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Frequency-domain wave scattering problems that arise in acoustics and electromagnetism can 
be often described by the Helmholtz equation. This work presents a boundary integral equation 
method for the Helmholtz equation in 3-D multilayered media with many doubly periodic smooth 
layers. Compared with conventional quasi-periodic Green’s function method, the new method is 
robust at all scattering parameters. A periodizing scheme is used to decompose the solution into 
near- and far-field contributions. The near-field contribution uses the free-space Green’s function 
in an integral equation on the interface in the unit cell and its immediate eight neighbors; the 
far-field contribution uses proxy point sources that enclose the unit cell. A specialized high-
order quadrature is developed to discretize the underlying surface integral operators to keep the 
number of unknowns per layer small. We achieve overall linear computational complexity in the 
number of layers by reducing the linear system into block tridiagonal form and then solving the 
system directly via block LU decomposition. The new solver is capable of handling a 100-interface 
structure with 961.3k unknowns to 10−5 accuracy in less than 2 hours on a desktop workstation.

 Introduction

Optical or electromagnetic waves in doubly periodic multilayered media is one of the fundamental mechanisms in many modern 
gh-tech devices such as dielectric gratings for high-powered laser [1,2], thin-film photovoltaic [3,4], passive cooling devices 
ing multilayer photonic structure [5], photonic crystals [6], semiconductor packaging that is one of the hot topics in chip design 
,8], and process control in semiconductor lithography [9]. Numerical simulations are often used to help design or optimize these 
vices where one must solve the scattering problem for various incident angles and/or wavelengths and repeat the computation 
r design optimization in many cases [10]. Therefore, it is imperative to have a robust and efficient solver. There are many well-
own numerical methods, including finite-difference time-domain method [11], finite element method [12–14], rigorous-coupled 
ave analysis or Fourier modal method [15–17], high-order perturbation of surface (HOPS) method [18,19], and integral equation 
ethod [20–31]. Each method has its own advantages and disadvantages. The integral equation method stands out with several 
ry attractive benefits over other methods: the dimensionality of the problem is reduced with all the unknowns residing on the 
terfaces instead of in the volume, which significantly reduces the number of unknowns; the radiation condition is built into the 
een’s function and no artificial boundary conditions or perfectly matched layers are required; moreover, a problem can often be 
rmulated as a Fredholm second-kind integral equation which is well-conditioned and suitable for an accelerated iterative matrix 
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. 1. (a) An interface parameterized by 𝑔(𝑥, 𝑦) = 0.2 sin(2𝜋𝑥) cos(2𝜋𝑦), with period 𝑑 = 1 in both directions. (b) Structure with multiple interfaces Γ𝑖 with the 
rrounding walls for each layer Ω𝑖 . (c) Proxy points {𝐲𝑖

𝑝
} on spheres enclosing each layer Ω𝑖.

lver. However, due to the nature of the Green’s function, discretization of the integral equation usually yields a dense matrix that 
expensive to invert directly. Thus, large system solvers must be accelerated using fast linear algebra algorithms, such as the Fast 
ultipole Method [32–34] and the Fast Direct Solver [35–39].
The focus of the present paper is on the frequency-domain scattering of a plane wave through a stratified medium with many 

yers which has applications in acoustic waves such as acoustic metamaterials [40,41]. For two dimensional (2-D) doubly periodic 
ultilayered media, the boundary integral equation method combined with a periodizing scheme is used to build an efficient solver 
at can handle 1000 s of layers [27]. The solver is further accelerated by the fast direct solver recently developed by Zhang and 
llman [28,29] which can handle complex interfaces that require a large number of samples and is useful for parameter optimization. 
r three-dimensional (3-D) problems, to avoid challenges of surface integral quadrature, the Method of fundamental solution (MFS) 
s been used in the place of boundary integral equation for doubly periodic multilayered media [30,31] and for doubly periodic 
rays of axisymmetric objects [42]. However, the MFS approach has many limitations associated with the choice of artificial source 
ints near the boundary and the ill-conditioning of the linear system, making it impractical as a general solver even though it was 
good tool to show the effectiveness of the periodizing scheme in three dimensions. The difficulty of singular quadrature on layer 
terfaces has finally been overcome thanks to the recent development of the corrected trapezoidal quadrature [43–45]. The present 
per presents a robust and fast integral equation solver for the Helmholtz equation in 3-D doubly periodic smooth multilayered 
edia using the direct solver based on Schur complement and block tridiagonal LU decomposition that was used for the 2-D problem 
7]. One review paper [46] from the year 2015 named the authors as one of the groups potentially capable of efficiently solving 
D scattering or diffraction problems using a boundary integral equation method. Similar to the 2-D solver, the new 3-D solver’s 
U time grows linearly with number of layers and is robust at Wood anomalies [47], making it possible to handle a large number 
 layers. In addition, this solver can be made highly efficient for optimization problems once it is accelerated by a fast direct solver 
at is a 3-D extension of [29]; results of such an accelerated solver will be reported in a future work.
The geometry of the problems (See Fig. 1 for notation and schematics) consists of 𝐼 + 1 layers denoted by {Ω𝑖}𝐼+1

𝑖=1 . There are 
surfaces {Γ𝑖}𝐼

𝑖=1 where Γ𝑖 is the interface that separates Ω𝑖 and Ω𝑖+1. For simplicity, all interfaces are assumed to have the same 
riodicity 𝑑 along 𝑥- and 𝑦-directions (see Fig. 1(b)); however, all the following derivations can be easily adapted to interfaces with 
fferent periodicities along the two directions (such as modifying the Bloch phases in (3) accordingly). The wavenumber is {𝑘𝑖}𝐼+1

𝑖=1
 each layer. 𝐿𝑖, 𝑅𝑖, 𝐹𝑖, and 𝐵𝑖 are the artificial side walls surrounding the unit cell of the layer Ω𝑖 to impose quasi-periodic boundary 
nditions. 𝑈 and 𝐷 are, respectively, the artificial layers placed above Γ1 at 𝑧 = 𝑧u and below Γ𝐼 at 𝑧 = 𝑧d to impose the radiation 
nditions. A plane wave is incident in the uppermost layer,

𝑢inc(𝐫) =
{

𝑒𝑖𝐤⋅𝐫 , 𝐫 ∈Ω1,

0, otherwise,
(1)

here the wave vector

𝐤 = (𝑘1𝑥, 𝑘1𝑦, 𝑘1𝑧) = (𝑘1 sin𝜙inc cos𝜃inc, 𝑘1 sin𝜙inc sin𝜃inc, 𝑘1 cos𝜙inc)

ith 0 ≤ 𝜃inc < 2𝜋 and 𝜋∕2 < 𝜙inc < 𝜋, and where 𝐫 = (𝑥, 𝑦, 𝑧). The incident wave is quasi-periodic (periodic up to a phase) in both 
rections, that is

𝛼−1
𝑥

𝑢inc(𝑥+ 𝑑, 𝑦, 𝑧) = 𝛼−1
𝑦

𝑢inc(𝑥, 𝑦+ 𝑑, 𝑧) = 𝑢inc(𝑥, 𝑦, 𝑧), (2)

here the Bloch phases 𝛼𝑥 and 𝛼𝑦 are defined by

𝛼𝑥 = 𝑒𝑖𝑑𝑘1𝑥 and 𝛼𝑦 = 𝑒𝑖𝑑𝑘1𝑦 . (3)

om the standard scattering theory [48], the scattered wave 𝑢𝑖 must be quasi-periodic and satisfy the Helmholtz equation. Thus, the 
2

undary value problem (BVP) for 𝑢𝑖 consists of the equation
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Δ𝑢𝑖(𝐫) + 𝑘2
𝑖
𝑢𝑖(𝐫) = 0, 𝐫 ∈Ω𝑖 (4)

e continuity conditions at each interface Γ𝑖, 𝑖 = 1, 2, ⋯ 𝐼

𝑢1 − 𝑢2 = −𝑢inc and
𝜕𝑢1
𝜕𝐧 − 𝜕𝑢2

𝜕𝐧 = − 𝜕𝑢inc

𝜕𝐧 on Γ1
𝑢𝑖 − 𝑢𝑖+1 = 0 and

𝜕𝑢𝑖

𝜕𝐧 − 𝜕𝑢𝑖+1
𝜕𝐧 = 0 on Γ𝑖, 𝑖 = 2,3,⋯ , 𝐼

, (5)

e quasi-periodicity conditions on the side walls for all layers

𝑢𝑖|𝐿𝑖
= 𝛼−1

𝑥
𝑢𝑖|𝑅𝑖

and 𝑢𝑖|𝐵𝑖
= 𝛼−1

𝑦
𝑢𝑖|𝐹𝑖

𝜕𝑢𝑖

𝜕𝐧
|||𝐿𝑖

= 𝛼−1
𝑥

𝜕𝑢𝑖

𝜕𝐧
|||𝑅𝑖

and
𝜕𝑢𝑖

𝜕𝐧
|||𝐵𝑖

= 𝛼−1
𝑦

𝜕𝑢𝑖

𝜕𝐧
|||𝐹𝑖

for 𝑖 = 1,2,⋯𝐼 + 1, (6)

d the upward and downward radiation condition in 𝑢1 and 𝑢𝐼+1, respectively, expressed as Rayleigh-Bloch expansions [49]

𝑢(𝐫) =
∑
𝑚,𝑛

𝑎u
𝑚𝑛

𝑒
𝑖(𝜅𝑚

𝑥 𝑥+𝜅𝑛
𝑦 𝑦+𝑘

(𝑚,𝑛)
u (𝑧−𝑧u)), 𝑧 ≥ 𝑧u (7)

𝑢(𝐫) =
∑
𝑚,𝑛

𝑎d
𝑚𝑛

𝑒
𝑖(𝜅𝑚

𝑥 𝑥+𝜅𝑛
𝑦 𝑦−𝑘

(𝑚,𝑛)
d (𝑧−𝑧d)), 𝑧 ≤ 𝑧d, (8)

here 𝜅𝑚
𝑥
= 𝑘1𝑥 + 2𝜋𝑚∕𝑑, 𝜅𝑛

𝑦
= 𝑘1𝑦 + 2𝜋𝑛∕𝑑,

𝑘(𝑚,𝑛)
u =

√
𝑘21 − (𝜅𝑚

𝑥
)2 − (𝜅𝑛

𝑦
)2, and 𝑘

(𝑚,𝑛)
d =

√
𝑘2

𝐼+1 − (𝜅𝑚
𝑥
)2 − (𝜅𝑛

𝑦
)2,

d the sign of the square root is taken as positive real or positive imaginary. It is known that the boundary value problem (4)–(8)
s a solution for all parameters and the solution is unique at all but a discrete set of frequencies 𝑘 and incident angles 𝜃inc that 
rrespond to guided modes of the dielectric structure [49]. However, these should not be confused with Wood anomalies, which 
e scattering parameters that produce the upper or lower 𝑛th Rayleigh-Bloch mode a horizontally traveling wave [50–52].
In Section 2, we describe the periodized boundary integral representation and its discretization for the BVP (4)-(8), where a new 
ecialized quadrature is introduced in Section 2.2. Section 3 describes the fast solution procedure for the discretized system by a 
duction into block tridiagonal form. Several numerical examples are presented in Section 4 and the paper is concluded in Section 5.

 Boundary integral formulation, periodizing scheme, and its discretization

From the periodizing idea in two-dimensions [27], the scattered field or solution of the Helmholtz equation (4) in each layer 
represented by the sum of near- and far-field contribution. The near-field contribution uses the free-space Green’s function in an 
tegral equation on the interfaces in the unit cell and its 8 immediate neighbors. The far-field contribution uses artificial (proxy) 
int sources on a sphere that is centered on and enclosing the unit cell.
We first define the standard single- and double-layer potentials [48] for the Helmholtz equation residing on a general surface Γ

 wavenumber 𝑘𝑖 for the 𝑖th layer,

( 𝑖
Γ𝜎)(𝐫) ∶= ∫

Γ

𝐺𝑖(𝐫, 𝐫′)𝜎(𝐫′) d𝑆𝐫′ , (𝑖
Γ𝜏)(𝐫) ∶= ∫

Γ

𝜕𝐺𝑖

𝜕𝐧′
(𝐫, 𝐫′)𝜏(𝐫′) d𝑆𝐫′ , (9)

here 𝐧′ is the unit normal on Γ at 𝐫′, and where

𝐺𝑖(𝐫, 𝐫′) ∶= 𝑒𝑖𝑘𝑖|𝐫−𝐫′|
4𝜋|𝐫 − 𝐫′| (10)

the free-space Green’s function at wavenumber 𝑘𝑖. The normal derivative of the potentials with respect to the unit normal vector 
at the target point 𝐫 are defined as

(𝑖,∗
Γ 𝜏)(𝐫) ∶= ∫

Γ

𝜕𝐺𝑖

𝜕𝐧
(𝐫, 𝐫′)𝜏(𝐫′) d𝑆𝐫′ , ( 𝑖

Γ𝜏)(𝐫) ∶= ∫
Γ

𝜕2𝐺𝑖

𝜕𝐧𝜕𝐧′
(𝐫, 𝐫′)𝜏(𝐫′) d𝑆𝐫′ . (11)

fine the phased contribution from the nearest neighbors (indicated with a tilde)

(̃ 𝑖
Γ𝜎)(𝐫) ∶=

∑
−1≤𝑙𝑥,𝑙𝑦≤1
𝐝=𝑑 ⟨𝑙𝑥,𝑙𝑦,0⟩

𝛼
𝑙𝑥
𝑥 𝛼

𝑙𝑦
𝑦 ∫

Γ

𝐺𝑖(𝐫, 𝐫′ + 𝐝)𝜎(𝐫′) d𝑆𝐫′ (12)

(̃𝑖
Γ𝜏)(𝐫) ∶=

∑
−1≤𝑙𝑥,𝑙𝑦≤1
𝐝=𝑑 ⟨𝑙𝑥,𝑙𝑦,0⟩

𝛼
𝑙𝑥
𝑥 𝛼

𝑙𝑦
𝑦 ∫

Γ

𝜕𝐺𝑖

𝜕𝐧′
(𝐫, 𝐫′ + 𝐝)𝜏(𝐫′) d𝑆𝐫′ . (13)

e operators ̃𝑖,∗
Γ and ̃ 𝑖

Γ are defined in the same manner. Furthermore, we will use two subscripts to denote target and source 
3

terfaces, for example,
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(̃ 𝑖
Γ𝑡 ,Γ𝑠

𝜎)(𝐫) ∶=
∑

−1≤𝑙𝑥,𝑙𝑦≤1
𝐝=𝑑 ⟨𝑙𝑥,𝑙𝑦,0⟩

𝛼
𝑙𝑥
𝑥 𝛼

𝑙𝑦
𝑦 ∫

Γ𝑠

𝐺𝑖(𝐫, 𝐫′ + 𝐝)𝜎(𝐫′) d𝑆𝐫′ , 𝐫 ∈ Γ𝑡, (14)

presents the single layer operation defined in (12) at the target interface Γ𝑡 due to the source interface Γ𝑠. Other source-target 
teraction operators, such as ̃𝑖

Γ𝑡 ,Γ𝑠
, ̃𝑖,∗

Γ𝑡 ,Γ𝑠
, and ̃ 𝑖

Γ𝑡 ,Γ𝑠
are similarly defined.

Next we let 𝕊𝑖 be the sphere of radius 𝑅 that is centered on and encloses the domain Ω𝑖, and define the proxy points {𝐲𝑖
𝑝
}𝑃
𝑝=1 to 

 the uniformly spaced mesh points in the standard longitude-latitude parameterization of 𝕊𝑖 (see Fig. 1(c)). Then the proxy basis 
nctions for the 𝑖th layer are

𝜙𝑖
𝑝
(𝐫) ∶= 𝜕𝐺𝑖

𝜕𝐧𝑝

(𝐫,𝐲𝑖
𝑝
) + 𝑖𝑘𝑖𝐺

𝑖(𝐫,𝐲𝑖
𝑝
), 𝐫 ∈Ω𝑖, 𝑝 = 1,… , 𝑃 (15)

here 𝐧𝑝 is the outward-pointing unit normal to 𝕊𝑖 at 𝐲𝑖
𝑝
. The basis functions (15) are chosen to make the proxy representation more 

bust at higher wavenumbers [27]. The choice of proxy surfaces can also be flexible. For example, one can replace the sphere 𝕊𝑖

ith a horizontally stretched ellipsoid when the unit cell Ω𝑖 is very thin along the 𝑧-direction.
Combining the above definitions of near-field layer potentials and proxy basis, the ansatz for the scattered field in each layer is 
en given by

𝑢1(𝐫) = ̃1
Γ1

𝜏1 + ̃1
Γ1

𝜎1 +
𝑃∑

𝑝=1
𝑐1
𝑝
𝜙1

𝑝
, 𝐫 ∈Ω1,

𝑢𝑖(𝐫) = ̃𝑖
Γ𝑖−1

𝜏𝑖−1 + ̃ 𝑖
Γ𝑖−1

𝜎𝑖−1 + ̃𝑖
Γ𝑖

𝜏𝑖 + ̃ 𝑖
Γ𝑖

𝜎𝑖 +
𝑃∑

𝑝=1
𝑐𝑖
𝑝
𝜙𝑖

𝑝
, 𝐫 ∈Ω𝑖, 𝑖 = 2,3,⋯𝐼,

𝑢𝐼+1(𝐫) = ̃𝐼+1
Γ𝐼

𝜏𝐼 + ̃𝐼+1
Γ𝐼

𝜎𝐼 +
𝑃∑

𝑝=1
𝑐𝐼+1
𝑝

𝜙𝐼+1
𝑝

, 𝐫 ∈Ω𝐼+1,

(16)

here the unknowns are the density functions 𝜏𝑖 and 𝜎𝑖, 1 ≤ 𝑖 ≤ 𝐼 , and the proxy strengths 𝑐𝑖 ∶= {𝑐𝑖
𝑝
}𝑃
𝑝=1, 1 ≤ 𝑖 ≤ 𝐼 + 1.

The ansatz (16) must satisfy the continuity conditions at the interfaces Γ𝑖, the quasi-periodic conditions, and the radiation 
nditions. Following a similar procedure as in [30,27], one can substitute the ansatz (16) into (5)–(8) and use the standard jump 
lations [48, Thm 3.1] to obtain a linear system

𝐀𝜼+𝐁𝐜 = 𝐟 , (17)

𝐂𝜼+𝐐𝐜 = 𝟎, (18)

𝐙𝜼+𝐕𝐜+𝐖𝐚 = 𝟎, (19)

here we will next define the matrices and vectors in the system.
The first two equations (17) and (18), respectively, account for the continuity conditions at the interfaces and the quasi-periodic 
nditions, where 𝐀 is an 𝐼 -by-𝐼 block-tridiagonal matrix with the nonzero blocks

{𝐀𝑖,𝑖}𝐼
𝑖=1 =

[
𝐈+ (̃𝑖

Γ𝑖 ,Γ𝑖
− ̃𝑖+1

Γ𝑖 ,Γ𝑖
) (̃ 𝑖

Γ𝑖 ,Γ𝑖
− ̃ 𝑖+1

Γ𝑖 ,Γ𝑖
)

(̃ 𝑖
Γ𝑖 ,Γ𝑖

− ̃ 𝑖+1
Γ𝑖 ,Γ𝑖

) −𝐈+ (̃𝑖,∗
Γ𝑖 ,Γ𝑖

− ̃𝑖+1,∗
Γ𝑖 ,Γ𝑖

)

]
,

{𝐀𝑖,𝑖+1}𝐼−1
𝑖=1 =

[
−̃𝑖+1

Γ𝑖 ,Γ𝑖+1
−̃ 𝑖+1

Γ𝑖 ,Γ𝑖+1
−̃ 𝑖+1

Γ𝑖 ,Γ𝑖+1
−̃𝑖+1,∗

Γ𝑖 ,Γ𝑖+1

]
, (20)

{𝐀𝑖+1,𝑖}𝐼−1
𝑖=1 =

[ ̃𝑖+1
Γ𝑖+1 ,Γ𝑖

̃ 𝑖+1
Γ𝑖+1 ,Γ𝑖̃ 𝑖+1

Γ𝑖+1 ,Γ𝑖
̃𝑖+1,∗

Γ𝑖+1 ,Γ𝑖

]
,

is an 𝐼 -by-(𝐼 + 1) block-bidiagonal matrix with the nonzero blocks

{𝐁𝑖,𝑖}𝐼
𝑖=1 =

⎡⎢⎢⎣
𝜙𝑖
1
|||Γ𝑖

… 𝜙𝑖
𝑃

|||Γ𝑖
𝜕𝜙𝑖

1
𝜕𝐧

|||Γ𝑖

…
𝜕𝜙𝑖

𝑃

𝜕𝐧
|||Γ𝑖

⎤⎥⎥⎦ , {𝐁𝑖,𝑖+1}𝐼
𝑖=1 =

⎡⎢⎢⎣
−𝜙𝑖+1

1
|||Γ𝑖

… −𝜙𝑖+1
𝑃

|||Γ𝑖

−
𝜕𝜙𝑖+1

1
𝜕𝐧

|||Γ𝑖

… −
𝜕𝜙𝑖+1

𝑃

𝜕𝐧
|||Γ𝑖

⎤⎥⎥⎦ , (21)
4

is an (𝐼 + 1)-by-𝐼 block-bidiagonal matrix with the nonzero blocks
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{𝐂𝑖,𝑖}𝐼
𝑖=1 =

∑
−1≤𝑙≤1

𝐝𝑥=𝑑⟨1,𝑙,0⟩
𝐝𝑦=𝑑⟨𝑙,1,0⟩

⎡⎢⎢⎢⎢⎢⎣

𝛼−1
𝑥
𝑖

𝑅𝑖+𝐝𝑥,Γ𝑖
− 𝛼2

𝑥
𝑖

𝐿𝑖−𝐝𝑥,Γ𝑖
𝛼−1

𝑥
 𝑖

𝑅𝑖+𝐝𝑥,Γ𝑖
− 𝛼2

𝑥
 𝑖

𝐿𝑖−𝐝𝑥,Γ𝑖

𝛼−1
𝑥
 𝑖

𝑅𝑖+𝐝𝑥,Γ𝑖
− 𝛼2

𝑥
 𝑖

𝐿𝑖−𝐝𝑥,Γ𝑖
𝛼−1

𝑥
𝑖,∗

𝑅𝑖+𝐝𝑥,Γ𝑖
− 𝛼2

𝑥
𝑖,∗

𝐿𝑖−𝐝𝑥,Γ𝑖

𝛼−1
𝑦
𝑖

𝐵𝑖+𝐝𝑦,Γ𝑖
− 𝛼2

𝑦
𝑖

𝐹𝑖−𝐝𝑦,Γ𝑖
𝛼−1

𝑦
 𝑖

𝐵𝑖+𝐝𝑦,Γ𝑖
− 𝛼2

𝑦
 𝑖

𝐹𝑖−𝐝𝑦,Γ𝑖

𝛼−1
𝑦
 𝑖

𝐵𝑖+𝐝𝑦,Γ𝑖
− 𝛼2

𝑦
 𝑖

𝐹𝑖−𝐝𝑦,Γ𝑖
𝛼−1

𝑦
𝑖,∗

𝐵𝑖+𝐝𝑦,Γ𝑖
− 𝛼2

𝑦
𝑖,∗

𝐹𝑖−𝐝𝑦,Γ𝑖

⎤⎥⎥⎥⎥⎥⎦
,

{𝐂𝑖+1,𝑖}𝐼
𝑖=1 =

∑
−1≤𝑙≤1

𝐝𝑥=𝑑⟨1,𝑙,0⟩
𝐝𝑦=𝑑⟨𝑙,1,0⟩

⎡⎢⎢⎢⎢⎢⎣

𝛼−1
𝑥
𝑖+1

𝑅𝑖+1+𝐝𝑥,Γ𝑖
− 𝛼2

𝑥
𝑖+1

𝐿𝑖+1−𝐝𝑥,Γ𝑖
𝛼−1

𝑥
 𝑖+1

𝑅𝑖+1+𝐝𝑥,Γ𝑖
− 𝛼2

𝑥
 𝑖+1

𝐿𝑖+1−𝐝𝑥,Γ𝑖

𝛼−1
𝑥
 𝑖+1

𝑅𝑖+1+𝐝𝑥,Γ𝑖
− 𝛼2

𝑥
 𝑖+1

𝐿𝑖+1−𝐝𝑥,Γ𝑖
𝛼−1

𝑥
𝑖+1,∗

𝑅𝑖+1+𝐝𝑥,Γ𝑖
− 𝛼2

𝑥
𝑖+1,∗

𝐿𝑖+1−𝐝𝑥,Γ𝑖

𝛼−1
𝑦
𝑖+1

𝐵𝑖+1+𝐝𝑦,Γ𝑖
− 𝛼2

𝑦
𝑖+1

𝐹𝑖+1−𝐝𝑦,Γ𝑖
𝛼−1

𝑦
 𝑖+1

𝐵𝑖+1+𝐝𝑦,Γ𝑖
− 𝛼2

𝑦
 𝑖+1

𝐹𝑖+1−𝐝𝑦,Γ𝑖

𝛼−1
𝑦
 𝑖+1

𝐵𝑖+1+𝐝𝑦,Γ𝑖
− 𝛼2

𝑦
 𝑖+1

𝐹𝑖+1−𝐝𝑦,Γ𝑖
𝛼−1

𝑦
𝑖+1,∗

𝐵𝑖+1+𝐝𝑦,Γ𝑖
− 𝛼2

𝑦
𝑖+1,∗

𝐹𝑖+1−𝐝𝑦,Γ𝑖

⎤⎥⎥⎥⎥⎥⎦
,

(22)

d 𝐐 is an (𝐼 + 1)-by-(𝐼 + 1) block-diagonal matrix with the nonzero blocks

{𝐐𝑖,𝑖}𝐼+1
𝑖=1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜙𝑖
1
|||𝑅𝑖

− 𝛼𝑥𝜙𝑖
1
|||𝐿𝑖

… 𝜙𝑖
𝑃

|||𝑅𝑖

− 𝛼𝑥𝜙
𝑖
𝑃

|||𝐿𝑖
𝜕𝜙𝑖

1
𝜕𝑛

|||𝑅𝑖

− 𝛼𝑥

𝜕𝜙𝑖
1

𝜕𝑛

|||𝐿𝑖

…
𝜕𝜙𝑖

𝑃

𝜕𝑛

|||𝑅𝑖

− 𝛼𝑥

𝜕𝜙𝑖
𝑃

𝜕𝑛

|||𝐿𝑖

𝜙𝑖
1
|||𝐵𝑖

− 𝛼𝑦𝜙
𝑖
1
|||𝐹𝑖

… 𝜙𝑖
𝑃

|||𝐵𝑖

− 𝛼𝑦𝜙
𝑖
𝑃

|||𝐹𝑖
𝜕𝜙𝑖

1
𝜕𝑛

|||𝐵𝑖

− 𝛼𝑦

𝜕𝜙𝑖
1

𝜕𝑛

|||𝐹𝑖

…
𝜕𝜙𝑖

𝑃

𝜕𝑛

|||𝐵𝑖

− 𝛼𝑦

𝜕𝜙𝑖
𝑃

𝜕𝑛

|||𝐹𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

e corresponding vectors in Eqs. (17) and (18), including the densities 𝜼 on the interfaces, the proxy source strengths 𝐜 on the proxy 
heres, and the right-hand side functions 𝐟 , are given by

𝜼 =
[
𝜼1 … 𝜼𝐼

]𝑇
, where 𝜼𝑖 ∶=

[
𝜏𝑖

𝜎𝑖

]
,

𝐜 =
[
𝑐1 … 𝑐𝐼+1 ]𝑇 , 𝐟 =

[
−𝑢inc|Γ1 − 𝜕𝑢inc

𝜕𝐧 |Γ1 0 … 0
]𝑇

.

(24)

Equation (19) accounts for the radiation conditions at the artificial interfaces 𝑈 and 𝐷. The matrix 𝐙 is a 2-by-𝐼 block-sparse 
atrix, given by

𝐙 =
[
𝐙𝑈 𝟎 … 𝟎
𝟎 … 𝟎 𝐙𝐷

]
, (25)

here

𝐙𝑈 =

[ ̃1
𝑈,Γ1

̃1
𝑈,Γ1̃ 1

𝑈,Γ1
̃1,∗

𝑈,Γ1

]
,𝐙𝐷 =

[𝐼+1
𝐷,Γ𝐼

𝐼+1,Γ𝐼 𝐼+1,Γ𝐼
𝐼+1,∗

𝐷,Γ𝐼

]
, (26)

d the matrix 𝐕 a 2-by-(𝐼 + 1) block-sparse matrix, given by

𝐕 =
[
𝐕𝑈 𝟎 … 𝟎
𝟎 … 𝟎 𝐕𝐷

]
, (27)

here

𝐕𝑈 =
⎡⎢⎢⎣

𝜙1
1
|||𝑈 … 𝜙1

𝑃

|||𝑈
𝜕𝜙1

1
𝜕𝑛

|||𝑈 …
𝜕𝜙1

𝑃

𝜕𝑛

|||𝑈
⎤⎥⎥⎦ , 𝐕𝐷 =

⎡⎢⎢⎣
𝜙𝐼+1
1

|||𝐷 … 𝜙𝐼+1
𝑃

|||𝐷
𝜕𝜙𝐼+1

1
𝜕𝑛

|||𝐷 …
𝜕𝜙𝐼+1

𝑃

𝜕𝑛

|||𝐷
⎤⎥⎥⎦ , (28)

d 𝐖 is a 2-by-2 block-diagonal matrix, in which the (1, 1)-component 𝐖𝑈 and the (2, 2)-component 𝐖𝐷 are given by

𝐖𝑈 =

[
−𝑒

𝑖(𝜅𝑚
𝑥 𝑥+𝜅𝑛

𝑦 𝑦)|||𝑈
−𝑖𝑘

(𝑚,𝑛)
u 𝑒

𝑖(𝜅𝑚
𝑥 𝑥+𝜅𝑛

𝑦 𝑦)|||𝑈
]

, 𝐖𝐷 =

[
−𝑒

𝑖(𝜅𝑚
𝑥 𝑥+𝜅𝑛

𝑦 𝑦)|||𝐷
𝑖𝑘

(𝑚,𝑛)
d 𝑒

𝑖(𝜅𝑚
𝑥 𝑥+𝜅𝑛

𝑦 𝑦)|||𝐷
]

, (29)

here 𝑚, 𝑛 = −𝐾, −𝐾 + 1, … , 𝐾 − 1, 𝐾 . The corresponding vector 𝐚 = [𝐚u 𝐚d]𝑇 contains the Rayleigh-Block coefficients such that 
= [𝑎u

𝑚𝑛
] and 𝐚d = [𝑎d

𝑚𝑛
], 𝑚, 𝑛 = −𝐾, −𝐾 + 1, … , 𝐾 − 1, 𝐾 .

mark 1. Note that in Eq. (22), the operators in the 𝐂 matrix are the ordinary layer potential operators (ones without “tilde”) 
here the source and target geometries for each operator are separated by a distance of 𝑑. This is a consequence of the translational 
mmetry of the integral operators which has led to the cancellations of all the near interactions in the periodized operators (ones 
ith “tilde”). As a result, all of the interactions represented by 𝐂 are distant and smooth, which can be discretized using ordinary 
5

ooth quadrature rules. The same simplification technique has been used in [27,51,53].
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1. Discretization of functions and operators

To accurately solve the system (17)-(19), we describe high-order collocation methods for the discretization of the integral opera-
rs in 𝐀, 𝐂, 𝐙 and the functions in the rest of the matrix blocks.
We choose collocation points on the interfaces and the walls as follows. On each side wall 𝑊 , where 𝑊 is one of 𝑅𝑖, 𝐿𝑖, 𝐵𝑖, and 
, for 𝑖 = 1, … , 𝐼 + 1, we sample 𝑀w points {𝐱𝑊

𝑚
}𝑀w
𝑚=1 that correspond to a 2-D tensor product of 1-D quadrature nodes. For the top 

d bottom walls 𝑈 and 𝐷, we use 𝑀 equally-spaced nodes (associated with the double Trapezoidal rule) {𝐱𝑈
𝑚
}𝑀
𝑚=1 on 𝑈 and {𝐱𝐷

𝑚
}𝑀
𝑚=1

 𝐷. For the interfaces Γ𝑖 which are smooth and doubly periodic, we assume the parameterizations 𝑔𝑖 on the rectangle [0, 1]2 are 
ven by

Γ𝑖 =
{
𝐫 = (𝑥, 𝑦, 𝑧) |𝑧 = 𝑔𝑖(𝑥, 𝑦), (𝑥, 𝑦) ∈ [0,1]2

}
. (30)

xing a set of 𝑁 equally-spaced nodes {(𝑥𝑛, 𝑦𝑛)}𝑁
𝑛=1 ⊂ [0, 1]2 associated with the double Trapezoidal rule, we can then sample Γ𝑖 at 

points {𝐱𝑖
𝑛
= (𝑥𝑛, 𝑦𝑛, 𝑔𝑖(𝑥𝑛, 𝑦𝑛))}𝑁

𝑛=1; let {𝑤
𝑖
𝑛
}𝑁
𝑛=1 be the associated quadrature weights such that

∫
Γ𝑖

𝑓 (𝐫) d𝑆𝐫 ≈
𝑁∑

𝑛=1
𝑓 (𝐱𝑖

𝑛
)𝑤𝑖

𝑛
(31)

lds to high accuracy for any given smooth periodic function 𝑓 on Γ𝑖.

The discretization of the matrix blocks in the system (17)-(19) becomes straightforward with the collocation points and the 
adrature above (except for the diagonal blocks of 𝐀, which we will address shortly). For example, in the 𝐐𝑖,𝑖 block in (23), an 
try 𝜙𝑖

𝑝

|||𝑅𝑖

− 𝛼𝑥𝜙
𝑖
𝑝

|||𝐿𝑖

in the first row is replaced by an 𝑀w × 𝑃 matrix(
𝜙𝑖

𝑝
(𝐱𝑅𝑖

𝑚 ) − 𝛼𝑥𝜙
𝑖
𝑝
(𝐱𝐿𝑖

𝑚 )
)
, 𝑚 = 1,… ,𝑀w, 𝑝 = 1,… , 𝑃 .

l the entries in 𝐁, 𝐐, 𝐕, and 𝐖 can be discretized similarly. On the other hand, the operators in 𝐀, 𝐂, 𝐙 (except for the diagonal blocks 
 𝐀) can be discretized using the smooth quadrature (31). For example in the 𝐂𝑖,𝑖 block in (22), an operator 𝛼−1

𝑥
𝑆𝑖

𝑅𝑖+𝐝𝑥,Γ𝑖
−𝛼2

𝑥
𝑆𝑖

𝐿𝑖−𝐝𝑥,Γ𝑖

n be discretized as an 𝑀w ×𝑁 matrix(
𝛼−1

𝑥
𝐺𝑖(𝐱𝑅𝑖

𝑚 + 𝐝𝑥,𝐱𝑖
𝑛
)𝑤𝑖

𝑛
− 𝛼2

𝑥
𝐺𝑖(𝐱𝐿𝑖

𝑚 − 𝐝𝑥,𝐱𝑖
𝑛
)𝑤𝑖

𝑛

)
,

here 𝑚 = 1, … , 𝑀w, 𝑛 = 1, … , 𝑁 . We now consider the discretization of the diagonal blocks 𝐀𝑖,𝑖 in (20). These blocks involve 
teractions from Γ𝑖 to itself, where the involved integrals become singular, so the smooth quadrature ceases to be accurate. We will 
cus on discretizing the entries involving the single-layer operator 𝑆̃; other self-interactions involving the operators 𝐷̃, 𝐷̃∗, and 𝑇̃
n then be discretized similarly. Consider 𝑆̃1

Γ1 ,Γ1
− 𝑆̃2

Γ1 ,Γ1
in the 𝐀1,1 block, the associated integral operator is(

(̃1
Γ1 ,Γ1

− ̃2
Γ1 ,Γ1

)𝜎
)
(𝐫) =

∑
−1≤𝑙𝑥,𝑙𝑦≤1
𝐝=𝑑⟨𝑙𝑥,𝑙𝑦,0⟩

𝛼
𝑙𝑥
𝑥 𝛼

𝑙𝑦
𝑦 ∫
Γ1

(
𝐺1(𝐫, 𝐫′ + 𝐝) −𝐺2(𝐫, 𝐫′ + 𝐝)

)
𝜎(𝐫′) d𝑆𝐫′ , 𝐫 ∈ Γ1, (32)

hich consists of contributions from Γ1 + 𝐝 to Γ1. When 𝐝 ≠ 𝟎, one can still discretize (32) using the smooth quadrature (31) with 
des {𝐱1

𝑛
+ 𝐝}𝑁

𝑛=1 and weights {𝑤
1
𝑛
}𝑁
𝑛=1. When 𝐝 = 𝟎, applying the smooth quadrature will result in a matrix(

𝑆1
Γ1 ,Γ1

−𝑆2
Γ1 ,Γ1

)
𝑚,𝑛

=
(
𝐺1(𝐱1

𝑚
,𝐱1

𝑛
) −𝐺2(𝐱1

𝑚
,𝐱1

𝑛
)
)
𝑤1

𝑛
, 𝑚, 𝑛 = 1,… ,𝑁 (33)

hose diagonal entries are infinite; zeroing out the diagonal entries (i.e., using the “punctured Trapezoidal rule”) will allow the 
scretization to converge as 𝑁 → ∞, but only very slowly. We next describe a new quadrature that makes corrections near the 
agonal of (33) to obtain a high-order discretization.

2. Special quadrature for self interaction

We describe a specialized quadrature for (32) which modifies the entries of (33). This quadrature is based on the error-corrected 
apezoidal quadrature method [45], which is a recent generalization of [44] that achieves high-order accuracies. For a fixed target 
int 𝐫0 ∶= 𝐱1

𝑚
∈ Γ1 (where 𝑚 is fixed), consider the integral

𝐼 = ∫
Γ1

(
𝐺1(𝐫0, 𝐫) −𝐺2(𝐫0, 𝐫)

)
𝜎(𝐫) d𝑆𝐫 (34)

d its boundary-corrected, punctured Trapezoidal rule approximation

𝑄ℎ =
𝑁∑(

𝐺1(𝐱1
𝑚
,𝐱1

𝑛
) −𝐺2(𝐱1

𝑚
,𝐱1

𝑛
)
)
𝑤1

𝑛
𝜎(𝐱1

𝑛
) +𝐶ℎ, (35)
6

𝑛=1
𝑛≠𝑚
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here ℎ is the grid spacing, and where the boundary correction 𝐶ℎ is a linear combination of the values and derivatives of the inte-
and in (34); the coefficients of the linear combination appears in the two-dimensional Euler-Maclaurin formula (see, for example, 
4, Theorem 2.6]) and do not depend on the integrand. The exact form of 𝐶ℎ is unimportant for our purpose, because the surface 
is periodic thus the boundary errors will vanish. To analyze the error of 𝐼 −𝑄ℎ, we only need to assume that 𝐶ℎ is a sufficiently 
gh-order boundary correction so that the dominant error always comes from the singularity of the integrand.

mma 1. The error of the Trapezoidal rule approximation of (34), 𝐸ℎ ∶= 𝐼 −𝑄ℎ, has an asymptotic expansion

𝐸ℎ ∼ 𝑐1ℎ
3 + 𝑐2ℎ

5 +⋯ =
∞∑

𝑝=1
𝑐𝑝ℎ

2𝑝+1, as ℎ→ 0, (36)

ere the coefficients 𝑐1, 𝑐2, … only depend on the following information at the target point 𝐫0: the derivatives of the parameterization of the 
rface Γ1 at 𝐫0, and the value and derivatives of a smooth function 𝜑(𝐫) at 𝐫0, where 𝜑(𝐫) can be explicitly constructed from the integrand 
 (34).

oof. Let 𝑟 ∶= |𝐫0 − 𝐫|, then using the definition (10) and the parameterization, the integral (34) can be rewritten as
𝐼 =

1

∫
0

1

∫
0

(
𝑟𝜓𝑐(𝑟) + 𝑖𝜓𝑠(𝑟)

)
𝜎(𝐫)𝐽 (𝐫) d𝑥d𝑦

=

1

∫
0

1

∫
0

𝑟𝜓𝑐(𝑟)𝜎(𝐫)𝐽 (𝐫) d𝑥d𝑦+ 𝑖

1

∫
0

1

∫
0

𝜓𝑠(𝑟)𝜎(𝐫)𝐽 (𝐫) d𝑥d𝑦

∶= 𝐼1 + 𝑖𝐼2

(37)

here 𝐫 = 𝐫(𝑥, 𝑦) is the parameterization (30) for Γ1, where 𝐽 (𝐫) is the Jacobian, and where

𝜓𝑐(𝑟) ∶=
cos(𝑘1𝑟) − cos(𝑘2𝑟)

𝑟2
and 𝜓𝑠(𝑟) ∶=

sin(𝑘1𝑟) − sin(𝑘2𝑟)
𝑟

e smooth functions of 𝑟2 = |𝐫0 − 𝐫|2, thus are also smooth functions of 𝐫 on Γ1. The Trapezoidal rule approximation 𝑄ℎ =𝑄ℎ,1 + 𝑖𝑄ℎ,2
here 𝑄ℎ,1 and 𝑄ℎ,2 are the approximation of the integrals 𝐼1 and 𝐼2, respectively. The imaginary component 𝐼2 is smooth thus the 
proximation 𝑄ℎ,2 is high-order accurate, so the error 𝐸ℎ ∼ 𝐼1 −𝑄ℎ,1. The integrand of 𝐼1 can be written as 𝑟 𝜑(𝐫), where

𝜑(𝐫) ∶= 𝜓𝑐(𝑟)𝜎(𝐫)𝐽 (𝐫) (38)

a smooth function of 𝐫(𝑥, 𝑦). Following [45, Section 3.1], the integrand of 𝐼1 has the following expansion at 𝐫0 = 𝐫(𝑥0, 𝑦0)

𝑟𝜑(𝐫) ∼
∞∑

𝑚=0

∞∑
𝑛=3𝑚

∑
𝑙1 ,𝑙2≥0
𝑙1+𝑙2=𝑛

𝛼
𝑚,𝑛

𝑙1 ,𝑙2

𝑥̂𝑙1 𝑦̂𝑙2

 (𝑥̂, 𝑦̂)𝑚−1∕2 (39)

here 𝑥̂ = 𝑥 −𝑥0 and 𝑦̂ = 𝑦 −𝑦0, where the coefficients 𝛼𝑚,𝑛

𝑙1 ,𝑙2
depend on the value and derivatives of 𝜑 and 𝐫(𝑥, 𝑦) at (𝑥0, 𝑦0), and where 

(𝑥, 𝑦) is the first fundamental form of Γ1 at 𝐫0 defined as

 (𝑥̂, 𝑦̂) = 𝐸𝑥̂2 + 2𝐹 𝑥̂𝑦̂+𝐺𝑦̂2, (40)

here

𝐸 = |𝐫𝑥(𝑥0, 𝑦0)|2, 𝐹 = 𝐫𝑥(𝑥0, 𝑦0) ⋅ 𝐫𝑦(𝑥0, 𝑦0), 𝐺 = |𝐫𝑦(𝑥0, 𝑦0)|2. (41)

en applying the generalized Euler-Maclaurin formula [45, Theorem 3.2], we have

𝐸ℎ ∼ 𝐼1 −𝑄ℎ,1 ∼
∞∑

𝑚=0

∞∑
𝑛=3𝑚
𝑛 even

∑
𝑙1 ,𝑙2≥0
𝑙1+𝑙2=𝑛

−𝛼
𝑚,𝑛

𝑙1 ,𝑙2
𝐶𝑚

𝑙1 ,𝑙2
[𝐸,𝐹 ,𝐺]ℎ𝑛−2𝑚+3 (42)

here 𝐶𝑚
𝑙1 ,𝑙2

[𝐸, 𝐹 , 𝐺] are coefficients that only depend on 𝐸, 𝐹 , 𝐺 and can be computed based on [45, Theorem 3.3]. To finish the 
oof, the equation (42) can be rearranged into the form (36) by grouping the terms by the powers of ℎ. □

A high-order corrected Trapezoidal rule for the integral operator (34) can then be constructed by adding a sufficient number of 
rms in the error expansion (36). However, a direct computation of (36) requires approximating the higher derivatives of 𝜑 and 
𝑥, 𝑦). To avoid computing these higher derivatives, the moment-fitting procedure from [45, Section 3.2] is used to fit the error (36) on 
local stencil around the target point 𝐫0, this procedure only requires evaluating 𝜑(𝐫), 𝐫(𝑥, 𝑦) and the first fundamental form  (𝑥̂, 𝑦̂)
 the stencil. Fig. 2 shows the stencil for a 5th order correction; note that when the stencil extends outside the central domain, the 
rresponding weights should be constructed with appropriate phased contribution involving the Bloch phases 𝛼𝑥 and 𝛼𝑦. We refer 
7

 [45] for more details on higher order discretization.
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. 2. Left: A doubly periodic surface with period 𝑑 = 1 and parameterized over [0, 1]2 , sampled with equally-spaced nodes {𝐱𝑖
𝑛
}𝑁

𝑛=1 . The nodes in the parameter space, 
𝑛, 𝑦𝑛)}𝑁

𝑛=1 ⊂ [0, 1]2 in the 𝑥𝑦-plane, together with their copies in the 8 nearest neighbors, are shown in all three panels. Middle: local error-correction stencil (thick 
ts) around a target point (red cross) in the middle of the domain. Right: error-correction stencil around a target point near the edge of the domain; note that the 
ncil extends outside the domain to the near periodic copies. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

 Rearrangement of equations, block elimination, and fast solver

The system (17)-(19) is sparse and can be transformed into a block-tridiagonal system as follows.
First, rearrange the rows and columns of (17)-(19) to form the block 2 × 2 system[

𝐀 𝐁̃
𝐂̃ 𝐐̃

][
𝜼

𝐜̃

]
=
[
𝐟
𝟎

]
, (43)

here one combines 𝐜1 and 𝐚u, and respectively 𝐜𝐼+1 and 𝐚d, to form

𝐜̃1 =
[
𝐜1
𝐚u

]
, 𝐜̃𝐼+1 =

[
𝐜𝐼+1
𝐚d

]
, 𝐜̃ =

[
𝐜̃1 𝐜2 … 𝐜𝐼 𝐜̃𝐼+1

]𝑇
(44)

d, accordingly, 𝐐̃ is formed by replacing the (1, 1)-block and the (𝐼 + 1, 𝐼 + 1)-block of 𝐐 with

𝐐̃1,1 =
[
𝐐1,1 𝟎
𝐕𝑈 𝐖𝑈

]
, 𝐐̃𝐼+1,𝐼+1 =

[
𝐐𝐼+1,𝐼+1 𝟎

𝐕𝐷 𝐖𝐷

]
. (45)

kewise, 𝐁̃ and 𝐂̃ are formed, respectively, by replacing the (1, 1)-block and the (𝐼, 𝐼 + 1)-block of 𝐁, and replacing the (1, 1)-block 
d the (𝐼 + 1, 𝐼)-block of 𝐂, with

𝐁̃1,1 =
[
𝐁1,1 𝟎

]
, 𝐁̃𝐼,𝐼+1 =

[
𝐁𝐼,𝐼+1 𝟎

]
,

𝐂̃1,1 =
[
𝐂1,1
𝐙𝑈

]
, 𝐂̃𝐼+1,𝐼 =

[
𝐂𝐼+1,𝐼
𝐙𝐷

]
.

(46)

Next, eliminate the unknowns 𝐜̃ to reduce the system (43) into block tridiagonal form

𝐀̃𝜼 = 𝐟 , (47)

here 𝐀̃ is an 𝐼 × 𝐼 block tridiagonal matrix with the nonzero blocks

𝐀̃1,1 =𝐀1,1 − 𝐁̃1,1𝐐̃
†
1,1𝐂̃1,1 −𝐁1,2𝐐

†
2,2𝐂2,1, (48)

𝐀̃𝑖,𝑖 =𝐀𝑖,𝑖 −𝐁𝑖,𝑖𝐐
†
𝑖,𝑖
𝐂𝑖,𝑖 −𝐁𝑖,𝑖+1𝐐

†
𝑖+1,𝑖+1𝐂𝑖+1,𝑖, 𝑖 = 2,3,… , 𝐼 − 1, (49)

𝐀̃𝐼,𝐼 =𝐀𝐼,𝐼 − 𝐁̃𝐼,𝐼 𝐐̃
†
𝐼,𝐼

𝐂̃𝐼,𝐼 −𝐁𝐼,𝐼+1𝐐
†
𝐼+1,𝐼+1𝐂𝐼+1,1, (50)

𝐀̃𝑖,𝑖+1 =𝐀𝑖,𝑖+1 −𝐁𝑖,𝑖+1𝐐
†
𝑖+1,𝑖+1𝐂𝑖+1,𝑖+1, 𝑖 = 1,2,3,… , 𝐼 − 1, (51)

𝐀̃𝑖+1,𝑖 =𝐀𝑖+1,𝑖 −𝐁𝑖+1,𝑖+1𝐐
†
𝑖+1,𝑖+1𝐂𝑖+1,𝑖, 𝑖 = 1,2,3,… , 𝐼 − 1, (52)

here † denotes the pseudo inverse of a rectangular matrix. In practice, the pseudo-inverses 𝐐†
𝑖,𝑖
are not computed explicitly; instead, 

 equation such as 𝐐𝑖,𝑖𝐗 = 𝐂𝑖,𝑖 is solved with a standard backward-stable direct dense solver such as the “mldivide” command 
 MATLAB. The system (47) can be solved efficiently using the block sparse LU factorization (i.e., block Thomas algorithm) [55, 
c.4.5.1] in 𝑂(𝑁3𝐼) operations, assuming the number of unknowns associated with each interface is 𝑂(𝑁). The algorithm proceeds 
 first initializing 𝐟 ′1 = 𝐟1 and 𝐀̃′

1,1 = 𝐀̃1,1, then a forward sweep for 𝑖 = 2 to 𝐼 ,

𝐀̃′
𝑖,𝑖
= 𝐀̃𝑖,𝑖 − 𝐀̃𝑖,𝑖−1(𝐀̃′

𝑖−1,𝑖−1)
−1𝐀̃𝑖−1,𝑖,
8

𝐟 ′
𝑖
= 𝐟𝑖 − 𝐀̃𝑖,𝑖−1(𝐀̃′

𝑖−1,𝑖−1)
−1𝐟 ′

𝑖−1,
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. 3. Two-layered media transmission problem with wavenumbers 𝑘1 = 8 and 𝑘2 = 16. The incident angle is 𝜙inc = 5𝜋
6
with 𝜃inc = 0. Results with a flat interface 

 on the top row, and with a corrugated interface on the bottom row. Left panels: Total field. Middle panels: relative error of the reflected wave (at the point 
0.25, −0.25, 0.25)) and of the transmitted wave (at the point (−0.25, −0.25, −0.25)) and the flux error against 𝑁 , the number of points per interface. Right panels: 
nvergence and flux error against 𝑃 , the number of proxy points per layer.

llowed by solving 𝐀̃′
𝐼,𝐼

𝜼𝐼 = 𝐟 ′
𝐼
for 𝜼𝐼 , and then a backward sweep for 𝑖 = 𝐼 − 1 down to 1 to solve for each 𝜼𝑖,

𝜼𝑖 = (𝐀̃′
𝑖,𝑖
)−1(𝐟 ′

𝑖
− 𝐀̃𝑖,𝑖+1𝜼𝑖+1).

Once the densities 𝜼𝑖 are obtained, the modified proxy strengths 𝐜̃𝑖 can be recovered by

𝐜̃1 = −𝐐̃†
1,1𝐂̃1,1𝜼1, (53)

𝐜𝑖 = −𝐐̃†
𝑖,𝑖
(𝐂̃𝑖,𝑖−1𝜼𝑖−1 + 𝐂̃𝑖,𝑖𝜼𝑖), 𝑖 = 2,3,… , 𝐼, (54)

𝐜̃𝐼+1 = −𝐐̃†
𝐼+1,𝐼+1𝐂̃𝐼+1,𝐼𝜼𝐼 . (55)

en substituting the densities 𝜼𝑖 and proxy strengths 𝐜𝑖 into the ansatz (16) gives the scattered field at any locations in any given 
yer Ω𝑖.

 Numerical results

In this section, we present numerical examples of multilayered media scattering using the numerical scheme described in the 
evious sections. We first investigate the convergence of the solutions and the complexity of the computational time and memory 
quirements, then we show examples of scattering with many layers. Most computations are performed on a Mac Pro with 3.2 GHz 
-Core Intel Xeon W processors and 192 GB RAM using MATLAB R2022a; the 101-layer example in Fig. 6 is performed on a work-
tion with 3.1 GHz 36-Core Intel Xeon Gold 6254 processors and 768 GB of RAM. The MATLAB code that accompanies this paper 
n be found in the GitHub repository https://github .com /bobbielf2 /ZetaTrap3D _Unified under the folder multilayermedia. In 
l examples, the incident wave is the plane wave defined in (1). Points on all the surrounding walls are uniformly distributed. The 
oxy points for each layer are placed on a sphere of radius 1.5 enclosing the unit cell of the layer. (See Fig. 1(b)-(c).) We note 
at our algorithm accepts both real and complex wavenumbers 𝑘𝑖. We have chosen real 𝑘𝑖 in our examples for the convenience of 
plementation and for the availability of an independent measure for the accuracy which we describe next.
We use the relative flux error 𝐸flux as an independent measure of accuracy, which is defined as

𝐸flux ∶=
|||||||
∑

𝑘
(𝑚,𝑛)
u >0 𝑘

(𝑚,𝑛)
u |𝑎u

𝑚𝑛
|2 +∑

𝑘
(𝑚,𝑛)
d >0 𝑘

(𝑚,𝑛)
d |𝑎d

𝑚𝑛
|2 − 𝑘1 cos𝜙inc

𝑘1 cos𝜙inc

||||||| . (56)

is measure is based on the conservation of flux (energy) [30].

nvergence of the solutions The first example considers the transmission problem with a two-layered media, where the interface Γ1, 
rameterized by 𝑔1(𝑥, 𝑦) = ℎ sin(2𝜋𝑥) cos(2𝜋𝑦), is either flat (ℎ = 0) or corrugated (ℎ = 0.2). The wavenumbers in the top and bottom 
yers are 𝑘1 = 8 and 𝑘2 = 16 and the incident angle is 𝜙inc = 5𝜋

6 and 𝜃inc = 0. In Fig. 3, we test the convergence of the scattered field 𝑢
 the point (−0.25, −0.25, 0.25) in the top layer (i.e. the reflected field) and at the point (−0.25, −0.25, −0.25) in the bottom layer (i.e. 
e transmitted field), and investigate the relative flux error 𝐸flux. The convergence against 𝑁 , the number of points per interface, 
d against 𝑃 , the number of proxy points per layer, are shown, where the analytic solution is used as the reference solution in 
9

e flat case and the numerical solution with 𝑁 = 1202 and 𝑃 = 3120 is used as the reference solution in the corrugated case. Other 

https://github.com/bobbielf2/ZetaTrap3D_Unified
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. 4. Investigation of the effects of different levels of roughness of the interface and the order of the quadrature correction on the convergence of the two-layered 
dia problem in Fig. 3. Left panel illustrates the surface 𝑔1(𝑥, 𝑦) = ℎ sin(2𝜋𝑥) cos(2𝜋𝑦) for three different values of ℎ. (Note: this is not the actual arrangement of 
erfaces.) Convergence of flux error against 𝑁 (middle panel) and against 𝑃 (right panel) are shown for the cases ℎ = 0 (blue), ℎ = 0.2 (green) and ℎ = 0.5 (yellow), 
th quadrature corrections of 5th order (circles) and of 7th order (asterisks) with respect to the grid spacing. All other parameters are the same as in Fig. 3.

Table 1

Time (in seconds) and memory (in gigabytes) requirements for multilayered media scattering, where 𝐼 is the 
number of interfaces.

𝐼 1 2 3 4 5 10 20 30

𝑇pre (s) 4 8 13 17 21 42 84 125

𝑇fill (s) 23 65 107 149 191 390 797 1203

𝑇solve (s) 16 43 73 103 133 280 575 875

𝑀fill (GB) 2.0 5.2 8.4 11.7 14.9 31.0 63.3 95.6

𝐸flux 8.5e-08 3.1e-06 2.9e-06 4.8e-06 4.6e-06 4.9e-06 4.9e-06 4.9e-06

Fig. 5. Linear scaling of computational times from Table 1.

rameters, if not specified, are fixed at 𝑁 = 1202, 𝑀w = 𝑀 = 252, 𝑃 = 3120. Quadrature corrections of 7th order are used. For both 
e flux error and the point-wise error of the field, we observe 7th order convergence with respect to the grid spacing (i.e., the error 
𝑂(

√
𝑁

−7
)) and super-algebraic convergence with respect to the number of proxy points 𝑃 .

In Fig. 4, we perform additional convergence study similar to Fig. 3 by changing the level of roughness of the interface and 
e order of quadrature correction. As expected, we observe that a higher order method (7th order) converges faster and provides 
ore digits of accuracy than a lower order method (5th order) at the same number of discretization points. When the interface is a 
ghly corrugated (ℎ = 0.5), more points (larger 𝑁) are required than a less corrugated interface (ℎ = 0.2) to reach the same level of 
curacy. In the middle panel of Fig. 4, the slope of the convergence plot is 2.5 for 5th order and 3.5 for 7th order (before they reach 
plateau of 10 digits of accuracy), since the order of accuracy of the method is with respect to the grid spacing, which is 𝑂(𝑁−1∕2).

mputational time and memory requirement With the sparse system (47), the required computational time and memory are expected 
 scale linearly against the number of interfaces 𝐼 . In Table 1, we show the computational results for media with 1 to 30 interfaces, 
here 𝑇pre is the time for precomputing the quadrature correction weights, 𝑇fill the time and 𝑀fill the memory required for filling 
e matrices in the system (17)-(19), and 𝑇solve the total time for both the reduction to and the solution of the block tridiagonal 
stem (47) via block LU factorization. In all cases, the interfaces Γ𝑖 are parameterized by 𝑔𝑖(𝑥, 𝑦) = 0.2 sin(2𝜋𝑥) cos(2𝜋𝑦) − (𝑖 − 1)
d discretized using 𝑁 = 602 points each and with 7th-order quadrature. The wavenumbers 𝑘𝑖 alternate between 10 and 20. Other 
10

rameters are fixed at 𝜙inc = 5𝜋∕6, 𝜃inc = 𝜋∕4, 𝑃 = 2380, 𝑀w = 𝑀 = 202 and 𝐾 = 10. The relative flux error stays below 5 × 10−6 for 
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. 6. 101-layered media scattering. The left panel shows the real part of the total field in the top 12 layers and the right panel in the bottom 12 layers (note the 
erent color scales). The wavenumbers for each layer are chosen randomly in [8, 20]. 𝑁 = 602 points per interface and 𝑃 = 2380 proxy points per layer are used. 
mputation is done in 1.83 hours and requires 321 GB of RAM. Relative flux error ∼ 7.4 × 10−5 .

. 7. Left panel: A five-layered media with two thin layers. The thickness is 0.3 for the thin layers and is 1 for the other layers. The wavenumbers for each layer are 
0, 8, 12, 10. The rest of the parameters are the same as in Fig. 6. Relative flux error is 8.8 × 10−8 . Right panel: A three-layered media with more complex surfaces 
d high-contrast layers, where the wavenumbers of the three layers are 3, 30, 3 (a 1-to-10 contrast). A 140 × 140 mesh is used for each interface and 𝑃 = 4900 proxy 
ints for each layer, the flux error is 5.5 × 10−4 .

. 8. The transmission and reflection spectra of an 11-layered media, where the wavenumbers 𝑘𝑖 of each layer alternates between 2𝜋 and 4𝜋. Left panel: spectra for 
0 (flat interfaces). Right panel: spectra for ℎ = 0.2 (corrugated interfaces).

y number of layers presented. The timing data in Table 1 is also plotted in Fig. 5, which clearly demonstrates a linear scaling of 
e computational times with respect to the number of interfaces 𝐼 .

ample with 101 layers To demonstrate the capability of the algorithm, Fig. 6 shows the total field across a 101-layered media 
ross-section in the 𝑥𝑧-plane). The wavenumbers 𝑘𝑖 are randomly chosen between 8 and 20 for each layer. A relative flux error of 
 × 10−5 is achieved with the parameters 𝑁 = 602, 𝑃 = 2380, 𝑀w = 𝑀 = 202, 𝐾 = 10, and with 7th order quadrature corrections. 
e total number of unknowns is about 961.3k. The computation is completed in about 1.83 hours (0.2 hours for precomputing the 
adrature correction weights, 1.28 hours for filling the matrices and 0.35 hours for solving the system) and used about 321 GB of 
emory.

attering in more complex layered media The next two examples illustrates the flexibility of our solver in handling more complex 
edia. The left panel of Fig. 7 shows a plane wave through a five-layered media with layers of disparate thickness, where the middle 
11

yers Ω2 and Ω3 (both have a thickness of 0.3) are thinner than the layer Ω4 (whose thickness is 1). In practice, this geometry may 
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rrespond to two layers of thin coating on a given material. One distinctive feature of this example is that, for the thin layer Ω2 (and 
ewise Ω3), the lowest point of the upper interface Γ1 is below the highest point of the lower interface Γ2. On the other hand, the 
ht panel of Fig. 7 presents a three-layered media with high-contrast layers and more deformed interfaces. The wavenumbers of the 
ree layers are 𝑘1 = 3, 𝑘2 = 30 and 𝑘3 = 3, giving a 1-to-10 contrast across the interfaces. The two interfaces are each described by the 
rmula 𝑧 = 0.2 sin(2𝜋𝑥) cos(2𝜋𝑦) + 0.05 sin(4𝜋𝑥) cos(4𝜋𝑦) + 0.1 sin(6𝜋𝑥) cos(6𝜋𝑦) and are separated by a distance of 1. Using a 140 × 140
esh on each interface and 𝑃 = 4900 proxy points for each layer, the solution has a flux error of 5.5 × 10−4.

ansmission and reflection spectra Finally, we compute the transmission and reflection spectra, for a range of incident an-
es 𝜋∕2 < 𝜙inc < 3𝜋∕2 and fixed 𝜃inc = 0, for an 11-layered media with flat or corrugated interfaces. Γ𝑖 are parameterized by 
(𝑥, 𝑦) = ℎ sin(2𝜋𝑥) cos(2𝜋𝑦) − (𝑖 − 1) for 1 ≤ 𝑖 ≤ 10. In Fig. 8, we show the spectra for ℎ = 0 (flat interfaces) and ℎ = 0.2 (corru-
ted interfaces). The wavenumbers 𝑘𝑖 alternate between 2𝜋 and 4𝜋 (i.e., alternating between 1 and 2 wavelengths across layers). 
e used 𝑁 = 402 points for each interface and 𝑃 = 1740 proxy points for each layer, so that the flux error is below 10−4 in all cases 
r all incident angles. We observe that when the interfaces are corrugated, the spectra vary faster with the incident angle than when 
e interfaces are flat. The computations are accelerated by precomputing and storing the matrix components that are independent 
 the incident angle or the Bloch phases, at the cost of higher memory requirements. In Fig. 8, a total of 300 incident angles are 
nsidered in each case, with 150 independent angles (due to symmetry) and 100 independent Bloch phases. For ℎ = 0 (or ℎ = 0.2), 
takes 103 seconds (or 116 seconds) to precompute and store the matrices independent of the incident angles, then 3770 seconds 
r 3980 seconds) to solve the systems for all the independent phases, this gives an estimate of over 4x speedup compared to an 
accelerated computation.

 Conclusion

A new 3-D multilayered media solver for doubly periodic geometry is presented. The solver is fast, accurate, and robust, equipped 
ith new high-order specialized quadrature. An accuracy of 5 to 10 digits can be obtained for structures with multiple smooth layers 
ith a small number of unknowns for each interface. The solver is capable of handling a structure with 101 layers in under 2 hours. 
e computational time and the memory requirement scale linearly with the number of layers in the structure. The transmission and 
flection spectra for media with many layers can be computed efficiently, which is useful for applications in science and engineering. 
ture directions include extending our method to handle non-smooth layers using clustered nodes or panel-based quadratures (such 
 [56]), further accelerating the present solver by developing fast direct solvers in the style of [29], and developing new solvers for 
axwell’s equations.
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