realize

high performance for all MPI collectives with controlled errors.

Nevertheless, this approach suffers from suboptimal performance

on modern GPU clusters because of under-utilized GPU devices.

Designing a GPU-aware compression-enabled collective commu-

nication system that realizes both high performance and controlled

error propagation is non-trivial. There are three key challenges to

address.

(1) How can we co-design and implement a compression-

enabled collective algorithm that optimizes performance

within modern GPU clusters? For Allreduce operations, for ex-

ample, state-of-the-art GPU-aware collective communication li-

braries, such as NCCL [8] and MPICH [17], adopt ring-based algo-

rithms to optimize the transmission of large messages. However,

it is unclear whether the ring-based model is the best fit when we

include lossy compression techniques. In fact, unlike CPU, the GPU-

based compression may easily face a low utilization issue, because

of the inevitable GPU kernel-launch overhead and limited parallel

design in GPU-based compression algorithms, which significantly

lowers the performance.

(2) How can we optimize the redesigned algorithms to

increase GPU utilization and decrease the required synchro-

nizations and data transfers? This is because unnecessary data

transfers and synchronization can considerably increase the over-

all runtime and eliminate the opportunity for overlapping in the

coordination of the host and device.

(3) How can we devise an accuracy-aware co-design that

maintains data quality without sacrificing performance? The

accuracy of collective operations is at risk due to the data loss from

GPU lossy compression. It is important to balance performance

with accuracy.

To address the challengesmentioned above, this paper introduces

a first-ever generic high-performance framework, namely gZCCL,

specifically designed for GPU-aware compression-accelerated col-

lective communications. Our contributions can be summarized in

four key aspects:

• To tackle challenge (1), we present two innovative algo-

rithm design frameworks for classic collective operations,

encompassing both collective computation and collective

data movement. This proposal stems from a thorough analy-

sis of the limitations in traditional large-message algorithms.

This is fundamental to various co-designed compression-

enabled collective algorithms, which can increase device

utilization, decrease times of compression/decompression,

and maximize performance.

• To address challenge (2), we develop a series of optimiza-

tion strategies to improve performance. Specifically, we im-

prove the error-bounded lossy compressor (cuSZp [14]) and

develop a multi-stream version to suit the context of the

two collective performance optimization frameworks. For

the data movement framework, we overlap the compres-

sion/decompression, kernel launching, and data movement,

respectively. For the collective computation framework, we

enable possible overlapping between compression, decom-

pression, and communication, which can further reduce the

collective runtime.

• To address challenge (3), we design various strategies to

considerably control the error accumulation in the gZCCL

framework. We carefully design the gZCCL framework with

the error-bounded lossy compressor that always causes an

unknown compressed data size instead of the fixed-rate com-

pressor that leads to a pre-known output data size to ensure a

bounded error. We also decrease the number of compression

operations on purpose, which can effectively decrease the

number of stacked errors during the communication pattern.

• We integrate gZCCL framework into numerous collective

operations, including Allgather, Reduce_scatter, Allreduce,

and Scatter, and meticulously evaluate their performance

using different real-world scientific datasets. Experiments

with up to 512 NVIDIA A100 GPUs reveal that other re-

lated works suffer from undesirable performance degrada-

tion in both Allreduce and Scatter due to significant com-

pression overhead, inefficient GPU utilization, or larger data

transfer volume. In contrast, our gZCCL-based Allreduce

(referred to as gZ-Allreduce) outperforms the Allreduce in

Cray MPI and NCCL by 20.2× and 4.5×, respectively. Our

gZCCL-based Scatter (gZ-Scatter) operates 28.7× faster than

the MPI_Scatter in Cray MPI. We also utilize a real-world

use case (i.e., image stacking analysis) to validate the prac-

tical effectiveness of gZ-Allreduce. It demonstrates a 1.69×

performance gain over NCCL, while still preserving a high

level of data integrity.

The rest of the paper is organized as follows: we introduce back-

ground and related work in Section 2 and detail our design and

438

gZCCL: Compression-Accelerated Collective Communication Framework for GPU Clusters ICS ’24, June 04–07, 2024, Kyoto, Japan

optimization in Section 3. Evaluation results are presented in Sec-

tion 4 followed by conclusion and future work in Section 5.

2 BACKGROUND AND RELATED WORK

Researchers have long been interested in utilizing compression

to enhance MPI communication performance, based on the two

communication categories ś point-to-point communication and

collective communication.

For the first category, a typical latest related work is utilizing 1D

fixed-rate ZFP to boost MPI communications on GPU clusters [30].

Their approach, however, focuses on enhancing MPI point-to-point

communication performance, yielding suboptimal performance in

collective scenarios. Furthermore, their solution could not provide a

bounded error due to its fixed-rate design that fixes the compressed

data size rather than ensuring accuracy. In contrast, our collective

framework integrates error-bounded lossy compression, guarantee-

ing both high-quality compression and high collective performance.

Hence, we regard this work as orthogonal to ours.

As for the second category, several existing studies explored how

to optimize the MPI collective performance particularly, while they

are limited to either CPU-centric communication (i.e., all the data

are transferred through the CPU essentially) and/or have the uncon-

trolled error propagation. Zhou et al. proposed several optimized

MPI collective operations [28, 29, 31] using fixed-rate compression,

which leads to inferior compression quality and unbounded er-

ror aggregation. On the contrary, our general framework provides

a detailed guideline for designing and optimizing compression-

accelerated collective algorithms, maximizing the performance of

both collective computation and collective datamovementwhile fea-

turing well-controlled data distortion. Hence, we categorize these

works as orthogonal works to ours. In addition, Huang et al. pro-

posed an error-controlled compression-enabled framework that

is capable of achieving a high performance across all MPI collec-

tives [12]. Their method, however, fails to solve the inefficient GPU

utilization, synchronization, and device-host data transfer issues,

resulting in suboptimal performance on GPU clusters. In contrast,

our GPU-centric framework is capable of fully utilizing the com-

putational power of GPUs, significantly lowering the amounts of

required compression, synchronization, and device-host data trans-

fer, leading to a remarkable performance improvement.

In the following text, we mainly focus on optimizing the per-

formance of collective communications on GPU clusters by error-

bounded lossy compression. This is because prior research [12]

already demonstrated that the error-bounded lossy compression

brings a limited and controllable impact on the final accuracy of

collective communications by both theoretical and experimental

analysis.

3 GZCCL DESIGN AND OPTIMIZATION

In this section, we present our design and optimization strategies.

Figure 1 shows the design architecture of gZCCL, where the newly

designed modules are highlighted in purple boxes. We develop an

adapter that can run cuSZp [14] more efficiently in regard to col-

lective communications, to be detailed in Section 3.3.2. We discuss

our algorithm design as well as a series of performance optimiza-

tion strategies, which are meticulously crafted for the two classic

types of collectives ś collective computation and collective data

movement. Details are described in Sections 3.3.3 and 3.3.4.

User Applications & Analysis (Image Stacking, etc.)

gZCCL Interface (gZ-Allreduce, gZ-Scatter)

Application

Interface

Collective Computation
Framework

Improve

Scalability

Improve

GPU

Utilization

Collective Data Movement
Framework

Overlap

Compression

Multi-stream

cuSZp

MPI P2P Compression Adapter

Abstract Device Interface Lossy Compression Library Library

Middleware

Algorithm

designing &

performance

optimizationg
Z
C
C
L

Third-party
Our designed key
modules in gZCCL

Detailed performance
optimization strategies

Figure 1: gZCCL design architecture.

3.1 Analysis of existing compression-enabled
GPU-aware collectives

In this section, we analyze the problems of prior solutions and pro-

vide a comprehensive performance breakdown to identify potential

bottlenecks.

3.1.1 Inefficient prior solutions in GPU-aware collectives.

Lossy compression-enabled point-to-point communication (CPRP2

P) can decrease the transferred data volume [30], however, it faces

huge accuracy loss and performance degradation in the collective

scenario [31]. To solve these issues, C-Coll framework was proposed

with two sub-frameworks: data movement framework and collec-

tive computation framework [12]. In the data movement framework,

the data is pre-compressed and then sent along the communication

patterns. Through this method, the huge compression overhead

brought by the CPRP2P could be avoided. In the collective com-

putation framework, the compression and communication costs

are overlapped with each other, resulting in a better overall run-

time. However, the direct implementation of the C-Coll framework

may experience a huge performance degradation on modern GPU

clusters due to two facts: 1. The current MPI collectives result in

sub-optimal performance because all the temporary buffers are allo-

cated on CPU, which means the data needs to be moved from GPU

to CPU for the data to be transmitted over networks. Even though

integrated compression can reduce the transferred message size,

the device-host data movement cost can be significant. 2. The C-Coll

framework does not address the inefficient GPU utilization problem

and host-device synchronization issue, which may substantially

degrade the collective performance.

3.1.2 Identification of the bottlenecks in prior relatedworks.

The ring-based Allreduce is a method commonly used in numer-

ous state-of-the-art GPU-aware collective communication libraries

such as NCCL [8] and MPICH [17], particularly when optimiz-

ing large-message communications. This technique is composed

of both data movement collective (Allgather) and collective com-

putation (Reduce_scatter), both of which have been optimized in

439

ICS ’24, June 04–07, 2024, Kyoto, Japan Jiajun Huang et al.

C-Coll [12]. Figure 2 presents a performance breakdown for the

CPRP2P and C-Coll within the GPU-aware ring-based Allreduce

algorithm. The evaluation is conducted utilizing 64 NVIDIA A100

GPUs, with 4 GPUs per node. When comparing CPRP2P versus

C-Coll, it is evident that the latter significantly decreases the time

cost in compression and decompression (CPR), resulting in overall

enhanced performance. However, it is notable that in C-Coll, the

time required for host-device data transfer (DATAMOVE) is signif-

icant, accounting for nearly 45% of the total runtime. In addition,

the time consumed by compression and decompression (CPR) still

remains substantial, occupying more than 23% of the total time.

This can be attributed to the inefficient utilization of GPUs. To

rectify these problems, we present the gZCCL framework, whose

design and implementation are detailed in subsequent sections.

CPR 121%

27%

MPI 273% 60%

DATAMOVE

46% 10%

REDUCTION

13% 3%
OTHERS

1% 0%

(a) CPRP2P

CPR

23%

MPI

17%

DATAMOVE

45%

REDUCTION

14%

OTHERS

1%

(b) C-Coll

Figure 2: Performance breakdown of Allreduce using

CPRP2P and C-Coll: CPRP2P’s first percentage is scaled to

C-Coll’s runtime, and the second is scaled to its own.

3.2 Characterization of ring-based
compression-enabled GPU-aware collectives

3.2.1 Traditional ring-based algorithms for long messages.

Ring algorithms are widely acknowledged as the state-of-the-art

solution for large-message collective communications such as All-

gather, Reduce_scatter, and Allreduce. In scenarios involving pure

collective communications, ring approaches can significantly con-

trol the total data transfer volume, which can effectively control the

network congestion when message sizes are large, thereby deliv-

ering optimal performance. When CPU compression is employed,

the CPU can be fully utilized for large message sizes, and the com-

munication data volume can be substantially reduced, leading to

a vast increase in overall collective performance. Prior research

has shown that compression cost can be a dominant bottleneck in

compression-enabled collectives. The reduction in communication

volume in the ring-based algorithm design can lower the workload

on the compressor, resulting in optimal performance. Hence, ring-

based approaches are considered the most suitable algorithms for

collectives integrated with CPU compression.

Taking into account modern GPUs [23] features very high perfor-

mance because of its performant single instruction, multiple threads

(SIMT) architecture, adopting GPU-based lossy compression may

further reduce the compression overhead intuitively, however, a key

question arises: Can GPUs still be fully utilized in the compression-

enabled ring-based algorithm? In fact, unlike CPUs which are often

saturated, GPU performance is heavily dependent on the utilization

rate. That is, a low utilization rate on GPUwill increase the compres-

sion cost and lead to sub-optimal collective performance. To answer

the above question, we need to characterize the performance of the

lossy compressor.

3.2.2 Characterization of GPU lossy compressor. In this sec-

tion, we detail the characterization of the GPU lossy compressor ś

cuSZp [14], and this process is also applicable to other GPU com-

pressors. Utilizing 646MB (the data size of the largest scientific

dataset we use later) of synthetic data where all data points are uni-

formly distributed, we characterize the performance of cuSZp on an

NVIDIA A100 GPU as shown in Figure 3. We observe that as data

size decreases, execution time decreases for both compression and

decompression kernels with a declining rate, and even stagnates

when the data size is smaller than 5MB. This indicates that the GPU

is not fully utilized, especially when the input data size is relatively

small, and the utilization rate continues to drop with a decrease

in message size. However, an input message larger than 1MB is

already considered a large message in collective communications,

and the actual message to be sent/received or compressed during

ring-like communication patterns is much smaller than the input

message. This is because the original data is divided into small

blocks for communications. Consequently, ring-based algorithms

may result in relatively low GPU utilization, and we provide a more

detailed discussion in the following text.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

646
323

161
80.8

40.4
20.2

10.1
5.05

2.52
1.26

0.631

0.316

0.158

0.079

0.0394

0.0197

0.00986

0.00493

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Data Sizes (MB)

Compression
Decompression

Figure 3: Characterization of cuSZp compression and decom-

pression execution time with uniform data.

3.2.3 Ring-based collective computation. In this section, we

explore the limitations of the ring-based algorithms integrated with

GPU compression, using the ring-based Reduce_scatter operation as

an illustrative example. In the ring-based Reduce_scatter operation,

the input data, denoted by size 𝐷 , is divided into 𝑁 small chunks,

with 𝑁 being the process count. Each of these chunks undergoes a

ring-like communication pattern for reduction across 𝑁−1 rounds.

When the GPU compression is incorporated, each round provides

a data chunk of size 𝐷/𝑁 to the compression kernel, while an

equal-sized output is produced by the decompression kernel. This

mechanism necessitates a total of 𝑁−1 rounds of both compres-

sion and decompression. Consequently, even when dealing with

large message sizes like 646MB, the GPU experiences significantly

poor utilization when the process count reaches approximately 128

(646/5.05 ≈ 128), according to our previous analysis in Section

3.2.2. This results in compromised scalability. Further exacerbat-

ing this issue is the fact that the total number of decompression

440

gZCCL: Compression-Accelerated Collective Communication Framework for GPU Clusters ICS ’24, June 04–07, 2024, Kyoto, Japan

and compression operations is 𝑁−1, which scales linearly with

the process count 𝑁 . Notably, this problem is not exclusive to the

ring-based Reduce_scatter operation. The widely-used ring-based

Allreduce operation, which is composed of ring-based Allgather

and Reduce_scatter, is also plagued by these scalability and perfor-

mance shortcomings. Therefore, the direct application of ring-based

algorithms for collective computation with GPU compression may

not always yield optimal results. It is hence vital to explore other

algorithms that may offer superior performance.

3.3 Proposing the novel gZCCL framework

In this section, we delve into the details of our gZCCL framework.

Our primary goal is to address and overcome the performance

issues noted in the previous GPU-aware MPI collective framework

that incorporates compression, such that a superior performance

can be reached.

3.3.1 Getting rid of the traditional host-centric design. To

circumvent the high cost of device-to-host data transfer inherent

in traditional CPU-centric designs, we implement a GPU-centric

design. Specifically, when GPU support is enabled, a sufficiently

large GPU buffer pool is pre-allocated during the MPI_Init function

call. The size of this GPU buffer pool can be adjusted based on user

input. Hence, GPU-aware MPI collectives can leverage these pre-

allocated device buffers directly during function calls, rather than

repeatedly allocating them amidst intensive communications. This

is not only resource-intensive but also causes undesired host-device

synchronization. Moreover, current MPI implementations tend to

use the host for carrying out reduction operations in collective

computations. In response to this, we designed and implemented a

GPU reduction kernel capable of processing data entirely on the

device. With these optimizations, we successfully transition from

the original host-centric algorithms and elevate the compression-

enabled collectives to the device-centric level.

3.3.2 Adapting lossy compression to achieve high collective

performance. To improve collective performance in compression-

enabled collectives, it is critical to adapt the lossy compression to

suit the requirements of collective communications. We illustrate

our customization and optimization strategies based on cuSZp,

and the improvement strategies can also be applied to other lossy

compressors.

In the following, we analyze the potential performance issue of

cuSZp, and then describe our improvement strategies. In the cuSZp

function cuSZp_compress_deviceptr, an initial step involves the

allocation of a unified memory buffer known as d_cmpOffset, ac-

cessible from both the device and host. This joint accessibility in-

curs implicit host-device data transfer, leading to suboptimal perfor-

mance. To counteract this issue, we redesign cuSZp’s data allocation

process, liberating cuSZp from the constraints of unified memory.

This modification results in a reduction of necessary data transfers,

subsequently improving performance. Moreover, cuSZp allocates

temporary buffers to store compression-related parameters upon

any invocation of the cuSZp_compress_deviceptr function. This

procedure may block the host and also generates unwanted device

overheads in collective scenarios where compression is frequently

executed. To address this issue, our solution allocates a tempo-

rary buffer, which will be cleared and reused for any compression

operations, so that the memory allocation costs can be reduced

significantly also with data integrity.

3.3.3 Two algorithm design frameworks. In this section, we

describe the algorithm design inherent to our gZCCL.

Exploring new metrics regarding GPU compression-enabled

collective performance. As for the GPU compression-enable col-

lective algorithms, there are several important new metrics that

need to be addressed in particular.

Total compression cost. The compression cost is determined

by two critical factors: per-compression time cost and the number

of compression executions. As for the per-compression cost on

GPU, it may face a low utilization issue when the input data is not

large enough, as discussed in Section 3.2.2. For example, 10 times

of compression of 1 MB data can be much more expensive than

1 compression of 100 MB data as shown in Figure 3. As such, we

should pay much attention to the number of times the data need

to be compressed, in order to minimize the total compression cost.

As verified in Section 3.2.3, we demonstrate that large-message

algorithms such as ring-based algorithms may result in low scal-

ability with compression in some cases, which is due to the fact

that they can result in more compression operations each with

low GPU utilization. In the compression-enabled collectives, how

often the compression is executed is closely related to the times

of the data communications, which are generally optimized by

the small-message algorithms. Thus, the conclusion is that, with

GPU compression integrated, the small-message algorithms may

outperform the large-message algorithms.

Accuracy loss. Apart from the compression-related overheads,

another concern of integrating lossy compression in the collec-

tives is the accuracy loss caused by accumulated errors along

with the intensive communications. Again, the large-message al-

gorithms like the ring-based approach can introduce larger errors

compared with the small-message algorithms such as the one based

on the recursive-doubling algorithm, further degrading the recon-

structed data quality. This is due to the fact that the ring-based

algorithm requires 𝑁−1 times of compression/decompression and

the recursive-doubling-based algorithm only needs 𝑙𝑜𝑔𝑁 compres-

sion/decompression operations. Fortunately, the increased times

of compression/decompression may not bring a huge accuracy dif-

ference statistically because the mathematical expectation of all

accumulated errors is 0. Thus, we can achieve a high reconstructed

data quality with the integration of lossy compression in the collec-

tive communications, which will be demonstrated later in Section

4.5.

Collective computation algorithm design framework. In the

following discussion, we will employ the typical Allreduce opera-

tion as a case study to describe the algorithm design of our gZCCL

framework in collective computation scenarios. In general, the re-

cursive doubling algorithm is employed for short messages due to its

optimized latency, whereas the previously-mentioned ring-based al-

gorithm is used for large messages in Allreduce because of its ability

to control the data transfer volume [26]. The ring-based Allreduce

operation consists of a Reduce_scatter stage and an Allgather stage.

441

ICS ’24, June 04–07, 2024, Kyoto, Japan Jiajun Huang et al.

In the Reduce_scatter stage, 𝑁−1 compression/decompression op-

erations are required, while the Allgather stage necessitates one

compression and 𝑁−1 decompression operations [12]. When com-

pared with the 𝑁 compression operations and 𝑁−1 decompression

operations required by the ring-based Allreduce algorithm, the re-

cursive doubling algorithm involves only 𝑙𝑜𝑔 𝑁 communication

steps or compression/decompression operations, where 𝑁 is the

process count. As such, the recursive doubling algorithm exhibits

superior scalability in terms of compression cost, especially when

𝐷/𝑁 < 5𝑀𝐵, where 𝐷 denotes the input data size. However, when

compressing the data with the data size being 𝐷/𝑁 and the GPU

utilization is high, the ring-based algorithm still outperforms the

recursive doubling one as it can minimize both compression and

communication workloads. In conclusion, the recursive doubling-

based Allreduce algorithm delivers high scalability, while the ring-

based one projects a high performance when GPU utilization is

high.

Collective data movement algorithm design framework. In this

section, we delve into the algorithm design of our gZCCL frame-

work in collective data movement scenarios. Generally, there are

three types of collective data movement: one-to-all, all-to-one, and

all-to-all. The all-to-all communication pattern is the most complex

as it encapsulates both one-to-all and all-to-one communications.

Accordingly, we select the extensively-used all-to-all communica-

tion operation ś Allgather ś as a case study to demonstrate the

algorithm selection process in gZCCL. Note that this design can also

be applied to other collectives. In essence, the Bruck algorithm and

the recursive doubling algorithm are optimized toward lowering

latency, while the ring-based algorithm prioritizes minimizing data

transfer volume. Unlike collective computation scenarios, data com-

pression only happens at the beginning and the end of the collective

data movement. For instance, the data in the Allgather operation of

each process should be compressed first, then the compressed data

is communicated between processes. After all communications are

completed, each process decompresses the gathered compressed

data to retrieve the original data.

In what follows, we extensively analyze which compression-

enabled algorithm is the best fit for the Allgather operation. Al-

though the ring-based Allgather requires𝑁−1 communication steps

to finish, it only necessitates one compression and 𝑁−1 decompres-

sion operations. In addition, the 𝑁−1 decompression operations

can be overlapped using multi-stream techniques to improve GPU

utilization, which will be detailed in Section 3.3.4. In conclusion,

the ring-based Allgather only suffers from inefficient GPU utiliza-

tion in one compression operation, and it benefits from optimized

data transfer volume. Therefore, although the Bruck and recur-

sive doubling algorithms exhibit the least communication steps or

compression operations, they cannot further improve scalability

and suffer from sub-optimal data transfer volume compared to the

ring-based algorithm. As a result, the ring-based approach emerges

as the optimal choice for the compression-integrated Allgather

operation.

3.3.4 Two performance optimization frameworks. In this

section, we give a comprehensive discussion of the intricate op-

timization techniques that are integral to our gZCCL framework.

By unveiling the technical underpinnings of our framework, we

aim to provide an in-depth understanding of how our methods

contribute to improved performance and efficiency in GPU-based

computational systems.

Developing multi-stream lossy compression. To facilitate multi-

stream compression and decompression within collective com-

munication, we need to tailor the lossy compressor, which origi-

nally operates using a single default GPU stream. For illustrative

purposes, we mainly describe the compression procedure based

on the state-of-the-art GPU-based compressor ś cuSZp as an ex-

ample. We begin by delving into the source code to modify the

cuSZp compression process, enabling it to accept a user-defined

stream rather than operating exclusively on the default stream. This

new stream-supported compression API is henceforth referred to

as cuSZp_compress_stream. To effectively overlap compression

across different streams, it is imperative to ensure the absence of

data races and undesired conflicts. Accordingly, we conduct a metic-

ulous analysis and testing of the critical paths and data dependen-

cies within cuSZp. During this investigation, we find that beyond

the standard d_oriData (buffer of original data) and d_cmpBytes

(buffer of compressed data), cuSZp requires several distinct de-

vice buffers to store temporary information, including offsets of

various compression blocks and flag bits. Consequently, we inde-

pendently allocate buffers for each stream to avoid data conflicts

in the multi-stream scenario. The decompression as well as other

lossy compressors can be multi-streamed similarly, and we omit

details due to space limit.

Collective computation performance optimization framework.

In this section, we illustrate the gZCCL optimizations in the col-

lective computation routines using the recursive doubling-based

Allreduce as an example. Similar optimizations can be applied to

other collective computation algorithms such as Reduce_scatter.

Figure 4 illustrates the gZCCL implementation on the recursive

doubling-based compression-enabled Allreduce operation (we call

it gZ-Allreduce (ReDoub)). We first create one non-default stream

and a set of temporary device buffers then reuse these GPU buffers

for all the compression and decompression to avoid extra over-

heads. Then, the design contains two main stages, which will be

described in the following text, where 𝑁 is the number of processes,

and 𝑟 refers to the remainder of the process count taking away the

maximum power of two: i.e., 𝑟 = min(𝑁 − 2𝑘), where 𝑘 ∈ Z+ and

𝑘 ≤ log2 𝑁 .

In the first stage, we mainly handle the remainder processes

(𝑟 processes). In the case where the number of processes is not a

power of two, all even-numbered processes with a rank (denoted 𝑖)

lower than 2𝑟 first asynchronously clear the temporary GPU buffers

and launch the compression kernel on the non-default stream to

compress their whole data and sending their compressed data to the

process of rank 𝑖+1. Meanwhile, the odd-numbered processes pose

non-blocking receive operations to obtain the compressed data and

clear the GPU buffers for decompressing them on the non-default

stream. Then, these even-numbered processes are suspended until

the final stages, and the odd-numbered processes half their ranks

(𝑖=𝑖/2).

In the second stage, we handle the remaining power of two pro-

cesses (i.e., 2𝑘). For the processes with ranks 𝑖≥2𝑟 , we update the

ranks by 𝑖=𝑖−𝑟 . Then, in each recursive doubling communication

442

gZCCL: Compression-Accelerated Collective Communication Framework for GPU Clusters ICS ’24, June 04–07, 2024, Kyoto, Japan

Step 1

Bc Bc

Isend

Irecv

Decompression Compression

B

A+BReduction

GPU1

A

Compression

Ac

GPU2

A+B

Decompression

Ac

Irecv

Isend

B

Reduction

Dc Dc

Isend

Irecv

Decompression Compression

D

C+D
Reduction

GPU3

C

Compression

Cc

Decompression

Cc

Irecv

Isend

Step 2

(C+D)c (C+D)c

Isend

Decompression Decompression

C+D

A+B+C+DReduction

GPU1

A+B

Compression

(A+B)c

GPU2

A+B

Compression

(C+D)c (C+D)c

Compression Compression

C+D

GPU3

A+B+C+D

Decompression

(A+B)c

Decompression

(A+B)c

Reduction

(A+B)c

Irecv

Isend

Irecv

Irecv

Isend

Irecv

Isend

A+B

C+D

GPU4

A+B+C+D

A+B

Reduction

Start1

End2

Start2

End1

Start3

End4

Start1

End3

End1

Start3

Start2

End2

Start4

End4

C+D

A+B+C+D
Reduction

A

GPU4

C+D

D

Reduction

Start4

End3

C

Figure 4: Design of our gZCCL collective computation frame-

work on compression-accelerated gZ-Allreduce. This exam-

ple uses four GPUs/Processes.

step, each process asynchronously memsets the temporary device

buffers and launches the compression kernel on the non-default

stream to compress the data. The compressed data is sent through

a non-blocking send operation and another non-blocking receive

operation is posed to receive the compressed data from another

process. Upon the receiving of data, a clear operation and decom-

pression kernel are launched to obtain the original data. There-

after, the reduction kernel is launched on the non-default stream

to reduce the decompressed data and data in the receive buffer.

Unlike the ring-based case, each communication step requires send-

ing/receiving the whole data instead of the divided data blocks,

ensuring high GPU utilization.

Collective data movement performance optimization frame-

work. In this section, we describe how we optimize collective data

movements to enhance GPU utilization. We use the binomial tree-

based gZCCL-accelerated Scatter/Scatterv as an example. Similar

optimization can be applied to other collective data movement

operations, such as Allgather.

We design our gZ-Scatter based on the binomial tree-based Scat-

ter algorithm that is utilized in both short and long messages[26]. In

Figure 5, we present the overall design of our gZ-Scatter. In this al-

gorithm, the original data on the root process is distributed to other

processes in a binomial tree communication pattern. An intuitive

solution is compressing the original data as a whole and sending

the compressed data by blocks to other processes, which however

introduces two challenges. On the one hand, the compressed bytes

contain some metadata that are essential for decompression. If the

compressed data are directly divided into smaller blocks, the vital

information will be lost. On the other hand, the original data distri-

bution might not be uniform and the compressed data sizes for each

block are not equal. As a result, it is impossible for us to correctly

separate the compressed data into data blocks in this case. Thus,

we need to individually compress the corresponding data blocks

and then distribute them.

Our Framework

Dataflow A

B

C

D

Device Buffer
Ac Bc Cc Dc

Multistream
packingAc Bc Cc Dc

…

Time T=0

Tmulticom

Stream 0

Stream 1

Stream 2

Stream 3

Tmultipack

T+=Tmulticom T+=Tmultipack

Multistream compression

Previous Framework

Time & Dataflow

Default Stream

T=0 T+=Tsinglecom

Ac Bc Cc Dc

A B C D

Tsinglecom

… …

A B

C D
Original data

Compressed data

Processing time

Figure 5: Design of our gZCCL data movement framework

on compression-accelerated gZ-Scatter. This example uses

four GPUs/Processes.

To better explain our optimization and design, more details are

shown as follows. First, we create helper arrays on the CPU to store

the compressed data sizes and the related global offsets on each

process. Then, in each process, we create a stream array of size 𝑁 ,

where 𝑁 is the size of the communicator. Additionally, we allocate

two device buffer pointer arrays, also of size𝑁 , to store the offsets of

compressed bytes and flag information for differing streams, respec-

tively. In the root process, we launch the multi-stream compression

kernel utilizing the independent device buffers and streams from 0

to 𝑁−1 in the stream array. The compressed data for each stream is

stored in the same device buffer based on the designated offset so

that there are no data races. Then, we synchronize these streams

with the host to make sure the multi-stream compression has fin-

ished. After that, we obtain the compressed data sizes and offsets of

different streams and synchronize the information with other non-

root processes. Then, we use asynchronous memcpys with different

streams to pack these compressed data based on the compressed

data offsets into another device buffer, so that they can be sent out

in a continuous format. Finally, the data is distributed in a binomial

tree communication pattern and the non-root processes utilize a

non-default stream to decompress its own part of compressed data.

In a nutshell, we have optimized the compression-enabled Scatter

443

ICS ’24, June 04–07, 2024, Kyoto, Japan Jiajun Huang et al.

algorithm with overlapped compression, kernel launching, and data

movements, resulting in improved performance.

4 EXPERIMENTAL EVALUATION

We present and discuss the evaluation results as follows.

4.1 Experimental Setup

We perform the evaluation on a GPU supercomputer that involves

512 NVIDIA A100 80G GPUs (128 nodes each with 4 GPUs, specifi-

cally), which features both internode communication and intranode

communication. These computational nodes are interconnected via

the HPE Slingshot 10 interconnect, providing a network bandwidth

of 100 Gbps. Unless specified, the absolute error bound of com-

pression is set to 1E-4, because the image reconstruction quality is

already superior with 2E-4 error bound, which will be demonstrated

later in Figure 13. Two distinct RTM datasets [16], originating from

the real-world 3D SEG/EAGE Overthrust model, are generated

under two different simulation settings. Table 1 exhibits the aver-

age compression ratio and PSNR that cuSZp can achieve for these

datasets, where ABS denotes the absolute error bound.

Table 1: Compression ratio (CPR) and quality (PSNR).

Simulation Setting 1 Simulation Setting 2

Dimensions 449X449X235 849X849X235

ABS CPR PSNR CPR PSNR

1E-3 92.28 53.23 94.41 53.41

1E-4 73.35 65.67 63.94 70.38

1E-5 55.65 78.83 46.74 88.57

4.2 Evaluating the GPU-centric design

First of all, we present the performance evaluation of our proposed

GPU-centric design compared with the traditional CPU-centric

solution on 64 NVIDIA A100 GPUs across 16 nodes, using two dif-

ferent scientific datasets and the Allreduce collective operation. As

mentioned in Section 1 and Section 2, many of the existing related

works [12, 31] are dependent on the CPU-centric communication

design. As shown in Figure 6b, it is noticeable that the speedups of

GPU-centric design over the CPU-centric solution increase with

the expansion of the data sizes, culminating in a 1.82× performance

improvement for the data size of 600 MB. This trend is also ob-

served in Figure 6a, where the speedup can reach up to 1.32× with

the largest 180 MB data size. As data size increases, the demand of

intensive host-device data movement escalates in the CPU-centric

design, which may cause an increasing PCIe congestion and re-

duction cost. This creates a pronounced bottleneck for the overall

collective performance. To mitigate the substantial cost of host-

device data transfer, our GPU-centric design does not depend on

CPU-based communication, totally eliminating the data movement

cost between CPU and GPU. Moreover, our design can significantly

mitigate reduction operation cost, further boosting the speedup,

especially with the growth of data size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 30 60 90 120 150 180

S
p

e
e

d
u

p
s

Data Sizes (MB)

Baseline (CPU-centric)
Our GPU-centric

(a) Simulation Setting 1

 0

 0.5

 1

 1.5

 2

 100
 200

 300
 400

 500
 600

S
p

e
e

d
u

p
s

Data Sizes (MB)

Baseline (CPU-centric)
Our GPU-centric

(b) Simulation Setting 2

Figure 6: Performance evaluation of our GPU-centric design

using two different scientific datasets.

4.3 Evaluating the optimized redesigned GPU
compression-enabled collective algorithms

We evaluate the performance of our optimized, compression-integra

ted collective algorithms using 64 NVIDIA A100 GPUs.

4.3.1 Collective computation. In this section, we evaluate our op-

timized redesigned compression-enabled collective computation

algorithms using the widely-used Allreduce operation. Both Figure

7a and 7b reveal that our optimized solution ś gZ-Allreduce (Ring)

surpasses our original GPU-centric approach by up to 3.36×. This

is because our solution improves GPU utilization. Specifically, we

overlap the decompression and kernel launching in the Allgather

stage and facilitate potential overlapping among compression, de-

compression, and communication in the Reduce_scatter stage. Fur-

thermore, the newly designed gZ-Allreduce (ReDoub) achieves an

even higher performance enhancement compared to gZ-Allreduce

(Ring), attaining up to 22.7× speedup compared to our original GPU-

centric approach. We explain the reasons as follows. To tackle the

inefficient device utilization in ring-based Allreduce, we design and

optimize a novel recursive doubling-based compression-enabled

algorithm, with the aim of improving scalability, maximizing per-

formance, and preserving accuracy. However, it is worth noting

that the speedup of both gZ-Allreduce methods generally decreases

as the data size increases. This is because the problem of inefficient

GPU utilization can be mitigated by larger message sizes, and the

performance improvement resulting from higher GPU utilization

would consequently decrease.

 0

 5

 10

 15

 20

 25

 30

 30
 60

 90
 120

 150
 180

S
p

e
e

d
u

p
s

Data Sizes (MB)

3.36 2.62 1.85 1.70 1.69 1.89

Our GPU-centric
gZ-Allreduce (Ring)
gZ-Allreduce (ReDoub)

(a) Simulation Setting 1

 0

 5

 10

 15

 20

 25

 100
 200

 300
 400

 500
 600

S
p

e
e

d
u

p
s

Data Sizes (MB)

2.56 2.51 2.16 1.71 1.73 1.79

Our GPU-centric
gZ-Allreduce (Ring)
gZ-Allreduce (ReDoub)

(b) Simulation Setting 2

Figure 7: Performance evaluation of our gZCCL collective

computation framework using Allreduce operation.

444

gZCCL: Compression-Accelerated Collective Communication Framework for GPU Clusters ICS ’24, June 04–07, 2024, Kyoto, Japan

4.3.2 Collective data movement. In this section, the performance of

our optimized, redesigned compression-integrated collective data

movement algorithms is demonstrated, using the classic Scatter

operation. From Figure 8a and Figure 8b, we notice that gZ-Scatter

exhibits substantial speedups in both datasets, obtaining up to 20.3×

and 20.6× improved performance in the two simulation settings,

respectively. This is because, in the gZ-Scatter algorithm, we over-

lap compression, kernel launching, and data movements, leading to

enhanced device utilization, diminished host-device synchroniza-

tion, and reduced device-device data movement cost. Similar to

the collective computation scenario, with increasing data sizes, the

performance boost slightly diminishes, with a minimum of 17.4×

at 600 MB as depicted in Figure 8b. This reason is that a larger

input data size can better saturate the device, thereby mitigating

the performance enhancement derived from our gZCCL design.

 0

 5

 10

 15

 20

 25

 30
 60

 90
 120

 150
 180

S
p

e
e

d
u

p
s

Data Sizes (MB)

Our GPU-centric
gZ-Scatter

(a) Simulation Setting 1

 0

 5

 10

 15

 20

 25

 100
 200

 300
 400

 500
 600

S
p

e
e

d
u

p
s

Data Sizes (MB)

Our GPU-centric
gZ-Scatter

(b) Simulation Setting 2

Figure 8: Performance evaluation of our gZCCL collective

data movement framework using Scatter operation.

4.4 Comparisons of gZCCL with other collective
communication libraries

In this section, we compare the performance of our gZCCL frame-

workwith other state-of-the-art GPU communication libraries, such

as the widely-utilized NCCL and CUDA-aware Cray MPI.

4.4.1 Collective computation. In this section, the performance of

our gZCCL collective computation framework is compared with

both NCCL and Cray MPI, using the prevalent Allreduce operation.

Evaluation with different message sizes.We evaluate the per-

formance of our gZ-Allreduce algorithm using various data sizes

up to 600 MB on a configuration of 64 NVIDIA A100 GPUs across

16 nodes. As observed in Figure 9, our recursive doubling-based

gZ-Allreduce (ReDoub) consistently outperforms across all data

sizes, achieving up to a speedup of 18.7× compared to Cray MPI and

a 3.4× performance improvement over NCCL. Furthermore, with

increasing data sizes, the speedup generally rises, demonstrating

high scalability with respect to data size. The performance improve-

ment originates from the significantly reduced message size and

compression-related overheads in our gZCCL design, which can

further mitigate network congestion with enlarging message sizes.

However, the ring-based gZ-Allreduce (Ring), despite surpassing

Cray MPI for the data size with 50+ MB, fails to outpace NCCL. This

is attributed to the inefficient GPU utilization in gZ-Allreduce (Ring),

which incurs substantial compression-related costs, outweighing

the benefits of reduced message size.

 0

 5

 10

 15

 20

 25

 30

50 100 150 200 250 300 350 400 450 500 550 600

S
p

e
e

d
u

p
s

Data Sizes (MB)

Cray MPI
NCCL
gZ-Allreduce (Ring)
gZ-Allreduce (ReDoub)

Figure 9: Performance evaluation of our gZ-Allreduce with

Cray MPI and NCCL in different data sizes.

Evaluation with different GPU counts. In this section, we assess

the scalability of our gZ-Allreduce algorithm with the complete

RTM dataset of 646 MB data size, utilizing up to 512 NVIDIA A100

GPUs across 128 nodes. We start from 8 GPUs, as it is the minimal

amount to have both internode and intranode communication with

4 GPUs per node.

As depicted in Figure 10, our recursive doubling-based gZ-Allred

uce (ReDoub) consistently performs the best, achieving up to 20.2×

and 4.5× speedups compared to Cray MPI and NCCL respectively,

across varying GPU counts. This superior performance stems from

the substantial reduction in message size with relatively low com-

pression cost achieved by our gZCCL framework. When the GPU

count is at 8, Cray MPI appears to suffer from significant perfor-

mance degradation, as compared to the other three counterparts.

Apart from the 8-GPU case, as the number of GPUs increases, both

gZ-Allreduce (ReDoub) and NCCL tend to exhibit a greater perfor-

mance boost compared to Cray MPI, indicating robust scalability

with respect to the GPU count. This is because both gZ-Allreduce

(ReDoub) and NCCL are optimized for large GPU count scenarios.

However, the trend differs for the ring-based gZ-Allreduce (Ring),

which outperforms NCCL when the GPU count is 32 or less. As

the GPU count increases, its performance deteriorates, ending up

with the worst performance compared with other solutions in the

case of 512 GPUs. The declining performance is attributed to the

reduced input data size for each compression/decompression with

an increase of GPU count, leading to lower device utilization and

prolonged runtime, thus subpar scalability.

 0

 5

 10

 15

 20

 25

 30

8 16 32 64 128 256 512

S
p

e
e

d
u

p
s

GPU Counts

Cray MPI
NCCL
gZ-Allreduce (Ring)
gZ-Allreduce (ReDoub)

Figure 10: Scalability evaluation of our gZ-Allreduce with

Cray MPI and NCCL in different GPU counts.

445

ICS ’24, June 04–07, 2024, Kyoto, Japan Jiajun Huang et al.

4.4.2 Collective data movement. In this section, we assess the per-

formance of our gZCCL collective data movement framework using

the widely-used Scatter operation, comparing it with Cray MPI. We

exclude NCCL from this comparison as it has no implementation

for Scatter.

Evaluation with different message sizes.We evaluate the per-

formance of our gZ-Scatter with data sizes up to 600 MB, using 64

NVIDIA A100 GPUs on 16 nodes. Figure 11 indicates that our gZ-

Scatter is able to consistently outperform Cray MPI across all data

sizes. The speedup of gZ-Scatter enhances as the data size increases,

achieving its maximum (20.2×) at 600 MB. This demonstrates supe-

rior scalability with respect to data sizes, which can be attributed to

the reduced message sizes and overlapping of compression, kernel

launching, and data movement in our gZCCL framework.

 0

 5

 10

 15

 20

50 100 150 200 250 300 350 400 450 500 550 600

S
p

e
e

d
u

p
s

Data Sizes (MB)

Cray MPI
gZ-Scatter

Figure 11: Performance evaluation of our gZ-Scatter with

Cray MPI in different data sizes.

Evaluation with different GPU counts. We assess the scalability

of our gZ-Scatter with the complete RTM dataset, with a data size

of 646 MB, using up to 512 NVIDIA A100 GPUs spread across 128

nodes. From Figure 12, it is evident that our gZ-Scatter outperforms

Cray MPI in all cases. As the GPU count increases, the speedup

of gZ-Scatter first increases, peaking at 28.7×, and then gradually

decreases to 4.75× when the GPU count reaches 512. Unlike the

Allreduce scenario, the message size distributed to each non-root

GPU in the Scatter communication pattern linearly decreases as the

GPU count rises.When the GPU count is less than or equal to 16, the

message size on the non-root GPU allows for high GPU utilization,

hence the speedup grows with the increasing GPU count. However,

when the GPU count exceeds or equals 32, the GPU utilization

continues to drop, thereby reducing the collective performance and

leading to a decrease in performance enhancement.

 0

 5

 10

 15

 20

 25

 30

8 16 32 64 128 256 512

S
p

e
e

d
u

p
s

GPU Counts

Cray MPI
gZ-Scatter

Figure 12: Scalability evaluation of our gZ-Scatter with Cray

MPI in different GPU counts.

4.5 Image Stacking Performance Evaluation
with Accuracy Analysis

In this section, we employ the image stacking application to eval-

uate both the performance and accuracy of our gZCCL. Image

stacking, a technique widely used in various scientific fields such

as atmospheric science and geology, is employed to generate high-

quality images by stacking multiple individual images, which es-

sentially constitutes an Allreduce operation. As demonstrated by

Gurhem in 2021 [10], researchers use MPI to merge these individual

images into a comprehensive final image. As can be seen from Table

2, our ring-based gZCCL (Ring) outperforms Cray MPI by a factor

of 3.99×when using an absolute error bound of 1E-4. Moreover, our

recursive doubling-based gZCCL (ReDoub) offers even higher per-

formance with speedups of up to 9.26× and 1.69× compared with

Cray MPI and NCCL, respectively. This significant performance

enhancement arises from the markedly reduced message sizes and

compression-related overheads brought by our gZCCL framework.

The following text presents a performance breakdown analysis.

For gZCCL (Ring), 84.08% of the total runtime is consumed by com-

pression, whereas gZCCL (ReDoub) has comparable compression

and communication costs at 42.61% and 46.28% respectively. This

substantial reduction in compression cost is due to higher GPU

utilization and fewer compression operations in our optimized gZ-

Allreduce (ReDoub) algorithm compared with gZCCL (Ring).

Table 2: Image stacking performance analysis (The speedups

are based on Cray MPI. The last four columns are perfor-

mance breakdowns of our gZCCL).

Speedups Cmpr. Comm. Redu. Others

gZCCL (Ring) 3.99 84.08% 14.08% 1.26% 0.58%

gZCCL (ReDoub) 9.26 42.61% 46.28% 11.04% 0.06%

NCCL 5.47 No breakdown because of complexity

In addition to performance analysis, we thoroughly evaluate the

accuracy using both visualization method and numerical metrics

such as the widely-used peak signal-to-noise ratio (PSNR) [21] and

normalized root mean squared error (NRMSE) [24]. Our accuracy-

aware design allows gZCCL (ReDoub) to achieve excellent recon-

structed image quality, even with an error bound of 2E-4, as shown

in Figure 13. The reconstructed image of gZCCL (Ring) also exhibits

high visual quality, similar to that shown in Figure 13b, hence it is

not presented separately here. When the error bound is tightened to

1E-4, as used in our performance analysis, gZCCL (Ring) reaches a

great PSNR of 56.83 and an NRMSE of 1E-3. Meanwhile, gZCCL (Re-

Doub) demonstrates better data quality, achieving a PSNR of 57.80

and an NRMSE of 1E-3. The high accuracy of gZCCL confirms a con-

trollable error propagation, which matches the theoretical analysis

in [12]. gZCCL (ReDoub) exhibits a higher quality of reconstructed

data over gZCCL (Ring), because of fewer error propagation steps

as mentioned in Section 3.3.3.

5 CONCLUSION AND FUTUREWORK

This paper presents gZCCL, an innovative framework that opti-

mizes GPU-aware collective communications, offering minimized

compression-related overheads and controlled accuracy. We devise

446

gZCCL: Compression-Accelerated Collective Communication Framework for GPU Clusters ICS ’24, June 04–07, 2024, Kyoto, Japan

(a) Cray MPI/NCCL (lossless) (b) gZCCL (2E-4)

Figure 13: Visualization of final stacking image.

two algorithm design frameworks and two collective optimization

frameworks for both compression-enabled collective computation

and collective data movement. We integrate the framework into

a variety of collective communications including Allgather, Re-

duce_scatter, Allreduce, and Scatter, demonstrating its generality.

Our experiments with up to 512 NVIDIA A100 GPUs illustrate that

our gZ-Allreduce surpasses the Allreduce operation in Cray MPI

and NCCL by up to 20.2× and 4.5× respectively. In addition, our

gZ-Scatter outperforms the Scatter operation in Cray MPI by 28.7×,

while NCCL lacks a Scatter implementation. In a nutshell, our work

not only addresses the concerns of previous related efforts, such as

inefficient GPU utilization, significant compression-related over-

heads, and inferior performance but also provides a groundwork

for further studies in this domain. Our future work will evaluate

our gZCCL framework with more collective operations and we

plan to extend gZCCL to more hardware such as FPGAs and AI

accelerators.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project

(ECP), Project Number: 17-SC-20-SC, a collaborative effort of two

DOE organizations ś the Office of Science and the National Nu-

clear Security Administration, responsible for the planning and

preparation of a capable exascale ecosystem, including software,

applications, hardware, advanced system engineering and early

testbed platforms, to support the nation’s exascale computing im-

perative. The material was supported by the U.S. Department of

Energy, Office of Science, Advanced Scientific Computing Research

(ASCR), under Contract DE-AC02-06CH11357, and supported by

the National Science Foundation under Grant OAC-2003709, OAC-

2104023, and OAC-2311875. This research used resources from

the Argonne Leadership Computing Facility, a U.S. DOE Office of

Science user facility at Argonne National Laboratory, which is sup-

ported by the Office of Science of the U.S. DOE under Contract No.

DE-AC02-06CH11357.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265ś283.

[2] Ahmed M. Abdelmoniem, Ahmed Elzanaty, Mohamed-Slim Alouini, and Marco
Canini. 2021. An Efficient Statistical-based Gradient Compression Technique for

Distributed Training Systems. arXiv:2101.10761 [cs.LG]
[3] George Almási, Philip Heidelberger, Charles J. Archer, Xavier Martorell, C. Chris

Erway, José E. Moreira, B. Steinmacher-Burow, and Yili Zheng. 2005. Optimiza-
tion of MPI Collective Communication on BlueGene/L Systems. In Proceedings of
the 19th Annual International Conference on Supercomputing (Cambridge, Mas-
sachusetts) (ICS ’05). Association for Computing Machinery, New York, NY, USA,
253ś262. https://doi.org/10.1145/1088149.1088183

[4] Ammar Ahmad Awan, Khaled Hamidouche, Jahanzeb Maqbool Hashmi, and
Dhabaleswar K Panda. 2017. S-Caffe: Co-designing MPI runtimes and Caffe for
scalable deep learning on modern GPU clusters. In Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 193ś205.

[5] Alan Ayala, Stanimire Tomov, Xi Luo, Hejer Shaeik, Azzam Haidar, George
Bosilca, and Jack Dongarra. 2019. Impacts of Multi-GPU MPI collective commu-
nications on large FFT computation. In 2019 IEEE/ACM Workshop on Exascale
MPI (ExaMPI). IEEE, 12ś18.

[6] M. Bayatpour and M. A. Hashmi. 2018. SALaR: Scalable and Adaptive Designs
for Large Message Reduction Collectives. In 2018 IEEE International Conference
on Cluster Computing (CLUSTER). 1ś10. https://doi.org/10.1109/CLUSTER.2018.
00009

[7] Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin Harms, and Kalyan Kumaran.
2018. Characterization of MPI usage on a production supercomputer. In SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 386ś400.

[8] NVIDIA Corp. 2023. NCCL ś Optimized primitives for inter-GPU communication.
https://github.com/NVIDIA/nccl.

[9] Sheng Di and Franck Cappello. 2016. Fast error-bounded lossy HPC data com-
pression with SZ. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 730ś739.

[10] Jérôme Gurhem, Henri Calandra, and Serge G. Petiton. 2021. Parallel and Dis-
tributed Task-Based Kirchhoff Seismic Pre-Stack Depth Migration Application. In
2021 20th International Symposium on Parallel and Distributed Computing (ISPDC).
65ś72. https://doi.org/10.1109/ISPDC52870.2021.9521599

[11] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (nov 1997), 1735ś1780. https://doi.org/10.1162/neco.1997.9.
8.1735

[12] Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Zhaorui Zhang, Jinyang Liu,
Xiaoyi Lu, Ken Raffenetti, Hui Zhou, Kai Zhao, Zizhong Chen, Franck Cappello,
Yanfei Guo, and Rajeev Thakur. 2023. An Optimized Error-controlled MPI Collec-
tive Framework Integrated with Lossy Compression. arXiv:2304.03890 [cs.DC]

[13] Jiajun Huang, Jinyang Liu, Sheng Di, Yujia Zhai, Zizhe Jian, Shixun Wu, Kai
Zhao, Zizhong Chen, Yanfei Guo, and Franck Cappello. 2023. Exploring Wavelet
Transform Usages for Error-bounded Scientific Data Compression. In 2023 IEEE
International Conference on Big Data (BigData). 4233ś4239. https://doi.org/10.
1109/BigData59044.2023.10386386

[14] Yafan Huang, Sheng Di, Xiaodong Yu, Guanpeng Li, and Franck Cappello. 2023.
cuSZp: An Ultra-fast GPU Error-bounded Lossy Compression Framework with
Optimized End-to-End Performance. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage andAnalysis (SC ’23). Article
43, 13 pages. https://doi.org/10.1145/3581784.3607048

[15] Arpan Jain, Ammar Ahmad Awan, Hari Subramoni, and Dhabaleswar K Panda.
2019. Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-
Performance Deep Learning on Frontera. In 2019 IEEE/ACM Third Workshop on
Deep Learning on Supercomputers (DLS). IEEE, 76ś83.

[16] Suha Kayum et al. 2020. GeoDRIVE ś A high performance computing flexible
platform for seismic applications. First Break 38, 2 (2020), 97ś100.

[17] Argonne National Laboratory. 2023. MPICH ś A high-performance and widely
portable implementation of the MPI-4.0 standard. https://www.mpich.org.

[18] Peter Lindstrom. 2014. Fixed-Rate Compressed Floating-Point Arrays. IEEE
Transactions on Visualization and Computer Graphics 20 (2014), 2674ś2683.

[19] Jinyang Liu, Sheng Di, Kai Zhao, Xin Liang, Sian Jin, Zizhe Jian, Jiajun Huang,
Shixun Wu, Zizhong Chen, and Franck Cappello. 2024. High-performance Ef-
fective Scientific Error-bounded Lossy Compression with Auto-tuned Multi-
component Interpolation. Proc. ACM Manag. Data 2, 1, Article 4 (mar 2024),
27 pages. https://doi.org/10.1145/3639259

[20] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce algorithms
for clusters of workstations. J. Parallel and Distrib. Comput. 69, 2 (2009), 117ś124.

[21] Sanjith S., R. Ganesan, and Rimal Isaac. 2015. Experimental Analysis of Com-
pacted Satellite Image Quality Using Different Compression Methods. Advanced
Science 7 (03 2015). https://doi.org/10.1166/asem.2015.1673

[22] Daniele De Sensi, Salvatore Di Girolamo, Kim H. McMahon, Duncan Roweth,
and Torsten Hoefler. 2020. An In-Depth Analysis of the Slingshot Interconnect.
In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE. https://doi.org/10.1109/sc41405.2020.00039

[23] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1617ś1632. https://doi.org/10.1145/3318464.3380595

447

ICS ’24, June 04–07, 2024, Kyoto, Japan Jiajun Huang et al.

[24] Maxim Vladimirovich Shcherbakov, Adriaan Brebels, Nataliya Lvovna
Shcherbakova, Anton Pavlovich Tyukov, Timur Alexandrovich Janovsky, Va-
leriy Anatol’evich Kamaev, et al. 2013. A survey of forecast error measures.
World applied sciences journal 24, 24 (2013), 171ś176.

[25] Dingwen Tao, Sheng Di, and Franck Cappello. 2017. Significantly Improving
Lossy Compression for Scientific Data Sets Based on Multidimensional Prediction
and Error-Controlled Quantization. https://doi.org/10.1109/IPDPS.2017.115

[26] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of
collective communication operations in MPICH. The International Journal of
High Performance Computing Applications 19, 1 (2005), 49ś66.

[27] Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Zizhong Chen, and
Franck Cappello. 2020. Significantly improving lossy compression for HPC
datasets with second-order prediction and parameter optimization. In Proceedings
of the 29th International Symposium on High-Performance Parallel and Distributed
Computing. 89ś100.

[28] Qinghua Zhou, Quentin Anthony, Aamir Shafi, Hari Subramoni, and Dhabaleswar
K. DK Panda. 2022. Accelerating Broadcast Communication with GPU Com-
pression for Deep Learning Workloads. In 2022 IEEE 29th International Con-
ference on High Performance Computing, Data, and Analytics (HiPC). 22ś31.
https://doi.org/10.1109/HiPC56025.2022.00016

[29] Qinghua Zhou, Quentin Anthony, Lang Xu, Aamir Shafi, Mustafa Abduljabbar,
Hari Subramoni, and Dhabaleswar K. DK Panda. 2023. Accelerating Distributed
Deep Learning Training with Compression Assisted Allgather and Reduce-Scatter
Communication. In 2023 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 134ś144. https://doi.org/10.1109/IPDPS54959.2023.00023

[30] Q. Zhou, C. Chu, N. S. Kumar, P. Kousha, S. M. Ghazimirsaeed, H. Subramoni, and
D. K. Panda. 2021. Designing High-Performance MPI Libraries with On-the-fly
Compression for Modern GPU Clusters. In 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 444ś453. https://doi.org/10.1109/
IPDPS49936.2021.00053

[31] Qinghua Zhou, Pouya Kousha, Quentin Anthony, Kawthar Shafie Khorassani,
Aamir Shafi, Hari Subramoni, and Dhabaleswar K. Panda. 2022. Accelerating
MPI All-to-All Communication With Online Compression On Modern GPU
Clusters. In High Performance Computing: 37th International Conference, ISC
High Performance 2022, Hamburg, Germany, May 29 ś June 2, 2022, Proceedings
(Hamburg, Germany). Springer-Verlag, Berlin, Heidelberg, 3ś25. https://doi.org/
10.1007/978-3-031-07312-0_1

448

	Abstract
	1 Introduction
	2 Background and Related Work
	3 gZCCL Design and Optimization
	3.1 Analysis of existing compression-enabled GPU-aware collectives
	3.2 Characterization of ring-based compression-enabled GPU-aware collectives
	3.3 Proposing the novel gZCCL framework

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Evaluating the GPU-centric design
	4.3 Evaluating the optimized redesigned GPU compression-enabled collective algorithms
	4.4 Comparisons of gZCCL with other collective communication libraries
	4.5 Image Stacking Performance Evaluation with Accuracy Analysis

	5 Conclusion and Future Work
	Acknowledgments
	References

